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1 Introduction and preliminaries

In the last few decades there has been increasing interest in computable model
theory. Computable model theory uses the tools of computability theory to
explores algorithmic content (e¤ectiveness) of notions, theorems, and construc-
tions in various areas of ordinary mathematics. In algebra this investigation
dates back to van der Waerden who in his 1930 book Modern Algebra de�ned
an explicitly given �eld as one the elements of which are uniquely represented
by distinguishable symbols with which we can perform the �eld operations al-
gorithmically. In his pioneering paper on non-factorability of polynomials from
1930, van der Waerden essentially proved that an explicit �eld (F;+; �) does
not necessarily have an algorithm for splitting polynomials in F [x] into their
irreducible factors. Gödel�s incompleteness theorem from 1931 is an astonishing
early result of computable model theory. Gödel showed that �there are in fact
relatively simple problems in the theory of ordinary whole numbers which can-
not be decided from the axioms.�The work of Turing, Gödel, Kleene, Church,
Post, and others in the mid-1930�s established the rigorous mathematical foun-
dations for the computability theory. In the 1950�s, Fröhlich and Shepherdson
used the precise notion of a computable function to obtain a collection of re-
sults and examples about explicit rings and �elds. For example, Fröhlich and
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Shepherdson proved that �there are two explicit �elds that are isomorphic but
not explicitly isomorphic.�Several years later, Rabin and Mal�tsev studied more
extensively computable groups and other computable (also called recursive or
constructive) algebras.
In the 1970�s, Nerode and his students [228, 229, 230, 280, 279, 278] initiated

a systematic study of computability in mathematical structures and construc-
tions by using modern computability theoretic tools, such as the priority method
and various coding techniques. At the same time and independently, computable
model theory was developed by the Soviet school of constructive mathematics
led by Ershov and his students [86]. While we can replace some constructions by
e¤ective ones, for others such replacement is impossible in principle. For exam-
ple, from the point of view of computable model theory, isomorphic structures
may have very di¤erent properties.
Several di¤erent notions of e¤ectiveness of structures have been investigated.

The generalization and formalization of van der Waerden�s intuitive notion of
an explicitly given �eld led to the notion of a computable structure, which is one
of the main notions in computable model theory. Further generalization led to a
countable structure of a certain Turing degree d, which is the degree of its atomic
diagram. Hence computable structures are of degree 0. Henkin�s construction of
a model for a complete decidable theory is e¤ective and produces a structure the
elementary diagram of which is decidable. Such a structure is called decidable.
In the case of a computable structure, the starting point is semantic, while in
the case of a decidable structure, the starting point is syntactic. It is easy to
see that not every decidable structure is computable. We can assign Turing
degree or some other computability theoretic degree to isomorphisms, as well
as to various relations on structures. We can also investigate structures, their
theories, fragments of diagrams, relations, and isomorphisms within arithmetic
and hyperarithmetic hierarchies.
In this paper, we will not consider structures that are computable with

bounds on the resources that an algorithm can use, such as time and memory
constraints. For a survey of polynomial time structures see a chapter by Cenzer
and Remmel [46]. Another approach that turned out to be very interesting,
which is beyond the scope of this paper, is to consider functions representable
by various types of �nite automata. For instance, a function presented by a �-
nite string automaton can be computed in linear time using a constant amount
of memory. A seminal paper in this �eld is the paper by Khoussainov and
Nerode [193]. The most interesting property of automatic structures is that they
have decidable model checking problems. We can use this property to prove the
decidability of �rst-order theories for many structures, e.g., of Presburger arith-
metic. There is also a class of tree automatic structures (see [191, 286]), which
is richer than the class of automatic structures. Tree automatic structures have
nice algorithmic properties, in particular, decidable model checking problem.
Many problems in this area remain open.
Computability theoretic notation is standard and as in [302]. We review

some basic notions. For X � !, let 'X0 ; '
X
1 ; '

X
2 ; : : : be a �xed e¤ective enumer-

ation of all unary X-computable functions. For e 2 !, let WX
e = dom('Xe ).
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HenceW0;W1;W2; : : : is an e¤ective enumeration of all computably enumerable
(c.e.) sets. By X �T Y (X �T Y , respectively) we denote that X is Turing
reducible to Y (X is Turing equivalent to Y , respectively). By X <T Y we
denote that X �T Y but Y �T X. We write x = deg(X) for the Turing degree
of X. Thus, 0 = deg(;). Let n � 1. Then x(n) = deg(X(n)), where X(n) is the
n-th jump of X. A set is �0n if it is c.e. relative to 0

(n�1). A set is �0n if its
negation is �0n, and it is �

0
n if it is both �

0
n and �

0
n. Let �

0
0 =def �

0
1. A set X

is arithmetic if X � ;(k) for some k � 0.
An ordinal is computable if it is �nite or is the order type of a computable

well ordering on !. The computable ordinals form a countable initial segment of
the ordinals. Kleene�s O is the set of notations for computable ordinals, with the
corresponding partial order <O (see [284, 287]). The ordinal 0 gets notation 1.
If a is a notation for �, then 2a is a notation for �+1. Then a <O 2a, and also,
if b <O a, then b <O 2a. Suppose � is a limit ordinal. If 'e is a total function,
giving notations for an increasing sequence of ordinals with limit �, then 3 �5e is
a notation for �. For all n, 'e(n) <O 3 � 5e, and if b <O 'e(n), then b <O 3 � 5e.
Let jaj denote the ordinal with notation a. If a 2 O, then the restriction of <O
to the set pred(a) = fb 2 O : b <O ag is a well order of type jaj. For a 2 O,
pred(a) is c.e., uniformly in a. The set O is �11 complete.
The least noncomputable ordinal is denoted by !CK1 , where CK stands for

Church-Kleene. To extend the arithmetic hierarchy, we de�ne the representative
sets in the hyperarithmetic hierarchy, Ha for a 2 O. The de�nition is recursive,
and is based on iterating Turing jump: H1 = ;, H2a = (Ha)

0, and H3�5e =
f2x � 3n : x 2 H'

e
(n)g. Let � be an in�nite computable ordinal. Then a set

is �0� if it is c.e. relative to some Ha such that � is represented by notation
a. A set is �0� if its negation is �

0
� , and it is �

0
� if it is both �

0
� and �

0
� . A

set is hyperarithmetic if it is �0� for some computable �. Hence, a set X is
hyperarithmetic if (9a 2 O)[X �T Ha]. The hyperarithmetic sets coincide with
�11 sets.
Ershov classi�ed �02 sets as follows. Let � be a computable ordinal. A

set C � ! is �-c.e. if there are a computable function f : !2 ! f0; 1g and a
computable function o : ! � ! ! �+ 1 with the following properties:

(8x)[ lim
s!1

f(x; s) = C(x) ^ f(x; 0) = 0];

(8x)(8s)[o(x; s+ 1) � o(x; s) ^ o(x; 0) = �]; and

(8x)(8s)[f(x; s+ 1) 6= f(x; s)) o(x; s+ 1) < o(x; s)]:

In particular, 1-c.e. sets are c.e. sets, and 2-c.e. sets are d.c.e. sets.
Several important notions of computability on e¤ective structures have syn-

tactic characterizations, which involve computable in�nitary formulas intro-
duced by Ash. Roughly speaking, these are in�nitary formulas involving in-
�nite conjunctions and disjunctions over c.e. sets. More precisely, let � be a
computable ordinal. Ash de�ned computable �� and �� formulas of L!1!,
recursively and simultaneously, and together with their Gödel numbers. The
computable �0 and �0 formulas are the �nitary quanti�er-free formulas. The
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computable ��+1 formulas are of the form_
n2We

9yn n(x; yn);

where for n 2 We,  n is a �� formula indexed by its Gödel number, and
9yn is a �nite block of existential quanti�ers. That is, ��+1 formulas are c.e.
disjunctions of 9�� formulas. Similarly, ��+1 formulas are c.e. conjunctions of
8�� formulas. It can be shown that a computable �1 formula is of the form_

n2!
9yn�n(x; yn);

where (�n(x; yn))n2! is a computable sequence of quanti�er-free formulas. If
� is a limit ordinal, then the �� (��, respectively) formulas are of the formW
n2We

 n (
V

n2We

 n, respectively), such that there is a sequence (�n)n2We of

ordinals having limit �, given by the ordinal notation for �, and every  n is a
��n (��n , respectively) formula. For a more precise de�nition of computable
�� and �� formulas see [13]. The important property of these formulas, due to
Ash, is the following: For a structure A, if �(x) is a computable �� formula,
then the set fa : A j= �(a)g is �0� relative to A. An analogous property holds
for computable �� formulas. The following is a compactness theorem due to
Kreisel and Barwise.

Theorem 1. Let � be a �11 set of computable in�nitary sentences. If every �
1
1

subset of � has a model, then � has a model.

As a corollary we obtain that if � be a �11 set of computable in�nitary sentences,
and if every �11 set �

0 � � has a computable model, then � has a computable
model (see [13]).
Complexity of a countable structure A can be measured by its ranks, such

as Barwise rank [128] or Scott rank. There are several di¤erent de�nitions of
Scott rank and we will use one in [13] (also see [39]). We �rst de�ne a family
of equivalence relations for �nite tuples a and b of elements in A, of the same
length.

1. We say that a �0 b if a and b satisfy the same quanti�er-free formulas.

2. For � > 0, we say that a �� b if for all � < �, for each c, there exists d,
and for each d, there exists c, such that a; c �� b; d.

The Scott rank of a tuple a in A is the least � such that for all b, the relation
a �� b implies (A; a) �= (A; b). The Scott rank of A, SR(A), is the least ordinal
� greater than the ranks of all tuples in A. For example, if L is a linear order
of type !, then SR(L) = 2. For a hyperarithmetic structure, the Scott rank is
at most !CK1 +1. It can be shown (see [13, 39]) that for a computable structure
A:
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(i) SR(A) < !CK1 if there is some computable ordinal � such that the orbits
of all tuples are de�ned by computable �� formulas;
(ii) SR(A) = !CK1 if the orbits of all tuples are de�ned by computable

in�nitary formulas, but there is no bound on the complexity of these formulas;
(iii) SR(A) = !CK1 +1 if there is some tuple the orbit of which is not de�ned

by any computable in�nitary formula.
There are structures in natural classes, for example, abelian p-groups, with

arbitrarily large computable ranks, and of rank !CK1 +1, but none of rank !CK1
(see [24]). Makkai [217] was �rst to prove the existence of an arithmetic struc-
ture of Scott rank !CK1 , and in [201] J. Millar and Knight showed that such a
structure can be made computable. Through the recent work of Calvert, Knight
and J. Millar [40] and Calvert, Goncharov, and Knight [37], and Freer [100], we
started to better understand the structures of Scott rank !CK1 . They were ob-
tained in familiar classes such as trees, undirected graphs, �elds of any �xed
characteristic, and linear orders [40, 37]. Sacks asked whether for known ex-
amples of computable structures of Scott rank !CK1 , the computable in�nitary
theories are @0-categorical. In [38], Calvert, Goncharov, J. Millar, and Knight
gave an a¢ rmative answer for known examples. In [231], J. Millar and Sacks
introduced an innovative technique that produced a countable structure A of
Scott rank !CK1 such that !A1 = !CK1 and the L!CK1 ;!-theory of A is not @0-
categorical. It is not known whether such a structure can be computable.

2 Degrees and jump degrees of structures and
their isomorphism types

We will assume that all structures are at most countable and their languages are
computable. Clearly, �nite structures are computable. Let d be a Turing degree.
An in�nite structure M is d-computable if its universe can be identi�ed with
the set of natural numbers ! in such a way that the relations and operations of
M are uniformly d-computable. For example, we may consider structures com-
putable in the halting problem, such as �01 and �

0
1 structures. See Ershov and

Goncharov [89], Higman [157], Feiner [90], Metakides and Nerode [230], Cen-
zer, Harizanov, and Remmel [43] for more on �01 structures, and Remmel [281],
Khoussainov, Slaman, and Semukhin [197], Cenzer, Harizanov, and Remmel [43]
for more on �01 structures.
If an algebraic structure is not computable, then it is natural to ask how close

it is to a computable one. This property can be captured by the collection of all
Turing degrees relative to which a given structure has a computable isomorphic
copy. Thus, we have the following de�nition.

De�nition 1. The degree spectrum of a structure A is

DgSp(A) = fd : deg(D(B)) : B �= Ag,

where D(B) is the the atomic diagram of B.
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Knight proved the following fundamental result about degree spectra of struc-
tures.

Theorem 2. ([200]) The degree spectrum of any structure is either a singleton
or is upward closed.

A structure A is automorphically trivial if there is a �nite subset C of its do-
main such that every permutation of the domain, which �xes C pointwise, is an
automorphism of A. Automorphically trivial structures include all �nite struc-
tures, of course, and also some in�nite structures, such as the complete graph
on countably many vertices. If the structure is automorphically nontrivial, the
degree spectrum is upward closed [200]. The degree spectrum of an automor-
phically trivial structure always contains exactly one Turing degree, and if the
language is �nite, that degree must be 0 (see [147]). Richter introduced the
following notion in her dissertation.

De�nition 2. ([283]) If the degree spectrum of a structure A has a least ele-
ment, then this element is called the degree of the isomorphism type of A.

Richter initiated the systematic study of such degrees. She [283] proved that if
A is a structure without a computable copy and satis�es the e¤ective extend-
ability condition, then the isomorphism type of A has no degree. A structure A
satis�es the e¤ective extendability condition if for every �nite structureM iso-
morphic to a substructure of A, and every embedding f ofM into A, there is an
algorithm that determines whether a given �nite structure F extendingM can
be embedded into A by an embedding extending f . Richter [283] showed that
every linear order, and every tree, as a partially ordered set, satisfy the e¤ective
extendability condition. More recently, A. Khisamiev [185] proved that every
abelian p-group, where p is a prime number, satis�es the e¤ective extendability
condition. Hence the isomorphism type of a countable linear order, a tree, or
an abelian p-group, which is not isomorphic to a computable one, does not have
a degree of its isomorphism type. Richter also showed for any Turing degree d,
there is a torsion abelian group the isomorphism type of which has the degree
d, as well as that there is such a group the isomorphism type of which does
not have a degree. Results of Richter motivated the study of jump degrees of
structures.

De�nition 3. (Jockusch and Richter) LetA be a structure, and � a computable
ordinal. We say that a Turing degree d is the �th jump degree of A if it is the
least degree in

fd(�) : d 2 DgSp(A)g,

under Turing reducibility. The degree d is said to be the proper �th jump degree
of A if for every computable ordinal � < �, the structure A has no �th jump
degree.

Given a class of structures, we may ask for which computable ordinals � there
exist representatives of this class having (proper) �th jump degrees.
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The following theorem summarizes results for linear orders due to Knight [200],
Ash, Jockusch, and Knight [12], Jockusch and Soare [171], and Downey and
Knight [76].

Theorem 3. ([200, 12, 171, 76]) If a linear order has �rst jump degree, it must
be 00. In contrast, for each computable ordinal � � 2 and every Turing degree
d � 0(�), there exists a linear order having proper �th jump degree d.

Ordinal jump degrees of Boolean algebras are well-understood as well, but the
results di¤er from the ones for linear orders. Jockusch and Soare established
the following result.

Theorem 4. ([170]) For n 2 !, if a Boolean algebra has nth jump degree, then
it is 0(n). In contrast, for each d � 0(!), there exists a Boolean algebra with
proper !th jump degree d.

Oates investigated jump degrees of torsion abelian groups.

Theorem 5. ([268]) For every computable �, there is a torsion abelian group
having a proper �th jump degree.

The proof relies on algebraic properties of countable abelian p-groups, which are
well-undestood. The situation becomes more complex in the case of countable,
torsion-free, abelian groups, where there is no suitable algebraic classi�cation
theory. Nevertheless, there has been a signi�cant progress in this area. If
G = (G;+) is a torsion-free abelian group, a set of nonzero elements fgi : i 2
Ig � G is linearly independent if �1gi1 + � � � + �kgik = 0 has no solution with
�i 2 Z for each i, fi1; :::; ikg � I, and �i 6= 0 for some i. A basis for G is a
maximal linearly independent set and the rank of G is the cardinality of a basis.
Calvert, Harizanov, and Schlapentokh proved a result about Turing degrees of
isomorphism types fore various classes, including torsion-free abelian groups of
�nite rank.

Theorem 6. ([35]) There are countable �elds and torsion-free abelian groups
of any �nite rank > 1, the isomorphism types of which have arbitrary Turing
degrees. There are structures in each of these classes the isomorphism types of
which do not have Turing degrees.

For rank 1, torsion-free, abelian groups the result was previously obtained by
Knight, Downey, and Jockusch (see [70]). These groups are isomorphic to sub-
groups of (Q;+), and there is a known classi�cation for these groups due to
Baer.
Melnikov [227] showed that not every in�nite rank, torsion-free, abelian

group has �rst jump degree. Results about the existence of proper jump degrees
for torsion-free abelian groups were resolved by Downey and Jockusch for the
�rst jump, and by Melnikov for the second and the third jump.

Theorem 7. ([70, 227] For n 2 f1; 2; 3g and every degree d � 0(n), there is a
torsion-free group having proper nth jump degree d.
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The case of higher ordinals remained unresolved until the recent work of Ander-
son, Kach, Melnikov, and Solomon who obtained the following general result.

Theorem 8. ([2]) For every computable � > 3, every d > 0(�) can be realized
as a proper �th jump degree of a torsion-free abelian group.

It is not known if the result can be strengthened to d � 0(�) for � > 2.
The groups from Theorem 7 above are of the form

L
iHi, whereHi 5 (Q;+).

Such groups, introduced by Baer in 1937, are called completely decomposable
and have nice algebraic properties. In the case of only one summand, Coles,
Downey, and Slaman [56] established the following theorem, as a consequence
of their pure computability theoretic result that for every set C � !, there is a
Turing degree that is the least degree of the jumps of all sets X for which C is
computably enumerable in X.

Theorem 9. ([56]) Every subgroup of the additive group of rational numbers
has �rst jump degree.

Theorem 9 can be extended to additive subgroups of �nite direct products of
the rationals (�nite rank groups), as was observed in [227] and [35]. It is not
known which ordinals are realized as proper jump degrees of groups of the formL

i2!Hi.
For certain classes of structures, we can use computable functors to translate

results from one class of countable structures to another. A functor � : K ! K1
is computable if, given an enumeration of an open diagram of A 2 K, we can
enumerate the open diagram of �(A) 2 K1, in a uniform fashion.
Computable functors are also called e¤ective transformations. Hirschfeldt,

Khoussainov, Shore, and Slinko used injective e¤ective transformations to trans-
fer various computability theoretic results from graphs to structures in other
familiar algebraic classes.

Theorem 10. ([166]) For every automorphically nontrivial structure A, there
is a symmetric irre�exive graph, a partial order, a lattice, a ring, an integral do-
main of arbitrary characteristic, a commutative semigroup, or a 2-step nilpotent
group the degree spectrum of which coincides with DgSp(A).

As a consequence of the theorem, we obtain that these classes have structures
with (proper) �th jump degrees for all computable ordinals �.
Frolov, Kalimullin, and R. Miller [105] investigated degree spectra of alge-

braic extensions of prime �elds.

Theorem 11. ([105]) Every algebraic extension of a prime �eld has the �rst
jump degree of its isomorphism class. Every upper cone of Turing degrees is the
degree spectrum of an algebraic �eld.

Not much is known about groups that are far from abelian. There are cen-
terless groups that have arbitrary Turing degrees for their isomorphism classes,
as well as no Turing degrees [65]. Recently, Calvert, Harizanov, and Shlapen-
tokh [36] started to investigate e¤ective content of geometric objects, such as
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ringed spaces and schemes. In particular, they showed that ringed spaces corre-
sponding to unions of varieties, ringed spaces corresponding to unions of subva-
rieties of certain �xed varieties, and schemes over a �xed �eld can have arbitrary
Turing degrees for their isomorphism classes, as well as no Turing degrees.
Lempp asked if there is a nontrivial su¢ cient condition on a structure,

which will guarantee that its degree spectrum contains 0. Slaman [300] and
Wehner [316] independently obtained the following result, with di¤erent proofs.

Theorem 12. ([300, 316]) There exists a structure the degree spectrum of which
is the set of all noncomputable Turing degrees.

Wehner [316] constructed a family of sets that yields a structure with isomorphic
copies in exactly the noncomputable Turing degrees. While Wehner�s structure
is elementarily equivalent to a computable structure, Slaman�s is not. We will
say that a structure such as one in Theorem 12 has Slaman-Wehner degree
spectrum. More recently, Hirschfeldt [161] proved that there is a structure
with Slaman-Wehner degree spectrum, which is a prime model of a complete
decidable theory. This also gives another proof of Theorem 12. Hirschfeldt
structure is elementarily equivalent to a decidable structure.
Downey asked if there exists a structure in a natural algebraic class of struc-

tures, such as a linear order or an abelian group, which has Slaman-Wehner
spectrum. We can also ask which sets of degrees can be realized as degree spec-
tra of structures. Since co-null collections of degrees are of a particular interest,
we have the following de�nition due to Kalimullin.

De�nition 4. ([179]) An automorphically nontrivial structure M is almost
computable if the measure of DegSp(M) is equal to 1 under the standard uni-
form measure on the Cantor space.

For example, every structure with Slaman-Wehner spectrum is almost com-
putable. More examples have been obtained recently. Kalimullin [178, 176, 177]
investigated the relativization of Slaman-Wehner theorem to nonzero degrees.
He showed that such a relativization holds for every low Turing degree, as well
as every c.e. degree, but not for every �03 Turing degree. Using the enumera-
tion result of Wehner, also relativized, Goncharov, Harizanov, Knight, McCoy,
R. Miller, and Solomon [126] showed that for every computable successor ordi-
nal �, there is a structure with copies in just the degrees of sets X such that
�0�(X) is not �

0
�. As a consequence, they obtained the following result.

Theorem 13. ([126]) For each �nite n, there is a structure with the degree
spectrum consisting of exactly all non-lown Turing degrees.

Consequently, there are almost computable structures without arithmetic iso-
morphic copies. Csima and Kalimullin provided another interesting example of
a possible degree spectrum.

Theorem 14. ([60]) The set of hyperimmune degrees is the degree spectrum of
a structure.
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We could ask the following analogue of Lemmp�s question for almost com-
putable structures. If a structure is almost computable, must it contain a hy-
perarithmetic or a �11 degree? Greenberg, Montalbán, and Slaman [137] and
independently Kalimullin and Nies (unpublished) obtained the following posi-
tive result.

Theorem 15. ([137]) Any co-null degree spectrum must include the Turing
degree of the �11 complete set.

This bound cannot be improved to be hyperarithmetic. Recently, Greenberg,
Montalbán, and Slaman [136] constructed a linear order the degree spectrum of
which is the set of all non-hyperarithmetic degrees. There are other examples
of almost computable structures in various natural algebraic classes and we will
discuss some of them.
Although the degree spectra of linear orders have been intensively studied,

the following question remains open. Is there a linear order the degree spectrum
of which is the set of all nonzero degrees? R. Miller [241] constructed a non-
computable linear order with the spectrum containing all nonzero �02 degrees.
Recently, Frolov, Harizanov, Kalimullin, Kudinov, and R. Miller obtained the
following example.

Theorem 16. ([104]) For every n > 1; and a Turing degree d, there is a linear
order having a d-computable isomorphic copy i¤ d is non-lown.

For a survey of related results on linear orders see [104].
Slaman-Wehner�s result fails when restricted to the class of countable Boolean

algebras. Knight and Stob [203] established the following result about low4
Boolean algebras, extending a result of Downey and Jockusch [73] for low
Boolean algebras and of Thurber [313] for low2 Boolean algebras.

Theorem 17. ([203]) Every low4 Boolean algebra has a computable isomorphic
copy.

One of the main open questions in this area is the following. Is every low5
Boolean algebra isomorphic to a computable one? The a¢ rmative answer to
this question is known as the low5 Boolean algebra conjecture.
There is some evidence that if every low5 Boolean algebra has a computable
copy, then the proof of that statement should be di¤erent from the proof for
low4 Boolean algebra. This follows from work of Harris and Montalbán in [152]
where they showed that there are over 1000 invariants that have to be considered
for low5 case, as well as from work of Harris and Montalbán on the complexity
of isomorphisms in [153].
Similarly to linear orders, the following question is open. Is there an abelian

group having Slaman-Wehner spectrum? Recently, Khoussainov, Kalimullin,
and Melnikov proved the following result about abelian p-groups.

Theorem 18. ([180]) There exists an abelian p-group, which has an x-computable
copy relative to every noncomputable �02 degree x, but it has no computable iso-
morphic copy.
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In addition, Khoussainov, Kalimullin, and Melnikov [180] proved that there
exists a noncomputable torsion abelian group the degree spectrum of which
contains all hyperimmune degrees. They also showed that this result cannot
be generalized to co-countable collections of degrees, when restricted to direct
sums of cyclic groups. These results can be re-formulated in terms of e¤ec-
tive monotonic approximations that we will later introduce. It is also known
that there exists a torsion-free abelian group having exactly non-low isomorphic
copies [227]. Other structures studied in this context come from [166]. There
are also some related results on equivalence structures (see [43, 180]).
In many cases, the existence of a computable copy of a structure is related

to the ability to enumerate a certain invariant of the structure.

Examples (i) Given a set S, de�ne its algebraic extension FS of the prime
�eld Q to be Q(fppx : x 2 Sg). The �eld FS has an X-computable copy if and
only if S is c.e. in X.

(ii) Given a set S, de�ne a subgroup G(S) of (Q;+) by having the generator
1=px for G(S) if and only if x 2 S. Then G(S) has an X-computable copy if
and only if S is c.e. in X.

It is well-known that, under an appropriate choice of S, neither FS nor G(S) has
a Turing degree for its isomorphism type (see, for example, [35]). Nevertheless,
in the examples above, we may de�ne the enumeration degree of FS or G(S)
to be the degree of the set S under the enumeration reducibility �e. There
is also a direct way to de�ne an enumeration degree spectrum of a structure,
as A. Soskova and Soskov did in [306, 305]. More generally, we may view a
degree spectrum as a mass problem. The following general de�nition is due to
Medvedev.

De�nition 5. ([226]) A mass problem is a collection of total functions from !
to !.

We may identify the open diagram D0(B) of a countable structure B with its
characteristic function �D0(B). This allowed Stukachev to de�ne various re-
ducibilities between mass problems of structures, such as Muchnik reducibility.

De�nition 6. ([311])

(i) The mass problem of a countable structure A is the set

f�D(B) : B �= Ag:

(ii) Given structures A and B, we say that A is Muchnik reducible to B, in
symbols A �w B, if DegSp(A) � DegSp(B).

Thus, A is Muchnik equivalent to B, written as A =w B, if A �w B and B �w A.
Selman�s theorem [296] states that if a structure has an enumeration degree as
de�ned above, then �w coincides with the enumeration reducibility �e. Thus,
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the notion of enumeration degree is a special case of De�nition 6. For other
reducibilities on mass problems of structures see Stukachev [311, 310].
Whenever a reducibility is de�ned, we look for a suitable de�nition of the

jump. Various authors recently and independently introduced the notion of
the jump of an abstract structure: Montalbán [245] using predicates for com-
putable in�nitary �1 formulas; Baleva [21] and Soskov and A. Soskova [305]
using Moschovakis extensions; Stukachev [309] using hereditarily �nite exten-
sions; Puzarenko [274] and Morozov [248] in the context of admissible sets. It
is remarkable that these di¤erent approaches turned out to be equivalent. We
give the de�nition due to Montalbán.

De�nition 7. ([245]) Given a language L, let f�i : i 2 !g be a computable
enumeration of all computable in�nitary �1 formulas in L. Given a structure A
for L, let A0 be the structure obtained by adding to A in�nitely many relations
Pi, for i 2 !, where A j= Pi(x) , �i(x), and where the arity of Pi is the same
as the length of x in �i(x).

Several results on degree spectra can be re-formulated in terms of the jump of a
structure. For instance, the result of Downey and Jockusch in [73] that every low
Boolean algebra is isomorphic to a computable one follows from the following
result. If B is a Boolean algebra, and 00 computes a copy of B0, then B has a
computable copy. A better understanding of the jump operator on structures
may help us establish or refute the low5 Boolean algebra conjecture.
A. Soskova and Soskov, and also Montalbán showed that the spectrum of a

structure behaves well with respect to the jump of the structure. More precisely,
they established the following jump inversion theorem for the jump operator on
structures.

Theorem 19. ([305, 245]) For every structure A, we have

DegSp(A0) = fx0 : x 2 DegSp(A)g:

Other authors also independently proved the jump inversion theorem. See
Stukachev [309] for more on the jump inversion results. Recently, Montal-
bán [244] and Puzarenko [273] showed independently and simultaneously that
the jump operator has a �xed point.

Theorem 20. ([244, 273]) There is a structure A such that A =w A0.

Montalbán proved this theorem under the assumption that �0# exists�, and
Puzarenko obtained another proof that does not use this assumption.
Andrews and J. Miller [8] have recently introduced a notion of the spectrum

of a theory T , Spec(T ), to be the set of Turing degrees of models of T . The idea
behind this notion is to better understand the relationship between the model
theoretic properties of a theory and the computability theoretic complexity of
its models. Cones above any Turing degree are theory spectra, as well as the set
of all noncomputable degrees (as in Theorem 12). On the other hand, there are
examples of theory spectra that are not degree spectra for any structure, and
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vice versa. We say that a real is Martin-Löf random or 1-random i¤ for every
computable collection of c.e. open sets fUn : n 2 !g, with �(Un) � 2�n, n 2 !,
we have x =2 \n2!Un (where � stands the standard Lebesgue measure on the
Cantor space). A Turing degree is called 1-random if it contains a set which is
1-random. For more on randomness see [72, 265].

Theorem 21. ([8]) The following sets of Turing degrees can be theory spectra:
(a) the degrees of complete extensions of Peano arithmetic,
(b) the 1-random degrees,
(c) a union of the cones above two incomparable Turing degrees.

However, as it follows from [8] and [306], these sets are not the degree spectra
for any structure. On the other hand, by [137], there is a structure the degree
specturm of which consists of exactly the non-hyperarithmetical degrees.

Theorem 22. ([8]) The collection of non-hyperarithmetical degrees is not the
spectrum of a theory.

Further interesting examples can be found in [8] and, for the case of atomic
theories, in [6].

3 Theories, types, models, and diagrams

We will assume that our theories are consistent, countable, and have in�nite
models. We will denote the elementary (complete) diagram of A by Dc(A). It
is easy to see that the theory of a structure A is computable in Dc(A), and
that Dc(A) is computable in (D0(A))(!). The atomic diagram of a model of
a theory may be of much lower Turing degree than the theory itself. Henkin�s
construction of models is e¤ective and establishes that a decidable theory has a
decidable model. The low basis theorem of Jockusch and Soare can be used to
obtain for a theory S, a model A with

(Dc(A))0 �T S0.

Harizanov, Knight, and Morozov [146] showed that for every automorphically
nontrivial structure A, and every set X �T Dc(A), there exists B �= A such
that

Dc(B) �T D(B) �T X.
For every automorphically trivial structure A, we have Dc(A) �T D(A).
A structure A is called n-decidable for n � 1 if the �n-diagram of A is

computable. We will denote �n-diagram A by Dn(A). For sets X and Y , we say
that Y is c.e. in and above (c.e.a. in) X if Y is c.e. relative to X, and X �T Y .
For any structure A, Dn+1(A) is c.e.a. in Dn(A), uniformly in n. Chisholm
and Moses [52] established that there is a linear order that is n-decidable for
every n 2 !, but has no decidable copy. Goncharov [120] established a similar
result for Boolean algebras. There are familiar structures A such that for all
B �= A, we have Dc(B) �T D(B). In particular, this is true for algebraically
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closed �elds, and for other structures for which we have e¤ective elimination of
quanti�ers. In [146], Harizanov, Knight, and Morozov gave syntactic conditions
on A under which for all B �= A, we have Dc(B) �T Dn(B) for n 2 !.
In the early 1960�s, Vaught [314] developed the theory of prime, saturated,

and homogeneous models using types. The study of the computable content of
these models was initiated in the 1970�s. The set of all computable types of a
complete decidable theory is a �02 set. Every principal type of such a theory is
computable, and the set of all its principal types is �01. A model A of a theory
T is prime if for all models B of T , A elementarily embeds into B. For example,
the algebraic numbers form a prime model of the theory of algebraically closed
�elds of characteristic 0. All prime models of a given theory are isomorphic.
It is well-known that every complete atomic theory has a prime model. It is
not di¢ cult to show that if a complete decidable theory T has a decidable
prime model, then the set of all principal types of T is uniformly computable.
Goncharov and Nurtazin [135], and independently Harrington [149] established
the converse.

Theorem 23. ([135, 149]) For a complete decidable theory T , the following are
equivalent.

1. There is a uniform procedure, which maps a formula consistent with T
into a computable principal type of T that contains this formula.

2. The theory T has a decidable prime model.

3. The theory T has a prime model and the set of all principal types of T is
uniformly computable.

For a Turing degree x = deg(X), we say that a structure A is decidable in
X or x-decidable if Dc(A) �T X. T. Millar [236] and Drobotun [83] inde-
pendently showed that a complete, atomic, decidable theory has a 00-decidable
prime model. More recently, Csima [61] strengthened this result by showing
that every complete, atomic, decidable theory T has a prime model A such that
Dc(A) is low. Although Csima�s result has the same �avor as the low basis
theorem of Jockusch and Soare, it does not follow from the low basis theorem.
Epstein extended Csima�s result by establishing the following.

Theorem 24. ([85]) Let T be a complete, atomic, decidable theory and let c > 0
be the c.e. degree of a prime model of T . Then there is a prime model A of T
such that Dc(A) has a low c.e. degree a, where a < c.

On the other hand, there are theories with prime models the elementary dia-
grams of which have minimal degrees, but the theories have no decidable prime
models.
Goncharov [114] proved that there is a complete, decidable, @0-stable theory

in a �nite language having no computable prime model. His theory has in�nitely
many axioms. Peretyat�kin [270] constructed a complete, atomic, �nitely axiom-
atizable (hence decidable) theory without a computable prime model. T. Mil-
lar [233] came up with a weaker notion of a decidable model, the notion of an
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almost decidable model, and showed that if a complete decidable theory has fewer
than continuum many complete types, then the theory has an almost decidable
prime model. Since not every decidable complete theory with only countably
many complete types has a decidable model [114], T. Millar�s result cannot be
extended to decidable prime models.
We can also consider complete theories of algebraic structures from natural

classes, such as groups or linear orders. Even if their theories are not necessarily
decidable, they can have computable models. Khisamiev [186] obtained the
following negative result.

Theorem 25. ([186]) There is a complete theory of abelian groups with both a
computable model and a prime model, but no computable prime model.

Interestingly, the proof of this result had in�uence on other investigations in
computable model theory outside investigation of groups. Khisamiev�s proof
uses the concept of a limitwise monotonic function, which he introduced in
[187] to study which abelian p-groups have computable isomorphic copies.

De�nition 8. ([187]) A total function F : ! ! ! is limitwise monotonic if there
is a computable function f : !2 ! ! such that for all i; s 2 !, f(i; s) � f(i; s+1),
lim
s!1

f(i; s) exists, and F (i) = lim
s!1

f(i; s).

See [180] for more on limitwise monotonic functions. Using limitwise monotonic
functions, Hirschfeldt [162] obtained a negative solution to a long-standing prob-
lem posed by Rosenstein [285].

Theorem 26. There is a complete theory of linear orders having a computable
model and a prime model, but no computable prime model.

A set X and its Turing degree are called prime bounding if every complete,
atomic, decidable theory has a prime model A such that Dc(A) �T X. Thus, 00
is prime bounding. Csima, Hirschfeldt, Knight, and Soare obtained the following
equivalence.

Theorem 27. ([64]) Let X �T ;0. Then X is prime bounding if and only if X
is not low2:

This theorem gives an interesting characterization of low2 sets in terms of prime
models of certain theories, thus providing a link between computable Vaughtian
model theory and degree theory. To prove that a low2 set X is not prime
bounding, we use a ;0-computable listing of the array of sets fY : Y �T Xg
to �nd a complete, atomic, decidable theory T , which diagonalizes against all
potential prime models of T the elementary diagrams of which are computable
in X. To prove that any set X that is not low2 is indeed prime bounding, we �x
a function f �T X that dominates every total ;0-computable function. Given a
complete, atomic, decidable theory T , we use f to build a prime model of T . In
addition to the two properties in Theorem 27, Csima, Hirschfeldt, Knight, and
Soare [64] consider a number of other properties equivalent to these two, some
of which are related to limitwise monotonic functions. Hirschfeldt [161] has an
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interesting result about the degree spectrum of a structure, already mentioned
in the previous section.

Theorem 28. ([161]) There is a prime model of a complete decidable theory
with Slaman-Wehner degree spectrum.

Recall that a countable saturated model is a model realizing every type of
its language augmented by any �nite tuple of constants for its elements. The
earliest e¤ective notion related to saturated models was the notion of a recur-
sively saturated model introduced and �rst studied by Barwise and Schlipf in
[25]. A recursively saturated model is de�ned to be a model (of a computable
language) realizing every computable set of formulas consistent with its theory,
in the language expanded by any �nite set of constants. Note that every sat-
urated model is recursively saturated. It is well-known that a complete theory
has a countable saturated model if and only if the theory has only countably
many n-types for every n � 1. On the other hand, every complete theory in a
computable language with in�nite models has a countable recursively saturated
model. In fact, in the case of a computable language, early proofs of several
classical results in model theory can be simpli�ed using recursively saturated
models (see [47]). The simpli�cation is done by replacing �large�models by
recursively saturated models in the proofs [25, 282]. The �large�models exist
only under certain set theoretic restrictions [47]. Being a computable language
is often not a severe restriction since many important languages are computable
or even �nite. These remarkable results provide an application of computability
to pure classical model theory. However, a recursively saturated model does
not have to be decidable or even computable, so we will turn our attention to
decidable saturated models.
Decidable saturated models of complete decidable theories are fairly well-

understood. There is a complete description of decidable saturated models in
terms of types, due to Morley [247] and T. Millar [236] independently.

Theorem 29. [247, 236] Let T be a complete decidable theory. The set of all
types of T is uniformly computable if and only if T has a decidable saturated
model.

Thus, a complete theory with a decidable saturated model also has a decidable
prime model. Morozov obtained a general positive result for Boolean algebras.

Theorem 30. ([259]) Every countable saturated Boolean algebra has a decidable
isomorphic copy.

If the types are not uniformly computable, then the existence of a decid-
able saturated model is not guaranteed, as shown independently by Morley and
T. Millar, and by Goncharov and Nurtazin, who constructed counterexamples.

Theorem 31. [247, 236, 135] There is a complete decidable theory with all
types computable, which does not have a decidable saturated model.
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Any saturated model of a complete decidable theory with all types computable
has a 00-decidable isomorphic copy [247, 236, 135]. This result leads to the
investigation of the e¤ective content of saturated models using degree theoretic
concepts and machinery. The following de�nition was introduced by Harris and
is similar to the one for prime models.

De�nition 9. A Turing degree d is saturated bounding if every complete de-
cidable theory with types all computable has a d-decidable saturated model.

Macintyre and Marker showed that the degrees of complete extensions of Peano
arithmetic are saturated bounding [220]. There is a more recent negative result
due to Harris.

Theorem 32. ([151]) For every n 2 !, no lown c.e. degree is saturated bound-
ing.

It is well-known that a countable homogeneous structure is uniquely deter-
mined, up to an isomorphism, by the set of types it realizes. Morley posed
the following natural question for a complete decidable theory T . If the type
spectrum of a countable homogeneous model A of T (the set of types realized
in A) consists only of computable types and is computable, does A have a de-
cidable isomorphic copy? Independently, Goncharov [118], T. Millar [235], and
Peretyat�kin [271] answered Morley�s question negatively.

Theorem 33. ([118, 235, 271]) There exists a complete decidable theory T
having a homogeneous model M without a decidable copy, such that the type
spectrum ofM consists only of computable types and is computable.

In fact, Goncharov [118] and Peretyat�kin [271] provided a criterion for a ho-
mogeneous model to be decidable. Their criterion can be stated in terms of the
e¤ective extension property. A computable set of computable types of a theory
has the e¤ective extension property if there is a partial computable function f
which, given a type �n of arity k and a formula �i of arity k+1 (identi�ed with
their indices), outputs the index for a type containing �n and �i, if there exists
such a type.
Goncharov and T. Millar also established the following result about decid-

ability of a homogeneous model.

Theorem 34. ([118, 234]) Suppose the set of all computable types of a complete
theory T is computable. If the set of all complete types realized in a countable
homogeneous model A of the theory T is a �02 set of computable types, then A
is decidable.

It is well-known that every countable model has a countable homogeneous
elementary extension. Ershov conjectured that every decidable model can be ele-
mentary embedded into a decidable homogeneous elementary extension. Peretyat�kin
refuted Ershov�s conjecture in a strong way.

Theorem 35. ([272]) There exists a decidable model, which does not have a
computable homogeneous elementary extension.
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As for theories of concrete algebraic structures, Goncharov and Drobotun [123]
constructed a computable linear order that does not have a computable homo-
geneous elementary extension.
Regarding recent investigation of the degree-theoretic content of homoge-

neous models, similarly to prime bounding and saturated bounding degrees, we
have the following de�nition.

De�nition 10. ([62]) A Turing degree d is homogeneous bounding if every
complete decidable theory has a d-decidable homogeneous model.

Csima, Harizanov, Hirschfeldt, and Soare obtained the following result about
homogeneous bounding degrees.

Theorem 36. ([62]) There is a complete decidable theory T such that every
countable homogeneous model of T has the degree of a complete extension of
Peano arithmetic.

This theorem implies that every homogeneous bounding degree is the degree
of a complete extension of Peano arithmetic, but it is in fact stronger, since
we build a single theory T such that the use of the degrees of complete exten-
sions of Peano arithmetic is necessary to compute even the atomic diagram of
a homogeneous model of T . Together with the converse fact by Macintyre and
Marker [220], we have the following consequence.

Corollary 1. A Turing degree d is homogeneous bounding if and only d is the
degree of a complete extension of Peano arithmetic.

Lange introduced the following de�nition of a 0-homogeneous bounding de-
gree.

De�nition 11. ([210])

1. A countable structure A has a d-basis if the types realized in A are all
computable and the Turing degree d can list d-indices for all types realized
in A.

2. A degree c is 0-homogeneous bounding if any automorphically nontrivial
homogeneous model A with a 0-basis has a c-decidable isomorphic copy.

Now we can restate Theorem 33 as follows: There exists a homogeneous struc-
ture A having a 0-basis but no decidable isomorphic copy.

Theorem 37. ([210]) Let T be a complete decidable theory and let A be a ho-
mogeneous model of T with a 00-basis. Then A has an isomorphic copy decidable
in a low degree.

This theorem implies Csima�s result that every complete, atomic, decidable
theory T has a prime model decidable in a low degree (see [61]).

Theorem 38. (Lange [210]) Let T be a complete decidable theory with all types
computable. Let A be a homogeneous model of T with a 0-basis. Then A has
an isomorphic copy B decidable in any nonzero degree.
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Lange also gave a description of 0-basis homogeneous bounding degrees.

Theorem 39. ([210, 211]) A degree d � 00 is 0-basis homogeneous bounding
if and only if d is nonlow2.

4 Algorithmic properties of small theories and
their models

We now consider the question of the existence of e¤ective (computable, decid-
able, etc.) models for small theories, that is, theories with at most countably
many countable models.

De�nition 12. Let � be a cardinal. A theory is called �-categorical if it has
exactly one model of cardinality �, up to isomorphism.

The following result is well-known as Morley�s categoricity theorem (see [47]).

Theorem 40 (Morley). If a theory is �-categorical for some uncountable car-
dinal �, then it is �-categorical for all uncountable �.

Hence, theories categorical in an uncountable cardinal are also called uncount-
ably categorical. The theories that are @0-categorical are also called countably
categorical. A theory that is both countably and uncountably categorical is
simply called totally categorical. For the case of an uncoutably categorical, but
not countably categorical theory, Baldwin and Lachlan [20] established that its
countable models can be listed in a chain of proper elementary embeddings:

A0 � A1 � A2 � � � � � A!,

where A0 is a prime model, and A! is a saturated model of the theory. Thus, an
uncountably categorical theory has either only one countable model or countably
many countable models, up to isomorphism.

De�nition 13. A theory is called Ehrenfeucht if it has �nitely many, but more
than one, countable models, up to isomorphism.

By Vaught�s theorem, if a theory has two non-isomorphic models, then it has
at least three non-isomorphic models. An example of a theory with exactly three
countable models was given by Ehrenfeucht. His result can be easily generalized
to obtain a theory with exactly n countable models, for any �nite n � 3.
An important question in computable model theory is when a small theory

has a computable model. For the case of countably categorical theories, Ler-
man and Schmerl [216] gave su¢ cient conditions, which were later extended by
Knight as follows.

Theorem 41. ([199]) Let T be a countably categorical theory. If T \ �n+2 is
�0n+1 uniformly in n, then T has a computable model.
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The natural question posed by Knight was whether there exist countably cate-
gorical theories of high complexity, which satisfy the conditions of the previous
theorem. First examples were given by Goncharov and Khoussainov in [130],
and then generalized by Fokina.

Theorem 42. ([94]) There exists a countably categorical theory of arbitrary
arithmetic complexity, which has a computable model.

The proof is based on the method of Marker�s extensions from [130]. This
method was later applied to investigate various other properties of computable
structures, such as in [92, 99].
The case of a countably categorical theory with a nonarithmetic complex-

ity was resolved by Khoussainov and Montalbán [192]. Their structure is a
modi�cation of the random graph.

Theorem 43. ([192]) There exists a countably categorical theory S with a com-
putable model such that S �T 0(!).
Another proof of Theorem 43 can be found in [3].
Recall that a consistent decidable theory always has a decidable model. For

small theories we can say more. Obviously, if a theory is countably categorical
and decidable, then its only, up to isomorphism, countable model always has
a decidable copy. For the case of uncountably categorical, but not countably
categorical theories, Harrington [149] and Khissamiev [188] showed that such a
theory T is decidable if and only if all countable models of T are decidable. If
T is uncountably categorical, but not decidable, then some of its models can be
computable, while others are not computable.
The following de�nition of a spectrum of computable models was introduced

by Khoussainov, Nies, and Shore.

De�nition 14. ([194]) Let T be an uncountably categorical theory with Baldwin-
Lachlan elementary chain of countable models:

A0 � A1 � A2 � � � � � A!.

The spectrum of computable models of the theory T is the set:

SCM(T ) = fi � ! j Ai has a computable isomorphic copyg.

A number of researchers investigated which sets can be realized as spectra
of computable models of uncountably categorical theories. The �rst example of
a non-trivial spectrum of computable models for uncountably categorical the-
ories was given by Goncharov in [117], where he produced a theory with only
the prime model being computable. His example was followed by a series of
results about various spectra by Kudaibergenov [206], Khoussainov, Nies, and
Shore [194], Nies [266], Herwig, Lempp, and Ziegler [156], Hirschfeldt, Khous-
sainov, and Semukhin [164], and Andrews [4, 5]. All these examples of spectra of
computable models are �nite or co-�nite. On the other hand, the upper bound
Nies gave in [266] is �0!+3. All these examples of uncountably categorical theo-
ries are 000-decidable, in particular, all their countable models are 000-decidable.
Two natural questions arise:
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1. What could be a complexity of an uncountably categorical theory with a
computable model?

2. Is there a bound on complexity of all countable models of an uncountably
categorical theory with a computable model?

Concerning the �rst question, the examples of arbitrary arithmetic complexity
were given in [94, 130]. Again, the authors used Marker�s extensions to build
the structures. Andrews [3] resolved the nonarithmetic case by adapting famous
Hrushovski�s examples from [169] to computable model theoretic setting.

Theorem 44. ([3]) There exist uncountably categorical theories of arbitrary
arithmetic complexity, as well as of nonarithmetic complexity, which have com-
putable models.

The same method was used to get the above mentioned examples of spectra of
computable models [4, 5]. The original Hrushovski�s construction is a powerful
model theoretic tool for building strongly minimal theories [169]. Its modi�ca-
tion by Andrews allows us to carry out the construction e¤ectively, and with
much greater control, thus providing a remarkable application of model theoretic
methods to solve computability theoretic problems.
The second question was raised in the mid-1990�s by Lempp. He asked

whether it was possible to construct an uncountably categorical theory T with
a computable prime model such that none of the countable nonprime models
is even arithmetic. The answer to this question is negative for a subclass of
uncountably categorical theories (see [129]).

De�nition 15. (i) A complete theory T is strongly minimal if any de�nable
subset of any model M of T is �nite or co-�nite. A structure M is strongly
minimal if it has a strongly minimal theory.
(ii) A strongly minimal modelM is trivial if for all subsets A �M ,

acl(A) =
[
a2A

acl(fag):

Goncharov, Harizanov, Lempp, Laskowski, and McCoy established the fol-
lowing result for trivial, strongly minimal models.

Theorem 45. ([129]) Let M be a computable trivial, strongly minimal model.
Then Th(M) forms a 000-computable set of sentences, and thus all countable
models of Th(M) are 000-decidable.

In particular, all countable models of Th(M) are 000-computable. The proof of
this theorem shows an interesting interplay between algorithmic and model the-
oretic properties of structures. Namely, the authors proved that for any trivial,
strongly minimal theory T in language L, the elementary diagram of any model
M of T is a model complete L-theory. This implies that T is 89-axiomatizable,
which in turn implies 000-decidability. Furthermore, it was established in [129]
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that, due to the structural simplicity, the complexity of spectra of computable
models of trivial, strongly minimal theories is �05.
As Khoussainov, Laskowski, Lempp, and Solomon showed in [190], the result

in Theorem 45 is best possible in the following sense.

Theorem 46. ([190]) There exists a trivial, strongly minimal (and hence un-
countably categorical) theory for which the prime model is computable and each
of the other countable models computes 000.

In [69], Dolich, Laskowski, and Raichev generalized the results of [129] to
any uncountably categorical, trivial theory of Morley rank 1. A new, more
constructive proof of the same results can be found in [213].
In the case of Ehrenfeucht theories, the question which models can be com-

putable or decidable also has a long history. In the mid-70�s, Nerode asked
whether all models of a decidable Ehrenfeucht theory must be decidable, by
analogy with the results in [149, 188]. Morley [247] gave an example of a theory
with six models, of which only the prime model was decidable. A good overview
of further related results can be found in [109].
Sudoplatov gave in [312] a model theoretic characterization of Ehrenfeucht

models (that is, models with Ehrenfeucht theories). In particular, he introduced
the notion of a limit model, and a special kind of pre-ordering on the set of almost
prime models. Analogously to the case of uncountably categorical theories,
Gavryushkin introduced in [110] a notion of a spectrum of computable models for
Ehrenfeucht theories. He characterized the spectra in the Sudoplatov�s terms of
pre-orderings on almost prime models and numbers of limit models over almost
prime models. Moreover, Gavryushkin constructed examples of computable
Ehrenfeucht models of arbitrarily high arithmetic and nonarithmetic complexity.

Theorem 47. ([110]) For every n � 3, there exists an Ehrenfeucht theory T of
arbitrary arithmetic complexity such that it has n countable models and has a
computable model among them. There also exists such a theory, which is Turing
equivalent to the true �rst-order arithmetic.

For further examples of Ehrenfeucht theories with various spectra of computable
models see [109].

5 E¤ective categoricity

We are interested in the complexity of isomorphisms between a computable
structure and its computable and noncomputable copies. The main notion in
this area of investigation is that of computable categoricity. A computable struc-
tureM is computably categorical if for every computable structure A isomorphic
toM, there exists a computable isomorphism fromM onto A. This concept has
been part of computable model theory since 1956 when Fröhlich and Shepherd-
son [103] produced examples of computable �elds, extensions of the rationals,
of both �nite and in�nite transcendence degree, which were not computably
categorical. These examples refute the natural conjecture that a computable
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�eld is computably categorical exactly when it has �nite transcendence degree
over its prime sub�eld (which is either Q or the p-element Fp, depending on
characteristic). Later, Ershov [88] showed that an algebraically closed �eld is
computably categorical if and only if it has �nite transcendence degree over its
prime sub�eld. This also follows from work of Nurtazin [267] and can be found
in Metakides and Nerode [229].
In [219], Mal�cev studied the question of uniqueness of a constructive enu-

meration of a structure and introduced the notion of a recursively (computably)
stable structure, that is, a computable structure for which every isomorphism to
another computable structure is computable. Later, in [218], he built isomorphic
computable in�nite-dimensional vector spaces that are not computably isomor-
phic. In the same paper he introduced the notion of an autostable structure,
which is equivalent to that of a computably categorical structure. Since then
the notion of computable categoricity has been studied extensively and has been
extended to arbitrary levels of hyperarithmetic hierarchy, and more precisely to
Turing degrees d. Computable categoricity of a computable structure M has
also been relativized to all (including noncomputable) structures A isomorphic
toM (see [165, 232, 31]).

De�nition 16. A computable structure M is d-computably categorical if for
every computable structure A isomorphic to M, there exists a d-computable
isomorphism fromM onto A.

In the case when d = 0(n�1), n � 1, we also say that M is �0n-categorical.
Thus, computably categorical is the same as 0-computably categorical or �01-
categorical. We can similarly de�ne �0�-categorical structures for any com-
putable ordinal �.
Computably categorical structures tend to be quite rare. For a structure

in a typical algebraic class, being computably categorical usually is equivalent
to having a �nite basis or a �nite generating set (such as for a vector space),
or to being highly homogeneous ( such as for random graph). Goncharov and
Dzgoev [122], and Remmel [277] independently proved that a computable linear
order is computably categorical if and only if it has only �nitely many successor
pairs. They also established that a computable Boolean algebra is computably
categorical if and only if it has �nitely many atoms (see also LaRoche [212]).
As usual, by Z(pn) we denote the cyclic group of order pn, and by Z(p1) the

quasicyclic (Prüfer) abelian p-group. Goncharov [113] and Smith [301] indepen-
dently characterized computably categorical abelian p-groups as those that can
be written in one of the following forms: (Z(p1))l �G for l 2 ! [ f1g and G
�nite, or (Z(p1))n �G� (Z(pk))1, where n; k 2 ! and G is �nite. Goncharov,
Lempp, and Solomon [133] proved that a computable, ordered, abelian group is
computably categorical if and only if it has �nite rank. Similarly, they showed
that a computable, ordered, Archimedean group is computably categorical if
and only if it has �nite rank. Lempp, McCoy, R. Miller, and Solomon [214]
characterized computably categorical trees of �nite height. R. Miller [240] pre-
viously established that no computable tree of in�nite height is computably
categorical.
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An equivalence structure is a structure with a single equivalence relation.
Calvert, Cenzer, Harizanov, and Morozov [31] established that a computable
equivalence structure A is computably categorical if and only if either A has
�nitely many �nite equivalence classes, or A has �nitely many in�nite classes,
upper bound on the size of �nite classes, and exactly one �nite k with in�nitely
many classes of size k. An injection structure A = (A; f) consists of a set A
and an 1� 1 function f : A! A. Given a 2 A, the orbit Of (a) of a under f is
fb 2 A : (9n 2 N)[fn(a) = b _ fn(b) = a]g. An injection structure (A; f) may
have two types of in�nite orbits: Z-orbits, which are isomorphic to (Z; S), and
!-orbits, which are isomorphic to (!; S). Cenzer, Harizanov, and Remmel [44]
characterized computably categorical injection structures as those that have
�nitely many in�nite orbits.
In [243], R. Miller and Schoutens solved a long-standing problem by con-

structing a computable �eld that has in�nite transcendence degree over the
rationals, yet is computably categorical. Their idea uses a computable set of ra-
tional polynomials (more speci�cally, the Fermat polynomials) to �tag�elements
of a transcendence basis, and so their �eld has an intrinsically computable (in-
�nite) transcendence basis, with each single element e¤ectively distinguishable
from the others.
Very little is known about �0n-categoricity of algebraic structures from a

given class for n � 2. Obtaining their classi�cation is usually a di¢ cult task.
The reason is either the absence of invariants (such as for linear orders, abelian
and nilpotent groups), or the lack of a suitable computability theoretic notion
which would capture the property of being �0n-categorical (see discussion of �

0
2-

categoricity for equivalence structures below). There is a complete description
of higher levels categoricity for well-orders due to Ash [10]. Harris [150] has
recently announced a description of �0n-categorical Boolean algebras, for any
n < !. McCoy [223] characterized, under certain restrictions, �02-categorical
linear orders and Boolean algebras. E.J. Barker [22] proved that for every
computable ordinal �, there are �02�+2 categorical but not �

0
2�+1 categorical

abelian p-groups. Lempp, McCoy, R. Miller, and Solomon [214] proved that for
every n � 1, there is a computable tree of �nite height that is �0n+1-categorical
but not �0n-categorical.
The following problems remain open. Describe �02-categorical linear or-

derings. Describe �02-categorical equivalence relations. Describe �
0
2-categorical

abelian p-groups. Resolving these question may require new algebraic invariants
or new computability-theoretic notions.
We give several recent results on upper bounds for categoricity in the theorem

below. Recall that a set X is semi-low if fe :We \X 6= ;g is �02.

Theorem 48. (i) (follows from [42, 225]) Every computable free non-abelian
group is �04-categorical, and the result cannot be improved to �

0
3.

(ii) ([80]) Every coputable free abelian group is �02-categorical, and the result
cannot be improved to computable categoricity.
(iii) ([80]) Every computable abelian group of the form

L
i2!Hi, where Hi �

(Q;+) for i 2 !, is �03-categorical. A computable group of this form is �02-
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categorical if and only if it is isomorphic to a free module over a localization of
Z by a set of primes with a semi-low complement.
(iv) ([31]) Every computable equivalence relation is �03-categorical, and the

result cannot be improved to �02.

We may compare these stated above with Theorem 87 and Theorem 88. More
generally, the study of higher categoricity is often equivalent to the study of
algebraic properties of a family of relations speci�c for a given class (such as
independence relations, back-and-forth relations, etc.). The result in Theo-
rem 48 (iii) has been recently extended to arbitrary direct sums of rational
subgroups [79], for which the sharp upper bound is �05.
We can relativize the notion of �0�-categoricity by studying the complex-

ity of isomorphisms from a computable structure to any countable isomorphic
structure.

De�nition 17. A computable structure M is relatively �0�-categorical if for
every A isomorphic to M, there is an isomorphism from M to A that is �0�
relative to the atomic diagram of A.

Clearly, a relatively �0�-categorical structure is �
0
�-categorical. For linear or-

ders [122, 277], Boolean algebras [122, 277, 212], trees of �nite height [214],
abelian p-groups [113, 301, 30], equivalence structures [31], and injection struc-
tures [44], computable categoricity implies relative computable categoricity.
A remarkable feature of relative �0�-categoricity is that it admits a syntactic

characterization. This characterization involves the existence of certain e¤ective
Scott families. Scott families come from Scott Isomorphism Theorem, which says
that for a countable structure A, there is an L!1!-sentence the countable models
of which are exactly the isomorphic copies of A. For proof of Scott Isomorphism
Theorem, see [13]. A Scott family for a structure A is a countable family � of
L!1!-formulas with �nitely many �xed parameters from A such that:
(i) Each �nite tuple in A satis�es some  2 �;
(ii) If a, b are tuples in A, of the same length, satisfying the same formula

in �, then there is an automorphism of A that maps a to b.
If we strengthen condition (ii) to require that the formulas in � de�ne each

tuple in A, then � is called a de�ning family for A. A formally �0� Scott fam-
ily is a �0� Scott family consisting of computable �� formulas. In particular,
it follows that a formally c.e. Scott family is a c.e. Scott family consisting of
�nitary existential formulas. The following equivalence was established by Gon-
charov [121] for � = 1, and by Ash, Knight, Manasse, and Slaman [18] and
independently by Chisholm [48] for any computable ordinal �.

Theorem 49. ([18, 48]) The following are equivalent for a computable structure
A.

1. The structure A is relatively �0�-categorical.

2. The structure A has a formally �0� Scott family �.

3. The structure A has a formally c.e. Scott family �.
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In�nitary language is essential for Scott families. Cholak, Shore, and Solomon [53]
proved the existence of a computably stable rigid graph that does not have a
Scott family of �nitary formulas.
R. Miler and Shlapentokh [242] proved that a computable algebraic �eld

F with a splitting algorithm is computably categorical i¤ it is decidable which
pairs of elements of F belong to the same orbit under automorphisms. They also
showed that this criterion is equivalent to the relative computable categoricity
of F .
In [223], McCoy characterized, relatively �02-categorical linear orders and

Boolean algebras. In [224], McCoy gave a complete description of relatively
�03-categorical Boolean algebras, and proved that there are 2

@0 relatively �03-
categorical linear orders. More recently, Calvert, Cenzer, Harizanov, and Mo-
rozov investigated relative �02-categoricity for equivalence structures [31] and
abelian p-groups [30], and Cenzer, Harizanov, and Remmel [44] investigated
relative �02-categoricity for injection structures.
The length of an abelian p-group G, lh(G), is the least ordinal � such that

p�+1G = p�G. The divisible part of G is Div(G) = plh(G)G and is a direct
summand of G. The group G is said to be reduced if Div(G) = f0g. For an
element g 2 G, the height ht(g) is 1 if g 2 Div(G) and is otherwise the least
� such that g =2 p�+1G. For a computable group G, ht(g) can be an arbitrary
computable ordinal. The period of G is maxforder(g) : g 2 Gg if this quantity
is �nite, and 1 otherwise. For example, it follows from the index set results
in [34] that for abelian p-group G, if �(G) = ! � n and m � 2n � 1, or if
�(G) > ! � n and m � 2n� 2, then G is not �0m categorical.
The following result describes a characterization of relative �02-categoricity

for Boolean algebras, equivalence structures, abelian p-groups, and injection
structures.

Theorem 50. (i) ([223]) A computable Boolean algebra is relatively �02-categorical
if and only if it can be expressed as a �nite direct sum c1 _ � � � _ cn, where each
ci is either atomless, an atom, or a 1-atom.
(ii) ([31]) A computable equivalence structure is relatively �02-categorical if

and only if it either has �nitely many in�nite equivalence classes, or there is an
upper bound on the size its �nite equivalence classes.
(iii) ([30]) A computable abelian p-group G is relatively �02-categorical i¤ all

elements in G are of �nite height or G is isomorphic to
L
�
Z(p1) �H, where

� � ! and H has �nite period.
(iv) ([44]) A computable injection structure is relatively �02-categorical if and

only if it has �nitely many orbits of type ! or �nitely many orbits of type Z.

Every �02-categorical injection structure is relatively �
0
2-categorical [44].

Every computable injection structure is relatively �03-categorical. Every com-
putable equivalence structure is relatively �03-categorical.
Goncharov [119] was the �rst to show that computable categoricity of a com-

putable structure does not imply its relative computable categoricity. The main
idea of his proof was to code a special kind of family of sets into a computable
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structure. Such families were constructed independently by Badaev [19] and
Selivanov [297]. The result of Goncharov was lifted to higher levels in the hy-
perarithmetic hierarchy by Goncharov, Harizanov, Knight, McCoy, R. Miller,
and Solomon for successor ordinals [126], and by Chisholm, Fokina, Goncharov,
Harizanov, Knight, and Quinn for limit ordinals [49].

Theorem 51. ([126, 49]) For every computable ordinal �, there is a �0�-
categorical, but not relatively �0�-categorical structure.

It is not known whether every �11-categorical computable structure must be
relatively �11-categorical (see [127]).
Kach and Turetsky [174] showed that there exists a computable�02-categorical

equivalence structure, which is not relatively�02-categorical. Hirschfeldt, Kramer,
R. Miller, and Shlapentokh [163] characterized relative computable categoricity
for computable algebraic �elds and used their characterization to construct a
�eld with the following property.

Theorem 52. ([163]) There is a computably categorical algebraic �eld, which
is not relatively computably categorical.

The notions of computable categoricity and relative computable categoricity
coincide if we add more e¤ectiveness requirements on the structure. Goncharov
showed in [121] that in the case of 2-decidable structures, computable cate-
goricity and relative computable categoricity coincide. Kudinov showed that
the assumption of 2-decidability cannot be weakened, by giving in [207] an ex-
ample of 1-decidable structure that is not relatively computably categorical.
Ash [9] established that for every computable ordinal �, under certain decid-
ability conditions on A, if A is �0�-categorical, then it has a formally �

0
� Scott

family.
T. Millar [232] proved that if a structureA is 1-decidable, then any expansion

of A by �nitely many constants remains computably categorical. Cholak, Gon-
charov, Khoussainov, and Shore showed that the assumption of 1-decidability
is important.

Theorem 53. ([50]) There is a computable structure, which is computably cat-
egorical, but ceases to be after naming any element of the structure.

Clearly, the structure in this theorem is not relatively computably categorical.
Khoussainov and Shore [196] proved that there is a computably categorical
structure A without a formally c.e. Scott family such that the expansion of A
by any �nite number of constants is computably categorical. Downey, Kach,
Lempp, and Turetsky have recently shown the following.

Theorem 54. ([75]) Any 1-decidable computably categorical structure is rela-
tively �02-categorical.

Based on this result, we could conjecture that every computable structure that is
computably categorical should be relatively �03-categorical. However, this is not
the case, as recently announced by Downey, Kach, Lempp, Lewis, Montalbán,
and Turetsky.
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Theorem 55. ([74]) For every computable ordinal �, there is a computably
categorical structure that is not relatively �0�-categorical.

Thus, a natural question arises whether there is a computably categorical struc-
ture that is not relatively hyperarithmetically categorical. The uniformity of
the constructed structures in [74] together with an overspill argument allowed
the authors to solve a long-standing problem about the complexity of the index
set of computably categorical structures (see Theorem 94).

De�nition 18. The d-computable dimension of a structure M with a com-
putable copy is the number of computable isomorphic copies of M, up to d-
computable isomorphism.

Hence, a computably categorical structure has computable dimension 1. Many
natural structures have computable dimension 1 or !. For example, it was
shown in [229] that it is impossible for a computable algebraic �eld to have
�nite computable dimension greater than 1. Goncharov was �rst to produce
examples of computable structures of �nite computable dimension greater than
1.

Theorem 56. ([116, 112]) For every �nite n � 2, there is a computable struc-
ture of computable dimension n.

After Goncharov�s examples, structures of �nite computable dimension n � 2
were found in several familiar classes, such as 2-step nilpotent groups [134] and
others [166].
For a computable structure A, some Turing degree, which is not necessarily

0(n), may compute an isomorphism between any two computable copies of the
structure. The following notion of the categoricity spectrum, introduced by
Fokina, Kalimullin, and R. Miller [99], aims to capture the set of all Turing
degrees capable of computing isomorphisms among arbitrary computable copies
of A.

De�nition 19. ([99]) Let A be a computable structure.
(i) The categoricity spectrum of A is

CatSpec(A) = fa : A is a-computably categoricalg.

(ii) A Turing degree d is the degree of categoricity of A, if it exists, if d is
the least degree in CatSpec(A).
(iii) A Turing degree d is categorically de�nable if it is the degree of cate-

goricity of some computable structure.

This terminology intends to parallel the notions of the degree spectrum of a
structure A, and the degree of the isomorphism class of A. Since there are only
countably many computable structures, most Turing degrees are not categor-
ically de�nable. Fokina, Kalimullin, and R. Miller investigated which Turing
degrees are categorically de�nable. Their main result in [99] gives a partial
answer for the case of arithmetic degrees. It was later extended by Csima,
Franklin, and Shore to hyperarithmetic degrees.

28



Theorem 57. ([59]) (i) For every computable ordinal �, 0(�) is the degree of
categoricity of a computable structure.
(ii) For a computable successor ordinal �, every degree d that is c.e. in and

above 0(�) is a degree of categoricity.

Negative results were also provided in the same papers [99, 59]. Namely, if d
is a non-hyperarithmetic degree, then d cannot be a degree of categoricity of a
computable structure. Furthermore, Anderson and Csima showed that not all
hyperarithmetic degrees are degrees of categoricity.

Theorem 58. ([1]) (i) There exists a �02 degree that is not categorically de�n-
able.
(ii) Every degree of a set that is 2-generic relative to some perfect tree is not

a degree of categoricity.
(iii) Every noncomputable hyperimmune-free degree is not a degree of cate-

goricity.

Thus, it is natural to ask whether all �02 degrees are categorically de�nable.
Not every computable structure has a degree of categoricity. The �rst neg-

ative example was built by R. Miller.

Theorem 59. ([239]) There exists a computable �eld with a splitting algorithm,
which is not computably categorical, and such that its categoricity spectrum must
contain degrees d0 and d1 with d0 ^ d1 = 0.

Subsequently, R. Miller built another computable �eld the categoricity spectrum
of which has no least degree and does not contain 00. R. Miller used the alge-
braicity of the �eld to present the isomorphisms between it and a computable
isomorphic copy as in�nite paths through a �nite-branching computable tree. If
the �eld has a splitting algorithm, then the branching of this tree is computable,
and we can apply the low basis theorem of Jockusch and Soare. If the �eld does
not have a splitting algorithm, then we relativize to the degree of the branching
and apply the relativized low basis theorem.
Further interesting examples of structures without a degree of categoricity

were built by Fokina, Frolov, and Kalimullin in [98]. The main property of these
structures is that they are rigid, that is, have no nontrivial automorphisms,
which was not the case for the examples from [239]. If a rigid structure M is
d-categorical, then it is also d-stable, i.e., every isomorphism from M onto a
computable copy is d-computable. (The converse is not true, for example, a
computable copy of a two-dimensional vector space over Q is computably stable
but not rigid.) Constructions from [98] give for every nonzero c.e. degree d,
a rigid d-computably categorical structure with no degree of categoricity. For
all � < !CK1 , and for all degrees d that are c.e. in 0(�) and with d < 0(�),
the structures from [59, 99] are rigid. When we pass to d.c.e. structures, we
lose the property of rigidity. It is natural to ask whether there is a computable
structure the categoricity spectrum of which is the set of all noncomputable
Turing degrees. It is also interesting to �nd out whether a union of two cones
of Turing degrees can be a categoricity spectrum.
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E¤ective categoricity of computable structures has been recently investigated
within Ershov�s di¤erence hierarchy: for graphs by Khoussainov, Stephan, and
Yang [198], and for the equivalence structures by Cenzer, LaForte, and Rem-
mel [45].

6 Automorphisms of e¤ective structures

In algebra, automorphism groups of structures often re�ect the algebraic prop-
erties of structures (for example, as in Galois theory). In computable model
theory, the study of e¤ective automorphisms help us better understand com-
putability theoretic properties of countable structures. The set of all automor-
phisms of a computable structure forms a group under composition, and we may
ask questions about isomorphism types of this group and its natural subgroups.
Thus, the theory automorphisms of e¤ective structures provides another link
between computable algebra and classical group theory. We may also study the
Turing degrees of members of the automorphism group. This line of investiga-
tion is related to the study of e¤ective categoricity of structures. Finally, we may
restrict ourselves to computable models from familiar classes (such as Boolean
algebras, linear orders, etc.) and study groups of e¤ective automorphisms for
these models. As usual, we assume that all in�nite computable structures have
! as their domains. The next de�nition captures one of the main notions of this
investigation.

De�nition 20. For an in�nite computable structureM and a Turing degree d,
we de�ne Autd(M) to be the set of all permutations of !, which are computable
in d and induce automorphisms ofM.

We write Autc(M) for Aut0(M) (the subscript c stands for computable). For
every Turing degree d, the set Autd(M) forms a group under composition. In
contrast, the set Autp(!) of all primitive recursive permutations of ! is not
a group under composition, as shown by Kuznetsov [209]. One of the central
problems here is to study classical and e¤ective properties of the group Autd(M)
for various M and d. We can start with a structure in the empty language,
that is, ! with equality and consider its automorphism group Autd(M) as a
structure. Recall that the degree of the isomorphism type of a structure, if
it exists, is the least Turing degree in its Turing degree spectrum. Morozov
established the following result.

Theorem 60. ([256]) For every Turing degree d, the degree of the isomorphism
type of the group Autd(!) is d00.

Morozov [250] showed that the embedding d! Autd(!) can be used to substi-
tute Turing reducibility by the group theoretic embedding.

Theorem 61. [250] For every pair of Turing degrees, c and d,

Autd(!) 5 Autc(!), d � c;

where 5 stands for the usual group theoretic embedding.
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It follows from this theorem that c = d if and only if Autd(!) �= Autc(!). In
contrast, there exists a Turing degree a such that Auta(!) and Autb(!) are
elementary equivalent for all b � a (see [253]). Intuitively, the last statement
says that this �rst-order theory cannot recognize the di¤erence between very
�large�Turing degrees.
Kent [183] investigated group theoretic properties of Autd(!).

Theorem 62. ([183]) For every Turing degree d, the unique normal series for
Auta(!) has the form

1C E C F CAutd(!),
where F is group of �nite permutations, and E is the group of all even �nite
permutations.

Notice that a �nitely generated subgroup of Autc(!) has to be a �01 group.
Higman asked if every �01 �nitely generated group can be isomorphically embed-
ded into Autc(!). The following result of Morozov answers Higman�s question
negatively.

Theorem 63. ([249]) There exists a 2-generated �01 group G such that G �
Autc(!).

Morozov [254] characterized subgroups of Autc(!) that are isomorphic to
the whole Autc(!).

Theorem 64. ([254]) There exists a �rst-order sentence in the language of
groups such that for every G 5 Autc(!),

(G j= �), (G �= Autc(!)).

More speci�cally, Morozov [254] proved that the class of all groups of the form
Autc(M), where M is a computable structure, is de�nable in the monadic
second-order language within Autc(!). Morozov also showed that the theories
of the following three classes of groups are all distinct and di¤er from the theory
of all groups: (i) groups that can be embedded into Autc(!), (ii) groups that
are Autc(M) for computable M, and (iii) computable groups. The �rst class
cannot be axiomatized by a hyperarithmetic set of axioms, the other two cannot
be axiomatized by any arithmetic set of axioms. Furthermore, Morozov [254]
proved that there exists a single sentence, consistent with the theory of groups,
which is not true in any group Autc(M) whereM is a computable structure.
Now, for various computable structures M, we compare Autd(M) and

Aut(M). For d = 0, Dzgoev [84], and independently Manaster and Rem-
mel [222] established the following result.

Theorem 65. ([84, 222]) There exists a computable structure M such that
Aut(M) has 2! elements, whileAutc(M) has only one element.

The previous theorem can be strengthened in several ways. Kudaibergenov [205]
showed that we can make suchM decidable and homogeneous. Morozov [252]
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proved that there exists a computable structure M with card(Aut(M)) = 2!

such that every hyperarithmetic model isomorphic toM has no nontrivial hy-
perarithmetic automorphisms.
For a computable structureM, the group Autc(M) does not have to be iso-

morphic to a computable one. Morozov [257] gave the following characterization
for Autc(M) to have a computable copy.

Theorem 66. [257] For a computable structure M, the group Autc(M) is
isomorphic to a computable one if and only if there exists a �nite tuple p such
that Aut(M; d) = f1g, and the set f(m;n) : m �=r ng is c.e., where

m �=r n, (9f 2 Autc(M))[f : m! n]:

Theorem 66 has several interesting corollaries, one of which is the following.

Corollary 2. ([257]) A �nitely generated group G is isomorphic to Autc(M)
for some computable structureM if and only if G has a decidable word problem.

For groups that are not �nitely generated the situation is rather complex. Even
if the group is abelian, not much can be said. It is not very di¢ cult to show thatL

p2S Zp, where S is a set of primes, is isomorphic to Autc(M) for some com-
putable structure M if and only if S is �03 (see Morozov and Buzykaeva [260]
for a proof). The general case of arbitrary abelian groups is unresolved. The-
orem 66 also implies that for every in�nite computable Boolean algebra B, the
group Autc(B) is not computable, and the same is true for every decidable in�-
nite model of an @0-categorical theory with a computable set of atomic formulas.
We can show that the group Autc(M) of a computable structureM is 000-

computable (folklore). This upper bound is sharp, as shown in the following
theorem due to Morozov.

Theorem 67. ([251]) For every Turing degree d � 000, there exists a computable
structureM such that deg (Autc(M)) = d.

We may ask whether for various computable M, the group Autc(M) has
a degree of its isomorphism type. As we have seen earlier, this was the case
when M is ! with equality (i.e., the language of M is empty). Nonetheless,
Morozov [251] constructed a computable structureM such that Autc(M) has no
degree of its isomorphism type. Also, we may ask which Turing degrees contain
only groups isomorphic to Autc(M) for some computable M. Morozov [257,
251] proved that this collection of degrees is the singleton f0g.
Recently Harizanov, Morozov, and R. Miller [148] introduced another ap-

proach to the study of Aut(M).

De�nition 21. ([148]) The automorphism (Turing) degree spectrum of a com-
putable structureM, in symbols AutSp(M), is the set fdeg(f) : f 2 Aut(M)�
fidgg, where id is the identity automorphism of M .

Harizanov, Morozov, and R. Miller [148] showed that various collections of
Turing degrees, including many upper cones, can be realized as automorphism
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degree spectra. Let M be a computable structure. If AutSp(M) is the upper
cone of degrees � d, then d is hyperarithmetic. Harizanov, Morozov, and
R. Miller [148] showed that any computable ordinal �, and any Turing degree d
with 0(�) � d � 0(�+1), the upper cone of degrees � d forms an automorphism
spectrum. They also showed that there exists a computable structure A the
spectrum of which is the union of the upper cones above each degree of an
in�nite antichain of �0n degrees for n � 1.
The spectrum AutSp(M) is at most countable if and only if it contains only

hyperarithmetic degrees. Since for every f; g 2 Aut(M) the composition fg
is also an automorphism, the automorphism degree spectrum cannot contain
exactly two incomparable degrees, as Harizanov, Morozov, and R. Miller [148]
showed.

Theorem 68. ([148])

1. Let d0 and d1 be incomparable Turing degrees. Then no computable struc-
tureM has AutSp(M) = fd0;d1g or AutSp(M) = f0;d0;d1g.

2. There exist pairwise incomparable �02 Turing degrees d0, d1, d2, and
computable structures A and B such that AutSp(A) = fd0;d1;d2g and
AutSp(B) = f0;d0;d1;d2g.

It was shown in [148] that there exists a computable structure A such that
for every c.e. degree d, some computable copy of A has automorphism degree
spectrum fdg. If 0(�) � d � 0(�+1) for some computable ordinal �, then
there exists a computable structure with automorphism degree spectrum fdg.
A total function f : ! ! ! is said to be a �01-function singleton if there exists a
computable tree T � !<! through which f is the unique in�nite path. A Turing
degree d contains a �01-function singleton if and only if fdg is the automorphism
spectrum of some computable structure [148].
Given Autc(M) whereM is a computable structure from some well-known

algebraic class of structures, the typical question we might ask is: Given Aut(M),
what can we say about the isomorphism type of M? Usually, obtaining a sat-
isfactory answer to this question is a di¢ cult task. The e¤ective analogue of
this question, whenM is computable and Aut(M) is replaced by Autc(M), is
not any easier. In the case of computable Boolean algebras, Morozov obtained
a positive partial result. By B �=c A we denote that B and A are computably
isomorphic.

Theorem 69. ([258]) Let A be an atomic decidable Boolean algebra. For any
computable Boolean algebra B, Autc(B) �= Autc(A) implies B �=c A.

In contrast, Remmel [276] showed that for every computable Boolean algebra B,
there exists C �= B such that every f 2 Autc(C) moves only �nitely many atoms
of C. It is also known [258] that there exist two decidable Boolean algebras,
B0 and B1, such that B0 � B1 and Autc(B0) �= Autc(B1). Morozov [258] also
showed that there exists a computable Boolean algebra B and a Boolean algebra
C, having no computable copy, such that Aut(B) �= Aut(C).
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In [54], Chubb, Harizanov, Morozov, Pingrey, and U¤erman investigated the
relationship between algebraic structures and their inverse semigroups of partial
automorphisms. An inverse semigroup is a semigroup where for each element
f there is a unique g so that gfg = g and fgf = f . For a structure A, the au-
thors considered the semigroup Ifin(A) of all �nite automorphisms, and, in the
case of a computable structure A, the semigroup of all partial computable auto-
morphisms, Ic(A). As usual, � stands for elementary equivalence of structures.
In [54], it was shown that structures from certain classes can be recovered, up to
isomorphism or elementary equivalence, from these semigroups. For example,
the authors showed that for all nontrivial countable equivalence structures A0
and A1, we have:

(i) (Ifin(A0) �= Ifin(A1)), (A0 �= A1);
(ii) (Ifin(A0) � Ifin(A1)), (A0 � A1).

We call an equivalence relation E on a set A (and the corresponding equivalence
structure) nontrivial if E di¤ers from the diagonal relation f(a; a) : a 2 Ag and
from the set A�A. It was shown in [54] that for a nontrivial computable equiv-
alence structure E0, there is a �rst-order sentence � in the language of inverse
semigroups such that for any nontrivial computable equivalence structure E1,
Ipc(E1) j= � implies E1 �=c E0. The authors of [54] also considered partial orders,
relatively complemented distributive lattices, and Boolean algebras. It would be
interesting to investigate for other natural algebraic structures how structures
themselves can be recovered, up to isomorphism or elementary equivalence, from
various inverse semigroups of their partial automorphisms.
There are some interesting results about computable automorphisms of com-

putable linear orders. Schwartz obtained the following characterization of com-
putable linear orders containing dense intervals.

Theorem 70. ([288]) A computable linear order A contains a dense interval if
and only if card(Autc(L)) > 1 for every computable L such that L �= A.

In order to state the next result by Morozov and Truss [261], we will �rst
introduce some notation. For a computable structure M and a Turing ideal
I, let AutI(M) be the collection of all automorphisms ofM computable from
members of I. Let Q = (Q;�).

Theorem 71. ([261]) For Turing ideals I and J and order �, we have:

AutI(Q) 5 AutJ(Q), I � J , and

AutI(Q) �= AutJ(Q), I = J:

The proof uses techniques from the theory of ordered abelian groups [111]. It
is interesting to compare Theorem 71 with Theorem 61. The next result of
Morozov and Truss can be compared with Theorem 64.

Theorem 72. ([262]) There is a �rst-order sentence  such that, up to iso-
morphism, the group Autc(�) is the only model of  among all subgroups of
Autc(!).
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Lempp, McCoy, Morozov, and Solomon [215] studied the algebraic properties of
Autc(Q) and compared them with those of Aut(Q). They obtained the following
result distinguishing Autc(Q) from Aut(Q).

Theorem 73. ([215]) The following three properties, known to be true for
Aut(Q), fail for Autc(Q):

(a) the group is divisible;

(b) every element is a commutator of itself with some other element;

(c) two elements are conjugate if and only if they have isomorphic orbital
structures.

Much less is known about e¤ective automorphisms of computable modules,
including vector spaces and abelian groups. Many algebraic di¢ culties arise in
the study of their automorphism groups. The following result about modules
due to Morozov is similar to Theorem 70.

Theorem 74. ([255]) For every computable division ring R, there exists a
computable copy of the moduleM =

L
i2!R such that Autc(M) contains only

multiplications by scalars from R.

Further partial results can be found in [208].

7 Degree spectra of relations

One of the important questions in computable model theory is how a speci�c
aspect of a computable structure may change if the structure is isomorphically
transformed so that it remains computable. A computable property of a com-
putable structure A, which Ash and Nerode [17] considered, is given by an
additional computable relation R on the domain of A. That is, R is not named
in the language of A. Ash and Nerode investigated syntactic conditions on A
and R under which for every isomorphism f from A onto a computable struc-
ture B, f(R) is c.e. Such relations are called intrinsically c.e. on A. In general,
we have the following de�nition.

De�nition 22. Let P be a certain class of relations. An additional relation R
on the domain of a computable structure A is called intrinsically P on A if the
image of R under every isomorphism from A to a computable structure belongs
to P.

For example, the successor relation, and being an even number are not intrinsi-
cally computable on (!;<).
Clearly, if A is a computably stable structure, then every computable re-

lation on its domain is intrinsically computable. If R is de�nable in A by a
computable �1 formula with �nitely many parameters, then R is intrinsically
c.e. Ash and Nerode [17] proved that, under a certain extra decidability condi-
tion on A and R, the relation R is intrinsically c.e. on A i¤ R is de�nable by a

35



computable �1 formula with �nitely many parameters. The Ash-Nerode condi-
tion for an m-ary relation R says that there is an algorithm, which determines
for every existential formula  (x0; : : : ; xm�1; y) and every c 2 Alh(y), whether
the following implication holds for every a 2 Am:

(A �  (a; c))) R(a):

E.M. Barker [23] extended this result by showing that for every computable
ordinal �, under certain additional decidability conditions on A, the relation
R is intrinsically �0� on A i¤ R is de�nable by a computable �� formula with
�nitely many parameters. For the relative notions, the e¤ectiveness conditions
are not needed. We say R is relatively intrinsically �0� if in all B �= A, the image
of R is �0� relative to the atomic diagram of B. The following equivalence is due
to Ash, Knight, Manasse, and Slaman [18], and independently Chisholm [48].

Theorem 75. ([18, 48]) Let A be a computable structure. Then a relation R
on A is relatively intrinsically �0� i¤ R is de�nable by a computable �� formula
with �nitely many parameters.

Goncharov [119] and Manasse [221] gave examples of intrinsically c.e. rela-
tions on computable structures, which are not relatively intrinsically c.e. This
result was lifted to higher levels in the hyperarithmetic hierarchy by Chisholm,
Fokina, Goncharov, Harizanov, Knight, McCoy, R. Miller, Solomon, and Quinn,
�rst for the successor ordinals in [126] and then for the limit ones in [49].

Theorem 76. ([126, 49]) For every computable ordinal �, there a computable
structure A with an intrinsically �0� relation R such that R is not de�nable by
a computable �� formula with �nitely many parameters.

For syntactic characterizations of relations on structures having Post-type
properties, or their degree theoretic complexity see [159, 158, 16, 139, 125, 138,
124].
In addition to considering the complexity of relations on computable struc-

tures within hyperarithmetic hierarchy, we also consider their degrees such as
Turing degrees or strong degrees. Harizanov introduced the following de�nition.

De�nition 23. ([144]) The Turing degree spectrum of R on A, in symbols
DgSpA(R), is the set of all Turing degrees of the images of R under all isomor-
phisms from A onto computable structures.

In the previous de�nition, if for some isomorphism f from A to a computable
structure, X = f(R) and x = deg(X), then we say that x is realized in
DgSpA(R) via X, or via f . Uncountable degree spectra of relations were stud-
ied by Harizanov [143, 140], and Ash, Cholak, and Knight [11]. In particular,
they showed independently that if every Turing degree � 000 can be realized in
DgSpA(R) via an isomorphism of the same Turing degree as its image of R,
then DgSpA(R) contains every Turing degree.
In [142], Harizanov studied when every c.e. degree can be obtained inDgSpA(R)

via an isomorphism of the same degree as its image of R, and Ash, Cholak, and

36



Knight [11] lifted her result to arbitrary �-c.e. degrees in Ershov�s di¤erence
hierarchy. For example, the degree spectrum of the successor relation on a com-
putable linear order contains all c.e. degrees, and the same holds for the set of
all even numbers. The degree spectrum of the set of algebraic elements in an
algebraically closed �eld of in�nite transcendence degree contains all c.e. Turing
degrees.
One of the general results by Harizanov about DgSpA(R) containing all c.e.

degrees is the following theorem, which requires extra e¤ectiveness condition �
it is enough that the existential diagram of (A; R) is computable.

Theorem 77. ([142]) Let A be a computable structure, and let R be a relation
that is intrinsically c.e. on A, while :R is not. Then, under a certain extra
decidability condition, for any c.e. degree d, we have d 2DgSpA(R).

Ash and Knight [14] generalized the previous theorem. Their generalization
involves degrees that are coarser than Turing degrees. In the following de�nition
we will use the symbol �0� to denote a complete �

0
� set.

De�nition 24. ([14]) (i) A ��0
�
B i¤ A �T B ��0�

(ii) A ��0
�
B i¤ (A ��0

�
B and B ��0

�
A)

(iii) The equivalence classes under ��0
�
are called �-degrees.

Note that ��0
1
is the same as �T .

Theorem 78. ([14]) Let A be a computable structure, and let R be a relation
that is not intrinsically �0� on A. Then, under certain extra e¤ectiveness con-
ditions, for any �0� set C, there is an isomorphism f from A onto a computable
copy with f(R) ��0

�
C.

Ash and Knight also showed that it is not possible to substitute Turing degrees
for �-degrees. In [15], there produced examples of structures A and relations
R, satisfying a great deal of e¤ectiveness, in which certain �0� Turing degrees,
in particular, minimal degrees, are impossible for the image of R. Hirschfeldt
and Walker [167] constructed a family of relations on computable structures,
the degrees of which coincide with the levels of the hyperarithmetic hierarchy.
Their examples are built up from back-and-forth trees, which explicitly code
the alternations of quanti�ers. In [51], the authors investigated the spectra
of relations on computable structures under strong reducibilities such as weak
truth-table (wtt) reducibility and truth-table (tt) reducibility.
Using Goncharov�s result from the theory of numberings [115], we can show

that there is a computable non-intrinsically c.e. relation R on a computable
structure A such that DgSpA(R) = f0;dg, where d � 000 but d � 00 (see [142]).
Harizanov [141] showed that there is a two-element degree spectrumDgSpA(R) =
f0;dg, such that 0 < d � 00 where d cannot be realized via a c.e. set. Gon-
charov, Khoussainov, and Shore [196, 131] proved that there is a two-element
degree spectrum DgSpA(R) = f0; cg such that c is a nonzero degree realized
via a c.e. set. Khoussainov and Shore broadly generalized this result.
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Theorem 79. ([196]) Let (P;�) be a computable partially ordered set. Then
there are a computable structure A and a computable unary relation R on its
domain such that (DgSpA(R);�) �= (P;�) and every degree in DgSpA(R) is
realized via a c.e. set.

For some familiar relations on computable structures, their Turing degree
spectra exhibit the dichotomy: either singletons or in�nite. Harizanov [142]
established that if for a non-intrinsically c.e. relation R on A, the Ash-Nerode
decidability condition holds, then DgSpA(R) must be in�nite. Hirschfeldt [160]
proved that a computable relation on a computable linear order is either in-
trinsically computable or has an in�nite Turing degree spectrum. Downey,
Goncharov, and Hirschfeldt [71] established the same dichotomy for Boolean
algebras.

Theorem 80. ([71]) A computable relation on a computable Boolean algebra is
either intrinsically computable or has in�nite Turing degree spectrum.

A similar question can be asked for computable relations on other classes of
structures such as computable abelian groups. Another interesting question
from [71] is whether the degree spectrum of an intrinsically �02 relation on a
computable linear order is always a singleton or in�nite.
It is also interesting to study degrees spectra of speci�c important relations

on natural classes of structures. One such relation is the successor relation
(also called adjacency relation) on a computable linear order. There are two
known examples of singleton degree spectra of the successor relation. If L has
only �nitely many successor pairs, then the order is computably categorical,
hence the successor relation is intrinsically computable. Downey and Moses [81]
constructed a linear order L having an intrinsically complete successor relation
S, that is, DgSpL(S) = f00g. It was a long standing open question to investigate
upward closure in c.e. degrees of the degree spectrum of the successor relation
in computable linear orders. Harizanov, Chubb, and Frolov [55] showed that
if A is a computable linear order with domain A where for all x 2 A there
is a successor pair (a; b) in A with x < a, then the spectrum of the successor
relation of A is closed upward in the c.e. Turing degrees. As a consequence, they
established that for every c.e. Turing degree b, the upper cone of c.e. Turing
degrees determined by b is the degree spectrum of the successor relation of some
computable linear order. Downey, Lempp, and Wu [78] established the positive
result in full generality by using a new method of constructing�03 isomorphisms.
Their proof uses a result from [55].

Theorem 81. ([78]) If a computable linear order has in�nitely many successor
pairs, then the degree spectrum of the successor relation is closed upward in the
computably enumerable Turing degrees.

In [308], Soskov established that a �11 relation on computable A, which is
invariant under automorphisms of A, is de�nable in A by a computable in�ni-
tary formula with no parameters. This led to the following characterization of
intrinsically �11 relations.
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Theorem 82. ([308]) For a computable structure A, and a relation R on A,
the following are equivalent:
(i) R is intrinsically �11 on A;
(ii) R is relatively intrinsically �11 on A;
(iii) R is de�nable in A by a computable in�nitary formula, with �nitely

many parameters.

In the following theorem characterizing intrinsically�11 relations, Soskov [307]
established the equivalence (ii), (iii), while (i), (ii) was established in [127].

Theorem 83. ([307, 127]) For a computable structure A and relation R on A,
the following are equivalent:
(i) R is intrinsically �11 on A;
(ii) R is relatively intrinsically �11 on A;
(iii) R is de�nable in A by a �11 disjunction of computable in�nitary formulas

with �nitely many parameters.

Goncharov, Harizanov, Knight, and Shore [127] considered a general family
of examples of intrinsically �11 relations arising in computable structures of
Scott rank !CK1 + 1. A Harrison order is a computable linear order of type
!CK1 (1 + �), where � is the order type of the rationals. Harrison [154] showed
that such an order exists. The initial segment of this order of type !CK1 is
intrinsically �11 since it is de�ned by the disjunction of computable in�nitary
formulas saying that the interval to the left of x has order type �, for computable
ordinals �. A Harrison Boolean algebra is a computable Boolean algebra of
type I(!CK1 (1 + �)), where for an order L, the interval algebra I(L) is the
algebra generated, under �nite union, by the half-open intervals [a; b), (�1; b),
[a;1), with endpoints in L. The set of superatomic elements of this Boolean
algebra is intrinsically �11. A Harrison group is a countable abelian p-group G
for some prime p such that the length of G is !CK1 , every element in its Ulm
sequence (uG(�))�<!CK1 is 1, and the divisible part has in�nite dimension.
Recall that the Ulm subgroups G� are de�ned by G� = p!�G, and u�(G) =
dimZp P�(G)=P�+1(G), where P�(G) = G� \ fx 2 G : px = 0g. The set
of elements of a Harrison group, which have computable ordinal heights, is
intrinsically �11. It is the complement of the divisible part.
By a path through Kleene�s O we mean a subset of O that is linearly ordered

under <O and includes a notation for every computable ordinal.

Theorem 84. ([127]) The following sets are equal:

1. The set of Turing degrees of �11 paths through O;

2. The set of Turing degrees of left-most paths of computable trees T � !<!

such that T has a path, but no hyperarithmetic path;

3. The set of Turing degrees of maximal well-ordered initial segments of Har-
rison orders;
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4. The set of Turing degrees of superatomic parts of Harrison Boolean alge-
bras;

5. The set of Turing degrees of divisible parts of Harrison groups.

For certain types of structures, there is a close connection between the no-
tions of degree spectra of structures and of relations. Harizanov and R. Miller [147]
de�ned a computable structure U to be spectrally universal for a theory T if for
every automorphically nontrivial countable model A of T , there is an embedding
f : A ! U such that A as a structure, has the same degree spectrum as f(A),
as a relation on the domain of U . Spectrally universal structures investigated
in [147] are countable dense linear orders and the random graph. Both are
Fraïssé limits. This led Csima, Harizanov, R. Miller, and Montalbán to develop
the theory of computable Fraïssé limits in [63]. They gave a su¢ cient condition
for certain Fraïssé limits to be spectrally universal, which they used to show
that the countable atomless Boolean algebra is spectrally universal.

8 Families of relations on a structure

Many important algebraic properties can be investigated by considering natural
families of relations on a structure. For example, for a vector space V we can
consider the family if its bases:

B(V ) = fX � V : X is a base of V g:

For an orderable �eld F we can consider the set of all linear orders on its domain,
which are invariant under the �eld operations:

O(F ) = fR � F � F : R is an order on Fg:

Such a family of relations does not have to have a computable member even when
the structure is computable. Mal�cev showed that there exists a computable
vector space that has no computable basis [219]. Rabin [275] constructed a
computable orderable �eld that cannot be computably ordered. We could ask
for a su¢ cient condition for a family to have a computable member. More
generally, we may ask what the collection of Turing degrees of its members is.

De�nition 25. ([67]) Given a family of relations R on a computable structure
M, de�ne

DegSpM(R) = fdeg(R) : R 2 Rg:

In the next de�nition we are computing all relations simultaneously (uniformly).

De�nition 26. Let A be a computable structure with domain A, and let R =
(Ri)i2I be a family of relations on A, where l(i) is the arity of Ri. De�ne

DegA(R) = degfa � Al(i) : A j= Ri(a); i 2 Ig:
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In many interesting examples, the index set I and the arities of relations are
computable
The previous two de�nitions are dependent on a given presentation of a

structure. We could let the de�nitions range over all computable copies of A.
However, this approach is not common.
Let us consider the problem of computing a generating set (or a basis) of a

given computable structure. The de�nition of a basis depends on the class of
structures. The study of the problem of computing a basis in several classical
algebraic examples provides a natural link between De�nition 26 and De�ni-
tion 25. More speci�cally, to build a basis stage-by-stage (De�nition 25), one
usually needs a corresponding notion of independence (De�nition 26). Consider
the following example.

Example. Let V be a countable vector space of in�nite dimension. De�ne
the following sets of relations on V .

1. For every i 2 !, we set Pi(x0; : : : ; xi) = 1 if and only if x0; : : : ; xi 2 V are
linearly independent.

2. Let B be the collection of maximal linearly independent sets (bases) in V .

If P = (Pi)i2! is uniformly computable, then we say that V has an algorithm
for linear independence.

Theorem 85. (folklore; see [219] and [230]) Every computable vector space
over a computable �eld possesses a 00-basis, and this bound is sharp.

Let us now look at another natural example from algebra.

Example. Let F be a countable algebraically closed �eld of in�nite transcen-
dence degree. De�ne the following sets of relations on F :

1. Ti(a1; : : : ; ai) = 1 if and only if, a1; : : : ; ai 2 F are algebraically indepen-
dent.

2. Let A be the collection of maximal algebraically independent subsets of
F .

If T = (Ti)i2! is uniformly computable in F , then F is said to have an algorithm
for algebraic independence.

Theorem 86. (folklore; see [103, 229, 275]) The algebraic closure of Q(xi : i 2
!) has a 00-maximal algebraically independent set, and this bound is sharp.

It is clear that independence can be formalized using families of relations
as in De�nition 26, and the collection of bases should be studied according to
De�nition 25. It is important to observe that in the context of vector spaces
and algebraically closed �elds, the existence of a generating set is equivalent to
the problem of computable categoricity relative to an oracle. The same can be
said about many other natural examples.
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A number of researchers investigated complexity of bases and structures of
subsets and subspaces of c.e. vector spaces and c.e. algebraically closed �elds
(see, for example, [230, 175, 280, 299, 228, 68]). In many of their results the
operations (vector addition and scalar multiplication or �eld operations, respec-
tively) play no direct role. For instance, in the proofs of Theorems 85 and 86 only
the phenomenon of independence occurs. In fact, Metakides and Nerode [228]
initiated the study of the e¤ective content of abstract independence relations
(Steinitz closure systems). For an extended survey of the results about com-
putable Steinitz closure systems, see [82].
We now turn to the discussion of recent results on bases of various structures.

Recently, Downey, and Melnikov [80] studied free modules over localizations of
integers.

Theorem 87. ([80]) Let S � ! be a c.e. set of primes.
(i) Every computable free module F(S) over the localization of Z by S has

a �03 (actually, �
0
2 in S) set of generators.

(ii) Every computable copy of F(S) has a �02 set of generators if and only if
the complement of S is semi-low.

The theorem can be equivalently re-formulated in terms of computable cate-
goricity relative to an oracle. The corresponding analogue of linear indepen-
dence for free modules of this kind is S-independence, which is a generalization
of the classical notion of p-independence [80].
As a consequence of Theorem 87 with S = ;, every free abelian group has

a �02 (in fact, �
0
1) generating set. Algebraic structure becomes more complex

in the case of free non-abelian groups. Relatively recently, Sela in a series of
papers [295, 294, 292, 293, 291, 290, 289] solved the problem of elementary
equivalence of free groups of di¤erent ranks, posed by Tarski in the 1940�s.
(See also Kharlampovich and Myasnikov [184].) Inspired by this result, Carson,
Harizanov, Knight, Lange, Maher, McCoy, Morozov, Quinn, and Wallbaum [42],
and McCoy and Wallbaum [225] investigated free groups in the context of com-
putable model theory.

Theorem 88. ([42, 225]) Every computable copy of the free non-abelian group
has a �02 base, and the result cannot be improved to �

0
2.

The proof of the theorem uses deep results in algebra. The corresponding no-
tion of independence is what is called primitiveness in every �nitely generated
subgroup (see [42] De�nition 7, Lemma 1.1 and discussion after Lemma 1.1).
In general, not every family of unary relations (De�nition 25) possesses a

hyperarithmetic �notion of independence� (De�nition 26). For example, con-
sider the collection of paths on T � !<!, where T codes a �11-complete set.
In contrast, we have seen that natural structures well-understood in algebra
tend to have arithmetic bases. Thus, we ask whether there is natural struc-
ture (such as a ring, a module, or a group) for which �nding a generating set
is not (hyper)arithmetic. A possible candidate is the pure transcendental ring
over the rationals, Q[xi : i 2 !]. Does every computable copy of Q[xi : i 2 !]
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have a (hyper)arithmetic base? Describing automorphism orbits of generators
in Q[xi : i 2 !] is a long standing open problem in algebra. There has been some
progress in this direction; see the recent paper by Shestakov and Umirbaev [298].
We will now discuss results on the spectra of orders on orderable groups and

�elds. A left-order on a group G = (G; �) is a linear order of its elements, which
is left-invariant under the group operation:

x � y ) z � x � z � y;

for every x; y; z 2 G. Every left order <l on G induces a right order <r on G as
follows:

a <r b, b�1 <l a
�1.

A bi-order (or simply order) is invariant under both left and right multiplication.
The de�nition of an order for a �eld is similar.
Clearly, every left order on an abelian group is a bi-order. It is well-known

that an abelian group is orderable if and only if it is torsion-free. A �eld is
orderable exactly when it is formally real [106]. In the case of orderable com-
putable groups and �elds, the e¤ective analogue of the classical result fails.
Downey and Kurtz [77] showed that there exists a computable group isomor-
phic to Z! =

L
i2! Z, which does not have a computable order.

For a group G, by LO(G) we denote the set of left orders on G, and by BiO(G)
the set of bi-orders on G. There is a natural topology on these sets, making these
topological spaces compact, even when G is a semigroup instead of a group or
just a structure with a single binary operation (see [66]). Solomon [303] obtained
the following results about Turing degrees of orders on abelian groups.

Theorem 89. ([303])

1. A computable, torsion-free, abelian group of �nite rank n > 1 has an order
in every Turing degree.

2. A computable, torsion-free, abelian group of in�nite rank has an order in
every Turing degree d � 00.

The positive cone of an order � on a group G is P = fa 2 G : e � ag, where
e 2 G be the identity element. The negative cone is P�1 = fa 2 G : a � eg.
Clearly, a � b i¤ a�1b 2 P . Hence, we can e¤ectively pass from binary relations
(orders) to unary relations (positive cones) and vice versa. We can easily verify
that if P � G is a subsemigroup of G (i.e., PP � P ), which satis�es P \P�1 =
feg, then P de�nes a left order on G if and only if P is total (i.e., P [P�1 = G).
Moreover, P de�nes a bi-order on G if, in addition, P is a normal subsemigroup
(i.e., g�1Pg � P for every g 2 G). Thus, it is su¢ cient to study the collection
of positive cones.
For a computable torsion-free abelian group (a formally real �eld) A, denote

the collection of positive cones on A by C(A). The elements of fdeg(C) : C 2
C(A)g are exactly degrees of orders on the computable group (�eld) A. Thus,
we will denote this set by DgSp(BiO(A)). The de�nition of a positive cone on
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a computable group (�eld) A is �01, hence C(A) is a �01 class. For example, as a
consequence of the low basis theorem of Jockusch and Soare, every computable,
torsion-free, abelian group has a low order.
Metakides and Nerode [229] showed that for any nonempty �01 class P, there

is a computable formally real �eld A having C(A) homeomorphic to P via a
Turing degree preserving map. Their proof is based on a result by Craven [58]
that for every Boolean topological space T , there is a formally real �eld F
such that C(F) is homeomorphic to T . It is not hard to see that the situation
is di¤erent for torsion-free abelian groups. Solomon [304], using a result by
Jockusch and Soare [172], showed that there is a �01 class P such that for any
computable, torsion free, abelian group G, fdeg(f) : f 2 Pg 6= DgSp(BiO(A)).
More recently Dabkowska, Dabkowski, Harizanov, and Togha [67] studied

topological and computability theoretic properties of left-orders and bi-orders
on (not necessarily abelian) groups. Among other results, they [67] obtained
a general su¢ cient condition for a group to contain the upper cone of Turing
degrees above d. As a consequence of this general condition, they established
the following result.

Theorem 90. ([67]) For any computable free group Fn of �nite rank n > 1,
DgSp(BiO(Fn)) is the collection of all Turing degrees.

Kach, Lange, and Solomon [173] constructed computable, torsion-free, abelian
groups G, such that DgSp(BiO(G)) are not upward closed. Their groups are iso-
morphic to e¤ectively completely decomposable groups. Khisamiev and Kryk-
paeva [189] de�ned a computable, in�nite rank, torsion-free, abelian group H
to be e¤ectively completely decomposable if there is a uniformly computable
sequence of rank one groups Hi, i 2 !, such that H is equal to �i2!Hi.

Theorem 91. ([173]) Let H be an e¤ectively completely decomposable, com-
putable, in�nite rank, torsion-free, abelian group. There is a computable copy G
of H such that DgSp(BiO(G)) contains 0, but is not upward closed.

More precisely, Kach, Lange, and Solomon showed that there is a noncom-
putable, computably enumerable set C such that G has exactly two computable
orders, and every C-computable order on G is computable. Since H is e¤ectively
completely decomposable, DgSp(BiO(H)) contains all Turing degrees. That is
because H has a computable basis formed by choosing a nonzero element hi
from every Hi. Hence the group G is not e¤ectively completely decomposable.
Kach, Lange, and Solomon [173] conjectured that the conclusion of Theorem 91
holds for all computable, in�nite rank, torsion-free, abelian groups H.
Complexity of in�nite chains and antichains in computable partial orders

was studied by Herrmann [155] and Harizanov, Knight and Jockusch.
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9 Algorithmic complexity for classes of struc-
tures and equivalence relations

We want to measure the complexity of classes of computable structures and
equivalence relations on these classes. More precisely, we want to know how
complex are the answers to the following types of questions. Does a computable
structure belong to a particular class of structures with �xed algebraic, model
theoretic, or algorithmic properties (e.g., class of groups, uncountably categori-
cal structures, decidable structures, etc.)? Are two structures from such a class
isomorphic, computably isomorphic, bi-embeddable, etc.? We are looking for a
criterion that will allow us to say whether such questions have �nice�answers.
There are many papers investigating the complexity of classes of countable

structures. There is earlier work [237, 238] in descriptive set theory investigating
subsets of the Polish space of structures with universe ! for a given countable
relational language. Concerning the possible complexity (in the none¤ective
Borel hierarchy) of the set of copies of a given structure, D. Miller [238] showed
that if this set is �0�+1, then it is d-�

0
�. In [237], A. Miller showed that this set

cannot be properly �02. There are also examples illustrating other possibilities.
The main issue is to �nd an optimal de�nition of the class of structures

under investigation. This often requires the use various internal properties of
structures in the class. After a reasonable de�nition is found, it is necessary
to prove its strictness. Usually, this is done by proving completeness in some
complexity class.
For the case of equivalence relations, the study of Borel reducibility has

developed into a rich area inside descriptive set theory. The notion of Borel
reducibility allows us to compare the complexity of equivalence relations on
Polish spaces (see [107, 181]). In particular, natural equivalence relations on
classes of countable structures, such as isomorphism and bi-embeddability, have
been widely studied. For example, see [102, 101, 168]. An e¤ective version of
this study was introduced by Calvert, Cummins, Knight, S. Miller (Quinn) [32],
and Knight, S. Miller (Quinn), and Vanden Boom [202]. The main idea is
that the complexity of the isomorphism relation on various classes of countable
structures can be measured using the e¤ective transformations. The introduced
c-embeddings and tc-embeddings are based on uniform enumeration reducibility
and uniform Turing reducibility, respectively. The main advantage is that this
approach allows distinctions among classes with countably many isomorphism
types.
In computable model theory, we may state our goal as follows. Let K be

a class of structures. We denote by Kc the set of computable structures in
K. A computable characterization of K should separate computable structures
in K from all other structures (those not in K, or noncomputable ones). A
computable classi�cation for K, up to an equivalence relation E (isomorphism,
computable isomorphism, etc.) should determine each computable element,
up to the equivalence E, in terms of relatively simple invariants. In [132], Gon-
charov and Knight present three possible approaches to the study of computable
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characterizations of classes of structures.
Within the framework of the �rst approach, we say that K has a computable

characterization ifKc is the set of computable models of a computable in�nitary
sentence.

Proposition 1. (i) The class of linear orders can be characterized by a single
�rst-order sentence.
(ii) The class of abelian p-groups is characterized by a single computable �2

sentence.
(iii) The class of well orders and the class of reduced abelian p-groups cannot

be characterized by single computable in�nitary sentence.

Furthermore, we say that there is a computable classi�cation for K if there
is a computable bound on the ranks of elements of Kc. By a computable rank
Rc(A) of a structure A we mean the least ordinal � such that for all tuples a
and b of the same length in A, if for all � < �, all computable �� formulas
that true of a are also true of b, then there is an automorphism taking a to b.
For hyperarithmetic structures, the computable rank and Scott rank coincide.
For more on computable ranks see [132]. For example, the computable rank
of vector spaces over Q is 1. There is no computable bound on ranks of linear
orders or abelian p-groups.
The second approach involves the notion of an index set. A computable index

for a structure A is a number e such that D(A) =We, where D(A) is the atomic
diagram of A. We denote the structure with index e by Ae. For a class K of
structures, the index set I(K) is the set of computable indices of members of
Kc:

I(K) = fe :We = D(A) ^ A 2 Kg:

For an equivalence relation E on a class K, we de�ne

I(E;K) = f(m;n) : m;n 2 I(K) ^ AmEAng:

Within this approach, we say that K has a computable characterization if I(K)
is hyperarithmetic. The class K has a computable classi�cation up to E if
I(E;K) is hyperarithmetic.
The �rst and the second approach are known to be equivalent [132]. In fact,

we do not know a better way to estimate the complexity of an index set than
giving a description by a computable in�nitary formula.

Proposition 2. (i) For the following classes K, the index set I(K) is �02:

(a) linear orders,

(b) Boolean algebras,

(c) abelian p-groups,

(d) vector spaces over Q.
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(ii) (Kleene, Spector) For the following classes K, the index set I(K) is not
hyperarithmetic:

(a) well-orders,

(b) superatomic Boolean algebras,

(c) reduced abelian p-groups.

In the following theorem, the calculations of the complexity of index sets
for classes of structures with interesting model theoretic properties are due
to White [317], Calvert, Fokina, Goncharov, Knight, Kudinov, Morozov, and
Puzarenko [33], Fokina [93], and Pavlovskii [269]. In (v), �03 � �03 denotes the
di¤erence of two �03 sets.

Theorem 92. (i) ([269, 317]) The index set of computable prime models is
an m-complete �0!+2 set.

(ii) ([317]) The index set of computable homogeneous models is an m-complete
�0!+2 set.

(iii) ([269]) The index set of structures with uncountably categorical theories is
a �0!-hard �

0
!+1 set.

(iv) ([269]) The index set of structures with countably categorical theories is a
�0!-hard �

0
!+2 set.

(v) ([93]) The index set of structures with decidable countably categorical the-
ories is an m-complete �03 � �03 set.

(vi) ([33]) The index set of computable structures with noncomputable Scott
rank is m-complete �11. The index set of structures with the Scott rank
!CK1 is m-complete �02 relative to Kleene�s O. The index set of structures
with the Scott rank !CK1 + 1 is m-complete �02 relative to Kleene�s O.

Index sets for structures with speci�c algorithmic properties were also stud-
ied by White [317], Fokina [92], and Downey, Kach, Lempp, and Turetsky [75].

Theorem 93. (i) ([92]) The index set of decidable structures is �03-complete.

(ii) ([317]) The index set of hyperarithmetically categorical structures is �11-
complete.

(iii) ([75]) The index set of relatively computably categorical structures is �03-
complete.

The following result of Downey, Kach, Lempp, Lewis, Montalbán, and Turet-
sky resolves an old question.

Theorem 94. ([74]) The index set of computably categorical structures is �11-
complete.
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The structures constructed to establish this result are computable trees of spe-
cial kind. It would be worthwhile to calculate the complexity of the index sets
of other classes of computable structures having interesting algebraic, model
theoretic, or algorithmic properties.
The third approach of Goncharov and Knight [132] to computable charac-

terization of classes of structures involves the notion of enumeration. A class of
structures has a good characterization if all its structures are represented in the
list, up to isomorphism or some other equivalence relation. A good classi�cation
of the class would mean listing each equivalence class only once.

De�nition 27. (i) An enumeration of Kc=E is a sequence (Mn)n2! repre-
senting all E-equivalence classes in Kc.

(ii) A Friedberg enumeration of Kc=E is an enumeration in which every E-
equivalence class is represented only once.

(iii) An enumeration is �0�-computable if there is a �
0
�-computable sequence

of computable indices for the structures.

Then we say that K has a computable characterization if there is a hyper-
arithmetic enumeration of Kc= �=. We say that K has a computable classi�ca-
tion up to E if there is a hyperarithmetic Friedberg enumeration of Kc=E. It
is known that this approach is not equivalent to the previous two approaches
from [132]. Recall that a Harrison order is a computable order of type !CK1 (1+
�).

Proposition 3. Consider the class K consisting of copies of the Harrison order
and of the linear orders of rank at most !. Then Kc= �= has a hyperarithmetic
Friedberg enumeration, but its index set is not hyperarithmetic.

We will now focus on the classi�cation problems up to important equivalence
relations. The most interesting cases are the isomorphism, bi-embeddability,
and isomorphism of bounded algorithmic complexity.
Possible ways to compare the complexity of various equivalence relations are:

1. comparison among sets;

2. comparison among equivalence relations.

The former case was discussed above. It corresponds to the second approach
from [132]. Within this approach, we usually prove m-completeness among sets
in some complexity class. There has been quite a lot of work on the isomorphism
problem for various classes of computable structures. See, for example, [27, 28,
29, 132, 34].

Theorem 95. (i) (Calvert [27]) The isomorphism problem for computable
vector spaces over Q is m-complete among �03 sets.

(ii) (Calvert [27]) The isomorphism problem for torsion free abelian groups of
�nite characteristic is m-complete among �03 sets.
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(iii) (see [132]) The isomorphism problem for abelian p-groups is m-complete
among �11 sets. The isomorphism problem for trees is m-complete among
�11 sets.

Recently, Carson, Fokina, Harizanov, Knight, Maher, Quinn, and Wallbaum
initiated the study of the computable embedding problem. In [41], they investi-
gated the relation between the isomorphism problem and the embedding prob-
lem for some well-known classes of structures. The isomorphism problem and
the embedding problem were compared as sets, that is, using the standard m-
reducibility. While for some classes of structures the two problems have the same
complexity, for other classes the isomorphism problem is more complicated than
the embedding problem, or vice versa.
Further work was done using the 2-dimensional versions of reducibilities.

This approach can be seen as an analogue of some work done in descriptive set
theory. Recall that in descriptive set theory, two equivalence relations, E and
F , on Borel classes K and L of structures, respectively, can be compared using
Borel reducibility. In the computable case, instead of arbitrary invariant Borel
classes of countable structures, we consider classes of computable structures
with hyperarithmetic index sets. In other words, we consider classes consisting
of computable models of computable in�nitary sentences. As mentioned above,
this corresponds to a �nice�characterization of a class.
A straightforward analogue of the Borel reducibility is the hyperarithmetic

reducibility.

De�nition 28. For equivalence relations E1; E2 on (hyperarithmetic subsets
of) !, we say that E1 is h-reducible to E2, in symbols E1 �h E2, if there is a
hyperarithmetic function f such that for all x; y,

xE1y , f(x)E2f(y):

A stronger reducibility would be a 2-dimensional version of them-reducibility.
This reducibility is traditionally used in the general study of equivalence rela-
tions on !. It was introduced by Ershov in [87] where he studied properties
of numberings. Later it was used, for example, in [26, 108, 57, 7] and denoted
simply by �. As sometimes we need to emphasize the di¤erence between m-
reducibility and h-reducibility, we will denote the reducibility via a computable
function by �m, specifying when necessary that we consider the 2-dimensional
version of m-reducibility among relations. When the results hold for both h-
reducibility and m-reducibility we will use the symbol �.

De�nition 29. Let E;E1 be equivalence relations on hyperarithmetic subsets
X;Y � !, respectively. The relation E is m-reducible to E1 i¤ there exists a
partial computable function f with X � dom(f) and Y � f(X) such that for
all x; y 2 X,

xEy , f(x)E1f(y):

We denote this reducibility by E �m E1.

Each notion of reducibility generates the corresponding notion of completeness:
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De�nition 30. A relation E on a hyperarithmetic subset of ! is an h-complete
�11 equivalence relation or m-complete �

1
1 equivalence relation if E is �11, and

every �11 equivalence relation E
0 on a hyperarithmetic subset of ! is h-reducible

or m-reducible to E, respectively.

We use previous de�nitions to compare equivalence relations on classes of
computable structures. Recall that each such relation E on a class K has
the index set I(E;K). We make no distinction between E and I(E;K) in the
following sense. If E1 is an arbitrary equivalence relation on !, then we say that
E1 h-reduces orm-reduces to E i¤ there exists a hyperarithmetic or computable,
respectively, sequence of computable structures fAxgx2! from K such that for
all x; y, we have xE1y i¤AxEAy (this is equivalent to E1 �h I(E;K) or E1 �m
I(E;K) in the sense of De�nitions 28 and 29).
From now on we use the symbol � to denote any of �h, �m. We use terms

�reduces,� �complete,� etc. for the corresponding notion of reducibility. The
following statement is due to Fokina and Friedman.

Proposition 4. There is a class K of structures with hyperarithmetic index set
such that the bi-embeddability relation on Kc is complete among �11 equivalence
relations.

This result corresponds to the analogous result from the descriptive set the-
ory S. Friedman and Motto Ros [101]. However, the theory of �11 equivalence
relations on ! under �-reducibility behaves very di¤erently from the theory of
Borel equivalence relations on Polish spaces. In particular, in [97] the authors
established the following result.

Theorem 96. ([97]) The isomorphism of computable graphs is complete with
respect to the chosen e¤ective reducibility in the context of all �11 equivalence
relations on !.

This is false in the context of countable structures and Borel reducibility since
Kechris and Louveau [182] showed that there are examples of Borel equivalence
relations that are not Borel-reducible to isomorphism of graphs. Moreover,
Fokina, S. Friedman, Harizanov, Knight, McCoy, and Montalbán [97] showed
that the isomorphism relation on computable torsion abelian groups is complete
among �11 equivalence relations on !, while in the classical case it is known to
be incomplete among isomorphism relations on classes of countable structures,
as established by H. Friedman and Stanley [102]. In [97], the authors also
established that the isomorphism relation on computable torsion-free abelian
groups is complete among �11 equivalence relations on !, while in the case of
countable structures it is not known to be complete for isomorphism relations.
Regaridng bounding the complexity of the isomorphism relation, Fokina,

Friedman and Nies obtained the following result.

Theorem 97. ([91]) The computable isomorphism relation on computable struc-
tures from classes including predecessor trees, Boolean algebras, and metric
spaces is a complete �03 equivalence relation under the computable reducibility.
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To prove their result, the authors �rst showed that one-one equivalence relation
of c.e. sets, as an equivalence relation on indices, is �03 complete, and then
reduced this equivalence relation to the computable isomorphism on predecessor
trees. Using the technique developed by Hirschfeldt and White in [167] and
Csima, Franklin, and Shore in [59], the result of Theorem 97 can be lifted to
hyperarithmetical levels.
It follows from [101] by S. Friedman and Motto Ros that the following result

holds for the bi-embeddability relation on computable structures.

Theorem 98. ([101]) For every �11 equivalence relation E on !, there exists
a hyperarithmetic class K of structures, which is closed under isomorphism,
and such that E is h-equivalent to the bi-embeddability relation on computable
structures from K.

In fact, the reduction functions have complexity at most 00. In [95], Fokina
and S. Friedman showed that the general structure of �11 equivalence relations
on hyperarithmetic subsets of ! is rich. The previous theorem states that the
structure of bi-embeddability relations on hyperarithmetic classes of computable
structures is as complex as the whole structure of �11 equivalence relations under
h-reducibility. It would be interesting to answer the following question and
possibly get a re�nement of Theorem 98. If E is a �11 equivalence relation on !,
does there exist a hyperarithmetic class K of structures, which is closed under
isomorphism, and such that E is equivalent to the bi-embeddability relation on
computable structures from K via computable functions?
It is not known whether there exists a hyperarithmetic class of computable

structures with �11, but not �
1
1 isomorphism relation, which is not complete

among all isomorphism relations on hyperarithmetic classes of computable struc-
tures. An a¢ rmative answer to the following question may help solve this prob-
lem. Does there exist a hyperarithmetic classK of computable structures, which
contains a unique structure of noncomputable Scott rank (up to isomorphism)?
If such a class exists, then the isomorphism relation on the class of computable
graphs cannot be reduced to the isomorphism relation on K. Indeed, there
exist non-isomorphic graphs of high (that is, !CK1 or !CK1 + 1) Scott rank.
They must be mapped to non-isomorphic structures in K. However, no com-
putable structure of high Scott rank can be mapped to a computable structure
of computable Scott rank under a hyperarithmetic reducibility. This question
is closely connected with many important open questions in computable model
theory concerning computable structures of high Scott rank, such as the ques-
tion of strong computable approximation (see [33, 132]). It is known that, up to
bi-embeddability, this is true in the following sense. In the class of computable
linear orders, the equivalence class of linear orders bi-embeddable with the ra-
tionals is �11-complete, but every computable scattered linear order (that is, one
not bi-embeddable with the rationals) has a hyperarithmetic equivalence class.
For more information on the bi-embeddability relation in the class of countable
linear orders see a paper by Montalbán [246].
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