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Abstract. We study totally disconnected, locally compact (t.d.l.c.) groups

from an algorithmic perspective. We give various approaches to defining com-

putable presentations of t.d.l.c. groups, and show their equivalence. In the
process, we obtain an algorithmic Stone-type duality between t.d.l.c. groups

and certain countable ordered groupoids given by the compact open cosets. We

exploit the flexibility given by these different approaches to show that several
natural groups, such as Aut(Td) and SLn(Qp), have computable presentations.

We show that many construction leading from t.d.l.c. groups to new t.d.l.c.
groups have algorithmic versions that stay within the class of computably pre-

sented t.d.l.c. groups. This leads to further examples, such as PGLn(Qp).

We study whether objects associated with computably t.d.l.c. groups are com-
putable: the modular function, the scale function, and Cayley-Abels graphs in

the compactly generated case. We give a criterion when computable presenta-

tions of t.d.l.c. groups are unique up to computable isomorphism, and apply
it to Qp as an additive group, and to the semidirect product Z n Qp.
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1. Introduction

Algorithmic aspects of t.d.l.c. groups play a considerable role in recent research
such as Willis [50]; for a summary of directions being pursued at present, see the
conference on computational aspects of t.d.l.c. groups in Newcastle, Oct. 2022.
We develop a general algorithmic theory of totally disconnected, locally compact
(t.d.l.c.) groups, hoping to establish a successful theoretical framework for these

The first author was supported by Rutherford Discovery Fellowship RDF-VUW1902 of the
Royal Society Te Aparangi. The second author was supported by the Royal Society Te Aparangi
under the standard Marsden grant UOA-19-346. This work received its initial impetus during a
meeting of the authors at the Research Centre Coromandel in July 2020.
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aspects. We assume that all topological groups in this paper have a countable basis.
Our theory will address the following:

Questions 1.1.

(a) How can one define a computable presentation of a t.d.l.c. group?
Which t.d.l.c. groups have such a presentation?

(b) Relative to such a presentation, are objects such as the rational valued Haar
measures, the modular function, or the scale function computable?

(c) Which constructions that lead from t.d.l.c. groups to new t.d.l.c. groups
have algorithmic versions?

(d) When is a computable presentation of a t.d.l.c. group unique up to com-
putable isomorphism?

After some background on t.d.l.c. groups and on computability we will discuss
the questions raised initially. We hope that the first five sections of the paper will
be accessible to readers with only basic knowledge of computability theory; as we
progress, we will explain some notions from computability theory that are more
advanced.

1.1. Background on t.d.l.c. groups. Van Dantzig [44] showed that each t.d.l.c.
group has a neighbourhood basis of the identity consisting of compact open sub-
groups. With Question 1.1(a) in mind, we provide six examples of t.d.l.c. groups,
and indicate a compact open subgroup when it is not obvious. We will return to
them repeatedly during the course of the paper.

(i) All countable discrete groups are t.d.l.c.
(ii) All profinite groups are t.d.l.c.
(iii) (Qp,+), the additive group of p-adic numbers for a prime p is an example

of a t.d.l.c. group that is in neither of the two classes above. The additive
group Zp of p-adic integers forms a compact open subgroup.

(iv) The semidirect product ZnQp corresponding to the automorphism x 7→ px
on Qp, and Zp is a compact open subgroup.

(v) Algebraic groups over local fields, such as SLn(Qp) for n ≥ 2, are t.d.l.c.
Here SLn(Zp) is a compact open subgroup.

(vi) Given a connected countable undirected graph such that each vertex has
finite degree, its automorphism group is t.d.l.c. The stabiliser of any vertex
forms a compact open subgroup.

By an undirected tree we mean a connected graph without cycles. For d ≥ 3, by Td
one denotes the undirected tree where each vertex has degree d. The group Aut(Td)
was first studied by Tits [43].

Towards Question 1.1(b), we will review some objects that are associated with
a locally compact group G. The left and right Haar measures on G are treated in
standard textbooks such as [13]. Recall that for any left Haar measure µ on G and
any g ∈ G, one obtains a further left Haar measure µg by defining µg(A) = µ(Ag).
By the uniqueness up to a multiplicative constant of the left Haar measure , there is
a real ∆(g) > 0 such that µg(A) = ∆(g)µ(A) for each measurable A. The function
∆: G→ R+, called the modular function for G, is a group homomorphism.

Seminal work of Willis published in the 1990s, such as in [48], provided the
impetus for intense research on t.d.l.c. groups in the last decades. He introduced
the scale function s : G → N+. Let g ∈ G. For a compact open subgroup V of
G, let m(g, V ) = |V g : V ∩ V g| be the displacement of V through conjugation by g
(with the usual definition V g = g−1V g). Let s(g) be the minimum value of m(g, V )
over all V . It is not hard to show that ∆(g) = s(g)/s(g−1). If a group has a normal
compact open subgroup, such as for the examples (i)–(iii) above, the scale function
is constant of value 1. The group Z n Qp for a prime p is among the simplest



COMPUTABLY TOTALLY DISCONNECTED LOCALLY COMPACT GROUPS 3

examples of a t.d.l.c. group with a nontrivial scale function: one has s(t) = p for
the generator t of Z such that αt = α/p for each α ∈ Qp.

Cayley-Abels graphs form a further type of objects associated to certain t.d.l.c.
groups. To motivate them, we recall that a guiding principle in the study of a
t.d.l.c. group G is that it has a topological and a geometric aspect. The two aspects
capture the small-scale (or local), and the large-scale (or global) behaviour, respec-
tively. The small-scale aspect is given by a compact open subgroup U (provided by
van Dantzig’s theorem), which is of course profinite. Any two such subgroups are
commensurable.

Next, we discuss the large-scale aspect, beginning with some background. Gro-
mov and others initiated a geometric theory of (discrete) finitely generated groups
via their Cayley graphs. Such graphs for different generating sets are quasi-isometric.
This means that there is a map φ from one vertex set to the other that only distorts
distances affinely, and for some constant c, each vertex has at most distance c from
the range of φ. Large-scale geometric properties are invariant under quasi-isometry.

T.d.l.c. groups that are algebraically generated by a compact subset form the
topological analog of discrete finitely generated groups. It is easy to see that given
a compactly generated t.d.l.c. group G with a compact open subgroup U , the group
G is generated by U ∪ S for some finite symmetric set S. The Cayley-Abels graph
ΓU,S is the analog of the Cayley graph in this new setting, where the elements of
the group are replaced by the left cosets of U . As before, any two such graphs
are quasi-isometric. So one can think of the Cayley-Abels graphs as capturing the
large-scale aspect of a compactly generated group.

For further background and references on the topics discussed above, see [47],
and also [19].

1.2. Background on computable mathematics. A general goal of computable
mathematics is to study the algorithmic content of areas such as algebra [1, 8], anal-
ysis [36, 45], or topology [39]. A first step is invariably to define what a computable
presentation of a mathematical structure in that area is, such as a countable group,
a complete metric space, or a separable Banach space. (Note that “computable”
is the commonly accepted adjective used with presentations, rather than “algorith-
mic”.) One also introduces and studies computability for objects related to the
structure. For instance, in computable analysis one uses rational approximations
to reals in order to define what it means for a function f : R→ R to be computable
(see this section further below). A large body of results addresses the algorithmic
content of classical results. For example, consider the result that each continuous
real-valued function f on the unit interval has a maximum value. In the algorith-
mic approach, one assumes the function is computable, and ask whether there is a
computable at which the value is maximal. (The answer is “no” in general.)

There are also interesting new questions with no pendant in the classical setting.
For instance, how difficult is it to recognize whether two computable presentations
present the same structure? How hard is it to determine whether the structure
presented has a certain property? (E.g., to determine whether a computably pre-
sented group is torsion-free.) The basic distinction is “decidable/undecidable”.
Mathematical logic provides a bevy of descriptive complexity classes, with corre-
sponding completeness notions, for a more detailed answer in the undecidable case.
For instance, torsion-freeness is of maximum complexity within the co-recursively
enumerable properties.

Towards defining computable presentations, we first recall the definition of a
computable function on N, slightly adapted to our purposes in that we allow the
domain to be any computable set.
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Definition 1.2. Given a set S ⊆ Nk, where k ≥ 1, a function f : S → N is called
computable if there is a Turing machine that on inputs n1, . . . , nk decides whether
the tuple of inputs (n1, . . . , nk) is in S, and if so outputs f(n1, . . . , nk).

One version of the Church-Turing thesis states that computability in this sense
is the same as being computable by some algorithm.

A structure in the model theoretic sense consists of a nonempty set D, called the
domain, with relations and functions defined on it. The following definition was
first formulated in the 1960s by Mal’cev [23] and Rabin [37], independently.

Definition 1.3. A computable structure is a structure such that the domain is
a computable set D ⊆ N, and the functions and relations of the structure are
computable. A countable structure S is called computably presentable if some com-
putable structure W is isomorphic to it. In this context we call W a computable
copy of S.

Example 1.4. (a) For each k ≥ 1, the group GLk(Q) is computably presenatble.
To obtain a computable copy, one fixes an algorithmic encoding of the rational
k × k matrices by natural numbers, and lets the domain D be the computable set
of numbers that encode a matrix with nonzero determinant. Since the encoding is
algorithmic, the domain and the matrix operations are computable.
(b) It is not hard to verify that an n-generated group G has a computable copy if
and only if its word problem is decidable.

Next, we discuss how to define that an uncountable structure has a computable
presentation. In the field of computable analysis, one represents all the elements of
the structure by “names” which are directly accessible to computation, and requires
that the functions and relations are computable on the names. For detail see e.g.
[33, 39]. Often names are elements of the set [T ] of paths on some computable
subtree T of N∗ (the tree of strings with natural number entries). For instance, a
standard name of a real number r is a path coding a sequence of rationals 〈qn〉n∈N
such that |qn − qn+1| ≤ 2−n and limn qn = r. Using so-called “oracle Turing
machines”, one can define computability of functions on [T ]; we will provide detail
in Section 6. This indirectly defines computability on spaces relevant to computable
analysis; for instance, whether a function on R is computable. The example above
shows that names and the object they denote can be of quite a different kind. In
contrast, each totally disconnected Polish space is homeomorphic to [T ] for some
subtree T of N∗, which is advantageous because in principle there is no need to
distinguish between names and objects in our setting.

A rather different, ad hoc way to define computability often works for particular
classes of uncountable structures: impose algorithmic constraints on the defini-
tion of the class. For instance, a profinite group G is computable in the sense
of Smith [41] and La Roche [20] if G = lim←−i(Ai, ψi) for a computable diagram

(Ai, ψi)i∈N of finite groups and epimorphisms ψi : Ai → Ai−1 (i > 0). Such a def-
inition often turns out to be equivalent to the general definition of computability
restricted to the class; for profinite groups this will follow by combining Proposi-
tion 7.3 and Proposition 8.6.

The aforementioned approach to profinite groups of Smith and La Roche admits
equivalent formulations that work beyond this class. One such reformulation (in
terms of effectively branching subtrees of N∗) was discovered by Smith [41], and
the other (in terms of effectively compact metric spaces) can be found in the very
recent work [5] (see Thm. 4.33). Results of this sort indicate that the respective
notion of computable presentability is robust in the class.

In the remaining sections of the introduction we discuss the questions posed at
the beginning of the paper in more detail.
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1.3. Computable presentations of t.d.l.c. groups. We aim at a robust defini-
tion of the class of t.d.l.c. groups with a computable presentation. We want this
class to have good algorithmic closure properties, and also ask that our definition
extend the existing definitions for discrete, and for profinite groups. We provide
several types of computable presentations, which will turn out to be equivalent.

Type S (for “symmetric group”) is based on the fact that each t.d.l.c. group G is
isomorphic to a closed subgroup of S∞. We represent such subgroups by subtrees of
N∗ in a certain way (to be described below). We impose algorithmic conditions on
the tree to define when the presentation is computable. This approach is consistent
with earlier work [12] on computable subgroups of S∞.

Type M (for “meet groupoid”) is based on an algebraic structure W(G) on the
countable set of compact open cosets in G. This structure is a partially ordered
groupoid, with the usual set inclusion and multiplication of a left coset of a subgroup
U with a right coset of U . The intersection of two compact open cosets is such a
coset itself, unless it is empty. So, after adjoining ∅ as a least element (which does
not interact with the groupoid structure), we obtain a meet semilattice. A Type M
computable presentation of G is a computable copy of the meet groupoid of G such
that the index function on compact open subgroups, namely U, V 7→ |U : U ∩ V |,
is also computable. The idea to study appropriate Polish groups via an algebraic
structure on their open cosets is due to Katrin Tent, and first appeared in [18].
This idea was further elaborated in a paper on the complexity of the isomorphism
problem for oligomorphic groups [31]. There, approximation structures are used
that are given by the ternary relation “AB ⊆ C”, where A,B,C are certain open
cosets. They are called “coarse groups”. In the present work it will be important
that we have explicit access to the combination of the groupoid and the meet
semilattice structures.

Type B (where “B” stands for “Baire”) of computable presentation generalizes
Type S. For computable Baire presentations, one asks that the domain of G is what
we call an effectively locally compact subtree of N∗ (the tree of strings with natural
number entries), and the operations are computable in the sense of oracle Turing
machines. This approach generalizes one of the definitions in [41] from profinite
groups to t.d.l.c. groups. It also works for t.d.l.c. structures other than groups. We
postpone it until Section 7, mainly because it requires more advanced notions from
computability theory. In particular, it relies on computable functions on the set of
paths of a computable tree. These notions will be provided in Section 6.

Among our main results is that the various approaches to computable presenta-
tions are equivalent. This will be stated formally in Theorem 5.1 and its extension
Theorem 7.6. Indeed, the approaches are equivalent in the strong sense that from
a presentation of one type, one can effectively obtain a presentation of the other
type for the same t.d.l.c. group. Below, we will initially say that a t.d.l.c. group is
computably t.d.l.c. of a particular type, for instance via a closed subgroup of S∞,
or via a Baire presentation. Once the equivalences have been established, we will
often omit this.

These results and the characterization established Theorem 5.1 suggest that our
approach to computability for t.d.l.c. groups is natural and robust. We will later
support this thesis with non-trivial examples showing that many widely studied
t.d.l.c. groups are computably t.d.l.c., as well as further characterizations extending
Theorem 5.1.
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Baire presentations appear to be the simplest and most elegant notion of com-
putable presentation for general totally disconnected Polish groups. However, com-
putable Baire presentations are hard to study because the domain is usually un-
countable (while the meet groupoids are countable), and there are no specific tech-
nical tools available (unlike the case of permutations of N). In the proofs of several
results, notably Theorem 11.10, we will work around this by replacing a Baire
presentation with a more accessible one of Type M or S.

The operation that leads from a t.d.l.c. group to its meet groupoid has an in-
verse operation. Both operations are functorial for the categories with isomor-
phisms. This yields a duality between t.d.l.c. groups and a certain class of countable
meet groupoids (similar to the duality in [31] between oligomorphic groups and the
“coarse groups”). This class of meet groupoids can be described axiomatically. The
equivalence of computable presentations of Type B and Type M can be extended
to a computable version of that duality. We will elaborate on this in Remark 12.5
near the end of the paper.

1.4. Which t.d.l.c. groups G have computable presentations? Discrete groups,
as well as profinite groups, have a computable presentation as t.d.l.c. groups if and
only if they have one in the previously established sense, reviewed in Section 1.2
above. We will provide numerous examples of computable presentations for t.d.l.c.
groups outside these two classes. The various equivalent approaches to computable
presentations will be useful for this, because they allow us to construct a presen-
tation of the type most appropriate for a given group. For a group of automor-
phisms such as Aut(Td) we will use Type S (presentations as closed subgroups of
S∞). For (Qp,+) we use Type M (meet groupoids). For SLn(Qp) we use Type B
(computable Baire presentations). One can generalize the latter example to other
algebraic groups over Qp by using an effective form of σ-compactness, as mentioned
in Section 1.8 below.

Some uncountable structures are equipped with a ‘natural’ computable struc-
ture. The Banach space C([0, 1],R) with the maximum norm has the dense set of
polynomials Q[x]; note that the distance between any two of them is computable.
In other cases, it can be hard to determine whether a given uncountable structure
admits a computable presentation. Some effort is needed to show that the compact
metric space of probability measures on 2ω has such a presentation; we cite [4].
Similarly, it can be difficult to determine whether a particular t.d.l.c. group has a
computable presentation. Nonetheless, our broad conjecture is that all “natural”
groups that are considered in the field of t.d.l.c. groups have computable presen-
tations. An interesting testing ground for this conjecture is given by Neretin’s
groups Nd of almost automorphisms of Td, for d ≥ 3; see [16].

1.5. Associated computable objects. Recall that to a t.d.l.c. group G we asso-
ciate its meet groupoid W(G), an algebraic structure on its compact open cosets.
If G is given by a computable Baire presentation, then we construct a copy W =
Wcomp(G) that is computable in a strong sense, essentially including the condition
that a rational valued Haar measure on G is computable as a functionW → R. We
will show in Theorem 9.2 that the left, and hence also the right, action of G on W
is computable. We conclude that the modular function on G is computable. If G is
compactly generated, for each Cayley-Abels graph one can determine a computable
copy, and any two copies of this type are computably quasi-isometric (Theorem 9.5).
Intuitively, this means that the large-scale geometry of G is a computable invariant.

The computability of the scale function has been shown for particular t.d.l.c.
groups in works such as [10] and [49, Section 6]; see the survey [50], which also
considers the scale of a general endomorphism of G. In these particular cases, it
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was generally clear what it means that one can compute the scale s(g): provide an
algorithm that shows it. One has to declare what kind input the algorithm takes;
necessarily it has to be some approximation to g, as g ranges over a potentially
uncountable domain. Our new framework allows us to give a precise meaning to
the question whether the scale function is computable for a particular computable
presentation of a t.d.l.c. group, thus also allowing for a precise negative answer. We
note that this is reminiscent of the answer to Hilbert’s 10th problem, which asked
for an algorithm that decides whether a multivariate polynomial over Z has a zero.
Only after a precise notion of computable function was introduced in the 1930s, it
became possible to assert rigorously that no such algorithm exists; the final negative
answer was given in 1970 by Y. Matyasevich in his PhD thesis submitted to the
Steklov Institute. We leave the following open; also see Section 10 and Remark 11.7.

Question 1.5. Given a computable presentation of a t.d.l.c. group G, is the scale
function computable for this presentation?

If the answer is in the negative, one can further ask whether for some computably
presented G, the scale is non-computable for each of its computable presentations.
An even stronger negative result would be that G can be chosen to have a unique
computable presentation (see the discussion below).

1.6. Algorithmic versions of constructions that lead from t.d.l.c. groups
to new t.d.l.c. groups. Section 11 shows that the class of computably t.d.l.c.
groups is closed under suitable algorithmic versions of many constructions that have
been studied in the theory of t.d.l.c. groups. In particular, the constructions (1), (2),
(3) and (6) described in [46, Thm. 1.3] can be phrased algorithmically in such a way
that they stay within the class of computably t.d.l.c. groups. This provides further
evidence that our class is robust. These constructions are suitable versions, in our
algorithmic topological setting, of passing to closed subgroups, taking extensions by
continuous actions, forming “local” direct products, and taking quotients by closed
normal subgroups (see [46, Section 2] for the detail). The algorithmic version of
taking quotients (Theorem 11.10) is the most demanding; it uses extra insights
from the proofs that the various forms of computable presentation are equivalent,
which are provided in Theorem 9.2.

Several constructions lead to new examples of t.d.l.c. groups with computable
presentations. E.g., after defining a computable presentation of SLn(Qp) directly,
we proceed to a computable presentation of GLk(Qp) via taking a closed subgroup,
and then to PGLk(Qp) via taking a quotient.

1.7. When is a computable presentation unique? Willis [50, Section 5] writes
that “it is a truism that computation in a group depends on the description of the
group”. In the present article, we apply our notion of computable presentability
of a t.d.l.c. group to formally clarify this intuition, and also give some examples
where the statement actually fails. Viewing a computable Baire presentation as a
description, we are interested in the question whether such a description is unique,
in the sense that between any two of them there is a computable isomorphism.
Adapting terminology for countable structures going back to Mal’cev, we will call
such a group autostable. If a t.d.l.c. group is autostable, then computation in the
group can be seen as independent of its particular description.

We apply our methods to show in Section 9 that the additive group Qp of the
p-adic numbers is autostable, and so is Z n Qp. Proving the autostability of these
groups requires more effort than the reader would perhaps expect. For other groups,
such as SLn(Qp) for n ≥ 2 and Aut(Td), we leave open whether a computable
presentation is unique up to computable isomorphism.
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1.8. Some context.
Related work on autostability. A countable structure is called autostable (or com-
putably categorical [8, 1] if it has a computable copy, and such a copy is unique up
to computable isomorphism. For example, any computable finitely generated alge-
braic structure is autostable. In contrast, there is a discrete 2-step nilpotent group
with exactly two computable presentations up to computable isomorphism [11]. We
note that in the discrete case our notion of autostability for t.d.l.c. groups reduces
to the established one.

A profinite abelian group is autostable if and only if its Pontryagin dual is
autostable [26]; note that this dual is a discrete, torsion abelian group. Autostability
of the latter type of groups is characterized in [28]. In this way one obtains a
characterization of autostability for profinite abelian groups.

Pour El and Richards [36] gave an example of a Banach space with two com-
putable presentations without a computable linear isometry between them. Works
such as [29] and then [3, 25, 14] systematically study autostability in separable
spaces, using tools of computable (discrete) algebra.

Other related work. The first author has shown how to give an equivalent definition
of a computable t.d.l.c. group in terms of an ‘effectively σ-compact metric’. For a
draft see [7, Section 4].

Our work [22] with Lupini focusses on abelian locally compact groups. We
introduce two notions of computable presentation for abelian t.d.l.c. groups that
take into account their special structural properties. The first is based on the fact
that such groups are pro-countable, the other on the fact that such a group is
an extension of a discrete group by a profinite group. Both notions can be used
to provide further examples of computable abelian t.d.l.c. groups that are neither
discrete nor compact. The work [22] states that in the abelian case, the notion of
computable presentability given in the present paper is equivalent to these notions.
We prove this in Section 8 of the present paper.

An approach to computability for Polish groups was suggested in [27] and then
developed in, e.g., [26, 34]. In that approach, a Polish group is said to be com-
putable if the underlying topological space is computably, completely metrized and
the group operations are computable operators (functionals) on this space. It is
known (see [26]) that there exist computably metrized profinite groups that do not
possess a computable presentation in the sense of LaRoche and Smith. However,
if we additionally assume that the underlying computably metrized space is ‘ef-
fectively compact’ (equivalently, the Haar measure is computable [34, 5]), then we
can produce a computable presentation of the group in the sense of LaRoche and
Smith; see [5] for a proof.

2. Computably locally compact subtrees of N∗

Definition 2.4 in this section introduces computably locally compact trees. This
purely computability theoretic concept will be of central technical importance for
the whole paper. For basics on computability theory see, e.g., the first two chapters
of [42], or the first chapter of [32] which also contains notation on strings and trees.
Our paper is mostly consistent with the terminology of these two sources. They
also serve for basic concepts such as Turing programs, computable functions, as well
as partial computable (or partial recursive) functions, which will be needed from
Section 6 onwards. In this section we will review some more specialized concepts
related to computability.

Notation 2.1. Let N∗ denote the set of strings with natural numbers as entries.
We use letters σ, τ, ρ etc. for elements of N∗. The set N∗ can be seen as a directed
tree: the empty string is the root, and the successor relation is given by appending a
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number at the end of a string. We write σ � τ to denote that σ is an initial segment
of τ , and σ ≺ τ to denote that σ is a proper initial segment. We can also identify
finite strings of length n+1 with partial functions N → N having finite support
{0, . . . , n}. We then write τi instead of τ(i). By max(τ) we denote max{τi : i ≤ n}.
Let h : N∗ → N be the canonical encoding given by h(w) =

∏
i<|w| p

wi+1
i , where pi

is the i-th prime number.

Definition 2.2 (Strong indices for finite sets of strings). For a finite set u ⊆ N∗
let nu =

∑
η∈u 2h(η); one says that nu is the strong index for u.

We will usually identify a finite subset of N∗ with its strong index.

Remark 2.3. Why “strong index”? By an index, in computability theory one
usually means a (code for a) Turing program that decides a set or computes a
function. Such an index can be obtained from a strong index as defined above.
However, a strong index tells us more about the finite set, such as its size. This is
not true for an index as a Turing program (even if we are promised that the index
describes a finite set).

Unless otherwise mentioned, by a (directed) tree we mean a nonempty subset of
T of N∗ such that σ ∈ T and ρ ≺ σ implies ρ ∈ T . By [T ] one denotes the set of
(infinite) paths of a tree T . It carries the topology inherited from Baire space NN

with the usual product topology. Note that if T has no leaves, then [T ] is compact
if and only if each level of T is finite; in other words, if and only if T is finitely
branching. For σ ∈ T let

[σ]T = {X ∈ [T ] : σ ≺ X}.
That is, [σ]T is the cone of paths on T that extend σ.

Definition 2.4 (c.l.c. trees). Let T be a computable subtree of N∗ without leaves.
We say that T is computably locally compact (c.l.c.) if

(1) the space [T ] is locally compact,
(2) the set {σ ∈ T : [σ]T is compact} is decidable, and
(3) the tree of extensions of such a string is uniformly computably branching.

More formally, there is a computable binary function H such that, if [σ]T
is compact and ρ ∈ T extends σ, then ρ(i) ≤ H(σ, i) for each i < |ρ|.

The following will be used throughout.

Definition 2.5 (Code numbers for compact open sets). Let T be a c.l.c. tree. For
a finite set u ⊆ T , let

Ku =
⋃
η∈u[η]T ,

in case this set is compact. By a code number for a compact open set K ⊆ [T ] we
mean the strong index for a set u of strings such that K = Ku.

Such a code number is not unique (unless K is empty). So we will carefully
distinguish between the actual compact open set, and any of its code numbers.
Note that Ku is defined if and only if [η]T is compact for each η ∈ u. So one can
decide, given u ∈ N as an input, whether u is a code number. Clearly, each compact
open subset of [T ] is of the form Ku for some u.

The following lemma shows that the basic set-theoretic relations and operations
are decidable for sets of the form Ku, similar to the case of finite subsets of N.

Lemma 2.6. Suppose that we are given a c.l.c. tree T . Given code numbers u,w,

(i) one can compute code numbers for Ku ∪ Kw and Ku ∩ Kw;
(ii) one can decide whether Ku ⊆ Kw. In particular, one can given a code

number u ∈ N compute the minimal code number u∗ ∈ N such that Ku∗ =
Ku.
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Proof. (i) The case of union is trivial. For the intersection operation, it suffices
to consider the case that u and w are singletons. For strings α, β ∈ T , one has
[α]T ∩ [β]T = ∅ if α, β are incompatbile, and otherwise [α]T ∩ [β]T = [γ]T where γ
is the longest common initial segment of α, β.
(ii) Let H be a computable binary function as in Definition 2.4. It suffices to
consider the case that u is a singleton. Suppose that α ∈ T and [α]T is compact.
The algorithm to decide whether [α]T ⊆ Kw is as follows. Let N be the maximum
length of a string in w. Answer “yes” if for each β � α of length N such that
β(k) ≤ H(α, k) for each k < N , there is γ ∈ w such that γ � β. Otherwise,
answer “no”. �

Definition 2.7. Given a c.l.c. tree T , let ET denote the set of minimal code
numbers for compact open subsets of [T ]. By the foregoing lemma, ET is decidable.

3. Defining computable t.d.l.c. groups via closed subgroups of S∞

Convention 3.1. To avoid trivial cases, for the rest of the paper we will assume
that all t.d.l.c. groups are infinite.

This section, in particular Def. 3.4, spells out Type S of computable presentations
of t.d.l.c. groups. It was informally described in Section 1.3.

3.1. Computable closed subgroups of S∞. By S∞ we denote the topological
group of permutations of N. We first provide a computable presentation of S∞
based on the set of paths of a tree. It is related to the computable presentation of
S∞ in [12, Def 1.2], where S∞ is viewed as a topological group with a computable
compatible metric. However, in our presentation, an element of S∞ is given as a
path on a tree that encodes pairs (h, h−1) where h is a permutation of N. This
enables us to define a computable tree, denoted Tree(S∞), each path of which
corresponds to a permutation of N.

Suppose strings σ0, σ1 ∈ N∗ both have length N . By σ0⊕σ1 we denote the string
of length 2N that alternates between σ0 and σ1. That is,

(σ0 ⊕ σ1)(2i+ b) = σb(i) for i < N, b = 0, 1.

Similarly, for functions f0, f1 on N, we define a function f0 ⊕ f1 on N by

(f0 ⊕ f1)(2i+ b) = fb(i).

Informally, Tree(S∞) is the tree of strings so that it is consistent that the entries at
odd positions extend to an inverse of the entries at even positions. Let Tree(S∞) =

{σ ⊕ τ : σ, τ are 1-1 ∧ σ(τ(k)) = k ∧ τ(σ(i)) = i whenever defined}.
Our concrete presentation of S∞ is the group defined on the paths of Tree(S∞).

So we view S∞ as the group of functions of the form h⊕h−1 where h is a permutation
of N. If f = f0 ⊕ f1 and g = g0 ⊕ g1 in S∞, we define f−1 = f1 ⊕ f0 and
gf = (g0 ◦ f0) ⊕ (f1 ◦ g1). We will verify in Fact 6.4 below that these group
operations are computable (in the sense of Definition 6.2).

Definition 3.2. We say that a closed subgroup C of S∞ is computable if its cor-
responding tree, namely Tree(C) = {η ∈ Tree(S∞) : [η]T ∩ C 6= ∅} is computable.

Remark 3.3. It is well known that the closed subgroups of S∞ are precisely
the automorphism groups of structures M with domain N. Suppose that M is
a computable structure, and there is an algorithm to decide whether a bijection
between finite subsets of M (encoded by a strong index) can be extended to an
automorphism. Then the automorphism group is computable. To see this, one uses
that a string η = σ ⊕ τ on Tree(S∞) determines the finite injective map

(1) αη = {〈i, k〉 : σ(i) = k ∨ τ(k) = i}
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between finite subsets of M . This map is extendible to an automorphism of M if
and only if η ∈ Tree(C).

For instance, assuming a computable bijection between Q and N, the group
Aut(Q, <) is computable: By Cantor’s back and forth argument, a bijection be-
tween finite subsets of Q can be extended to an automorphism of G if and only if
it preserves the ordering. There is an algorithm to decide the latter condition.

3.2. First definition of computably t.d.l.c. groups.

Definition 3.4 (Computably t.d.l.c. groups via closed subgroups of S∞). Let G
be a t.d.l.c. group. We say that G is computably t.d.l.c. (via a closed subgroup of
S∞) if there is a closed subgroup C of S∞ such that G ∼= C, and the tree

Tree(C) = {η ∈ Tree(S∞) : [η] ∩ C 6= ∅}
is c.l.c. in the sense of Def. 2.4.

In this context we will often ignore he difference between G and C. That is, we
will assume that G itself is a closed subgroup of S∞.

Recall from the introduction that Aut(Td) is the group of automorphism of the
undirected tree Td where each vertex has degree d.

Example 3.5. Let d ≥ 3. The t.d.l.c. group G = Aut(Td) is computably t.d.l.c.
via a closed subgroup of S∞.

Proof. Via an effective encoding of the vertices of Td by the natural numbers, we
can view G itself as a closed subgroup of S∞. We can decide whether a finite
injection α on Td can be extended to an automorphism by checking whether it
preserves distances. Each η ∈ Tree(S∞) corresponds to such an injection. So we
can decide whether [η]Tree(G) = [η]Tree(S∞) ∩ G 6= ∅. Clearly [η]Tree(G) is compact
for every such nonempty string η.

To see that Tree(G) is c.l.c. as defined in Def. 2.4, note that if σ ∈ Tree(G) maps
x ∈ Td to y ∈ Td, then every extension η ∈ Tree(G) of σ maps elements in Td at
distance n from x to elements in Td at distance n from y, and conversely. This
yields a computable bound H(σ, i) as required in (3) of Def. 2.4. �

We supply a lemma showing that given a group G as in Definition 3.4, the group
operations are algorithmic when applied to its compact open subsets.

Lemma 3.6. Suppose G is computably t.d.l.c. via a closed subgroup of S∞ (iden-
tified with G). Write T = Tree(G). Recall from Definitions 2.5 and 2.7 that Ku
denotes the open subset of [T ] with code number u, and that ET ⊆ N denotes the
computable set of minimal code numbers for compact open subsets of [T ].

(i) There is a computable function I : ET → ET such that for each u ∈ ET ,
one has KI(u) = (Ku)−1.

(ii) There is a computable function M : ET × ET → ET such that for each
u, v ∈ ET , one has KM(u,v) = KuKv.

Proof. In the argument below, we will use Lemma 2.6 without mention. For (i),
let I(u) be the least strong index for the set {σ1 ⊕ σ0 : σ0 ⊕ σ1 ∈ u}. For (ii), first
note that since Tree(G) is c.l.c., we can computably replace each string σ in u by
its set of extensions on Tree(G) of a given length N ≥ |σ|. So we may assume that
all the strings in u ∪ v have the same length. Hence it suffices to define M(u, v) in
case that u = {σ} and v = {τ} where |σ| = |τ | =: n.

For such σ, τ let m = 1 + max(σ, τ); that is, m − 1 is the maximum number
occurring in any of the two strings. For strings γ, δ ∈ N∗ such that |δ| ≥ 1+max(γ),
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by δ · γ we denote the string 〈δ(γ(i))〉i<|γ|. We will verify that for each f ∈ G,

f ∈ [τ ]T [σ]T ⇔ ∃β � τ∃α � σ[β, α ∈ T ∧ |β| = 2m ∧ |α| = 2 max(β) + 2(2)

∧β0 · σ0 ≺ f0 ∧ α1 · β1 ≺ f1],

where α = α0 ⊕ α1, β = β0 ⊕ β1, and f = f0 ⊕ f1 as usual. Given this, we let
M(u, v) be the least strong index for the set of strings (β0 · σ0 ⊕ α1 · τ1) as above,
which we can compute from u and v by the hypothesis on T . This will complete
the proof of (ii) of the claim.

If the left hand side of (2) holds, then f = hg for some g, h ∈ G such that σ ≺ g
and τ ≺ h. Then the right hand side holds via β = h � 2m an dα = g � 2 maxβ + 2.

Now suppose that the right hand side of (2) holds. Since β ∈ T , there is h ∈ G
such that h � β. Let g = h−1f . Then g ∈ G. Since h � τ , it suffices to show
that g � σ. Note that by definition f = f0 ⊕ f1 where f1 = (f0)−1, and similarly
g = g0 ⊕ g1 and h = h0 ⊕ h1. We have g0 = h1 ◦ f0 and g1 = f1 ◦ h0.

We check that g0 � σ0 as follows: for each i < n we have β0(σ0(i)) = f0(i) by
hypothesis. Hence h0(σ0(i)) = f0(i), so σ0(i)) = h1(f0(i)) = g0(i).

Next, we check that g1 � σ1: using α1 · β1 ≺ f1, for each i < n we have

g1(i) = f1(h0(i)) = f1(τ0(i)) = α1(β1(τ0(i))).

Since β ∈ T , β0 � τ0 and |β1| > max(τ0), we have β1(τ0(i)) = i. So the value of
the rightmost term is α1(i), which equals σ1(i). �

4. Defining computably t.d.l.c. groups via meet groupoids

This section provides the detail for the second type (Type M) of computable
presentations of t.d.l.c. groups described in Section 1.3.

4.1. The meet groupoid of a t.d.l.c. group. Intuitively, a groupoid generalizes
the notion of a group by allowing that the binary operation is partial. A groupoid
is given by a domain W, together with a unary operation X → X−1 and a partial
binary operation, denoted by “·”. These operations satisfy the following conditions:

(a) associativity in the sense that (A · B) · C = A · (B · C), with either both
sides or no side defined (and so the parentheses can be omitted);

(b) A ·A−1 and A−1 ·A are always defined;
(c) if A ·B is defined then A ·B ·B−1 = A and A−1 ·A ·B = B.

Equivalently, one can view a groupoid as a small category where each morphism
has an inverse. The elements of the domain are the morphisms of the category.
The morphisms U such that U · U = U correspond to the objects of the category.
One has A : U → V where U = A ·A−1 and V = A−1 ·A.

Definition 4.1. A meet groupoid is a groupoid (W, ·, .−1) that is also a meet
semilattice with least element. The meet operation is denoted ∩, the least element ∅,
and inclusion is defined by A ⊆ B ⇔ A ∩ B = A. It satisfies the conditions that
∅−1 = ∅, that ∅ · A and A · ∅ are undefined for each A, and that the groupoid
operations are monotonic:

(d) A ⊆ B ⇔ A−1 ⊆ B−1, and
(e) if Ai ·Bi are defined (i = 0, 1) and A0 ⊆ A1, B0 ⊆ B1, then A0 ·B0 ⊆ A1 ·B1.

Given meet groupoids W0,W1, a bijection h : W0 →W1 is an isomorphism if it
preserves the three operations. Given a meet groupoid W, the letters A,B,C will
range over elements of W, and U, V,W range over objects in W, i.e., elements A
such that A ·A = A.

Note that we use set theoretic notation even if the partial order is not actual
inclusion of sets. This is because the main examples we have in mind are set
theoretic, as follows.
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Definition 4.2. Let G be a t.d.l.c. group. We define a meet groupoid W(G).
Its domain consists of the compact open cosets in G (i.e., cosets of compact open
subgroups of G), as well as the empty set. We define A ·B to be the usual product
AB in case that A is a left coset of a subgroup V and B is a right coset of V ;
otherwise A ·B is undefined.

The intersection of two cosets is empty, or again a coset. So we have

Fact 4.3. W(G) is a meet groupoid with the groupoid operations · and A→ A−1,
and the usual intersection operation ∩.

Viewing a groupoid as a small category, A : U → V means that A is a right coset
of U and a left coset of V . So, if A : U → V and B : V → W , then A · B : U → W
as required. We note that W(G) satisfies the axioms of “inductive groupoids” as
defined in [21, page 109]. See [6, Section 4] for more on an axiomatic approach to
meet groupoids.

4.2. Second definition of computably t.d.l.c. groups.

Definition 4.4 (Haar computable meet groupoids). A meet groupoid W is called
Haar computable if

(a) its domain is a computable subset D of N;
(b) the groupoid and meet operations are computable in the sense of Defini-

tion 1.2; in particular, the relation {〈x, y〉 : x, y ∈ S ∧ x · y is defined} is
computable;

(c) the partial function with domain contained in D × D sending a pair of
subgroups U, V ∈ W to |U : U ∩ V | is computable.

Here |U : U ∩ V | is defined abstractly as the number of left, or equivalently
right, cosets of U ∩ V contained in U ; we require implicitly that this number is
always finite. Note that by (b), the partial order induced by the meet semilattice
structure of W is computable. Also, (b) implies that being a subgroup is decidable
when viewed as a property of elements of the domain S; this is used in (c). The
condition (c) intuitively corresponds to the computable bound H(σ, i) required in
(3) of Definition 2.4. For ease of reading will say that n ∈ D denotes a coset A,
rather than saying that n “is” a coset.

Definition 4.5 (Computably t.d.l.c. groups via meet groupoids). Let G be a t.d.l.c.
group. We say that G is computably t.d.l.c. (via a meet groupoid) if W(G) has a
Haar computable copy W. In this context, we call W a computable presentation
of G (in the sense of meet groupoids).

Remark 4.6. In this setting, Condition (c) of Definition 4.4 is equivalent to saying
that every Haar measure µ on G that assigns a rational to some compact open
subgroup (and hence is rational valued) is computable on W, in the sense that
the function assigning the rational µ(A) to a compact open coset A is computable.
Consider left Haar measures, say. First suppose (c) holds. Given A, compute the
subgroup V such that A = A · V , i.e., A is a left coset of V . Compute W = U ∩ V .
We have µ(A) = µ(V ) = µ(U) · |V : W |/|U : W |.

Conversely, if the Haar measure is computable on W, then (c) holds because
|U : V | = µ(U)/µ(V ).

For discrete groups, the condition (c) can be dropped as the proof of the following
shows.

Example 4.7. A discrete group G is computably t.d.l.c. via a meet groupoid ⇔
G has a computable copy in the usual sense of Definition 1.3.

Proof. For the implication ⇐, we may assume that G itself is computable; in par-
ticular, we may assume its domain is a computable subset of N. Each compact
coset in G is finite, and hence can be represented by a strong index for a finite set
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of natural numbers. Since the group operations are computable on the domain,
this implies that the meet groupoid of G has a computable copy. It is then trivially
Haar computable.

For the implication ⇒, let W be a Haar computable copy of W(G). Since G
is discrete, W contains a least subgroup U . The set of left cosets of U is com-
putable, and forms a group with the groupoid and inverse operations. This yields
the required computable copy of G. �

By Qp we denote the additive group of the p-adics. By the usual definition
of semidirect product ([38, p. 27]), Z n Qp is the group defined on the Cartesian
product Z×Qp via the binary operation 〈z1, α1〉 · 〈z2, α2〉 = 〈z1 + z2, p

z2α1 + α2〉.
This turns Z nQp into a topological group with the product topology.

Example 4.8. For any prime p, the additive group Qp and the group Z n Qp
are computably t.d.l.c. via a meet groupoid. Analogous results hold when Qp is
replaced by Fp((t)), the abelian group of infinite Laurent series over Fp.

Proof. We begin with the additive group Qp. Note that its open proper subgroups
are of the form Ur = prZp for some r ∈ Z. Let Cp∞ denote the Prüfer group
Z[1/p]/Z, where Z[1/p] = {zp−r : z ∈ Z ∧ r ∈ N}. For each r there is a canonical
epimorphism πr : Qp → Cp∞ with kernel Ur: if α =

∑∞
i=−n sip

i where 0 ≤ si < p,
n ∈ N, we have

πr(α) = Z +
∑r−1
i=−n sip

i−r;

here an empty sum is interpreted as 0. (Informally, πr(α) is the “tail” of α from
the position r− 1 onwards to the last position, and shifted to be represented by an
element of Cp∞ .) So each compact open coset in Qp can be uniquely written in the
form Dr,a = π−1

r (a) for some r ∈ Z and a ∈ Cp∞ . Formally speaking, the domain
S ⊆ N of the Haar computable copy W of W(Qp) consists of natural numbers
canonically encoding such pairs 〈r, a〉. However, they will be identified with the
cosets they denote.

The groupoid operations are computable because we have D−1
r,a = Dr,−a, and

Dr,a ·Ds,b = Dr,a+b if r = s, and undefined else. Furthermore, using the informal
view of Dr,a as the set of α with tail a from position r − 1 on, it is easy to check
that Dr,a ⊆ Ds,b iff r ≥ s and pr−sa = b. So the inclusion relation is decidable. We
have Dr,a ∩Ds,b = ∅ unless one of the sets is contained in the other, so the meet
operation is computable. Finally, for r ≤ s, we have |Ur : Us| = ps−r.

Next, let G = Z n Qp; we build a Haar computable copy V of W(G). We will
extend the listing (Dr,a)r∈Z,a∈Cp∞ of compact open cosets in Qp given above. For
each compact open subgroup of G, the projection onto Z is compact open, and hence
the trivial group. So the only compact open subgroups of G are of the form Ur.
Let g be the generator of Z such that αg = pα for each α ∈ Qp. Each compact
open coset of G has a unique form gzDr,a for some z ∈ Z. Formally speaking, the
domain of the computable copy of W(G) consists of natural numbers encoding the
triples 〈z, r, a〉 corresponding to such cosets; as before they will be identified with
the cosets they denote.

To show that the groupoid and meet operations are computable, note that we
have gDr,a = Dr−1,ag for each r ∈ Z, a ∈ Cp∞ , and hence gzDr,a = Dr−z,ag

z for
each z ∈ Z. Given two cosets gvDr,a and gwDs,b = Ds−w,bg

w, their composition is
defined iff r = s−w, in which case the result is gv+wDs,a+b. The inverse of gzDr,a

is Dr,−ag
−z = g−zDr−z,−a.

To decide the inclusion relation, note that we have gzDr,a ⊆ gwDs,b iff z = w
and Dr,a ⊆ Ds,b, and otherwise, they are disjoint. Using this one can show that
the meet operation is computable (by an argument that works in any computable
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meet groupoid V): if A0, A1 ∈ V, Ai : Ui → Vi, and A0, A1 are not disjoint, then
A0 ∩ A1 is the unique C ∈ V such that C : U0 ∩ U1 → V0 ∩ V1 and C ⊆ A0, A1.
Since W satisfies Condition (c) in Definition 4.4, and V has no subgroups beyond
the ones present in W , we conclude that V is Haar computable.

In the case of Fp((t)),+, let Ur = t−rFp[[t]], r ∈ Z. There is a natural surjection

πr : Fp((t)) → C
(ω)
p with kernel Ur, where C

(ω)
p is the additive group of the vector

space of dimension ω over Fp: for α =
∑∞
i=−n sit

i, 0 ≤ si < p,

πr(α) = Fp[[t]] +
∑r−1
i=−n sit

i−r.

The rest of the proof carries over. �

Remark 4.9. By Proposition 11.3 below, the class of computably t.d.l.c. groups is
closed under finite direct products. It follows that the additive group of any totally
disconnected local field is computably t.d.l.c.

Remark 4.10. The profinite group (Zp,+) is computably t.d.l.c., because the
meet groupoid of cosets contained in U0 is Haar computable. One can also modify
the proof above in order to obtain this directly. Let now r range over N, and
instead of the πr consider the natural projections ηr : Zp → Cpr . Let Dr,a = η−1

r (a)
for a ∈ Cpr . With these new notations, the computability of the operations and
inclusion relation are obtained the same way as before, regarding the cyclic groups
Cpr as subgroups of Cp∞ .

5. Uniform equivalence of two definitions of computably t.d.l.c.

We show that Definitions 3.4 and 4.5 of computably t.d.l.c. groups are equivalent.
This provides our first evidence for the robustness of this class of t.d.l.c. groups.

Theorem 5.1.
A group G is computably t.d.l.c. via a closed subgroup of S∞ ⇔

G is computably t.d.l.c. via a meet groupoid.
Moreover, the equivalence is uniform, in the sense that from a presentation of G of
one type, one can effectively obtain a presentation of G of the other type.

Proof. “⇒”: Suppose that G is computably t.d.l.c. as a closed subgroup of S∞. To
save on notation, we may assume that G itself is a closed subgroup of S∞ showing
this. We will obtain a Haar computable copy of its meet groupoid W(G).

Recall from Def. 2.7 that E = ETree(G) ⊆ N is the decidable set of minimal code
numbers for compact open subsets of G. For u ∈ E we can decide whether Ku is
a subgroup. This is the case precisely when KM(u,u) = Ku and KI(u) = Ku, where
the computable functions I,M were defined in Lemma 3.6. We can also decide
whether B = Kv is a coset. This is the case precisely when BB−1 is a subgroup U
(in which case B is its right coset). Equivalently, KM(v,I(v)) is a subgroup, which
is a decidable condition.

The domain D of the computable copy of W(G) is the subset of E consisting of
the minimal code numbers for cosets. For cosets A = Ku, B = Kv ∈ W(G) recall
that A ·B is defined iff A is a left coset of a subgroup V such that B is a right coset
of V . Equivalently, KM(I(u),u) = KM(v,I(v)), which is a decidable condition. So the
groupoid operations and meet operation are computable.

It remains to show that given code numbers u, v ∈ D of subgroups U, V , one
can compute |U : U ∩ V |. To do so, one finds in D more and more distinct left
cosets of U ∩ V contained in U , until their union equals U . (There is an algorithm
to decide the latter condition by Lemma 2.6(i).) Then one outputs the number of
cosets found.
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“⇐”: We begin by defining a computable operator that is dual to the operation of
sending G to a computable copy of W(G) obtained above.

Definition 5.2. Given a Haar computable meet groupoid W with domain N, let
Gcomp(W) be the closed subgroup of S∞ consisting of elements p that preserve the
meet operation of W, and satisfy p(A) ·B = p(A ·B) whenever A ·B is defined.

Note that these are the automorphisms of the structure obtained from W which
instead of composition for each B has the partial unary operation A→ A·B. Recall

here that the elements of S∞ are not actually permutations, but paths on Tree(G̃)

encoding pairs consisting of a permutation and its inverse. However, if p ∈ Tree(G̃)
and A ∈ W is denoted by i, we will suggestively write p(A) for the element of W
denoted by p(2i). We note that for each subgroup U ∈ W(G), the set B = p(U)
satisfies B · U = p(U) · U = p(U · U) = B, and hence is a left coset of U .

We show that Tree(G̃) is c.l.c. as in Definition 2.4. The first claim will be used

to show that Tree(G̃) is computable.

Claim 5.3. A finite injection α on N can be extended to some p ∈ G̃ ⇔
B ·A−1 is defined whenever α(A) = B, and

⋂
{B ·A−1 : α(A) = B} is non-empty.

⇐: Let g be an element of the intersection. Then gA = B · A−1 · A = B = α(A)
for each A ∈ dom(α).

⇒: Suppose p ∈ G̃ extends α. By the foregoing claim, there is g ∈ G such that
p = Φ(g). Then gA = p(A) = B for each A,B such that α(A) = B. Such A,B are
then right cosets of the same subgroup. Hence B · A−1 is defined, and clearly g is
in the intersection. This establishes the claim.

Recall from Subsection 3.1 that a string σ ⊕ τ ∈ Tree(S∞) gives rise to a finite
injection ασ⊕τ , defined by ασ⊕τ (r) = s iff σ(r) = s ∨ τ(s) = r. So

S = {σ ⊕ τ : ασ⊕τ can be extended to some p ∈ G̃}

is a computable subtree of Tree(S∞) without leaves, and G̃ = [S]. Hence S =

Tree(G̃).

Claim 5.5 below will verify that S = Tree(G̃) satisfies Condition (3) in Def. 2.4
of c.l.c. trees. The following lemma does the main work, and will also be used
later on, such as the proof of Prop. 9.2 below. Informally it says that given some

subgroup U ∈ W, if one declares that p ∈ G̃ has a value L ∈ W at U , then one can
compute for any F ∈ W the finite set of possible values of p at F .

Lemma 5.4. Suppose that U ∈ W is a subgroup and L is a left coset of U . Let
F ∈ W. One can uniformly in U,L and F compute a strong index for the finite set
L = {p(F ) : p ∈ [S] ∧ p(U) = L}.

To see this, first one computes V = F−1F , so that F is a right coset of the
subgroup V . Next one computes k = |U : U ∩V |, the number of left cosets of U ∩V
in U . Note that L0 = {p(U ∩ V ) : p ∈ [S] ∧ p(U) = L} is the set of left cosets
of U ∩ V contained in L. Clearly this set has size k. By searching W until all of
its elements have appeared, one can compute a strong index for this set. Next one
computes a strong index for the set L1 of left cosets D of V such that C ⊆ D for
some C ∈ L0 (this uses that given C one can compute D). Finally one outputs a
strong index for the set {DF : D ∈ L1}, which equals L. This shows the lemma.

Claim 5.5. There is a computable binary function H such that, if σ = (a, b) and
ρ ∈ S extends σ, then ρ(i) ≤ H(σ, i) for each i < |ρ|. In particular, [σ]S is compact
for each string σ ∈ S of length 2.
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To see this, let U be the subgroup denoted by 0. Let F be the coset denoted by k.
If i = 2k, let L be the coset denoted by a. If i = 2k+ 1, let L be the coset denoted
by b. Applying Lemma 5.4 to U,L, F , one can compute H(σ, i) as the greatest
number denoting an element of {p(F ) : p ∈ [S] ∧ p(U) = L}.

Now suppose that W is as in Definition 4.5. Recall the Convention 3.1 that
all t.d.l.c. groups are infinite. So the domain of W equals N, and there is an
isomorphism of meet groupoids W → W(G), which below we will use to identify
W and W(G). We note that making the assumption that 0 is a subgroup in W did
not affect the uniformity statement of the theorem: we can search W for the least
n such that n is a subgroup, and then work with a new copy of W where 0 and n
are swapped.

Let G̃ = Gcomp(W) defined in 5.2. Define a group homomorphism Φ: G→ G̃ by
letting Φ(g) be the element of S∞ corresponding to the left action of g, i.e. A 7→ gA
where A ∈ W(G). (See the comment after Definition 5.2.) Note that Φ is injective
because the compact open subgroups form a neighbourhood basis of 1: if g 6= 1
then g 6∈ U for some compact open subgroup U , so that Φ(g)(U) 6= U .

Claim 5.6. Φ: G ∼= G̃.

To show that Φ is onto, let p ∈ G̃. Since {p(U) : U ∈ W(G) is a subgroup} is a
filter on W(G) containing a compact set, there is an element g in its intersection.
Then Φ(g) = p: recall that for each subgroup U ∈ W(G), the set B = p(U) is a
left coset of U . So, if A is a right coset of U , then p(A) = p(U ·A) = B ·A = gA.

To show that Φ is continuous at 1 (and hence continuous), note that a basis of

neighbourhoods of the identity in G̃ is given by the open sets

{p ∈ G̃ : ∀i ≤ n [p(Ai) = Ai]},

where A1, . . . , An ∈ W(G). Given such a set, suppose Ai is a right coset of Ui, and
let U =

⋂
Ui. If g ∈ U then gAi = Ai for each i.

The open mapping theorem for Hausdorff groups says that every surjective con-
tinuous homomorphism from a σ-compact group (such as a t.d.l.c. group with a
countable basis of the topology) onto a Baire group is open. So Φ is open. This
verifies the claim and concludes the proof. �

6. Computable functions on the set of paths of computable trees

This section provides preliminaries on computability of functions that are defined
on the set of paths of computable trees. These preliminaries will be used in Section 7
to introduce computable Baire presentations of t.d.l.c. groups, as well as in much
of the rest of the paper. Most of the content of this section can either be seen as
a special case of known results in abstract computable topology, or can be derived
from such results. These results stem from the study of effectively compact metric
spaces; some of them need to be extrapolated to the locally compact setting. They
can be found in the recent surveys [15, 5]. However, with the reader in mind who
has little background in computability or computable topology, we prefer to provide
intuition and elementary proofs for the computability notions and results that are
needed later on, rather than referring to such more general results.

Let T be a computable subtree of N∗ without leaves. To define that a function
which takes arguments from the potentially uncountable domain [T ] is computable,
one descends to the countable domain of strings on T , where the usual computability
notions work. The first definition, Def. 6.1 below, will apply when we show in
Corollary 9.4 that the modular function on a computable presentation of a t.d.l.c.
group is computable. As a further example, in Fact 10.1 we will show that given a
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computable presentation of a t.d.l.c. group via a closed subgroup of S∞, the function
m(g, V ) related to the scale function, defined in the introduction, is computable.

Definition 6.1. A function Φ : [T ] × N → N is computable if there is a partial
computable function PΦ defined on a subset of T × N, with values in N, such that

(1) if σ ≺ τ ∈ T , then PΦ(σ, n) = k implies PΦ(τ, n) = k;
(2) Φ(f, w) = k iff there is an n such that PΦ(f �n, w) = k.

The intuition is that the partial computable function PΦ represents the be-
haviour of a so-called oracle Turing machine. The machine has the list of the
values f(0), f(1), f(2), . . . written on a special tape, and attempts to determine the
value Φ(f, w) via queries of the type “what is f(q)?”. If σ ≺ f and PΦ(σ,w) = η,
then with the answers to the queries given by σ, the machine can determine this
value. Clearly any extension τ of σ will then yield the same value: this is condition
(1). Condition (2) says that sufficiently many queries will lead to an answer. Note
that this condition implies that every computable function Φ is continuous.

The next, closely related definition is a version of a well known notion in com-
putability theory. It will matter when we discuss computability for groups where
the domain can be of the form [T ] for any computable tree without leaves. We need
a way to say that the group operations are computable. For the setting of closed
subgroups of S∞, this was the case automatically (for the inversion operation it
was due to the particular presentation of S∞ we chose).

Definition 6.2 (Computable functions on the set of paths). Let T, S be computable
trees without leaves. A function Φ: [T ] → [S] is called computable if there is a
partial computable monotonic function PΦ defined on a subset of T , with values
in S, such that

Φ(f) =
⋃
n{PΦ(f �n) : f �n∈ dom(PΦ)}

for each f ∈ [T ].
Similarly, a function Ψ: [T ] × [T ] → [S] is computable if there is a partial com-

putable monotonic function PΨ defined on pairs of strings in T of equal length,
with values in S, such that

Ψ(f, g) =
⋃
n{PΨ(f �n, g �n) : (f �n, g �n) ∈ dom(PΦ)}.

It is intuitively clear, and not hard to check from the definitions, that the compo-
sition of computable unary functions is again computable. Furthermore, it is easy
to verify that a function Φ: [T ] → [N∗] is computable if and only if the function

Φ̃ : [T ]×N→ N given by Φ̃(g, n) = Φ(g)(n) is computable in the sense of Def. 6.1.

Remark 6.3. The topology on the space [T ] is induced by a complete metric: for
instance let d(f, g) = 1/n where n is least such that f(n) 6= g(n). Taking the usual
“ε, δ” definition, one sees that Φ: [T ]→ [S] is continuous at f if for each k there is
n such that for each g ∈ [T ], if f �n= g �n then Φ(f) �k= Φ(g) �k. The definitions
above can be seen as algorithmic versions of continuity, where one can compute the
output Φ(f) up to k from a sufficiently long part of the input f .

Recall that in Section 3.1 we introduced a special way of presenting the elements
of S∞ as paths f = f0 ⊕ f1 on a directed tree Tree(S∞) that keep track of both
the permutation f0 and its inverse f1. For f, g ∈ [Tree(S∞)], we defined the group
operations of S∞ by f−1 = f1 ⊕ f0 and gf = (g0 ◦ f0)⊕ (f1 ◦ g1).

Fact 6.4. The inverse operation and the group operation of S∞ are computable.

Proof. We define partial computable functions P1 and P2 on Tree(S∞), one for each
operation. For the inverse, let P1(σ0 ⊕ σ1) = σ1 ⊕ σ0, where |σ0| = |σ1|. For the
group operation, given strings τ = τ0⊕τ1 and σ = σ0⊕σ1 of the same, even length,
let t be greatest such that for each r < t, ρ0(r) := τ0(σ0(r)) and ρ1(r) := σ1(τ1(s))
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are defined. Let P2(τ, σ) = ρ0 ⊕ ρ1, which is a string of length 2t. We omit the
verification that these functions work. �

The following lemma is an algorithmic version of the fact, well known in com-
putable analysis, that each continuous function defined on a compact space is uni-
formly continuous. Here we restrict ourselves to the setting of paths spaces [K]
that are compact in an effective way (as given by the bound H below).

Lemma 6.5. Suppose that K and S are computable trees without leaves. Suppose
further that there is a computable function H such that σ(i) < H(i) for each σ ∈ K
and i < |σ|. Let Φ: [K]→ [S] be computable via a partial computable function PΦ.

(i) There is a computable function g as follows:

∀n ∈ N ∀ρ ∈ K [|ρ| = g(n)→ |PΦ(ρ)| > n].

Furthermore, g is obtained uniformly in K and h.
(ii) If Φ is a bijection then Φ−1 is computable, via a partial computable function

that is obtained uniformly in K,H, S and PΦ.

Intuitively, the function g in (i) computes the “δ” in the definition of uniform
continuity from the “ε”: if δ = 1/n we have ε = 1/g(n). In computability terms,
this means that to obtain n+1 output symbols we need at most g(n) input symbols.
(This is a slight generalisation of the well-known fact, going back to Nerode in the
1950s, that a Turing functional defined on each infinite bit sequence can be replaced
by a truth-table functional.)

Proof. (i) First we claim that for each n, a possible value r for g(n) exists. Assume
that n is the least counterexample to this claim. Consider the subtree of K con-
sisting of the initial segments of strings ρ such that |PΦ(ρ)| ≤ n. This subtree is
infinite by assumption. Hence there is a path f ∈ [K]. Clearly Φ(f)(n) is unde-
fined, contradiction. Now, using the hypotheses on K, given n one can search for
the least such value r and output it as g(n).

(ii) We define a partial computable function PΦ−1 . Clearly [S] is compact and Φ−1

is continuous. Hence there is a computable function h with h(s) ≥ s such that
given s ∈ N, for each η of length g(h(s)), PΦ(η)�h(s) determines η �s. For β ∈ S of
length h(s), define PΦ−1(β) = α if |α| = s and there is η � α of length g(h(s)) with
PΦ(η) � β. It is easy to verify that PΦ−1 shows that Φ−1 is computable, and that
PΦ−1 is obtained uniformly in the given data. �

The rest of this section discusses computable functions on the set of paths of
c.l.c. trees. Given such a tree T , recall from Def. 2.5 that by Ku we denote the
compact open subset of [T ] with code number u ∈ N. That is, u is the strong
index for a set of strings {α1, . . . , αr} ⊆ T such that Ku =

⋃
i≤r[αi]T , in case this

set is compact. If there is more than one tree under discussion, we will write KTu
for the subset of [T ] with code number u. First, we establish a useful interaction
between computable functions [T ] → [S] and such sets. Note that this generalizes
Lemma 2.6(ii) where Φ is the identity function.

Lemma 6.6. Let T, S be c.l.c. trees. Suppose a function Φ: [T ] → [S] is com-
putable via a partial computable function PΦ. Given code numbers u,w, one can
decide whether Φ(KTu ) ⊆ KSw.

Proof. Suppose that u is a strong index for the set of strings {α1, . . . , αr} ⊆ T , and
w is a strong index for the set of strings {β1, . . . , βs} ⊆ S. Let K be the subtree of
T consisting of the prefixes, or extensions, of some αi. Clearly one can uniformly
obtain a computable bound h for this K as in Lemma 6.5. Let n = maxi |βi|. Let
N be the length computed from n through that Lemma. Then Φ(KTu ) ⊆ KSw if
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and only if for each α ∈ K of length N , there is an i such that PΦ(α) � βi. By
Lemma 6.5, this condition is decidable. �

We remark that from the viewpoint of computability theory, one can assume
that in a c.l.c. tree only the root is infinitely branching. More formally:

Remark 6.7. Given a c.l.c. tree T , one can effectively obtain (1) a c.l.c. tree T ′

so that the only infinite branching is at the root, and (2) a bi-computable bijection
[T ] → [T ′]. To see this, note that there is a computable listing (σi)i∈N of the
minimal strings σ ∈ T such that [σ]T is compact. The partial computable function
P given by P (σiτ) = iτ induces a computable bijection [T ]→ [T ′], with computable
inverse given by P−1.

To prove Proposition 7.8 below, we will need a criterion on whether, given a com-
putable subtree S of a c.l.c. tree T (where S potentially has leaves), the maximally
pruned subtree of S with the same set of paths is computable.

Proposition 6.8. Let T be a c.l.c. tree such that only the root is infinitely branch-
ing. Let S be a computable subtree of T , and suppose that there is a uniformly

computable dense sequence (fi)i∈N in [S]. Then the tree S̃ = {σ : [σ]S 6= ∅} is

decidable. (It follows that S̃ is c.l.c. Of course, [S̃] = [S].)

Proof. Given a string σ ∈ T , if σ = ∅ then σ ∈ S̃. Assuming σ 6= ∅, we can compute
the least t ∈ N such that σ ≺ ft, or ρ 6∈ S for each ρ ∈ T of length t such that

ρ � σ; the latter condition can be decided by the hypotheses on T . Clearly σ ∈ S̃
iff the former condition holds. �

7. Defining computably t.d.l.c. groups via Baire presentations

This section spells out the third type of computable presentations of t.d.l.c.
groups described in Section 1.3 (Type B). We call them computable Baire presen-
tation.

It is well-known that each totally disconnected Polish space X is homeomorphic
to [T ] for some tree T ⊆ N∗; see [17, I.7.8]. Clearly X is locally compact iff for
each f ∈ [T ] there is an n such that the tree above f �n is finitely branching. So in
our effective setting, it is natural to work with a domain of the presentation that
has the form [T ] for a c.l.c. tree T , and require that the group operations on [T ]
be computable. (In fact, while the previous types of computable presentation were
group-specific, in the present setting the same approach would work for other types
of algebraic structure defined on [T ].) We will show in Thm. 7.6 that the resulting
notion of computably t.d.l.c. group is equivalent to the previous ones.

Despite this equivalence, as presentations, computable Baire presentations (Type
B) offer more flexibility than the first type (Type S), which relied on closed sub-
groups of S∞. This will be evidenced by our proofs that some algebraic groups over
local fields are computable, such as SLn(Qp) and SLn(Fp((t))).
Definition 7.1. A computable Baire presentation is a topological group of the form
H = ([T ],Op, Inv) such that

(1) T is computably locally compact as defined in 2.4;
(2) Op : [T ]× [T ]→ [T ] and Inv : [T ]→ [T ] are computable.

We say that a t.d.l.c. group G is computably t.d.l.c. (via a Baire presentation) if
G ∼= H for such a group H.

One requirement on our notions of computable presentability for t.d.l.c. groups
is that for profinite, as well as discrete groups, we obtain the previously accepted
notions. We show here has each computable profinite group has a computable Baire
presentation. First we provide the formal definition.
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Definition 7.2 (LaRoche [20], Smith [41]). A computable profinite presentation
of a profinite group G is a uniformly computable sequence of strong indices of finite
groups Ai and finite surjective maps φi : Ai → Ai−1 such that G = lim←−i(Ai, φi).
Proposition 7.3. Given a computable profinite presentation of G, one can effec-
tively obtain a computable Baire presentation of G.

Proof. We use the notation of Definition 7.2. Let ni = |Ai|. By the hypotheses one
can effectively identify the elements of Ai with {0, . . . , ni − 1}. Let

T = {σ ∈ N∗ : ∀i < |σ|[σ(i) < ni ∧ φi(σ(i)) = σ(i− 1) if i > 0}.

It is clear from the hypotheses that [T ] is compact, and T is effectively (locally)
compact. To show that the binary group operation Op on [T ] is computable, for
strings σ0, σ1 on T of the same length k + 1, let P2(σ0, σ1) be the unique string
τ ∈ T of length k + 1 such that in Ak one has σ0(k)σ1(k) = τ(k). The inversion
operation Inv on [T ] is computable by a similar argument. �

We will see in Prop. 8.6 that the converse holds as well. So, as promised, for
profinite groups our definition of computably t.d.l.c. group coincides with the ex-
isting one. We note that Smith [41] already obtained this equivalence, albeit using
a different terminology.

Proposition 7.4. A discrete group G has a computable presentation in the usual
sense of Definition 1.3 if and only if it has computable Baire presentation.

Proof. ⇒: Suppose the computable presentation has as a domain a computable set
D ⊆ N. We take the c.l.c. tree

TG = {r0k : r ∈ D ∧ k ∈ N},

and the operations canonically defined on [TG] via partial computable functions
that only regard the first entry of the input strings.
⇐: By Theorem 7.6 proved shortly below, G has a computable presentation via a
meet groupoid. Now it suffices to invoke Example 4.7. �

By Fact 6.4, each computable presentation of G as a closed subgroup of S∞
(Definition 3.4) is a computable Baire presentation. Recall that Lemma 3.6 shows
that for a computable presentation as a closed subgroup of S∞, the group theoretic
operations on compact open sets are algorithmic. In the more general setting of
computable Baire presentations, a weakened version of Lemma 3.6 still holds. Recall
from Def. 2.7 that given a c.l.c. tree T , by ET we denote the set of minimal code
numbers u such that Ku is compact.

Lemma 7.5. Let G be computably t.d.l.c. via a computable Baire presentation
([T ],Op, Inv).
(i) There is a computable function I : ET → ET such that for each u ∈ ET , one has
KI(u) = (Ku)−1.
(ii) For u, v, w ∈ ET one can decide whether KuKv ⊆ Kw.

Proof. (i) By Lemma 6.6 one can decide whether Ku ⊆ (Kw)−1. The equality
Ku = (Kw)−1 is equivalent to Ku ⊆ (Kw)−1 ∧ Kw ⊆ (Ku)−1. So one lets I(u) be
the least index v such that this equality holds.

(ii) Let T̃ be the tree of initial segments of strings of the form σ0⊕σ1, where σ0, σ1 ∈
T have the same length. Then T̃ is a c.l.c. tree, [T̃ ] is naturally homeomorphic to

[T ]× [T ], and Op can be seen as a computable function [T̃ ]→ [T ]. Now one applies
Lemma 6.6. �
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As discussed at the beginning of this section, the following adds to Theorem 5.1
a further equivalent condition for a t.d.l.c. group to be called computable.

Theorem 7.6.
A group G is computably t.d.l.c. via a Baire presentation ⇔

G is computably t.d.l.c. via a meet groupoid.
From a presentation of G of one type, one can effectively obtain a presentation

of G of the other type.

Proof. ⇐: This implication follows from the corresponding implication in Theo-
rem 5.1.
⇒: We build a Haar computable copy W of the meet groupoid W(G) as in Defini-
tion 4.5. By Lemma 7.5, one can decide whether u ∈ ET is the code number of a
subgroup (Definition 2.5). Furthermore, one can decide whether B = Kv is a left
coset of a subgroup U = Ku: this holds iff BU ⊆ B and BB−1 ⊆ U , and the latter
two conditions are decidable by Lemma 7.5. Similarly, one can decide whether B
is a right coset of U .

It follows that the set {u ∈ ET : Ku is a coset} can be obtained via an existential
quantification over a computable binary relation (in other words, V is recursively
enumerable). Hence, by a basic fact of computability theory, there is computable
1-1 function θ defined on an initial segment of N − {0} such that the range of θ
equals this set. Write An = Kθ(n) for n > 0, and A0 = ∅.

The domain of W is all of N. By Lemma 2.6 the intersection operation on
W is computable, i.e., there is a computable binary function c on N such that
Ac(n,k) = An∩Ak. Next, given n, k ∈ N−{0} one can decide whether An is a right
coset of the same subgroup that Ak is a left coset of. In that case, one can compute
the number r such that Ar = An ·Ak: one uses that Ar is the unique coset C such
that

(a) AnAk ⊆ C, and
(b) C is a right coset of the same subgroup that Ak is a right coset of.

As in the corresponding implication in the proof of Theorem 5.1, for subgroups
U, V , one can compute |U : U ∩ V | by finding in W further and further distinct left
cosets of U ∩ V contained in U , until their union reaches U . The latter condition
is decidable. �

Definition 7.7. Given a computable Baire presentation G, byWcomp(G) we denote
the computable copy of W(G) obtained in the proof above.

Proposition 7.8. Let p be a prime, and let n ≥ 2. Let Qp and Fp((t)) denote
the rings of p-adic numbers, and Laurent series over Fp, respectively. The t.d.l.c.
groups SLn(Qp) and SLn(Fp((t))) have computable Baire presentations.

Proof. We provide the proof for the groups SLn(Qp), and then indicate the changes
that are necessary for the groups SLn(Fp((t))). We begin by giving a computable
Baire presentation of Qp as a ring.

Let Q be the tree of strings σ ∈ N∗ such that all entries, except possibly the
first, are among {0, . . . , p − 1}, and r0 6� σ for each r > 0. We think of a string
rσ ∈ Q as denoting the rational p−rnσ ∈ Z[1/p], where nσ is the number which has
σ1 as its p-ary expansion, written in reverse order:

nσ =
∑
i<|σ| p

iσ(i).

The condition that r0 6� σ for each r > 0 says that p doesn’t divide nσ.
For strings σ, τ over {0, . . . , p− 1} of the same length `, by σ + τ we denote the

string ρ of the same length ` such that nρ = nσ + nτ mod p`. By σ · τ we denote
the strings of length 2` such that nρ = nσnτ mod p2`.
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We now provide partial computable functions P, P1, P2, P3 showing that various
operations are computable according to Def. 6.2. For a string of the form rσ let

P (rσ) = (r − k)τ ,

where k ∈ N is maximal such that k ≤ r and 0k � σ, and τ is the rest, i.e. 0kτ = σ.
To show the computability of the function q → −q, let
P1(rσ) = rτ where |τ | = |σ| and σ + τ = 0 mod p|σ|.

To show that the addition operation is computable, let
P2(rσ, sτ) = P (s(0s−rσ + τ)) in case r ≤ s, and
P2(rσ, sτ) = P (r(σ + 0r−sτ)) otherwise.

To show that the multiplication operation is computable, let
P3(rσ, sτ) = P ((2s)(0s−rσ · τ)) in case r ≤ s, and
P3(rσ, sτ) = P ((2r)(σ · 0r−sτ)) otherwise.

P3 is the correct partial recursive function because, say for r ≤ s, in Z[1/p] one has

p−rnσp
−snτ = p−2sn0s−rσnτ .

We now provide a computable Baire presentation ([T ],Op, Inv) of SLn(Qp) as
in Definition 7.1. Let T be the c.l.c. tree that is an n2-fold “power” of Q. More
precisely, T = {σ : ∀i < n2 [σi ∈ Q]}, where σi is the string of entries of σ in
positions of the form kn2+i for some k, i ∈ N. Clearly, [T ] can be naturally identified
with the matrix algebra Mn(Qp). By the computability of the ring operations on
Qp as verified above, the matrix product is computable as a function [T ]×[T ]→ [T ],
and the function det : [T ]→ [Q] is computable.

Note that for any c.l.c. trees T and R, any computable path f of R, and any
computable function Φ: [T ]→ [R], there is a computable subtree S of T such that
[S] equals the pre-image Φ−1(f). (In the language of computable analysis, the pre-
image is effectively closed.) To see this, suppose that Φ is computable according
to Definition 6.2 via a partial computable function L defined on strings in T . Let
S consists of the strings σ ∈ T of length t such that t steps of the attempted
computations L(τ) for all τ � σ don’t yield a contradiction to the hypothesis that
the output of the oracle Turing machine equals f . More formally,

S = {σ ∈ T : ∀τ � σ [Lt(τ) is defined → Lt(τ) ≺ f ]}.

In our setting, applying this to the function det[T ]→ [Q] and the path f = 01000 . . .
that denotes 1 ∈ Qp, we obtain a computable subtree S of T such that [S] can be
identified with SLn(Qp).

It is well-known that SLn(Z[1/p] is dense in SLn(Qp). This is a special case of
strong approximation for algebraic groups (see [35, Ch. 7]), but can also be seen
in an elementary way using Gaussian elimination. The paths on S corresponding
to matrices in SLn(Z[1/p]) are precisely the ones that are 0 from some point on.
Clearly there is a computable listing (fi) of these paths. So by Proposition 6.8 we

can replace S by a c.l.c. tree S̃ such that [S̃] = [S].

To obtain a computable Baire presentation based on S̃, note that matrix mul-

tiplication on [S̃] is computable as the restriction of matrix multiplication on [T ].
To define the matrix inversion operation Inv, we use the fact that the inverse of a
matrix with determinant 1 equals its adjugate matrix; the latter can be obtained
by computing determinants on minors.

For the case of SLn(Fp((t))), to give a Baire presentation of Fp((t)) as a ring,
in the proof above we use the same tree Q but think of a string rσ as representing
the finite Laurent series t−rnσ ∈ Z[1/p], where nσ =

∑
i<|σ| t

iσ(i). For strings σ, τ

over {0, . . . , p− 1} and of the same length `, by σ+ τ we denote the string ρ of the
same length ` such that nρ = nσ + nτ mod p`. By σ · τ we denote the string ρ of
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length 2` such that nρ ≡ nσnτ mod t2`. Now the ring operations are computable
via the same partial computable functions as for Qp. The remainder of the proof
didn’t use any particulars about the computable Baire presentation of the ring Qp
besides the fact that the path denoting 1 is computable, which carries over to the
present case. It is also known that the matrices of determinant 1 over finite Laurent
series, i.e., SLn(Fp(t)) form a subgroup that is dense in SLn(Fp((t))). �

8. Computability for particular subclasses of t.d.l.c. groups

Our recent work [22], joint with Lupini, studies locally compact abelian groups
with computable presentations. In particular we investigate the algorithmic content
of Pontryagin– van Kampen duality for such groups. Each abelian t.d.l.c. group is
procountable, i.e., an inverse limit of countable groups. This enabled us in [22] to
use a notion of computable presentation for t.d.l.c. abelian groups convenient for
the given context. This notion, which in the present paper we will call a computably
procountable presentation with effectively finite kernels, is reviewed in Definition 8.3
below. The main purpose of this short section is to show that the definition of
computably t.d.l.c. abelian groups in [22] is equivalent to the one given here.

8.1. Procountable groups. We review some concepts mainly from [22, Section 3].
Suppose we are given a sequence of groups (Ai)i∈N such that each Ai is countable
discrete. Suppose we are also given epimorphisms φi : Ai → Ai−1 for each i > 0.
Then lim←−(Ai, φi) can concretely defined as the closed subgroup of the topological

group
∏
i∈NAi consisting of those g such that φi(g(i)) = g(i− 1) for each i > 0.

Definition 8.1. A topological group G is called procountable if G ∼= lim←−(Ai, φi)
for some sequence (Ai, φi)i∈N as above.

The t.d.l.c. groups that are pro-countable are precisely the SIN groups (where
SIN stands for “small invariant neighbourhoods); see [46, Section 2.2].

Remark 8.2. Let G be a closed subgroup of S∞, let 〈Ni〉i∈N be a descending
sequence of open normal subgroups of G with trivial intersection, and let Ai =
G/Ni. Then G ∼= lim←−i>0

(Ai, φi) where the φi are the canonical maps. This is

well-known; see [24, Lemma 2].

8.2. Computably procountable groups. Extending Definition 7.2 of computable
profinite presentations, (2) below allows the Ai to be discrete computable groups,
while retaining the condition that the kernels of the connecting maps be finite and
given by strong indices.

Definition 8.3 ([22], Def. 3.4).

(1) A computable presentation of a procountable groupG is a sequence (Ai, φi)i∈N,
of discrete groups Ai and epimorphisms φi : Ai → Ai−1 (for i > 0) such
that G ∼= lim←−(Ai, φi), each group Ai is uniformly computable as a discrete

group, and the sequence of maps (φi)i∈N+ is uniformly computable.
(2) Suppose that ker φi is finite for each i, so that G is locally compact by [22,

Fact 3.2]. We say that (Ai, φi)i∈N is a computably procountable presentation
with effectively finite kernels if in addition, from i one can compute a strong
index for ker φi as a subset of Ai.

Fact 8.4. If G is compact and has a computable procountable presentation with
effectively finite kernels, then this presentation is a computable profinite presenta-
tion.

Proof. Since G is compact, the Ai are finite. All we need is strong indices for
the Ai as groups. Since the Ai are computable groups uniformly in i, it suffices
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to compute the size of Ai uniformly in i. One can do this recursively, using that
|Ai| = |ker φi| × |Ai−1|. �

Proposition 8.5. If a t.d.l.c. group G has a procountable presentation (Ai, φi)i∈N
with effectively finite kernels, then G has a computable Baire presentation.

Proof. This is a straightforward extension of the argument in the profinite set-
ting, Proposition 7.3. For simplicity we may assume that A0 is infinite. So we can
effectively identify the elements of Ai with N, and hence view φi as a map N→ N.
As before,

T = {σ ∈ N∗ : ∀i < |σ|[σ(i) ∧ φi(σ(i)) = σ(i− 1) if i > 0}.

It is clear from the hypotheses that [σ]T is compact iff σ is a nonempty string, and
that T is effectively locally compact. The rest is as before, using that the Ai are
computable groups uniformly in i. �

For abelian, as well as for compact, t.d.l.c. groups, we can provide a converse to
the foregoing observation. The compact case essentially restates to [41, Thm. 1] for
the recursively profinite case.

Proposition 8.6. Let G be a computably t.d.l.c. group that is abelian or compact.
Then G has a computably procountable presentation with effectively finite kernels.

Proof. Suppose that the meet groupoid W(G) has a Haar computable copy W as
in Definition 4.5. We may assume that its domain is all of N, and that 0 denotes
a (compact open) subgroup. In the framework of that copy one can compute a
descending sequence 〈Ui〉i∈N of compact open subgroups of G, such that U0 is the
group denoted by 0 and for each compact open U , there is an i with Ui ⊆ U . In the
abelian case trivially each Ui is normal; in the case that G is compact, we effectively
shrink the Ui so that they are also normal. To do so, by the hypothesis that W is
Haar computable, we can compute from i a strong index for the set of {B1, . . . , Bk}
of distinct right cosets of Ui. Replace Ui by

⋂k
r=1B

−1
r · Ui ·Br.

Let Ai be the automorphism group of the object Ui in the groupoid W viewed
as a category; that is, Ai the set of cosets of Ui, with the groupoid operations
restricted to it. For i > 0 let φi : Ai → Ai−1 be the map sending B ∈ Ai to the
unique coset of Ui−1 that contains B. Since W is Haar computable, condition (1)
of Definition 8.3 holds. Also, the kernel of φi is the set of cosets of Ui contained in
Ui−1. By Definition 4.5(b) we can compute the number of such cosets, so we can
compute a strong index for the kernel. Hence condition (2) of Definition 8.3 also
holds.

We complete the proof by verifying the following claim.

Claim 8.7. G ∼= lim←−i>0
(Ai, φi).

As in the proof of the implication “⇐” of Theorem 5.1, let G̃ be the closed
subgroup of S∞ of elements p that preserve the inclusion relation on W in both
directions, and satisfy p(A) · B = p(A · B) whenever A · B is defined. Recall that

G̃ ∼= G. So it suffices to show that G̃ ∼= lim←−(Ai, φi).
Let Ni be the stabilizer of Ui, which is a compact open subgroup of G̃. Since

each p ∈ G̃ preserves the inclusion relation, we have Ni ⊆ Ni−1 for i > 0. By the
choice of the Ui, the intersection of the Ni is trivial. Each Ni is normal: if p ∈ Ni
and q ∈ G̃, let B = q(Ui), a left, and hence also right, coset of Ui. Then

q−1pq(Ui) = q−1p(UiB) = q−1(UiB) = q−1(B)Ui = Ui.
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So q−1pq ∈ Ni.
For each i, the map G̃ → Ai sending p to p(Ui) induces a group isomorphism

G̃/Ni → Ai. For each i > 0 the natural map αi : G̃/Ni → G̃/Ni−1 induced by the

identity on G̃ corresponds to φi via these isomorphisms. Thus lim←−i>0
(G̃/Ni, αi) ∼=

lim←−i>0
(Ai, φi). The claim now follows in view of Remark 8.2. �

9. More on the equivalences of notions of computable presentation

This section obtains extra information from the proofs of the equivalences of
our various notions of computable presentation of a t.d.l.c. group, Theorem 5.1
and its extension Theorem 7.6. Its main result, Thm. 9.2 will show that, given a
computable Baire presentation ([T ],Op, Inv) of a t.d.l.c. group G, one can effectively

obtain a computable presentation of G via a closed subgroup G̃ of S∞, with an

isomorphism Φ: [T ]→ G̃ so that both Φ and Φ−1 are computable. The presentation
based on a closed subgroup of S∞ can be seen as an “improved” computable Baire

presentation. For instance, the group operations on compact open subsets of G̃ are
fully computable by Lemma 3.6, while in the general case we only have the weaker
form Lemma 7.5.

The section then proceeds to two applications of Thm. 9.2: computability of
the modular function, and computability of Cayley-Abels graphs. For a compactly
generated t.d.l.c. group G, its Cayley-Abels graphs are useful generalisations of the
usual Cayley graphs in the setting of a (discrete) finitely generated group. We
will show that the meet groupoid interprets each Cayley-Abels graph via first-order
formulas with parameters. The interpretation is such that if G is computably
t.d.l.c., the graphs are computable in a uniform way.

Section 10 uses Thm. 9.2 to bound the computational complexity of the scale
function. As a further application, in Section 12 we obtain an equivalent criterion
on whether a t.d.l.c. group G has a unique computable Baire presentation: any two
Haar computable copies of its meet groupoid W(G) are computably isomorphic.
This is useful because uniqueness of a computable presentation is easier to show
for countable structures. In Theorem 12.6 we will apply the criterion to show
uniqueness of a computable Baire presentation for the additive groups of the p-adic
integers and the p-adic numbers, as well as for Z nQp.

Besides the computability theoretic concepts introduced in Section 6, we will
need a fact on continous, open functions on the set of paths of c.l.c. trees. It
deduces the computability of such a function from the hypothesis that its action
on the compact open sets is computable in terms of their code numbers. Similar to
the results in Section 6, this is a special case of a result in the field of computable
topology; see [5, Lemma 2.13]. However, we prefer to present a short, elementary
proof.

Proposition 9.1. Let T and S be c.l.c. trees (see Def. 2.4), and let the function
Φ: [T ]→ [S] be continuous and open. Suppose that there is a computable function
f : N→ N such that for each code number u one has Φ(KTu ) = KSf(u). Then

(i) Φ is computable;
(ii) if Φ is a bijection then Φ−1 is computable as well.

Proof. (i) We define a partial computable function PΦ on T with values in S.
Given σ ∈ T such that [σ]T is compact, compute u such that KTu = [σ]T . Let
{β1, . . . , βs} ⊆ S be the finite set with strong index f(u). Let η = PΦ(σ) be the
longest common initial segment of the strings βi. Note that with the standard
ultrametric on [S], the set [η]S is a closed ball centred at any element of KSf(u),
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with the same diameter as KSf(u). So if σ � τ ∈ T then [PΦ(σ)]S ⊇ [PΦ(τ)]S . This

shows that PΦ is monotonic. Since Φ is continuous, one has

Φ(f) =
⋃
n{PΦ(f �n) : f �n∈ dom(PΦ)}

as required.
(ii) By Lemma 2.6 applied to S, there is a computable function g that is “inverse”
to f in the sense such that for each v such that KSv is compact, one has Φ−1(KSv ) =
KTg(v). Now one applies (i) to Φ−1 and g. �

Towards the main result of this section, let G = ([T ],Op, Inv) be a computable
Baire presentation of a t.d.l.c. group. LetW be the computable copy ofW(G) with
domain N given by the proof of “⇒” in Thm. 7.6. Recall (Definition 7.7) that we

write W = Wcomp(G). Let G̃ = Gcomp(W) as in Definition 5.2. Let Φ: G → G̃ be
given by the action (g,A) 7→ gA as near the end of the proof of the implication
“⇐” of Thm. 5.1.

Theorem 9.2. Let G,W, G̃ and the homeomorphism Φ: G → G̃ be as defined
above.

(i) Φ is computable, with computable inverse.
(ii) The action [T ]× N→ N, given by (g,A) 7→ gA, is computable.

Proof. (i) Write S = Tree(G̃). By Prop 9.1 it suffices to show that there is a
computable function f such that Φ(KTu ) = KSf(u) for each code number u.

We may assume that KTu is of the form A ∩ B where A is a left coset of a
subgroup U such that B is a right coset of U : trivially a group G is the union of
the right cosets of any given subgroup; hence such sets form a basis of the topology
of G. And by Lemma 2.6, given a general compact set KTw one can effectively write
it as a finite union of sets of this form.

If KTu is of the form A ∩B as above, we have

Φ(KTu ) = {p ∈ G̃ : p(U) = A ∧ p−1(U) = B}.

Given any F ∈ W, by Lemma 5.4 we can compute bounds on p(F ) and p−1(F )
whenever p ∈ Φ(KTu ), letting L = A and L = B respectively. Recall the set ET
from Def. 2.7, and recall from the proof of “⇒” in Thm. 7.6 that θ : N → ET is a
1-1 function with range the minimal code numbers of compact open cosets in G,
and that we write An for the coset with code number θ(n), and often identify An
with n. Suppose that U = An. Let f(u) be a strong index for the finite set of
strings β ∈ S of length 2n+ 2 such that

(a) Aβ(2n) = A and Aβ(2n+1) = B,
(b) for r < 2n of the form 2i, β(r) is less than the bound on p(F ) given by

Lemma 5.4 where L = A and F = Ai.
(c) for r < 2n of the form 2i+ 1, β(r) is less than the bound on p−1(F ) given

by Lemma 5.4 where L = B and F = Ai.

Then Φ(KTu ) = KSf(u) as required.

(ii) By the observation after Def 6.2, the left action is computable iff Φ is com-
putable. Alternatively, informally speaking, we use an oracle Turing machine that
has as an oracle a path g on [T ], and as an input an A ∈ W. If A is a left coset of
a subgroup V , it outputs the left coset B of V such that it can find a string σ ≺ g
with [σ]TA ⊆ B. �

Note (ii) implies that the right action is also computable, using that Ag =
(g−1A−1)−1 and inversion is computable both in G and in W. We apply the
theorem to obtain a computable version of the open mapping theorem for t.d.l.c.
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groups in the case of a bijection. (This shows that the inverse of Φ in (i) of the
theorem is in fact automatically computable.)

Corollary 9.3. Let G,H be t.d.l.c. groups given by computable Baire presentations,
and let Ψ: G→ H be a computable bijection that is a group homomorphism. Then
Ψ−1 is computable.

Proof. Fix a compact open subgroup U of G. Since Ψ is open, V = Ψ(U) is a
compact open subgroup of H. Let 〈ai〉i∈N be a uniformly computable sequence of
left coset representatives of U in G. (To obtain this, let 〈bk〉k∈N be a uniformly
computable path of Tree(G) extending the k-th string in Tree(G), for some effective
numbering of such strings. Let 〈ai〉i∈N be the subsequence obtained by deleting bk
if bkU = b`U for some ` < k.) Now 〈Ψ(ai)〉i∈N is a uniformly computable sequence
of left coset representatives for V in H. By (ii) of the theorem, the sequences of
(code numbers for) compact open cosets Ki := aiU and Si := Ψ(Ki) = Ψ(ai)V are
uniformly computable.

By Lemma 6.5(ii), we have a “local” computable inverse Θi : Si → Ki of the
restriction Ψi �Ki

, given by uniformly partial computable functions Qi with argu-
ments in Tree(H) and values in Tree(G), according to Definition 6.2. To show Ψ−1

is computable, intuitively, using a path h ∈ H as an oracle, compute the i such that
h ∈ Si, and output Θi(h). More formally, define a partial computable function Q
as follows: given σ ∈ Tree(H), search for i such that [σ]Tree(H) ⊆ Si. If i is found,
simulate Qi(σ) and give the corresponding output. �

In Subsection 1.1 we discussed the modular function ∆: G → R+. As our
second application of Theorem 9.2, we show that for any computable presentation,
the modular function is computable.

Corollary 9.4. Let G be computably t.d.l.c. via a Baire presentation ([T ], Inv,Op).
Then the modular function ∆: [T ]→ Q+ is computable.

Proof. Using the notation of the foregoing theorem, let V ∈ W be any subgroup.
Given g ∈ [T ], by (ii) of the theorem compute A = gV , and compute U ∈ W such
that A : U → V (i.e., A = Ug). For any left Haar measure µ on G, we have

∆(g) = µ(A)/µ(U) = µ(V )/µ(U).

By Remark 4.6 we can choose µ computable; so this suffices to determine ∆(g). �

Our third application of the theorem is to show computability of the Cayley-
Abels graphs, discussed in the introduction. Let G be a t.d.l.c. group that is
compactly generated, i.e., algebraically generated by a compact subset. Then there
is a compact open subgroup U , and a set S = {s1, . . . , sk} ⊆ G such that S = S−1

and U ∪ S algebraically generates G. The Cayley-Abels graph ΓS,U = (VS,U , ES,U )
of G is given as follows. The vertex set VS,U is the set L(U) of left cosets of U , and
the edge relation is

ES,U = {〈gU, gsU〉 : g ∈ G, s ∈ S}.
Some background and original references are given in Section 5 of [50]. For more
detailed background see Part 4 of [47], or [19, Section 2]. If G is discrete (and hence
finitely generated), then ΓS,{1} is the usual Cayley graph for the generating set S.
Any two Cayley-Abels graphs of G is are quasi-isometric. See [19, Def. 3] or [47]
for the formal definition.

Theorem 9.5. Suppose that G is computably t.d.l.c. and compactly generated.

(i) Each Cayley-Abels graph ΓS,U of G has a computable copy L. Given a Haar
computable copyW of the meet groupoidW(G), one can obtain L effectively
from U ∈ W and the left cosets Ci = siU , where {s1, . . . , sk} is as above.



COMPUTABLY TOTALLY DISCONNECTED LOCALLY COMPACT GROUPS 29

(ii) If ΓT,V is another Cayley-Abels graph obtained as above, then ΓS,U and
ΓT,V are computably quasi-isometric.

(iii) Given a computable Baire presentation of G based on a tree [T ], let W =
Wcomp(G) be the computable copy of its meet groupoid as in Definition 7.7.
Then the left action [T ]× L → L is also computable.

Proof. (i) For the domain of the computable copy L, we take the computable set
of left cosets of U . We show that the edge relation is first-order definable from the
parameters in such a way that it can be shown to be computable as well.

Let Vi = Ci · C−1
i so that Ci is a right coset of Vi. Let V = U ∩

⋂
1≤i≤k Vi.

To first-order define EΓ in W with the given parameters, the idea is to replace the
elements g in the definition of EΓ by left cosets P of V , since they are sufficiently
accurate approximations to g. It is easy to verify that 〈A,B〉 ∈ EΓ ⇔

∃i ≤ k∃P ∈ L(V )∃Q ∈ L(Vi) [P ⊆ A ∧ P ⊆ Q ∧ B = Q · Ci],

where L(U) denotes the set of left cosets of a subgroup U : For the implication “⇐”,
let g ∈ P ; then we have A = gU and B = gsiU . For the implication “⇒”, given
A = gU and B = gsiU , let P ∈ L(V ) such that g ∈ P .

We verify that the edge relation EΓ is computable. SinceW is Haar computable,
by the usual enumeration argument we can obtain a strong index for the set of left
cosets of V contained in A. Given P in this set and i ≤ k, the left coset Q = QP,i
of Vi in the expression above is unique and can be determined effectively. So we
can test whether 〈A,B〉 ∈ EΓ by trying all P and all i ≤ k and checking whether
B = QP,i · Ci.

It is clear from the argument that we obtained L effectively from the parameters
U and Ci.

(ii) (Sketch) First suppose that V ⊆ U . There is a computable map ψ : L(U) →
L(V ) such that ψ(A) ⊆ A. The proof of [19, Thm. 2+] shows that ψ : ΓS,U → ΓT,V
is a quasi-isometry. In the general case, let R ⊆ G be a finite symmetric set such
that (U ∩V )∪R algebraically generates G. There are computable quasi-isometries
φ : ΓS,U → ΓR,U∩V and ψ : ΓT,V → ΓR,U∩V as above. There is a computable quasi-
isometry θ : ΓR,U∩V → ΓT,V : given a vertex y ∈ L(U ∩V ), let x = θ(y) be a vertex
in L(V ) such that ψ(x) is at distance at most c from y, where c is a constant for ψ
as above. Then θ ◦ φ is a quasi-isometry as required.

(iii) This follows immediately from Theorem 9.2(ii). �

10. Algorithmic properties of the scale function

In Subsection 1.1 we discussed the scale function s : G → N+ for a t.d.l.c.
group G, introduced by Willis [48]. Recall that for a compact open subgroup
V and g ∈ G one defines m(g, V ) = |V g : V ∩ V g|, and

s(g) = min{m(g, V ) : V is a compact open subgroup}.
Willis proved that the scale function is continuous, where N+ carries the discrete
topology. He introduced the relation that a compact open subgroup V is tidy for g,
and showed that this condition is equivalent to being minimizing for g in the sense
that s(g) = m(g, V ). Möller [30] used graph theoretic methods to show that V
is minimizing for g if and only if m(gk, V ) = m(g, V )k for each k ∈ N. He also
derived the “spectral radius formula”: for any compact open subgroup U , one has
s(g) = limkm(gk, U)1/k.

For this section, fix a computable Baire presentation ([T ],Op, Inv) of a t.d.l.c.
group G as in Def. 7.1. LetW =Wcomp(G) be the Haar computable copy ofW(G)
given by Definition 7.7. Recall that the domain of W is N. Via W we can identify
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compact open cosets of G with natural numbers. The following is immediate from
Theorem 7.6 and Theorem 9.2.

Fact 10.1. The function m : [T ]× N → N (defined to be 0 if the second argument
is not a subgroup) is computable.

It is of interest to study whether the scale function, seen as a function s : [T ]→ N,
is computable in the sense of Definition 6.1. We note that neither Möller’s spectral
radius formula, nor the tidying procedure of Willis (see again [50]) allow to compute
the scale in our sense. The scale is computable iff one can algorithmically decide
whether a subgroup is mimimizing:

Fact 10.2. The scale function on [T ] is computable ⇔ the following function Φ is
computable in the sense of Def. 6.1: if g ∈ [T ] and V is a compact open subgroup
of G, then Φ(g, V ) = 1 if V is minimizing for g; otherwise Φ(g, V ) = 0.

Proof. ⇒: An oracle Turing machine with oracle g searches for the first V that is
minimizing for g, and outputs m(g, V ).
⇐: For oracle g, given input V check whether m(g, V ) = s(g). If so output 1,
otherwise 0. �

We next provide an upper bound on the complexity of the scale function. We
say that a function Ψ : [T ] → N is computably approximable from above if there is
a computable function Θ : [T ] × N → N such that Θ(f, r) ≥ Θ(f, r + 1) for each
f ∈ [T ], r ∈ N, and

Ψ(f) = k iff limr Θ(f, r) = k.

Fact 10.3. The scale function is computably approximable from above.

Proof. Let Θ(f, r) be the minimum value of m(f, s) over all s ≤ r. �

The following example is well-known ([50, Example 2]); we include it to show that
our framework is adequate as a general background for case-based approaches used
in earlier works.

Example 10.4 (with Stephan Tornier). For d ≥ 3, the scale function on Aut(Td)
in the computable presentation of Example 3.5 is computable.

Proof. An automorphism g of Td has exactly one of three types (see [9]):

(1) g fixes a vertex v: then s(g) = 1 because g preserves the stabilizer of v,
which is a compact open subgroup.

(2) g inverts an edge: then s(g) = 1 because g preserves the the set-wise
stabilizer of the set of endpoints of this edge.

(3) g translates along a geodesic (a subset of Td that is a homogeneous tree
of degree 2): then s(g) = (d − 1)` where ` is the length. To see this, for
` = 1 one uses as a minimizing subgroup the compact open subgroup of
automorphisms that fix two given adjacent vertices on the axis. For ` > 1
one uses that s(rk) = s(r)k for each k and r ∈ Aut(Td); see again [48].

The oracle machine with oracle a path corresponding to g ∈ Aut(Td) searches, in
parallel, for a witness for (1), a witness for (2), or a sufficiently long piece of the
axis in (3) so that the shift becomes visible. It then outputs the corresponding
value of the scale. �

11. Closure properties of the class of computably t.d.l.c. groups

All computable presentations in this section will be Baire presentations (see Def-
inition 7.1), and we will usually view a t.d.l.c. group G concretely as a computable
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Baire presentation. Extending the previous notation in the setting of closed sub-
groups of S∞, by Tree(G) we denote the c.l.c. tree underlying this computable Baire
presentation. The following is immediate.

Fact 11.1 (Closure under computable closed subgroups). Let G be a computably
t.d.l.c. group. Let H be a closed subgroup of G (so that Tree(H) is a subtree of
Tree(G)). Suppose that Tree(H) is c.l.c. Then H is computable t.d.l.c. via the
Baire presentation based on Tree(H), with the operations of G restricted to H.

For instance, consider the closed subgroups U(F ) of Aut(Td), where d ≥ 3 and F
is a subgroup of Sd. They were introduced by Burger and Mozes [2]. By Example 3.5
together with the preceding fact, each group U(F ) is computably t.d.l.c.

For another example, consider the computable Baire presentation of SL2(Qp) in
Proposition 7.8. Let S be the c.l.c. subtree of T whose paths describe matrices of

the form

(
r 0
0 s

)
(so that s = r−1). This yields a computable Baire presentation

of the group (Q∗p, ·).
Example 11.2. For each prime p and n ≥ 2, the group GLn(Qp) is computably
t.d.l.c.

Proof. We employ the embedding F : GLn(Qp)→ SLn(Qp) which extends a matrix
A to the matrix B where the new row and column vanish except for the diagonal
element (which necessarily equals (detA)−1). Clearly there is a c.l.c. subtree S of
the c.l.c. subtree of T in Proposition 7.8 for n+ 1 such that [S] = range(F ). Now
we apply Fact 11.1. �

A further construction staying within the class of t.d.l.c. groups is the semidirect
product based on a continuous action. In the effective setting, we use actions that
are computable in the sense of Section 6. For computable actions in the more
general context of Polish groups see [27].

Proposition 11.3 (Closure under computable semidirect products). Let G,H be
computably t.d.l.c. groups. Suppose Φ: G×H → H is a computable function (Defi-
nition 6.2) that specifies an action of G on H via topological automorphisms. Then
the topological semidirect product L = GnΦ H is computably t.d.l.c.

Proof. Let T be the tree obtained by interspersing strings of the same length from
the trees of G and H, i.e.

T = {σ ⊕ τ : σ ∈ Tree(G) ∧ τ ∈ Tree(H)}.

It is clear that T is a c.l.c. tree. Via the natural bijection

[T ]→ [Tree(G)]× [Tree(H)],

one can write elements of L in the form 〈g, h〉 where g ∈ [Tree(G)] and h ∈
[Tree(H)].

By the usual definition of semidirect product ([38, p. 27]), writing the operations
for G and H in the usual group theoretic way, we have

Op(〈g1, h1〉, 〈g2, h2〉) = 〈g1g2,Φ(g2, h1)h2〉
Inv(〈g, h〉) = 〈g−1, (Φ(g−1, h))−1〉.

This shows that Op and Inv are computable, and hence yields a computable Baire
presentation ([T ],Op, Inv) for L. �

Remark 11.4. The foregoing proposition leads to a different proof that GLn(Qp) is
computably t.d.l.c. (Example 11.2). To simplify notation we let n = 2; it is not hard
to generalise the argument below to a general n. As mentioned after Fact 11.1 there
is a computable Baire presentation of (Q∗p, ·). We have GL2(Qp) = Q∗p nΦ SL2(Qp)
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via the inclusion embedding of SL2(Qp), the embedding q →
(
q 0
0 1

)
of Q∗p, and

the computable action Φ(q,

(
a b
c d

)
) =

(
a q−1b
qc d

)
.

Note that the two computable Baire presentations of GL2(Qp) obtained above

are computably isomorphic: one maps (q,

(
a b
c d

)
) to

qa qb 0
c d 0
0 0 q−1

.

Given a sequence of t.d.l.c. groups (Gi)i∈N+ , the direct product
∏
i∈N+ Gi is not

t.d.l.c. in general. In [46, Def. 2.3] a local direct product is described that retains
the property of being t.d.l.c. This construction depends on the choices of compact
open subgroups Ui of Gi, for each i: let G =

⊕
i(Gi, Ui) consist of the elements

f ∈
∏
iGi such that f(i) ∈ Ui for sufficiently large i. We have G =

⋃
kHk where

H0 =
∏
i Ui and for k > 0, Hk = G1 × . . . × Gk ×

∏
i>k Ui. The Hk are equipped

with the product topology. A set W ⊆ G is declared open if W ∩ Hk is open for
each k. (In particular,

∏
i Ui is a compact open subgroup.)

Fix a computable bijection 〈., .〉 : N× N+ → N such that 〈a, b〉 ≥ max(a, b). For
a string σ ∈ N∗ and i > 0, by σ(i) we denote the string τ of maximum length such
that τ(k) = σ(〈k, i〉) for each k < |τ |. Similarly, for f : N→ N we define f (i) to be
the function such that f (i)(k) = f(〈k, i〉) for each k. Given uniformly computable
subtrees Bi of N∗, by B =

∏
iBi we denote the computable tree {σ : ∀i[σ(i) ∈ Bi]}.

Note that [B] is canonically homeomorphic to
∏
i[Bi] via f → (f (i))i∈N. So we can

specify a path f of B by specifying all the f (i).

Proposition 11.5 (Closure under local direct products). Let (Gi)i∈N+ be com-
putably t.d.l.c. groups uniformly in i, and for each i let Ui be a compact open
subgroup of Gi, uniformly in i. Then G =

⊕
i∈N+(Gi, Ui) is computably t.d.l.c.

Proof. By our convention for this section, the Gi are computable Baire presenta-
tions (Ti,Opi, Invi). The uniformity hypothesis on the Ui can be made explicit as

follows: there is a computable function q such that KTi

q(i) = Ui. We use these data

to build a computable Baire presentation ([T ],Op, Inv) of G. We aim at defining
uniformly c.l.c. trees Vk such that as topological spaces, [V0] is homeomorphic to
H0 defined above, and for k > 0, Vk is homeomorphic to Hk − Hk−1. All these
homeomorphism are canonically given, as can be seen during the construction of
the Vk. The c.l.c. tree that our Baire presentation of G is based on will be

T = {kσ : k ∈ N ∧ σ ∈ Vk}.

It is easy to verify that [T ] is homeomorphic to G, using that the Hk are clopen
subgroups of G.

Towards defining the trees Vk, let Ri be the subtree of Ti such that [Ri] = Ui,
and let Si be the subtree of Ti such that [Si] = [Ti]− Ui.

Claim 11.6. The trees Ri, Si are c.l.c. trees uniformly in i ∈ N+.

To check this, it suffices to show that these trees are uniformly computable.
Given i, let Fi ⊆ N∗ be the finite set with strong index q(i). Note that Ri consists of
the strings compatible with a string in Fi, which is a decidable condition uniformly
in i. To determine whether τ ∈ Si, first check whether some prefix of τ is in F ; if
so answer “no”. Otherwise, using the conditions defining c.l.c. trees check whether
[τ ]Ti is compact; if not answer “yes”. If so, check whether τ has an extension longer
that any string in Fi that is not in Si; if so answer “yes”, otherwise “no”. This
shows the claim.

Now let V0 =
∏
iRi, and for k > 0 let
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Vk =
∏

1≤i<k Ti × Sk ×
∏
i>k Ri,

interpreted as subtrees of
∏
i Ti in the obvious way. (So, f is a path of Vk iff f (i) is

a path of Ti for 1 ≤ i < k, f (k) is not in Uk, but f (i) is in Ui for i > k.) It is easy
to check that the Vk are uniformly c.l.c.

Uniformly in k, on [Vk] we have a computable function Lk given by Lk(f)(i) =
Invi(f

(i)). So there is a computable function Inv on [T ] given by

Inv(kf) = kLk(f).

Next, for r, s ∈ N and rf, sg ∈ [T ], let

Op(rf, sg) = th,

where h is the function given by h(i) = Opi(f
(i), g(i)), and t ≤ max(r, s) is the least

number such that t = 0, or t > 0 and h(t) �max(Ft)∈ St. That is, we compute the
binary group operation componentwise, and then check which tree Vt the overall
result is a path of; this can be done because from max(r, s) on, the component of
the result will be in the relevant compact open subgroup.

It should be clear that via the homeomorphism of the spaces [T ] and G outlined
above, ([T ],Op, Inv) is a computable Baire presentation of G. �

Remark 11.7. The foregoing result might turn out to be useful for answering Ques-
tion 1.5 in the negative. Suppose that uniformly in i ∈ N+ one can build a com-
putably t.d.l.c. group Gi and computable element gi so that s(gi) depends in some
predetermined way on whether i is in the halting set K; for instance, let s(gi) = 2
if i 6∈ K, and s(gi) = 1 else. Let Ui be some uniformly determined compact open
subgroup of Gi. Then the scale function on the t.d.l.c. group G =

⊕
i∈N+(Gi, Ui),

with the computable presentation given above, is non-computable.

It takes some effort to prove that being computably t.d.l.c. is preserved under
taking quotients by computable normal closed subgroups. As an application we will
show that the groups PGLn(Qp) are computably t.d.l.c. For n = 2 these groups
have been the subject of much research; for instance, they are homeomorphic to
closed subgroups of Aut(Tp+1) as shown by Serre [40, Section II.1].

First we need some notation and preliminaries. The variables α, β etc. will
range over strings in N∗ without repetitions. The variables P,Q,R range over
permutations of N. Recall from Section 3.1 that in our setup the elements of
S∞ have the form P ⊕ P−1 where P is a permutation of N. It appears that a
crucial “finitization” argument, Claim 11.12, is best shown in the setting of true
permutations, rather than elements of S∞. So we need two lemmas allowing us to
pass back and forth between the two pictures.

We adopt the setting of Theorem 9.2. So let G = ([T ],Op, Inv) be a computable
Baire presentation, letW be a Haar computable copy ofW(G) with domain N, and

let G̃ be as detailed there; in particular, S = Tree(G̃) is c.l.c., and [σ]S is compact
for each string σ of length ≥ 2. Let

S0 = {∅} ∪ {α : ∃β[|α| = |β| > 0 ∧ α⊕ β ∈ S}.
The first lemma verifies that S0 is computable, and takes a nonempty string in S0

to the set of elements of [S] with first component extending it.

Lemma 11.8. (i) S0 is a computable tree.
(ii) There is a computable function B : S0 − {∅} → N such that

KB(α) = {f ∈ [S] : α ≺ f0 where f = f0 ⊕ f1}.

Proof. (i) We first show that there is a computable bound H(k) on β(k) that
is uniformly obtained from α. Since α is nonempty, we have α(A) = B for some
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A,B ∈ W. Hence f(AA−1) = BA−1 for any f ∈ G̃ such that α ≺ f . By Lemma 5.4
with U = AA−1, L = BA−1 and F the coset denoted by k, we obtain a bound
H(k) as required. This shows that from α one can compute a finite set of possible
candidates for β. So S0 is computable.

(ii) Given a nonempty α ∈ S0, by the argument above we can compute a strong
index B(α) for the set of strings of the form α⊕ β in S. �

The second lemma takes a nonempty string in S and writes the paths of S
extending it in terms of a finite set of strings in S0.

Lemma 11.9. Given σ ∈ S such that |σ| ≥ 2, one can compute (a strong index
for) a finite set F ⊆ S0 such that

[σ]S =
⋃
{KB(α) : α ∈ F}.

Proof. Let n = max(σ) + 1. Let F consist of the strings α ∈ S0 of length n such
that viewed as an injection, α extends the injection ασ associated with σ as in (1).
Since |σ| ≥ 2, by Lemma 5.4 we can compute a strong index for F . If α ∈ F and
P � α, then P ⊕P−1 ∈ [σ]S , because P extends ασ. Conversely, if P ⊕P−1 ∈ [σ]S ,
then P �n∈ F . �

Theorem 11.10 (Closure under quotients by computable closed normal subgroups).
Let G be computably t.d.l.c. Let N be a closed normal subgroup of G such that
Tree(N) is a computable subtree of Tree(G). Then G/N is computably t.d.l.c.

Proof. We continue to adopt the setting of Theorem 9.2. Recall that S = Tree(G̃),
and S0 = {∅} ∪ {α : ∃β[|α| = |β| > 0 ∧ α ⊕ β ∈ S}. Let M = Φ(N) where Φ is

the bicomputable homeomorphism G → G̃ established in Theorem 9.2. Note that
Tree(M) is a computable subtree of S; given τ ∈ S, one can search for a string
σ ∈ Tree(G) such that PΦ(σ) � τ ; then τ ∈ Tree(M) iff σ ∈ Tree(N).

We will build a Haar computable copy V ofW(G̃/M). We use that each compact

open subset of G̃/M has the form MK where K is a compact open subset of G̃. In
the first step, we will show that the preordering K ⊆ML is decidable, where K,L
are compact open sets. In the second step, we will use as the domain of V the
least numbers in the classes of the computable equivalence relation associated with
this pre-ordering.

We may assume that K = [σ]S for some string σ ∈ S. So the following suffices
for the first step:

Lemma 11.11. Given strings σ, τ1, . . . , τr ∈ S of length at least 2, one can decide
whether the inclusion [σ]S ⊆

⋃
iM [τ ]i holds.

To verify the lemma, let M0 = {P : P ⊕ P−1 ∈M}. For each α ∈ S0, let

α = {P ∈ [S0] : α ≺ P}

(recall here that P is a permutation of N, not merely a path of S0, which in general
could fail to be onto). Let

T0 = {α : α ∩M0 6= ∅}.

By Lemma 11.9, it is sufficient to decide whether a version of the inclusion holds
that only refers to the permutations, not directly to their inverses.

Claim 11.12. For α, β1, . . . , βk ∈ S0 one can decide whether α ⊆
⋃
iM0βi.
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We may assume that |α| ≥ m := 1 + maxi max(βi). We show that m is the
maximum height on T0 relevant for this inclusion: for each i,

(3) ∃Q ∈M0 [a ⊆ Q ◦ βi]⇔ ∃η ∈ T0 [|η| = m ∧ α ⊆ η ◦ βi].

For the implication “⇒”, simply let η = Q �m. For the implication ⇐, fix a
permutation Q � η such that Q ∈ M0. Given P ∈ α, we can choose R ∈ η and
R′ ∈ βi such that P = R ◦ R′. Since R,Q � η and |η| = m > max(βi), we have

Q−1 ◦R ◦R′ � βi. So P ∈M0 ◦ βi via Q. This verifies the equivalence (3).
Now, if α ⊆

⋃
iM0◦βi, then because |α| > max |βi| for each i, we have α ⊆M0◦βi

for some single i. If η works on the right hand side of (3) then η(βi(0)) = α(0). So
by Lemma 5.4 again, there is a computable bound H(k) on η(k) that is uniformly
obtained from the values α(0), β1(0), . . . , βk(0). This shows that one can compute
a strong index for a finite set containing all potential witnesses η on the right
hand side of (3). For each such η, using Lemma 11.8(ii), it is equivalent to decide
whether KB(α) ⊆ KB(η)KB(βi), which can be done using Lemma 7.5(ii). This shows
the claim and hence verifies Lemma 11.11.

By the Lemma (and the discussion preceding it), the equivalence relation on N
given by

A ∼ B if AM = BM

is computable; recall here that W has domain N. For the domain D of the com-

putable copy V of W(G̃/M), we use the computable set of least elements of equiv-
alence classes.

We think of an element A of D as denoting the compact open coset AM of

G̃/M . Given A,B ∈ W we have (AM)−1 = A−1M and (AM)(BM) = (AB)M . In

particular, one can decide whether AM , viewed as a subset of G̃/M , is a left coset

of a subgroup of G̃/M that BM is a right coset of. So by Lemma 3.6 the groupoid
operations are computable on D.

For the computability of the meet operation, suppose A,B ∈ W are given. One
has AN ∩ BN = (A ∩ BN)N . Suppose A is a left coset of the subgroup U and B
is a left coset of the subgroup V . Then A∩BN is a left coset of the compact open
subgroup U ∩ V N . Note that

A ∩BN =
⋃
{L : L ⊆ A ∧ L is left coset of U ∩ V ∧ L ∼ B.}

(The inclusion ⊇ is trivial. For ⊆, if x ∈ A ∩ BN , then x ∈ L for some left coset
of U ∩ V . Since x = bn for some b ∈ B,n ∈ M we have LN = BN .) So one can
compute C ∈ W such that C = A ∩ BN using Lemma 2.6. Then one outputs the
element C ′ of D such that C ′ ∼ C. Finally, to show that V is Haar computable,
note that |UN : UN ∩ V N | = |U : U ∩ V N |. By the above (in the special case that
A and B are subgroups) one can compute U ∩ V N ∈ W. So one can compute the
index using that W is Haar computable. �

Example 11.13. For each prime p and each n ≥ 2, the group PGLn(Qp) is com-
putably t.d.l.c.

Proof. We use the computable Baire presentation (T,Op, Inv) of GLn(Qp) obtained
in Example 11.2. In this presentation, the centre N of GLn(Qp) is given by the
diagonal (n + 1) × (n + 1) matrices such that the first n entries of the diagonal
agree. So clearly Tree(N) is a computable subtree of the tree S in Example 11.2.
Hence we can apply Theorem 11.10. �
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12. Uniqueness of computable presentations

As discussed in Subsection 1.7, in computable structure theory a countable struc-
ture is called autostable if it has a computable copy, and all its computable copies
are computably isomorphic. We adapt this notion to the present setting.

Definition 12.1. A computably t.d.l.c. group G is called autostable if for any
two computable Baire presentations of G, based on trees T, S ⊆ N∗, there is a
computable group homeomorphism Ψ: [T ]→ [S].

Note that Ψ−1 is also computable by Corollary 9.3. For abelian profinite groups,
the notion of autostability used in [26] is equivalent to our definition. This follows
from the proofs of Prop. 8.5 and Prop. 8.6, which show that in the abelian case
the correspondence between Baire presentations and procountable presentations is
uniform and witnessed by uniformly obtained group-isomorphisms between these
presentations. The first author [26, Cor. 1.11] characterizes autostability for abelian
compact pro-p groups given by computable procountable presentations with effec-
tively finite kernels: such a group is autostable iff its Pontryagin - van Kampen
dual is autostable. For instance, (Zp,+) is autostable because its dual is the Prüfer
group Cp∞ , which is easily seen to be autostable as a countable structure (see the
proof of Theorem 12.6 below).

We now provide a criterion for autostability, and show its usefulness through
various examples.

Criterion 12.2. A computably t.d.l.c. group G is autostable ⇔ any two Haar
computable copies of its meet groupoid W(G) are computably isomorphic.

We will only apply the implication “⇐”. However, the converse implication is
interesting on its own right because it shows that our notion of autostability is
independent of whether we use computable Baire presentation, or computable pre-
sentations based on meet groupoids. In fact, the proof of the converse implication
shows that we could also use presentations based on closed subgroups of S∞.

Proof. We may assume that G itself is a computable Baire presentation. As before,

let W =Wcomp(G) as in Definition 7.7, and let G̃ = Gcomp(W) as in Definition 5.2.

Let Φ: G→ G̃ be the group homeomorphism given by Theorem 9.2.

⇐: Let H be a computable Baire presentation such that G ∼= H. Let V =

Wcomp(H), and let H̃ = Gcomp(V). Clearly G ∼= H implies W ∼= V. So there
is a computable isomorphism θ : W → V; note that θ is a permutation of N, so θ−1

is also computable. We define a computable homeomorphism θ̃ : G̃→ H̃ as follows.

Given p = f ⊕ f−1 ∈ G̃, let

(4) θ̃(p) = (θ ◦ f ◦ θ−1 ⊕ θ ◦ f−1 ◦ θ−1).

Using that θ is an isomorphism of meet groupoids, it is easy to verify that θ̃ is a

homeomorphism. Clearly θ̃ is computable. The inverse of θ̃ is given by exchanging
θ and θ−1 in the above, and hence is computable as well.

Let Ψ: H → H̃ be the homeomorphisms given by Theorem 9.2 with H in place

of G. We have a group homeomorphism Ψ−1 ◦ θ̃ ◦Φ: G→ H, which is computable
as a composition of computable maps. Also, its inverse is computable because the
inverse of Γ is computable.

⇒: Suppose V is a Haar computable meet groupoid such that W ∼= V via an
isomorphism β. We need to show that W,V are computably isomorphic. To this

end, let H̃ = Gcomp(V). Let W̃ =Wcomp(G̃) and Ṽ =Wcomp(H̃). Let αW : W → W̃
and αV : V → Ṽ be the maps given by

αW(AU ) = {p ∈ G̃ : p0(U) = A} and αV(BU ) = {q ∈ H̃ : q0(U) = B},



COMPUTABLY TOTALLY DISCONNECTED LOCALLY COMPACT GROUPS 37

where the notation AU indicates that A is a left coset of U .

Informally, W̃ is the double dual of W, and αW maps W into its double dual.
The following is not true in general, but holds because W ∼= W(G) for the t.d.l.c.
group G.

Claim 12.3. αW is a bijection, and hence a meet groupoid isomorphism.

Since Φ: G → G̃ is a group homeomorphism, its dual Φ̃ : W → W̃ is a meet

groupoid isomorphism, where Φ̃(A) = {Φ(g) : g ∈ A}. Now note that

Φ̃(AU ) = αW(AU ):

if g ∈ A then clearly Φ(g)(U) = gU = A, so Φ(g) ∈ αW(A). Conversely, suppose

p0(U) = A for p ∈ G̃, and let g = Φ−1(p). Then g ∈ A because Φ(g)(U) = p(U) =
A. This verifies the claim.

Let Γ: W̃ → Ṽ be the “double dual” of β; that is, Γ(A) = {β̃(p) : p ∈ A}, where

β̃ is the dual of β defined as in Eq. (4). Note that Γ is an isomorphism of meet
groupoids.

Claim 12.4. The diagram W̃ Γ // Ṽ

W

αW

OO

β
// V

αV

OO commutes.

Hence αV is an isomorphism of meet groupoids.

To see this, if AU ∈ W, then

Γ(αW(A)) = {pβ : p ∈ G̃∧ : p0(U) = A}
= {q ∈ H̃ : q0(β(U) = β(A)}
= αV(β(A)),

where pβ := β ◦ f ◦ β−1 ⊕ β ◦ f−1 ◦ β−1, for p = f ⊕ f−1, similar to Eq. (4).

Since G is autostable by hypothesis, and Φ: G → G̃ is bicomputable, G̃ is au-

tostable. Since β is an isomorphism, we have G̃ ∼= H̃. Hence there is a bicomputable

isomorphism G̃ → H̃. Inspecting the construction in the proof of the implica-

tion “⇐” of Theorem 5.1 shows that there is a computable isomorphism W̃ → Ṽ.
An argument similar to the one in the proof of Lemma 11.8 shows that the maps
αW and αV are computable. So there is a computable isomorphism W → V, as
required. �

Remark 12.5 (Computable duality between t.d.l.c. groups and meet groupoids).
[6, Section 4], to be published in a separate paper, axiomatizes the class M of
countable meet groupoidsW that are isomorphic toW(G) for some t.d.l.c. group G.
Note that Definition 5.2 of Gcomp(W) makes sense for any meet groupoid W with
domain N. Besides some basic algebraic axioms on meet groupoids (such as saying
that different left cosets of the same subgroup are disjoint), one needs an axiom
ensuring local compactness of Gcomp(W): there is a subgroup K such that each
subgroup U ⊆ K has only finitely many left cosets contained in K. Furthermore,

one needs to say that the map αW : W → W̃ in Claim 12.3 is onto. In general,
this could fail: consider the meet groupoid obtained from a computable copy of
W(Zp) by deleting all cosets of subgroup of the form p2i+1Zp: its double dual W is
isomorphic to W(Zp). The required “completeness axiom” avoiding this situation,
called CLC in [6, Section 4], states that if N ∈ W is normal (i.e., each left coset of N
is also a right coset), and S ⊆ L(N) is finite and closed under inverse and product,
then there is a subgroup V ∈ W such that C ⊆ V ↔ C ∈ S. (These axioms
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are sufficiently simple to imply that M is an arithmetical class in the sense of
descriptive set theory.) Using the methods to prove Criterion 12.2 one can proceed
to showing that the operatorsWcomp and Gcomp, restricted to the Haar computable
meet groupoids in M, are inverses of each other. That is, composing one with
the other leads to a computable copy of the original structure that is computably
isomorphic to it.

Theorem 12.6. The computably t.d.l.c. groups Qp and Z nQp are autostable.

Proof. In Example 4.8 we obtained a Haar computable copyW of the meet groupoid
W(Qp). Recall that the elements of W are given as cosets Dr,a = π−1

r (a) where
r ∈ Z, πr : Zp → Cp∞ is the canonical projection with kernel p−rZp, and a ∈ Cp∞ .

By the criterion above, it suffices to show that any Haar computable copy W̃ of

W(Qp) is computably isomorphic to W. By hypothesis on W̃ there is an isomor-

phism Γ: W → W̃. Let Ũr = Γ(Ur) for r ∈ Z. We will construct a computable

isomorphism ∆: W → W̃ which agrees with Γ on the set {Ur : r ∈ Z}. First we

show that from r one can compute the subgroup Ũr ∈ W̃.

(a) If Ũr has been determined, r ≥ 0, compute Ũr+1 by searching for the unique

subgroup in W̃ that has index p in Ũr.

(b) If Ũr has been determined, r ≤ 0, compute Ũr−1 by searching for the unique

subgroup in W̃ such that Ũr has index p in it.

The shift homeomorphism S : Qp → Qp is defined by S(x) = px. Note that
B → S(B) is an automorphism of the meet groupoid W. Using the notation of
Example 4.8 (recalled above), for each α ∈ Qp, r ∈ Z, one has πr+1(S(α)) = πr(α),
and hence for each a ∈ Cp∞ ,

(5) S(Dr,a) = Dr+1,a.

We show that S is definable withinW by an existential formula using subgroups Ur
as parameters. Recall that given a meet groupoid W, by L(U) we denote the set
of left cosets of a subgroup U . For D ∈ L(Ur) we write Dk for D · . . . · D (with
k factors), noting that this is defined, and in L(Ur).

Claim 12.7. Let B ∈ L(Ur) and C ∈ L(Ur+1). Then

C = S(B)⇔ ∃D ∈ L(Ur+1) [D ⊆ B ∧ Dp = C].

⇐: If x ∈ C then x = py for some y ∈ B, so x ∈ S(B). So C ⊆ S(B) and hence
C = S(B) given that S(B) ∈ L(Ur+1).
⇒: Let x ∈ C, so x = S(y) for some y ∈ B. Let y ∈ D where D ∈ L(Ur+1). Then
D ⊆ B. Since Dp ∩C 6= ∅, these two (left) cosets of Ur+1 coincide. This shows the
claim.

We use this to show that the function S̃ = Γ◦S◦Γ−1 defined on W̃ is computable.

Since Γ(Ur) = Ũr, (r ∈ Z), S̃ satisfies the claim when replacing the Ur by the Ũr.

Since the meet groupoid W̃ is computable, given B ∈ W̃, one can search W̃ for a

witness D ∈ L(Ũr+1) as on the right hand side, and then output C = S̃(B). So the

function S̃ is computable.

We build the computable isomorphism ∆: W → W̃ in four phases. The first

three steps build a computable isomorphism L(U0) → L(Ũ0), where L(Ũ0) ⊆ W̃
denotes the group of left cosets of Ũ0. (This group is isomorphic to Cp∞ , so this
amounts to defining a computable isomorphism between two computable copies of

Cp∞ .) The last step extends this isomorphism to all of W, using that S̃ is an

automorphism of W̃.
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For q ∈ Z[1/p] we write [q] = Z + q ∈ Cp∞ . We define D̃r,[q] = ∆(Dr,a) for
r ∈ Z, q ∈ Z[1/p]

(a) Let D̃0,[p−1] be an element of order p in L(Ũ0).

(b) Recursively, for m > 0 let D̃0,[p−m] be an element of order pm in L(Ũ0) such

that (D̃0,[p−m])
p = D̃0,[p−m+1].

(c) For a = [kp−m] where 0 ≤ k < pm and p does not divide k, let D̃0,a =

(D̃0,[p−m])
k.

(d) For r ∈ Z− {0} let D̃r,a = S̃r(D̃0,a).

One can easily verify that ∆: W → W̃ is computable and preserves the meet

groupoid operations. To verify that ∆ is onto, let B ∈ W̃. We have B ∈ L(Ũr) for

some r. There is a least m such that B = (D̃r,[p−m])
k for some k < pm. Then p

does not divide k, so B = D̃r,[kp−m].

We next treat the case of G = ZnQp. Let V be the Haar computable copy ofW(G)

obtained in Example 4.8, and let Ṽ be a further Haar computable copy of W(G).
Using the notation of Example 4.8, let

Ez,r,a = gzDr,a for each z, r ∈ Z, a ∈ Cp∞ .

We list some properties of these elements of V that will be needed shortly. Note
that we can view W as embedded into V by identifying 〈r, a〉 with 〈0, r, a〉. Also
note that Ez,r,a : Ur−z → Ur (using the category notation discussed after Fact 4.3).
Since Dr+1,a ⊆ Dr,pa, we have

(6) Ez,r+1,a ⊆ Ez,r,pa.
Furthermore,

(7) Ez,r,0 = gzUr = Ur+zg
z = (g−zUr−z)

−1 = (E−z,r−z,0)−1.

By hypothesis on Ṽ, there is a meet groupoid isomorphism Γ: V → Ṽ. Since
G has no compact open subgroups besides the ones present in W(Qp), the family

(Ũr)r∈Z, where Ũr = Γ(Ur), is computable in Ṽ by the same argument as before.

The set of elements A of Ṽ that are a left and a right coset of the same subgroup

is computable by checking whether A−1 ·A = A ·A−1. The operations of Ṽ induce

a Haar computable meet groupoid W̃ on this set. Clearly the restricted map Γ =

Γ | W is an isomorphism W → W̃. So by the case of Qp, there is a computable

isomorphism ∆: W → W̃.

We will extend ∆ to a computable isomorphism ∆: V → Ṽ. The following
summarizes the setting:

V
Γ/∆ // Ṽ

W

⊆

OO

Γ/∆
// W̃

⊆

OO

In five phases we define a computable family Ẽz,r,a (z, r ∈ Z, a ∈ Cp∞), and then

let ∆(Ez,r,a) = Ẽz,r,a. As before write D̃r,a = ∆(Dr,a).

(a) Let Ẽ0,r,a = D̃r,a. Choose F0 := Ẽ−1,0,0 : Ũ1 → Ũ0

(b) compute Fr := Ẽ−1,r,0 : Ur+1 → Ur by recursion on |r|, where r ∈ Z, in

such a way that F̃r+1 ⊆ F̃r for each r ∈ Z; this is possible by (6) and since

V ∼= Ṽ via Γ.
(c) For z < −1, compute Ẽz,r,0 : Ur−z → Ur as follows:
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Ẽz,r,0 = Fr−z−1 · Fr−z−2 · . . . · Fr.
(d) For z > 0 let Ez,r,0 = (Ẽ−z,r−z,0)−1; this is enforced by (7).

(e) Let Ẽz,r,a = Ẽz,r,0 · D̃r,a.

One verifies that ∆ preserves the meet groupoid operations (we omit the formal

detail). To show that ∆ is onto, suppose that Ẽ ∈ V is given. Then Ẽ = Γ(Ez,r,a)

for some z, r, a. By (6) we may assume that z < 0. Then Ez,r,0 =
∏−z
i=1E−1,r−z−i,0

as above. So, writing Fs for Ẽ−1,s,0, we have Γ(Ez,r,0) =
∏−z
i=1 Fr−z−iD̃r−z−i,ai for

some ai ∈ Cp∞ .

Note that S̃(D) = F ·D ·F−1 for each D ∈ L(Ũr)∩ W̃ and F : Ũr+1 → Ũr. For,

the analogous statement clearly holds in V; then one uses that S̃ = Γ ◦ S ◦ Γ−1,

and that Γ: V → Ṽ is an isomorphism. Since D̃r+1,a = S̃(D̃r,a), we may conclude

that D̃r+1,a · F = F ·Dr,a for each such F . We can use these “quasi-commutation

relations” to simplify the expression
∏−z
i=1 Fr−z−iD̃r−z−i,ai to Ẽz,r,0D̃r,b for some

b ∈ Cp∞ . Hence Ẽ = Ẽz,r,0D̃r,bD̃r,a. This shows that Ẽ is in the range of ∆, as
required. �
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