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K-TRIVIALITY IN COMPUTABLE METRIC SPACES

ALEXANDER MELNIKOV AND ANDRÉ NIES

Abstract. A point x in a computable metric space is called K-trivial
if for each positive rational δ, there is an approximation p at distance
at most δ from x such that the pair p, δ is highly compressible in the
sense that K(p, δ) ≤ K(δ) + O(1). We show that this local definition
is equivalent to the point having a rapid Cauchy name that is K-trivial
when viewed as a function from N to N. We use this to transfer known
results on K-triviality for functions to the more general setting of met-
ric spaces. For instance, we show that each computable Polish space
without isolated points contains an incomputable K-trivial point.

1. Introduction

Chaitin [5] and Solovay [12] were the first to study K-trivial infinite se-
quences of bits. In the last decade this notion has turned out to be of key
importance for the interactions of computability and randomness.

We identify infinite sequences of bits with subsets of N. Let K(x) denote
the prefix-free Kolmogorov complexity of a binary string x. This is a variant
of the usual plain Kolmogorov complexity C(x) based on a universal machine
such that no string in the domain can be an initial segment of another.
Recall that a set A ⊆ N is Martin-Löf random iff ∀n [K(A �n) ≥ n− O(1)],
namely, the complexity in the sense of K of its initial segments A �n is
close to maximal. By definition, a K-trivial set A is far from random: the
complexity of its initial segments is minimal up to a constant, namely

(1) K(A�n) ≤ K(n) +O(1),

where the number n is identified with the string given by its binary expan-
sion. The notion of C-triviality is defined in an analogous way. Chaitin [5]
showed that each C-trivial set is computable, and that each K-trivial set
is ∆0

2. Solovay built a K-trivial set that is incomputable [12]. A much sim-
pler construction of such a set that it also computably enumerable (c.e.)
was given in [6]. The coincidence of the K-trivial sets with several other
classes was shown in [10]. For instance, a set A ⊆ N is called low for K
if K(y) ≤ KA(y) + O(1) for each string y. Nies and Hirschfeldt (see [10])
proved that K-triviality is equivalent to lowness for K. These and other
results show that the K-trivial sets are very close to being computable.
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Many of the questions on the K-trivials posed in [9] and elsewhere re-
main open. For instance, is every K-trivial set Turing below an incomplete
Martin-Löf random set? Does the ideal of K-trivial Turing degrees have an
exact pair of c.e. degrees?

1.1. Adapting K-triviality to other settings: first steps. We are in-
terested in extending the notion of K-triviality to settings more general than
subsets of N. Firstly we will look at two minor adaptations: (i) functions
from N to N, and (ii) reals in the unit interval. The first serves as an im-
portant tool to understand the general concept we will develop later on of
K-triviality in computable metric spaces.
(i). The definition (1) can be adapted easily to the case of a function f . We
encode tuples of natural numbers by binary strings in some effective way.
We say f is K-trivial if ∀n [K(f �n) ≤ K(n) + O(1)]. As a consequence of
the coincidences in [10], we will show that a function is K-trivial if and only
if its graph is K-trivial as a set.
(ii). One can transfer the notion of K-triviality to reals in the unit interval
via the binary expansion. We will check that this class of reals is actually
independent of the choice of base 2.

1.2. Computable metric spaces. Our main objective is to develop a the-
ory ofK-triviality in the general setting of a computable metric space. Recall
from [13, 4] that a metric space (M,d) is provided with a computable struc-
ture by specifying a dense sequence of points in M such that the pairwise
distance is uniformly computable:

Definition 1.1. Let (M,d) be a metric space, and let (αi)i∈N be a dense
sequence in M without repetitions. We say that M = (M,d, (αi)i∈N) is a
computable metric space if d(αi, αk) is a computable real uniformly in i, k.
We call the elements of the sequence (αi)i∈N the special points. A point
x ∈M is called computable if from a positive rational δ one can compute p
such that d(x, αp) ≤ δ.

Example 1.2. Separable metric spaces common in analysis usually have a
natural computable structure. For the unit interval [0, 1] take the rationals
in it. For Rn take n-tuples of rationals. For the space of continuous functions
C[0, 1] take the polynomials with rational coefficients.

Cantor space is a metric space where the points are subsets of N, and
the distance between two distinct sets is 2−k for the least k at which the
two sets disagree on membership. A natural computable structure is given
by (some effective listing without repetition of) the finite sets. Similarly,
Baire space consists of the functions f : N → N. The distance between two
distinct functions is 2−k for the least k at which their values disagree. The
computable structure is given by (some effective listing without repetition
of) the functions that have the value 0 for almost all arguments. For each of
these examples, the computable points are the objects that are computable
in the previously defined sense.

1.3. Adapting K-triviality to the general setting of computable
metric spaces. We say that a point x ∈M is K-trivial if for each positive
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rational δ there is p ∈ N such that

(2) d(x, αp) ≤ δ and K(〈p, δ〉) ≤ K(δ) +O(1).

(Here we fix some effective encoding of the positive rationals by natural
numbers, and hence binary strings; by K(δ) we mean the complexity of the
string encoding δ.) Note that the pair (〈p, δ〉) determines an elementary
closed ball {y : d(y, p) ≤ δ}. The intuition is that for each δ, the point x is
contained in such a ball that is highly compressible as measured by δ and p.
We give fourfold evidence that this is the right generalization of K-triviality
to a computable metric space M.

1. The definition generalizes previously studied concepts of K-triviality.
This class of points coincides with the one defined by (1) above in the case
of Cantor space. For the unit interval, the definition (2) yields the class of
points with a K-trivial binary expansion. This establishes that the class
is actually independent of the choice of base 2. Barmpalias et al. [1] in-
troduced a notion of K-triviality for compact subsets of Cantor space. In
Subsection 5.4 we will show that their notion coincides with ours for the
metric space of compact sets with Hausdorff distance.

2. Existence result. We show in Theorem 5.7 that every computable com-
plete metric space without isolated points contains a dense set of K-trivial
incomputable points.

3. In (2) we cannot replace the term K(〈p, δ〉) by K(p). At first sight one
may think that the condition (2) should be replaced by

(3) d(x, αp) ≤ δ and K(p) ≤ K(δ) +O(1).

However, this is not the right generalization of K-triviality for various rea-
sons. Firstly, we lose the intuition on compressible elementary closed balls
mentioned above. Secondly, in the case of Cantor space, the string A �n in
(1) provides a compressible special point A �n 0∞, and also the distance of
at most 2−n it is away from the point A. Thirdly, and most importantly, the
weaker condition (3) does not imply usual K-triviality in Cantor space: in
Proposition 3.7 we build a point A satisfying (3) which is Turing complete,
and hence not K-trivial.

4. Robustness of the definition. We will see in Cor. 5.5 that K-triviality of a
point is invariant under the change of computable structure to an equivalent
one in the sense of Def. 5.3 below. Furthermore, we will show that in (2)
one can restrict δ to rationals of the form 2−n and still obtain the same class
of points. Thus (2) can be replaced by an apparently weaker condition: for
each n there is pn such that

(4) d(x, αpn) ≤ 2−n and K(〈pn, n〉) ≤ K(n) +O(1).

While this condition is often easier to work with, we refrain from using it in
the definition because it seems to depend on the arbitrary choice of distances
2−n. Unlike the case of Cantor space, these distances play no special role in
a general metric space.

1.4. Main result: K-trivial points have K-trivial Cauchy names.
Each K-trivial set A satisfies (4) in Cantor space: for each n let pn be
the number so that αpn = A ∩ {0, . . . , n − 1}. But K-triviality in Cantor
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space seems to be much stronger than (4): since we can compute the tuple
(p0, . . . , pn−1) from A �n, we have in fact K(p0, . . . , pn−1) ≤ K(n) + O(1).
In contrast, while (4) says that 〈pn, n〉 is compressible for each n, it says
nothing about the complexity of the whole tuple (p0, . . . , pn−1). So it may
seem that the “local condition” (4), which talks about each n separately,
is inadequate, because K-triviality as defined in (1) relies on the particular
structure of Cantor space. In this case there would be no reasonable way to
extend this notion to the general setting of a computable metric space.

Our main result Theorem 4.2 shows that in fact for eachK-trivial point we
can find a sequence (pn)n∈N in (4) such that K(p0, . . . , pn−1) ≤ K(n)+O(1).
Identifying a special point αp with the number p, we say that a Cauchy name
for a point x is a sequence (ps)s∈N of special points converging to x such
that d(ps, pt) ≤ 2−s for each t > s. The main result states that a point is
K-trivial if and only if it has a Cauchy name that is K-trivial when viewed
as a function N→ N.

In the proof we build for each constant b a c.e. tree that contains, for
each point x that is K-trivial via b, a path that is K-trivial as a function
via 2b + O(1), and is a Cauchy name for x. To make the tree c.e. we use
Solovay functions, studied in [2].

2. Preliminaries

We use the notation in [11]. In particular, we write s ≤+ t to denote that
s ≤ t + O(1). Throughout the paper we will use the usual Cantor pairing
function 〈a, b〉 = a+ 1

2(a+b)(a+b+1) to encode pairs of natural numbers by
a single number. We provide some formal definitions of concepts particular
to this paper, most of which have already been discussed above.

2.1. K-triviality for functions. Fix some effective encoding of tuples x
over N by binary strings, so that K(x) is defined for any such tuple. The
following extends the definition of K-triviality for subsets of N, which can
be identified with {0, 1}-valued functions.

Definition 2.1. We say that a function f : N→ N is K-trivial if

∃b∀nK(f �n) ≤ K(n) + b.

By the following, K-triviality for functions may be reduced to K-triviality
for sets.

Proposition 2.2. A function f : N→ N is K-trivial if and only if its graph
Γ = {〈n, f(n)〉 : n ∈ N} is K-trivial in the usual sense of sets.

Proof. First suppose that f is K-trivial. We have

K(Γ�n(n−1)/2) ≤+ K(f �n) ≤+ K(n),

since to describe Γ �n(n−1)/2 it is enough to know the values of f up to n.
For a set A, if there is a computable increasing sequence {qn}n∈ω such that
K(A �qn) ≤+ K(n) then A is K-trivial [11, Ex. 5.2.9]. Therefore the set Γ
is K-trivial.

Now suppose that Γ is K-trivial. Recall that a set X is called low for K
if K(y) ≤+ KX(y) for each string y. By [10], K-triviality implies lowness
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for K (also see [11, Section 5.4]). Thus, K(f �n) ≤+ KΓ(f �n). Clearly
KΓ(f �n) ≤+ K(n). Thus K(f �n) ≤+ K(n), as required. �

Note that the result does not depend on the particular choice of a pairing
function: if we use an alternative pairing function, then the graph of f in
terms of that pairing function is m-equivalent to Γ. Hence it is K-trivial
iff Γ is. We could also formulate a similar theorem for other encodings of
function by sets; for instance, a function f is K-trivial iff S is K-trivial,
where S is given by the rule that 1+f(n) is the n+1-th element of S minus
the n-th element of f .

Note that the implication from right to left in Prop. 2.2 relies on the
hard result of [10], which has a non-uniform proof. It is not known whether
Prop. 2.2 is uniform, that is, whether a constant for the K-triviality of f can
be computed from an index for Γ (say, as an ω-c.e. set) and its K-triviality
constant. We conjecture that this is not the case.

Let f ⊕g be the function u such that u(2n) = f(n) and u(2n+ 1) = g(n).
The following is a consequence of the corresponding fact for sets; see [11,
5.2.17].

Corollary 2.3. If f, g are K-trivial as functions, then so is f ⊕ g.

2.2. Solovay functions. Recall that a computable function h : N → N
is called a Solovay function [2] if ∀r [K(r) ≤+ h(r)], and ∃∞r [K(r) =+

h(r)]. (Equivalently, the integer lim infr[h(r)−K(r)] is finite.) Solovay [12]
constructed an example of such a function. The following simpler, recent
example is due to Merkle (unpublished). We include the short verification
for completeness’ sake.

Fact 2.4. There is a Solovay function h.

Proof. Let U denote the optimal prefix-free machine. Given r = 〈σ, n, t〉, if t
is least such that Ut(σ) = n, define h(r) = |σ|. Otherwise let h(r) = r.

We have K(r) ≤+ h(r) because there is a prefix-free machine M which
on input σ outputs r = 〈σ,U(σ), t〉 if t is least such that Ut(σ) halts. If σ
is also a shortest string such that U(σ) = n, then we have h(r) = |σ| =
K(n) ≤+ K(r). �

The following generalizes a known fact for sets, also due to Merkle, to the
setting of functions.

Fact 2.5. Let h be as in the proof of Fact 2.4. Let f : N→ N be a function
such that ∀rK(f �r) ≤ h(r)+b. Then f is K-trivial via a constant b+O(1).

Proof. Given n, let σ be a shortest U-description of n, and let t be least
such that Ut(σ) = n. Let r = 〈σ, n, t〉. Then

K(f �n) ≤+ K(f �r) ≤ h(r) + b = |σ|+ b = K(n) + b. �

3. Computable points and K-trivial points

In the following we fix a computable metric space M = (M,d, (αi)i∈N)
as in Definition 1.1. We will use letters p, q etc. for special points in M .
They will be identified with natural numbers via the listing above. Recall
that a point x is computable if one can effectively determine arbitrarily good
approximations of x that are special points:
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Definition 3.1. We say that x ∈ M is a computable point if effectively in
a rational δ we can determine p such that d(x, p) ≤ δ.

3.1. K-trivial points: definition and examples. A positive rational δ
is viewed as a fraction n

v where gcd(n, v) = 1, which we effectively encode
by a single natural number iδ. For i = iδ and p ∈ N we let K(δ) := K(i)
and K(p, δ) := K(p, i). The following is the main definition of the paper.

Definition 3.2. Let b ∈ N. We say that a point x ∈ M is K-trivial via
b, or K-trivial(b) for short, if for each positive rational δ there is a special
point p such that

(5) d(x, p) ≤ δ ∧ K(p, δ) ≤ K(δ) + b.

A point x ∈M is called K-trivial if it is K-trivial via some b.

Choosing a different effective encoding of the rationals will merely lead
to a different constant b in (5), without affecting the set of K-trivial points.
Thus we might as well use the canonical encoding of a positive rational
δ: If δ = n

v where gcd(n, v) = 1 let iδ = 〈n, v〉. (This yields the listing
1, 1/2, 2, 1/3, 3, 1/4, 2/3, . . . of the positive rationals.)

Clearly each computable point is K-trivial. There may be no others:

Example 3.3. There is an infinite compact computable metric space M
with an incomputable point such that each K-trivial point is computable.

Proof. Let Ω denote Chaitin’s halting probability. We have Ω = lims Ωs

where Ωs =
∑
{2−|σ| : Us(σ) ↓}. Let M be the computable metric space

with domain {Ωs : s ∈ N}∪ {Ω}, the metric inherited from the unit interval
and with the computable structure given by αs = Ωs.

Assume for a contradiction that Ω is a K-trivial point. Given n pick
p = Ωs as in (5) for δ = 2−n. We can compute Ωs �n (the first n bits
of the binary expansion of Ωs) from p and n. Since d(Ω,Ωs) ≤ 2−n, this
shows that K(Ω �n) ≤ K(p, n) + O(1) ≤ K(n) + O(1), which contradicts
K(Ω�n) ≥ n−O(1) for sufficiently large n. �

In Theorem 5.7 we will show that each computable complete metric
space M without isolated points contains an incomputable K-trivial point.
Instead of giving a direct construction, we will derive this from the corre-
sponding fact in Cantor space, using two facts: Proposition 5.4 below that
K-triviality is preserved by a computable map from one metric space to an-
other, and a result of Brattka and Gherardi that there is a 1-1 computable
map from Cantor space intoM, which hence also preserves incomputability
of points.

3.2. Number and distribution of K-trivial points for a constant b.
Firstly, we note that few numbers p can satisfy the second inequality in (5):

Fact 3.4. For δ ∈ Q+, we have |{p ∈ N : K(p, δ) ≤ K(δ) + b}| = O(2b).

Proof. Chaitin [5] proved that there are only O(2b) strings v of length n
such that K(v) ≤ K(n) + b. To prove the fact at hand, one adapts, for
instance, the proof in [11, 2.2.26] of his result, with the change that one lets
M(σ) = n if U(σ) = 〈i, n〉, where n ∈ N encodes δ. �
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We now show that a similar bound holds for the number of points that
are K-trivial(b). Furthermore, such a point x is determined by a highly
compressible special point p close by.

Proposition 3.5. Let b ∈ N. (i). At most O(2b) many x ∈ M are K-
trivial(b). (ii). There is a rational δ > 0 as follows. If a point x is K-trivial
via b, then there is a special point p with K(p, δ) ≤ K(δ) + b such that x is
the only K-trivial(b) point with d(x, p) ≤ δ.

Proof. Suppose that distinct points x1, . . . , xk ∈M are K-trivial(b). Pick a
rational δ > 0 such that 2δ is less than d(xi, xj) for any i 6= j, and choose
pi for xi, δ according to (5). Then all the pi are distinct. By Fact 3.4, this
implies that k = O(2b), hence (i) holds. If k is chosen maximal then xi is the
only K-trivial(b) point x such that d(x, pi) ≤ δ, which establishes (ii). �

3.3. Dyadic K-triviality. We mostly work with the apparently weaker
form of Definition 3.2 of K-triviality in metric spaces where δ only ranges
over rationals of the form 2−n. This was discussed in (4) of the introduction.

Definition 3.6. A point x ∈ M is dyadically K-trivial via b if for each
n ∈ N there is a special point p such that

(6) d(x, p) ≤ 2−n ∧ K(p, n) ≤ K(n) + b.

Clearly, a point that is K-trivial via v is dyadically K-trivial via v+O(1).
We will show in our main result Theorem 4.3 that being dyadically K-trivial
via b already implies having a Cauchy name that is K-trivial as a function
via 2b + O(1), which in turn easily implies being K-trivial via 2b + O(1).
Thus, up to a computable change in constants, dyadic K-triviality is the
same as K-triviality.

For the metric spaces in Example 1.2 we already have a notion of K-
triviality. We now verify that this coincides with dyadic K-triviality.

Suppose a point f in Cantor or Baire space is K-trivial in the usual sense.
Then it is clearly dyadically K-trivial: given n, let p be the special point
determined by f �n, namely p(i) = f(i) for i < n and p(i) = 0 for i ≥ n.
The p is a witness in (6). Conversely, each dyadically K-trivial point f is
K-trivial in the usual sense, because given n, if p is a witness in (6), we have
K(f �n) ≤ K(p, n) +O(1)

Recall that the unit interval [0, 1] is a computable metric space with the
usual distance function and the computable structure given by some effective
listing without repetition of the rationals in [0, 1]. Suppose a point x has
binary expansion 0.A where A is an infinite bit sequence (set). If A is K-
trivial then as a witness p in (6) we may use the dyadic rational 0.(A �n).
Conversely, suppose x ∈ [0, 1] is dyadically K-trival. Given n let p be a
witness in (6), and let σ be the first n bits in the binary expansion of p.
Then K(σ) ≤ K(p, n) + O(1); furthermore, 0.σ − 0.(A �n) = c2−n for some
c ∈ {−1, 0, 1}. Therefore K(A�n) ≤ K(n) +O(1).

3.4. We cannot replace the term K(p, δ) in Definition 3.2 by K(p).
We provide the example showing that, even in Cantor space, (3) is not an
adequate generalization of K-triviality. The “dyadic” version of (3) is that

(7) ∀n ∃p [d(x, p) ≤ 2−n ∧ K(p) ≤ K(n) +O(1)].
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This is in fact equivalent to (3), because from δ > 0 one can compute the
least n such that 2−n ≤ δ. Then a witness p for n in (7) is also a witness
for δ in (3). Recall from [6] that a K-trivial is not Turing complete.

Proposition 3.7. There is a Turing complete Π0
1 set A ∈ {0, 1}N satisfying

condition (7).

Proof. For a string α over {0, 1}, let g(α) be the longest prefix of α that
ends in 1, and g(α) = ∅ if there is no such prefix. We say that a set A is
weakly K-trivial if

∀n [K(g(A�n)) ≤+ K(n)].

This implies (7): given n let p = g(A �n)0∞, then d(p,A) ≤ 2−n. (As an
aside, we note that every K-trivial set is weakly K-trivial. Every weakly
K-trivial set with an infinite computable subset is already K-trivial by [11,
Ex. 5.2.9].)

We now build a Turing complete Π0
1 set A that is weakly K-trivial. We

maintain the condition that

(8) ∀i∀w [γi < w → K(w) > i],

where γi is the i-th element of A. This implies that A is Turing complete,
as follows. We build a prefix-free machine N . When i enters ∅′ at stage s,
we declare that N(0i1) = s. This implies K(s) ≤ i+d for some fixed coding
constant d. Now i ∈ ∅′ ↔ i ∈ ∅′γi+d , which implies ∅′ ≤T A.

We let A =
⋂
As, where As is a cofinite set effectively computed from s,

A0 = N, [s,∞) ⊆ As, and As+1 ⊆ As for each s. We view γi as a movable
marker; γsi denotes its position at stage s, which is the i-th element of As.

Construction of A and a prefix-free machine M .
Stage 0. Let A0 = N.

Stage s > 0. Suppose that there is w such that i := Ks(w) < Ks−1(w). By
convention, we may assume that w is unique and w < s. Thus, there is a
new computation Us(σ) = w with |σ| = i at stage s.

If w ≤ γs−1
i then let As = As−1. If w > γs−1

i then, to maintain (8) at

stage s, we move the marker γi: we let As = As−1 − [γs−1
i , s), which results

in γsi+k = s+ k for k ≥ 0, while γsj = γs−1
j for j < i.

In any case, declare M(σ) = g(As �w).

Verification. Clearly, each marker γi moves at most 2i+1 times, so A =
⋂
sAs

is an infinite co-c.e. set. Furthermore, condition (8) holds because it is
maintained at each stage of the construction.

We show by induction on s that

(9) ∀n [K(g(As �n)) ≤+ Ks(n)].

For s = 0 the condition is vacuous. Now suppose s > 0 and (9) holds for
s − 1. We may suppose that w as in stage s of the construction exists,
otherwise (9) holds at stage s by inductive hypothesis.

As in the construction let i = Ks(w), and let σ be the string of length i
such that Us(σ) = w. If w ≤ γsi then As = As−1, so setting M(σ) = g(As �w)
maintains (9).

Now suppose that w > γsi . Let n < s. We verify (9) at stage s for n.
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If n ≤ γs−1
i then As �n= As−1 �n and Ks(n) = Ks−1(n), so the condition

holds at stage s for n by inductive hypothesis. Now suppose that n > γs−1
i .

By (8) at stage s − 1 we have Ks−1(n) > i, and hence Ks(n) ≥ i (equality
holds if n = w). Because n,w > γs−1

i and we move the marker γi at stage s,
we have g(As �n) = g(As �w). Thus, setting M(σ) = g(As �w) ensures that
the condition (9) holds at stage s for n. �

4. A point is K-trivial iff it has a K-trivial Cauchy name

As before we fix a computable metric space M = (M,d, (αi)i∈N).

Definition 4.1. A sequence (ps)s∈N of special points is called a Cauchy
name if d(ps, pt) ≤ 2−s for each s, t ∈ N, s < t. If x = lims ps, we say that
(ps)s∈N is a Cauchy name for x. Note that d(x, ps) ≤ 2−s for each s.

Via the underlying listing of special points (αi)i∈N we may view a Cauchy
name as a function N→ N. It is clear that a point is computable in the sense
of Definition 3.1 if and only if it has a computable Cauchy name. Indeed
the latter is often taken as the definition of computable points.

Our main result is the corresponding fact for K-triviality.

Theorem 4.2. Let x be a point in a computable metric space M.

(i) If x has a Cauchy name that is K-trivial as a function via u ∈ N,
then x is a K-trivial point via u+O(1).

(ii) If x is a K-trivial point via v ∈ N, then x has a Cauchy name that
is K-trivial as a function via 2v +O(1).

We begin with proving the easier part (i). Recall that before Definition 3.2
we fixed an effective encoding of positive rationals δ by natural numbers iδ.
It is easy to verify that δ ≥ 2−iδ for each δ.

Suppose now the function f is K-trivial via u, and a Cauchy name for x.
Given δ > 0 let i = iδ. If n is least such that δ ≥ 2−n, then we can take
p = f(n) as a witness for K-triviality in the sense of (5): we have i ≥ n,
and hence

K(f(n), i) ≤ K(f �i+1) +O(1) ≤ K(i) + u+O(1).

Since K(i) is the same as K(δ) and K(p, i) is the same as K(p, δ), this
shows (i).

In 3.6 we defined the auxiliary concept of dyadic K-triviality, and noted
that being K-trivial via v implies being dyadically K-trivial via v + O(1).
The following lemma will close the circle by establishing (ii).

Lemma 4.3. Suppose that the point x ∈ M is dyadically K-trivial via b.
Then x has a Cauchy name f that is K-trivial as a function via 2b+O(1).

Proof. After adding a natural number to the Solovay function h from Fact 2.4,
we may suppose that ∀rK(r) ≤ h(r).

The c.e. tree T . By a tree we mean a set T ⊆ N<ω that is closed under
taking prefixes. As usual, [T ] denotes the set of (infinite) paths of a tree
T . We define a c.e. tree T such that each f ∈ [T ] is a Cauchy name after
leaving out f(0) and f(1). Let T =

⋃
s Ts, where we define the trees

Ts = {(p1, . . . , pv) : ∀i ≤ v [Ks(pi, i) ≤ h(i) + b] ∧(10)

∀i < v [d(pi, pi+1) ≤ 2−i+1]}.
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Example 4.4. The following computable metric space M may serve as an
illustration for what follows. Let the special points of M be all the pairs
〈r, n〉, where r ∈ {0, 1} and n ∈ N. We declare

d(〈0, n〉, 〈1, n〉) = 2−n and d(〈r, n), 〈k, n+ 1〉) = 2−n−1.

All the special points are isolated. There is only one non-isolated point,
namely x = limn〈0, n〉. This point is computable. Each sequence (pn)n∈N
of the form (〈rn, n〉)n∈N is a Cauchy name for x. For an appropriate b, (6)
holds for each n via pn.

A thin c.e. subtree G of T . In the setting of Example 4.4, T is a full
2-branching tree, consisting of all the tuples of the form (〈r0, 0〉, 〈r1, 1〉,
. . . , 〈rv, v〉) where ri ∈ {0, 1}. This shows that T may contain lots of Cauchy
names consisting of witnesses for dyadic K-triviality; we cannot expect that
each such Cauchy name is K-trivial as a function. Therefore we will prune T
to a c.e. subtree G that is so thin that all strings τ in it are compressible in
the sense that K(τ) ≤ h(|τ |)+b+O(1); hence each infinite path is dyadically
K-trivial by Fact 2.5.

We say that a special point p ∈ N is present at level n of a tree B ⊆ N<ω
if there is η ∈ B such that η has length n and ends in p. While G is only a
thin subtree of T , we will ensure that each special point present at a level n
of T is also present at level n of G. This will show that [G] still contains a
function that (after leaving out the first two values) is a Cauchy name for x.
(In Example 4.4 there are only two labels at each level of T , so for G ⊆ T
we can simply take the tuples where each ri is 0, except possibly the last.
Then the only path of G is a computable Cauchy name of the limit point x.)

We will build a computable enumeration (Gs)s∈N of the tree G where Gs
is a tree contained in Ts for each s.

Why can each string in G be compressed? Suppose at a certain stage, a
new leaf labelled p appears at level n of T , but is not yet present at level n of
G. Suppose also that p is a successor on T of a node labelled q. Inductively,
q is already present at level n− 1 of G; that is, there already is a node η of
length n− 1 on G that ends in q. Since p is present at level n of T , there is
a U-description showing that K(p, n) ≤ h(n) + b (that is, there is a string w
with |w| ≤ h(n) + b such that U(w) = 〈p, n〉). Since p is not present at level
n of G, this U-description is “unused”. Hence we can use it as a description
of a new node η = η̂p in G. This ensures that K(η) ≤ h(n) + b+O(1).

Note that we make use of the fact that once a string η in G is compressible
at a stage, it remains so at all later stages. This is the reason we need the
Solovay function h. If we tried to satisfy the condition K(η) ≤ K(n) + b+
O(1), we might fail, because K(n) on the right side could decrease later on.
We also needed the Solovay function to ensure that T is c.e.

In the formal construction, we build a prefix-free machine L (see [11,
Chapter 2]) to give short descriptions of these nodes. The argument above
is implemented via maintaining the conditions (12) and (13) below.

A slower computable enumeration (T̃s)s∈N of T . We define a computable

enumeration (T̃s)s∈N of T that grows “one leaf at a time”. The T̃s are

subtrees of the Ts. Let T̃0 consist only of the empty string. If s > 0 and
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T̃s−1 has been defined, see whether there is τ ∈ Ts−T̃s−1. If so, choose τ least

in some effective numbering of N<ω. Pick v maximal such that τ �v∈ T̃s−1,

and put τ �v+1 into T̃s. Clearly we have T̃s ⊆ Ts and T =
⋃
s T̃s.

Three conditions that need to be maintained at each stage. For strings τ, η ∈
N<ω we write τ ∼ η if they have the same length and end in the same
element. Recall that each label present at a level n of T needs to be also
present at level n of G. Actually, in the construction we ensure that for each

stage s, each label p that is present at a level n of T̃s is also present at level
n of Gs:

(11) ∀τ ∈ T̃s ∃η ∈ Gs [τ ∼ η].

To make sure that each η ∈ G satisfies K(η) ≤ h(|η|) + b + O(1), we
construct, along with (Gs)s∈N, a computable enumeration (Ls)s∈N of (the
graph of) a prefix-free machine L. Let m,n range over natural numbers,
and v, w over strings. We maintain at each stage s the conditions

(12) ∀η ∈ Gs ∀m
[
0 < m ≤ |η| → ∃v [ |v| ≤ h(m) + b ∧ Ls(v) = η �m]

]
;

(13) if Us(w) = 〈p, n〉, then
[
w ∈ dom(Ls) → p is at level n of Gs

]
.

Construction of (Gs)s∈N and (Ls)s∈N.

Stage 0. Let G0 contain only the empty string. Let L0 = ∅. Clearly the
conditions (11,12,13) hold for s = 0.

Stage s > 0. Inductively we assume that (11,12,13) hold for s− 1.

If T̃s − T̃s−1 is empty go to the next stage. Otherwise there is a unique

τ ∈ T̃s− T̃s−1. Let n = |τ |. By the definition of the computable enumeration

(T̃r)r∈N, we have τ = τ ̂p for some τ ∈ T̃s−1. Since τ ∈ Ts, by the definition
in (10) we have Us(w) = 〈p, n〉 for some U-description w such that |w| ≤
h(n) + b.

If p is already present at level n of Gs−1, then go to the next stage.
Otherwise, by (13) for s− 1, we have w 6∈ dom(Ls−1), i.e., we have not yet
used w as an L-description.

By (11) for s − 1, there is η ∈ Gs−1 such that τ ∼ η. Now let η = η ̂p.
(Note that η ∈ Ts because η ∈ Gs−1 ⊆ Ts and Ks(p, n) ≤ h(n) + b. ) Put η
into Gs. Set Ls(w) = η. Then conditions (11,12,13) hold at stage s. Go to
the next stage.

Verification. Given a function f : N→ N, let f̂ denote the function given by

f̂(n) = f(n+ 2). If f ∈ [T ] then f̂ is a Cauchy name.
Note that the prefix-free machine L = Lb is obtained uniformly in b, so

we can build a prefix-free machine M such that M(0b1σ) = Lb(σ) for each

binary string σ. Hence, if f ∈ [G] then by condition (12) and Fact 2.5, f̂
is K-trivial as a function via 2b + O(1). The following now concludes the
proof of the lemma.

Claim 4.5. There is f ∈ [G] such that f̂ is a Cauchy name of x.
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Since x is dyadically K-trivial, for each n we can choose pn as in (6).
Then (p1, . . . , pn) ∈ T . So by (11) we can choose a string ηn ∈ G of length n
that ends in pn.

For each n there are only finitely many p such that K(p, n) ≤ h(n)+b. So
each level of T is finite. Thus, by König’s Lemma, there is an infinite path
f on the subtree of G consisting of the strings that are a prefix of some ηn.
For each r > 0 there is n such that f �r� ηn. So n ≥ r. Hence

d(f(r − 1), x) ≤ d(f(r − 1), pn) + d(pn, x) ≤ 2−r+2 + 2−n ≤ 2−r+3.

This shows that f̂ is a Cauchy name for x.
This concludes Lemma 4.3, and thereby establishes Theorem 4.2. �

4.1. An analog of Theorem 4.2 for plain Kolmogorov complexity C.
We adapt the foregoing proof. We say that a function f : N→ N is C-trivial
via u if C(f �n) ≤ C(n) + u for each n.

A point x ∈M is called C-trivial via v if for each positive rational δ there
is a special point p such that

(14) d(x, p) ≤ δ ∧ C(p, δ) ≤ C(δ) + v.

Clearly (i) of Theorem 4.2 holds in the setting of plain complexity C, via
the same proof. To prove an analog of (ii) for C, we replace the Solovay
function h by a logarithm function. Let log2 n denote the largest integer k
such that 2k ≤ n. Clearly, with a shift in constants, condition (14) implies
its dyadic variant: for each n there is a special point p such that d(x, p) ≤
2−n ∧ C(p, n) ≤ C(n)+v+O(1). Since C(n) ≤+ log2 n, this in turn implies
the condition

(15) ∀n ∃p [d(x, p) ≤ 2−n ∧ C(p, n) ≤ log2 n+ b].

(where b = v +O(1)).
We now obtain an analog of Lemma 4.3.

Proposition 4.6. Suppose that (15) holds for a point x. Then x has a
Cauchy name f such that C(f �n) ≤ log2 n+ 2b+O(1).

Proof. Let h(n) = log2 n+ d where the constant d is chosen so that h(n) ≥
C(n) for each n. Now we follow the proof of Theorem 4.2(ii) with this
definition of h. The machines Lb and M are defined as before but based on
a plain universal machine. So they now become plain machines. �

This leads to a characterization of computable points via algorithmic in-
formation theory.

Corollary 4.7. A point x is C-trivial iff it is computable.

Proof. The implication from right to left is clear. For the converse, adapting
the proof of Chaitin’s result in [11, Thm. 5.2.20(ii)] to functions shows that
each function f as in the foregoing proposition is computable. So x has a
computable Cauchy name. �

5. Preservation results and existence of K-trivial points

We apply our main result Theorem 4.2 in order to obtain information on
K-trivial points that is not at all obvious from the Definition 3.2. First we
provide some more background on computable metric spaces.
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5.1. Computable maps, and equivalent computable structures.

Definition 5.1. Let M,N be computable metric spaces. A map F : ⊆
M → N is called computable if there is a Turing functional Φ such that
for each x in the domain of F and for every Cauchy name α for x, Φα is a
Cauchy name for F (x).

Recall that a computable map F is called effectively uniformly continuous
if there is a computable function h : N→ N such that for x, y ∈M , d(x, y) ≤
2−h(n) implies d(F (x), F (y)) ≤ 2−n. (For instance, if F is Lipschitz with
constant 2c, then F is effectively uniformly continuous via h(n) = n + c.)
We now show that for such F , the Turing functional Φ above can be chosen
to be a weak truth-table reduction; that is, the use is computably bounded.

Proposition 5.2. Suppose a computable map F is effectively uniformly
continuous via h. Then there is a Turing functional Φ as in Definition 5.1
such that for each α, n the use of Φα(n) is bounded by h(n+ 2) + 1.

Proof. Suppose F is computable via the Turing functional Φ̃. To define the
functional Φ, given a Cauchy name α for a point x, let α[n] denote the
Cauchy name γ that follows α up to h(n + 2) and then repeats, that is,
γ(i) = α(i) for i < h(n+ 2) and γ(i) = α(h(n+ 2)) for i ≥ h(n+ 2). Let

Φα(n) = Φ̃α[n](n+ 2).

Then h(n + 2) + 1 is a use bound as required. To show that β = Φα is a

Cauchy name for y = F (x), note that d(x, αh(n+2)) ≤ 2−h(n+2), and hence

d(y, F (αh(n+2))) ≤ 2−(n+2). Furthermore, since α[n] is a Cauchy name for

α(h(n+ 2)), we have d(F (αh(n+2)), βn) ≤ 2−(n+2). Therefore

d(y, βn) ≤ d(y, F (αh(n+2))) + d(F (αh(n+2)), βn) ≤ 2−(n+1).

Therefore d(βs, βt) ≤ 2−s for t ≥ s, and β converges to y. �

Definition 5.3. We say that computable structures (qi)i∈N and (ri)i∈N
on a metric space (M,d) are equivalent if the identity and its inverse are
computable when the identity is viewed as a map M → N , where M =
(M,d, (qi)i∈N) and N = (M,d, (ri)i∈N).

For instance, if we apply a computable permutation to the special points,
we obtain an equivalent structure. In particular, up to equivalence the
examples in 1.2 are independent of the particular effective listings of the
special points.

5.2. Preservation of K-triviality. The following generalizes the fact [10]
that the class of K-trivial sets is closed downward under Turing reducibility.

Proposition 5.4. Let M,N be computable metric spaces, and let the map
F : M → N be computable. If x is K-trivial in M, then F (x) is K-trivial
in N .

Proof. Let α be a K-trivial Cauchy name for x. Since F is computable, there
is a Cauchy name β ≤T α for F (x). Then β is K-trivial by Prop. 2.2 and
the result of [10] that K-triviality for sets is closed downward under ≤T. �
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If F is effectively uniformly continuous, then one can also give a direct
proof which avoids the hard result from [10]. Moreover, from a K-triviality
constant for x one can effectively obtain a K-triviality constant for F (x),
which is not true in the general case.

To see this, note that, by Proposition 5.2, we have β = Φα for a Turing
functional Φ with use bounded by some computable function g. Then

K(β �n) ≤+ K(α�g(n)) ≤+ K(g(n)) ≤+ K(n).

The increase in constants is fixed, because it only depends on Φ and g.
Since the identity map is Lipschitz, we obtain that K-triviality in a com-

putable metric space is invariant under changing of the computable structure
to an equivalent one:

Corollary 5.5. Suppose a point x is K-trivial via b with respect to a com-
putable structure on a metric space. Then for any equivalent structure on
the same space, x is K-trivial via b+O(1).

The first author has shown that all computable structures on the unit
interval are equivalent [8]. This means that K-triviality is intrinsic to the
unit interval as a metric space.

5.3. Existence of non-computable K-trivial points. A Polish (i.e.,
complete separable metric) space is said to be perfect if it has no isolated
points. In the following we take Cantor space {0, 1}N as the computable
metric space with the usual computable structure of Example 1.2.

Proposition 5.6. [3, Prop. 6.2] Suppose the computable Polish space M is
perfect. Then there is a computable injective map F : {0, 1}N → M which
is Lipschitz with constant 1.

Theorem 5.7. LetM be a perfect computable Polish space. Then for every
special point p ∈M and every δ > 0 there exists a non-computable K-trivial
point x such that d(x, p) ≤ δ.

Proof. We may assume δ ∈ Q. Note that {x : d(x, p) ≤ δ} with the inherited
computable structure is again a perfect computable metric space N . By the
result of Brattka and Gherardi there is a computable injective Lipschitz map
F : {0, 1}N → N .

Let A be a non-computable K-trivial point in Cantor space. Then x =
F (A) is K-trivial in N , and hence in M, by Proposition 5.4; actually only
the easier case of Lipschitz functions discussed after 5.4 is needed.

As Brattka and Gherardi point out before Prop. 6.2, the inverse of F is
computable (on its domain). Thus, if x is computable then so is A, which
is not the case. �

5.4. K-trivial compact sets. Given a Polish space M , let K(M) denote
the Polish space of compact subsets of M with the Hausdorff distance (the
maximum distance that a point in one set can have from the other set).
If M is a computable metric space then K(M) carries a natural computable
structure where the special points are the finite sets of special points in M .
Thus we have a notion of K-trivial compact sets.

If M is Cantor space {0, 1}N, then the computable structure on K(M) is
easily seen to be equivalent in the sense of Def. 5.3 to the one where the
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special points are the clopen sets. Barmpalias et al. [1] studied a notion of
K-triviality for compact subsets V in Cantor space. For instance, they built
a non-empty K-trivial Π0

1 class V without computable paths. We will show
that their notion coincides with ours.

They noted that the definition they gave originally is equivalent to requir-
ing that the subtree TV = {σ : [σ]∩V 6= ∅} of {0, 1}<ω is K-trivial. For the
latter condition it suffices to ask that K(TV [n]) ≤+ K(n) for each n, where
TV [n] is (a suitable string encoding of) the finite set {σ ∈ TV : |σ| = n}.

Fact 5.8. Let V ⊆ {0, 1}N be closed. Then
V is a K-trivial point in K({0, 1}N) ⇔ TV is K-trivial as a set.

Proof. ⇐: Let Pn =
⋃
{[σ] : σ ∈ TV [n]}. Then the Pn are witnesses for

dyadic K-triviality of V according to Def. 3.6.
⇒: For each n let Pn be a clopen set such that d(Pn, V ) < 2−n and
K(Pn, n) ≤+ K(n). Then for each string σ of length n we have [σ] ∩ V 6=
∅ ↔ [σ] ⊆ Pn. This shows that TV is K-trivial. �
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