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Abstract. We investigate the existence of a 1-1 effective (aka Friedberg) enumerations in the class of compact Polish
spaces. We first prove a number of negative results. We show that there is no Friedberg enumeration of computably
compact spaces up to: isometry, homeomorphism, computable isometry, or computable homeomorphism. The main
result of the article is that there exists a Friedberg enumeration of all primitive recursively compact spaces up to
isometry.

1. Introduction

What does it mean for a class of structures to have a satisfactory classification? To attempt to answer this
question, let us examine the standard textbook classification-type results and see what they share in common:

(1) vector spaces over (say) Q;
(2) algebraically closed fields;
(3) finitely generated abelian groups;
(4) compact oriented surfaces;
(5) abelian p-groups of bounded order.

Vector spaces and algebraically closed fields can be classified by their dimension. The abelian group examples
and compact oriented surfaces can also be classified by certain finite invariants, such as the number of handles or
the number of cyclic summands of a given type. However, we cannot always hope to describe an infinite object
by a finite invariant. Modern mathematical structures are too complex to be captured by finite invariants.

There is another feature that all these examples share. In each case, we can algorithmically list all members of
the class without repetition. In his fundamental paper [20], Friedberg proved that there is a uniformly computably
enumerable list of all c.e. sets with no repetition (up to the usual equality of sets). He produced such a list in spite
of the fact that the index set {⟨i, j⟩ : Wi = Wj} is Π0

2-complete. This is known as a Friedberg enumeration of
all c.e. sets. Also, it is well known (and is easy to see) that there is a uniform 1-1 list of well-orderings of order-
type less than a fixed computable ordinal α. Motivated by these classical theorems, Goncharov and Knight [21]
suggested the following definition.

Definition 1.1. Let K be a class of structures. We say that K admits a Friedberg enumeration (a Friedberg
numbering or a Friedberg list) if there is a uniformly computable listing of all computably presentable members
of K without repetition, up to isomorphism.

Which classes of algebraic and topological structures admit a Friedberg list? Of course, the notion depends
on the notion of computable presentability in the class. It turns out that many standard classes do not possess
a Friedberg list with respect to the most natural notion of computable presentability for the class. For instance,
if we take the notion of computable (constructive) algebraic structure (Mal’cev [28], Rabin [35]) as our basic
notion, then the following classes are easily seen to not have a Friedberg enumeration:

(i) Linear orders.
(ii) Boolean algebras.
(iii) Graphs.
(iv) Torsion-free abelian groups.
(v) Abelian p-groups.
(vi) Structures with two unary operations.
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(vii) Fields of a given characteristic.
The list goes on. The reason behind the lack of a Friedberg list is (essentially) the Σ1

1-completeness of the
isomorphism problem in all these classes ([21, 17, 11]). However, some relatively tame classes may also fail to
have a Friedberg list. For example, there is no Friedberg enumeration of all computable additive subgroups of Q
up to isomorphism [27]. (For more ‘negative’ examples, see [27].)

If we choose some other notion of algorithmic presentability as the basis of our theory, then the situation is
often not much better. For instance, even if we use some other presentations (polynomial-time, 1-decidable, or
c.e.) the answer in (i)–(vii) will remain negative. Also, there is no Friedberg list of all finitely presented groups,
as follows easily from the results of Adyan [1, 2] and Rabin [34].

Indeed, there are very few positive results in the literature that assert the existence of a Friedberg list of all
computable members in a class. Apart from the already mentioned elementary and classical results and a few
further observations, the essentially exhaustive list of classes that are known to have a Friedberg list is as follows:
(a) Computable algebraic fields [27].
(b) Computable equivalence structures [14].
(c) Computable abelian p-groups of Ulm type ≤ n, for any fixed n ∈ ω [15].
In stark contrast with (1)–(5), none of the three results above is a triviality. For instance, (b) relies on a 0′′′-
technique to produce a Friedberg list. There are also several results in pure computability theory that generalise
the original Friedberg theorem, the essentially complete list of references is [22, 3, 32, 33, 38, 10].

In computable topology, which is the main subject of the present article, the situation appears to be even more
complex. Apart from the observation (4) and the somewhat related result [10] cited earlier, the only theorem
known to us is the following consequence of (c): There is a Friedberg enumeration of all recursive ([37]) pro-p
groups of pro-Ulm type ≤ n (for each fixed n ∈ ω). It is derived in [15] from (c) using effective Pontryagin
duality [29]. However, profinite groups are not a particularly interesting topological class, as all such (infinite,
separable) groups are homeomorphic to 2ω , ignoring the group operation. We see that deep results asserting the
existence of a Friedberg enumeration of a class are very rare and essentially non-existent in computable analysis
or effective topology. Thus, any result showing the existence of a Friedberg enumeration for a class K should be
viewed as a very strong positive classification-type result about K.

The main purpose of this note is to initiate the investigation of Friedberg enumerations in computable metric
space theory [26, 13]. We shall use the fairly well-understood class of compact Polish spaces to derive a number
of negative results and one unexpected positive result.

1.1. Results. Recall that a computable Polish space is given by a dense sequence (xi)i∈ω such that d(xi, xj) are
uniformly computable reals (Ceitin [12], Moschovakis [31]). This notion has been central to computable topology
and effective descriptive set theory for many decades. In the important class of compact spaces, a slightly stronger
notion of a computable compact space has proven to be much more useful. A space is computably compact ([30])
if it is computable Polish and, additionally, given n ∈ ω, we can uniformly produce a 2−n-cover of the space by
basic open balls. The classical notion of a computably compact space has over a dozen equivalent formulations;
see [13] for a detailed technical exposition and the proofs. Computable compact spaces and various techniques
associated with computable compactness are central to modern effective topology and computable analysis.

Compactness is often viewed as a generalisation of being finite, and it tends to be dual to being discrete.
Clearly, all finite sets admit a uniformly computable enumeration without repetitions, and recall that Friedberg
[20] showed that all c.e. sets have this property as well. Thus, it is natural to anticipate that compact spaces would
possess a Friedberg enumeration. This intuition is partially supported by the above-mentioned technical result
in [15] about ‘recursive’ profinite groups; this is because the notion of a ‘recursive’ profinite group due to Smith
[37] is equivalent to computable compactness, as explained in [13].

Unfortunately, the most straightforward potential positive results fail.

Theorem 1.2. Let K be the class of all computably compact Polish spaces. There is no Friedberg enumeration
of K up to:

(1) isometric isomorphism;
(2) computable isometric isomorphism;
(3) homeomorphism;
(4) computable homeomorphism.
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The rather straightforward proofs of (1), (2) and (3) of the theorem will be given in Section 3; it takes more
effort to establish (4). Indeed, Theorem 1.2 represents just a subset of the numerous possible negative results.
For example, even if we remove the requirement of computable compactness in (3) and only insist that the spaces
are compact, we still arrive at the same conclusion, and using essentially the same argument. In other words,
Theorem 1.2 and its proof seem to leave no hope for any meaningful positive result in this direction.

Nonetheless, as we noted earlier, compactness is a generalisation of being finite, and it tends to be dual to being
discrete. The standard 1-1 list of all finite sets given by their strong indices is uniformly primitive recursive, and
each non-empty c.e. set can be viewed as the range of some primitive recursive function. These observations
suggest that our intuition can perhaps be rescued if we restrict ourselves to primitive recursive Polish spaces. To
obtain the notion of a primitive recursive Polish space, simply replace ‘computable’ with ‘primitive recursive’
throughout the definition of a computable Polish space. (This notion was suggested very recently in [36] and
subsequently used in [4]. However, the idea behind this definition is, of course, much older. It can be traced back
to, for example, Goodstein [23], which focuses on primitive recursive algorithms in elementary real analysis. For
some more recent applications of primitive recursive analysis, see [16, 6].) Similarly, to obtain the notion of a
primitive recursively (PR-) compact space, we additionally require that there is a primitive recursive procedure
that on input n outputs a finite 2−n-cover of the space [16, 13]. The main result of this article is as follows.

Theorem 1.3. There is a Friedberg enumeration of all primitive recursively compact Polish spaces up to iso-
metric isomorphism.

By that we mean that there is a total computable function γ such that for each fixed n, γ(n, ∗) describes a
primitive recursive procedure, not merely a computable procedure, representing the respective space. Each PR-
compact Polish space is mentioned in this sequence exactly once, up to isometric isomorphism. (Clearly, we
cannot possibly hope to obtain a uniformly primitive recursive Friedberg enumeration unless we allow access to
an oracle for, e.g., the Ackermann function.)

The statement of the theorem can be further strengthened without significantly affecting its proof. For instance,
the exact same proof seems to work for PR Polish spaces that are merely computably compact, and not necessarily
primitive recursively compact. Also, the result can be sub-recursively relativised to any total computable function
g : ω → ω.

However, it is not difficult to see that there is no Friedberg enumeration of PR-compact spaces up to homeo-
morphism; this is because the Σ1

1-completeness results from [13] central to the proof of (3) of Theorem 1.2 can
be witnessed by primitive recursively compact spaces. We also suspect that we would get a negative result if we
restricted ourselves to computable or even primitive recursive homeomorphisms. In other words, Theorem 1.3
(along with its sub-recursive relativisation) appears to be the most general possible positive result about Friedberg
enumerations for the class of compact Polish spaces.

2. Preliminaries

Definition 2.1. A computable (presentation of a) Polish space is given by:
(1) a dense sequence (xi)i∈ω , perhaps with repetitions, and
(2) a computable function f which, given i, j, s ∈ ω, outputs r =

n

m
∈ Q such that

|d(xi, xj)− r| < 2−s,

where d is the metric on the space.

Condition (2) is equivalent to saying that the distances d(xi, xj) are uniformly computable reals. If we view
Polish spaces up to isometry, then we fix the metric d in the definition above. If we view spaces up to homeo-
morphism, then we require that the metric is compatible with the topology. In both cases, we also require that
the metric is complete, and so M = (xi)i∈ω . This is not really a restriction in the compact case, since every
compact metric space is necessarily complete.

Let M be a computable Polish space, and (xi)i∈ω be the computable dense sequence witnessing this. Points
xj from this sequence are called special, ideal, or (less frequently) rational. A basic open ball is a ball of the
form B(xj , r) = {y ∈ M : d(xj , y) < r}. A basic closed ball is a ball of the form D(xj , r) = {y ∈ M :
d(xj , y) ≤ r}. In both cases, xj is a special point and r ∈ Q is positive. We also always represent rational
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numbers as fractions when possible. In particular, a basic open ball is assumed to have its radius represented as a
fraction. We say that an open set V is c.e. in a computable Polish space M if V is a c.e. union of basic open balls
represented in this way. Say that a sequence of special points (yj)j∈ω is fast Cauchy if d(yj , yj+1) < 2−j , for
all j. The name of a point x ∈ M of a computable Polish space M is the set Nx = {B ∋ x : B is basic open}.

Fact 2.2 (Folklore). For a point x ∈ M in a computable Polish space, the following are equivalent:
(1) Nx is a computably enumerable set of basic open balls.
(2) x is the limit of a computable fast Cauchy sequence.
(3) For every special xi, d(x, xi) is a computable real uniformly in i.

Definition 2.3. A point x in a computable Polish M is computable if it satisfies the equivalent properties listed
in Fact 2.2.

To state the next proposition, we need the notion of a (Type II) computable function.

Definition 2.4. Let f : M → N be a function between two computable Polish spaces. We say that f is (Type II)
computable if it uniformly effectively turns fast Cauchy sequences into fast Cauchy sequences. More formally, if
there is a uniform sequence of operators (Φn)n∈ω such that on input a sequence (xin)n∈ω with dM (xin , xin+1) <
2−n, we have that

f(lim
n

xin) = lim
m

Φ
(xin )n∈ω
m

and
dN (Φ

(xin )n∈ω
m ,Φ

(xin )n∈ω

m+1 ) < 2−m,

for all m.

The following fact is well-known:

Fact 2.5 (Folklore). For a function f : M → N between two computable Polish spaces, the following are
equivalent:

(1) f is computable.
(2) f is effectively continuous, i.e., f−1(B) is uniformly c.e. open for each basic open B.
(3) Nf(x) is uniformly computably enumerable relative to Nx (in the sense of enumeration reducibility).

2.1. Computably compact spaces.

Definition 2.6 ([30]). A computable Polish space M upon a dense set (xi)i∈ω is computably compact if there
is a computable function which, given n, outputs a finite tuple i0, . . . , ik of natural numbers such that

M = B(xi0 , 2
−n) ∪ . . . ∪B(xik , 2

−n),

i.e., it is a finite open 2−n-cover of the space.

Proposition 2.7. For a computable Polish space M = (xi)i∈ω , the following are equivalent:
(1) M is computably compact (Definition 2.6).
(2) For every n, one can effectively produce a finite cover of M by basic closed 2−n-balls.
(3) There is a computably enumerable list of all finite open covers of the space by basic open balls.
(4) There is an effective procedure which, given an enumeration of a countable cover of the space by basic

open balls, outputs its finite sub-cover.
(5) There is a computable function h : N → N such that

M =
⋃

i≤h(n)

B(xi, 2
−n).

See [13] for a proof of (1) ↔ (3). The equivalence of (3) and (4) is essentially obvious; see [13] for an
explanation. Finally, to see why (1) ↔ (2), note that every 2−n (closed or open) cover also gives a 2−n+1

(closed or open) cover; simply fix the (closed or open) 2−n+1-balls with the same ‘centres’ as the given 2−n-
balls. This is also clearly uniform. For many more equivalent formulations of computable compactness, we cite
[13].

We will also need the following well-known properties of computable compact spaces that will be used
throughout, and often without an explicit reference.
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Proposition 2.8. Let M be a computable compact space and N a computable Polish space.
(1) If f : M → N is computable, then f(M) is computably compact.
(2) If f : M → N is a computable homeomorphism, then f−1 is computable too.
(3) diam(M) = supx,y∈M d(x, y) is a computable real.
(4) If f : M → R is computable, then supx∈M f(x) is a computable real.
(5) If M ⊆ N , then x 7→ d(x,M) is computable.

In (5), we assume that M is represented by a dense sequence of points which are uniformly computable
with respect to the given computable presentation of N . (So the finite covers of M witnessing its computable
compactness are centred in these points that are special in M but are merely computable in N .) Note that (4)
evidently follows from (1) and (3). For a detailed exposition of the theory, and in particular a detailed verification
of Proposition 2.8 and many other properties of computably compact spaces, we cite [13].

2.2. Primitive recursive spaces.
Definition 2.9. A primitive recursive (PR-) Polish space is given by:

(1) a dense sequence (xi)i∈ω , perhaps with repetitions, and
(2) a primitive recursive function f which, given i, j, s ∈ ω, outputs r =

n

m
∈ Q such that

|d(xi, xj)− r| < 2−s,

where d is the metric on the space.

We identify a PR-Polish space with the respective tuple ((xi)i∈ω, d, f). Indeed, (xi)i∈ω can be identified with
ω, in which case d can be also omitted (because it is determined by f ). Thus, a PR-Polish space is just a primitive
recursive function f (satisfying the properties induced by the triangle inequality).

Recall that B(x, r) = {y : d(x, y) < r}.

Definition 2.10. A PR-Polish space ((xi)i∈ω, d, f) is primitive recursively compact (PR-compact) if there is a
primitive recursive function h(s) such that, for every s ∈ ω, the basic open balls B(x0, 2

−s), . . . , B(xh(s), 2
−s)

cover the space.

Such an h is called a modulus of compactness of the space. If both f and h are merely computable, we
get the standard notion of a computably compact space; see Proposition 2.7. The primitive recursive analogy
of computable compactness has not yet been investigated systematically to this extent; but see [4]. A more
systematic investigation of PR-compact spaces was left as an open problem (a challenge) in [13]. We may have f
computable and h primitive recursive or vice versa, giving intermediate notions. It is not clear how natural these
intermediate notions are, but in fact the latter notion has been used in [4] to construct a certain counter-example
unrelated to the subject of the present article.

It is essentially only important to use in the present paper that primitive recursive Polish spaces are total
computable, and that every PR-compact space is evidently computably compact, and thus we can apply Propo-
sition 2.8. Proposition 2.8 should have a natural primitive recursive counterpart; however, it won’t be necessary
for our purposes.

3. The negative results. Proof of Theorem 1.2

Before we prove the theorem, we clarify our notation and terminology. We fix an effective listing (Mi)i∈ω

of all (partial) computable Polish spaces. Each such Mi is given by a dense sequence that can be identified with
ω and a (partial) computable metric on it. (We slightly abuse our notation and identify Mi with its completion
Mi.)

Let S be a family of computably compact Polish spaces, and let ∼ be an equivalence relation on the class
of all computable Polish spaces (e.g., ∼ could be the isometric isomorphism relation). An enumeration of the
family S up to the equivalence relation ∼ is a sequence (Ki)i∈ω of computable Polish spaces such that:

• for every Y ∈ S, there exists i ∈ ω such that Ki ∼ Y ;
• for every Ki, there is Y ∈ S such that Y ∼ Xi;
• the sequence (Ki)i∈ω is uniformly computably compact, i.e., for a space Ki, its distances di(xi

k, x
i
ℓ),

k, ℓ ∈ ω, and its modulus of compactness hi (see item (5) of Proposition 2.7) are computable uniformly
in i.
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In other words, the sequence (Ki)i∈ω uniformly effectively lists all elements of S, up to ∼. An enumeration
(Ki)i∈ω is Friedberg if Ki ̸∼ Kj for all i ̸= j.

The proof of Theorem 1.2 consists of three parts: those are Fact 3.1, Propositions 3.2 and 3.3 given below.

Fact 3.1. There is no Friedberg enumeration of all computably compact Polish spaces up to isometric isomor-
phism. (In fact, this class does not admit an (effective) enumeration.)

Proof. Suppose (Ki)i∈ω is such an enumeration. It is well-known that the diameter

diam(C) = sup
x,y∈C

d(x, y)

of a computably compact space C is uniformly computable in the presentation of the space. If δi = diam(Ki),
then it is easy to construct a computable real δ such that

∀i δ ̸= δi.

This is done using an effective Cantor-style diagonalization; alternatively, one could appeal to the Effective Baire
Category Theorem (e.g., [9]) applied to the dense c.e. open sets Ui = R \ {δi} in R. Consider K = [0, δ] and
observe K ̸∼=iso Ki, for all i. However, K is clearly computably compact. □

Note that the same proof implies that there is no (Friedberg) enumeration of computably compact spaces up
to computable isometry, and indeed up to X-computable isometry for any fixed X .

Proposition 3.2. There is no Friedberg enumeration of all computably compact Polish spaces up to homeomor-
phism.

Proof. Recall that we have fixed an effective listing (Mi)i∈ω of all (partial) computable Polish spaces. Among
all computable Polish spaces (Mi)i∈ω , the homeomorphism problem for computably compact Polish spaces

{(i, j) : Mi
∼=hom Mj and Mi,Mj are compact}

is Σ1
1-complete ([13, Corollary 4.30]), as witnessed by uniformly computably compact Stone spaces. Let

(Mf(i),Mg(j)) be the pairs of uniformly computably compact Stone spaces witnessing the Σ1
1 completeness.

We have that Mf(i)
∼=hom Mg(j) iff the Σ1

1-outcome holds on input (i, j).
Suppose there existed a Friedberg enumeration (Ki)i∈ω of all computably compact Polish spaces up to home-

omorphism. Given (i, j), calculate Mf(i) and Mg(j). To see whether Mf(i) ̸∼=hom Mg(j), search for k ̸= m
such that

Mf(i)
∼=hom Kk and Mg(j)

∼=hom Km.

As explained in the proof of [13, Corollary 4.30], for two compact Polish spaces ‘being homeomorphic’ is a
uniformly Σ1

1-property; we do not even need the spaces to be computably compact to make this conclusion. It
follows that both Mf(i) ̸∼=hom Mg(j) and Mf(i)

∼=hom Mg(j) are Σ1
1, contradicting the Σ1

1-completeness of
the homeomorphism problem for compact spaces. Thus, no such Friedberg enumeration (Ki)i∈ω can possibly
exist. □

Note that the same argument shows that, up to homeomorphism, there is no Friedberg enumeration of all
compact (but not necessarily computably compact) Polish spaces.

Proposition 3.3. There is no Friedberg enumeration of all computably compact Polish spaces up to computable
homeomorphism.

Proof. We fix an effective listing (Ki)i∈ω of (potential) computably compact Polish spaces. Here each com-
putably compact space Ki is represented by a computable (pseudo)metric and a uniform sequence (Cn)n∈ω of
finite tuples Cn of basic closed 2−n-balls that (supposedly) cover the space. The key step in the proof is the
following technical lemma.

Lemma 3.4. The computable homeomorphism problem for computably compact Polish spaces
CCCH = {⟨i, j⟩ : Ki

∼=comp
hom Kj and Ki,Kj are computably compact}

is Σ0
3-complete.
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Proof. Firstly, we need to argue that the index setCCCH isΣ0
3. Recall that for a spaceKj , we have a computable

(pseudo)metric and a sequence (Cn)n∈ω of finite tuples Cn of basic closed 2−n-balls. It is Π0
1 to tell whether

we indeed have a (pseudo)metric, and we also state that, for all n,

∀i xi ∈
⋃

Cn,

where (xi)i∈ω are special points of Kj . Since the sets Cn are simply finite collections of basic closed balls, the
overall complexity of ‘Kj being computably compact’ is at most Π0

1.

Claim 3.5. Assuming Ki,Kj are computably compact, Ki
∼=comp

hom Kj is Σ0
3.

Proof. To say that there is a computable homeomorphism between Ki and Kj , it is sufficient to state that there
exists a computable, surjective and injective f : Ki → Kj . (This is because f−1 is automatically computable in
this case as well by Proposition 2.8(3).) If f is already total computable, then it is Π0

1 to say that it is injective.
This is because if it fails to be injective, then it has to be witnessed by special points. Since f(Ki) is a computable
closed set in Kj , f is surjective if for all special points y of Kj , y is at distance zero to f(Ki), which is Π0

1 as
well.

It remains to state that there is a computable map f . More formally, we should have that, for some functional
Φ, f(ξ) = limn Φ

ξ(n), where necessarily
(1) for every n, Φξ(n) is total on Ki, and
(2) for all ξ ∈ Ki,

d(Φξ(n),Φξ(n+ 1)) ≤ 2−n,

where d is the metric in Kj .
Since Ki is computably compact, the totality of Φξ(n) is Σ0

1 uniformly in n. We simply wait for Φ(n) to
converge on more and more inputs. Each such individual computation gives two open sets U ⊆ Ki and V ⊆ Kj

for which ΦU (n) ⊆ V . We just wait for finitely many such U to cover Ki; this is c.e., since we can list all open
covers of Ki. Since this has to hold for every n, this gives the estimate Π0

2 for Condition (1). We now turn to
Condition (2). Suppose that there is ξ ∈ Ki such that

d(Φξ(n),Φξ(n+ 1)) > 2−n.

Consider the uniformly computable

Γ: θ 7→ d(Φθ(n),Φθ(n+ 1)),

which is (in particular) continuous. Since ξ ∈ Γ−1(2−n,∞) and the latter is open, there must be a special point
xi in this open set. It follows that, in (2), we can restrict our quantification to special points only, making the
condition Π0

1 overall. We conclude that the existence of a computable f : Ki → Kj is Σ0
3. □

We now establish Σ0
3-completeness of the set CCCH . For this, we shall use computable Boolean algebras

and the corresponding Stone spaces.
It is known that Stone duality is effective [24, 25], in particular, there is a uniform procedure turning a com-

putable Boolean algebra B into the dual computably compact Stone space B̂. It has been shown in [7] that,
furthermore, a computable Boolean algebra B is computably categorical if, and only if, the computably compact
copy of B̂ is effectively unique up to computable homeomorphism (Theorem 1.3 of [7]). Indeed, in [7] it is es-
tablished that there is a uniform procedure turning an isomorphism f : B1 → B2 into the dual homeomorphism
f̂ : B̂2 → B̂1, and vice versa, making the diagram below (effectively and uniformly) commutative.

B1 B2

B̂1 B̂2

f

f̂

More formally, given B1, B2 and f : B1 → B2, we can uniformly effectively define B̂1, B̂2 and the dual home-
omorphism f̂ : B̂2 → B̂1. Conversely, given f̂ : B̂2 → B̂1, we can uniformly reconstruct (isomorphic copies
of) B1, B2 and an isomorphism between B1, B2. Thus, to establish Σ0

3-completeness of CCCH , it is sufficient
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to obtain that the index set of computably isomorphic Boolean algebras is Σ0
3-complete. Indeed, if we have

B1
∼=∆0

1
B2, then B̂1

∼=comp
hom B̂2, and vice versa, where ∼=∆0

1
stands for ‘being computably isomorphic’.

Claim 3.6 (Theorem 4.7(c) in [21]). There is a uniform procedure which, given a Σ0
3 predicate P , outputs a pair

of (indices for) computable Boolean algebras Ax, Bx with the property:
Ax

∼=∆0
1
Bx ⇐⇒ P (x).

To establish Σ0
3-completeness of the set CCCH , consider the dual spaces Âx and B̂x of the Boolean algebras

from the claim above. Lemma 3.4 is proved. □

We return to the proof of Proposition 3.3. Suppose we had a Friedberg enumeration (Ci)i∈ω of all computably
compact spaces up to computable homeomorphism. Given any computably compact K, there must be exactly
one index i such that K is computably homeomorphic to Ci. Given Ki,Kj , it is Π0

1 to say that i, j indeed define
computably compact spaces; see the first few lines of the proof of Lemma 3.4. Then Ki ̸∼=comp

hom Kj if, and only
if, ∃m ̸= n such that

Cn
∼=comp

hom Ki and Cm
∼=comp

hom Kj ,

which is Σ0
3 (as readily follows from Claim 3.5). But this contradicts the Σ0

3-completeness established in
Lemma 3.4.

Proposition 3.3 and Theorem 1.2 are proved. □

Remark 3.7. Lemma 3.4 could be also considered in the setting of computable reducibility on equivalence rela-
tions (in the sense of Ershov [18], Bernardi and Sorbi [8]). Let E and F be equivalence relations on ω. One says
that E is computably reducible to F if there exists a total computable function f(x) such that for all x, y ∈ ω,

(xE y) ⇐⇒ (f(x)F f(y)).

Fokina, Friedman, and Nies (Theorem 5 in [19]) proved that the computable isomorphism relation for (indices
of) computable Boolean algebras is Σ0

3-complete w.r.t. computable reducibility. This result and the proof of
Lemma 3.4 together imply that computable homeomorphism for computably compact Polish spaces is also Σ0

3-
complete w.r.t. computable reducibility.

4. The positive result. Proof of Theorem 1.3

First, we give a useful preliminary result.

Lemma 4.1. For X,Y computably compact metric spaces, X ̸∼=iso Y is Σ0
1.

Proof. We modify the proof of an unpublished result of Nies and Melnikov (see Section 4.2 in [13] for a proof)
and argue that the space of isometric isomorphisms Iso(X,Y ) between X and Y can be realised as a Π0

1 class
⊆ 2ω , in the sense that the paths through this class are in 1-1 effective correspondence with the members of
Iso(X,Y ). Let h be a computable compactness modulus of Y , which means that the first h(n) balls (in some
fixed uniform list of all open 2−n balls) cover the space. Suppose the special points of Y are given by the sequence
(ri)i∈N, and let (pi)i∈N be the dense computable sequence in X . Instead of defining our class inside 2ω , we will
define a computably bounded tree B; this, of course, is effectively equivalent to using 2ω .

Definition 4.2. The n-th level of B is given by Gödel numbers of (some) tuples r = ⟨rj0 , rj1 , . . . , rjn−1
⟩ from

{r0, . . . , rh(n)}n

that satisfy the Π0
1 condition

|dY (rji , rjk)− dX(pi, pk)| ≤ 2−n+1

for each i < k < n. (Recall that h is a computable compactness modulus for Y .)

We view these tuples r as possible isometric images of ⟨p0, . . . , pn−1⟩, up to an error of 2−n+1. Thus, we require
the Π0

1 condition that |dY (rji , rjk) − dX(pi, pk)| ≤ 2−n+1 for each i < k < n. For a tuple u at level n and a
tuple v at level n+ 1, we posit as a further Π0

1 condition that v is a child of u if d(ui, vi) ≤ 2−n for each i < n.
We let B consist of all strings σ such that for each n < |σ|, σ(n) is on level n, and if n > 0 then σ(n) is a child
of σ(n− 1). Then B is Π0

1; furthermore, clearly there is a function ĥ ≤T h that bounds any f ∈ [B].
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We claim that [B] codes the space of (not necessarily surjective) isometries I(X,Y ), in the sense that there
is a map from [B] onto I(X,Y ). Furthermore, we claim that the map is computable in the sense that there is a
computable functional that turns any infinite path through B into an isometry from X to Y .

This is verified below.

Suppose there is an isometric embedding Θ : X → Y . Then let π(n) be a tuple of special points on level
n that is at distance less than 2−n from ⟨Θ(p0), . . . ,Θ(pn−1)⟩. Then π ∈ [B], and using π we can effectively
reconstruct Θ.

Now suppose f ∈ [B]. We claim that f uniformly computes an isometric embedding Θf : X → Y . For each
i, we have a Cauchy sequence sin = f(n)i (where n > i). Thus f uniformly computes the function Θf given by
Θf (i) = limn>i f(n)i. For each i < k < n we have

|dY (sin, skn)− dX(pi, pk)| ≤ 2−n+1.

Thus, Θf is an isometric embedding. Note that this is all uniformly effective. This finishes the verification of the
properties of B which, as we conclude, indeed ‘effectively codes’ I(X,Y ).

We further refine B to code the collection of all surjective isometries X → Y .

Claim 4.3. For an isometry f : X → Y , ‘being onto’ is uniformly Π0
1(f).

Proof. We have that f(X) is compact and thus closed, therefore f is not onto iff

∃i dH(ri, f(X)) = sup
y∈f(X)

d(ri, y) > 0,

where dH is the Hausdorff distance induced by the metric in Y . The space f(X) is computably compact relative
to f , and this is uniform. In particular, the Hausdorff distance to f(X) is f -computable; and this is also uniform
in f ; see [13]. This makes ‘f being not onto’ Σ0

1(f). □

Recall that the correspondence between paths through B and isometries from X to Y was uniform. Thus,
there is a Turing functional Φ: [B] → I(X,Y ) witnessing this uniformity, which may or may not be defined
outside of [B]. By the claim above, ‘ΦΘ : X → Y being not onto’ in Σ0

1(Φ
Θ) which gives rise to a c.e. open

set of strings. It follows that B can be further pruned to a tree B′ representing a Π0
1 class coding exactly the

surjective isometries f : X → Y , and this is uniform.
We have that X ∼=iso Y iff [B′] ̸= ∅. By the usual effective compactness argument applied to [B′], if we have

[B′] = ∅, then it will be effectively recognised at a finite stage. It follows that X ∼=iso Y is uniformly c.e. in the
indices of X and Y .

Lemma 4.1 is proved. □

We give further prerequisites for our construction (of the desired Friedberg enumeration). Let (Pi)i∈ω be the
uniformly computable listing of all (potential) primitive recursively (PR-) compact metric spaces. Each such Pi

is represented by:
(1) a primitive recursive pseudo-metric on ω,
(2) a primitive recursive function that, given n, gives a finite tuple of basic closed balls having radii at most

2−n that cover the space1.
By the same argument as in the appendix to [5], we may assume that the sequence (Pi)i∈ω has the property that
each Pi is primitive recursive. However, the uniformly computable sequence is of course not uniformly primitive
recursive. A good way to think about it is to imagine that the running time of Pi is getting increasingly slower
with larger i. However, for each fixed i, the running time of Pi is primitive recursive. The index of the primitive
recursive running time function can be obtained primitively recursively in i. (As we have already mentioned in
the introduction, our Friedberg list will also have these features.)

Of course, some such Pi will actually be ‘wrong’ in the sense that either they are not (pseudo)metric spaces,
or the covers are not actually covering all points. If Pi is not ‘wrong’, then we identify Pi with the completion
of ω w.r.t. the induced metric, and we say that Pi represents a PR-compact space.

1This is equivalent to Definition 2.10. If B0, . . . , Bk is a closed cover, then double the radii to obtain an open cover. Conversely, if we
have an open cover, consider the respective closed balls.
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Lemma 4.4. It is Π0
1 to tell whether Pi represents a PR-compact space.

Proof. The axioms of (pseudo)metric spaces are Π0
1. Since we use closed covers, it is Σ0

1 to tell whether a given
finite tuple of basic closed balls D0, . . . , Dm covers the entire space. Indeed, the union of D0, . . . , Dm is closed,
so if there is a point outside this union, then there is a special such point. □

Fix a primitive recursive presentation U of the Urysohn space induced by the rational Urysohn space; its
primitive recursiveness has been verified in [4].

Proposition 4.5 ([4]). There is a uniformly primitive recursive procedure which, given a primitive recursive
Polish space M , produces a primitive recursive isometric embedding f : M → U.

We introduce several conventions:
(1) Given a finite approximation Pi[s] that does not violate the Π0

1 condition given by Lemma 4.4, up to
2−s, we may perform a few steps in the calculation of f : Pi[s] → U and calculate the images of the
first s special points in Pi up to 2−s. The properties of the Urysohn space guarantee that these partial
2−s-embeddings can be constructed. We may perform this computation at the background until we need
it (if ever).

If at some stage s+1 we discover that Pi is ‘wrong’, we will still have Pi[s] and f [s](Pi[s]) defined up
to 2−s. The image f [s](Pi[s]) can be viewed as a finite collection of 2−s-balls, each being the 2−s-image
of one of the special points in Pi[s]. We can always pick an arbitrarily large finite number of pairwise
non-equal points in these finitely many 2−s-balls in the Urysohn space.

(2) Also, at stage s, we will modify each (potential) closed 2−s-cover of Pi and turn it into an open 2−s+1-
cover of the space. We guarantee that at every stage every point of Pi[s] has to be contained inside at
least one ball in the cover. (If we used closed covers, this would have been problematic.) This can be
done with the speed of Pi.

In the construction, we define a uniformly computable sequence of PR-compact spaces (Fi)i∈ω and meet the
following requirements:

Re : Pe represents a compact space ⇒ ∃k Pe
∼=iso Fk,

Ni,j : i ̸= j → Fi ̸∼=iso Fj ,

for all i, j, e ∈ ω.

Recall that I(X,Y ) denotes the set of all (not necessarily surjective) isometries from X to Y ; see Defini-
tion 4.2 and the paragraph after it.

4.1. The case of only two R-strategies. We begin with enumerating P0 = F0. Without loss of generality, we
may assume R0 is met. (For example, we may assume P0 is the singleton space.)

To meet R1, monitor P1. Meanwhile, initiate the uniform enumeration of the discrete spaces Fs =
{0, . . . , s} ⊆ R under the standard metric on the real line R. We call these spaces junk spaces of the first
kind, or simply 1-junk.

Wait either for P1 to be discovered being ‘wrong’ (this is Σ0
1) or for a Σ0

1-confirmation of P0 ̸∼=iso P1. If one
discovers that P1 is ‘wrong’, then never introduce it into the sequence (Fi)i∈ω and declare R1 met. Also, if we
never see that P0 ̸∼=iso P1, then we never attempt to incorporate P1 into the constructed sequence (Fi)i∈ω .

Remark 4.6. In the second case, we actually wait for both I(P0, P1) and I(P1, P0) to be empty. (This will be
important when we have more than two strategies.) The former uses only covers of P1, and the latter uses only
covers of P0 (recall the construction from Lemma 4.1). For instance, any extension R ⊇ P1 within the cover of
P1 witnessing I(P0, P1) = ∅ will also satisfy that I(P0, R) = ∅. (And the same can be said about P0.)

So suppose P0 ̸∼=iso P1 is discovered at a stage s, and so far it looks like P1 is not ‘wrong’. There will be
only finitely many 1-junk spaces whose diameter is less than (or equal to) the diameter of P1 — we can have an
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upper bound for the latter based on the covers of P1 we have considered so far. We will not introduce P1 unless
it is not isometric to these finitely many 1-junk spaces.

Suppose we finally introduce P1 into the construction: i.e, some Fi0 starts copying P1.
If at some later stage we discover thatP1 is actually wrong, then we use the Urysohn space (as explained above)

to consistently extend the part of P1 built so far to a finite (thus, PR-compact) space that has more points than
each finite ‘junk space’ seen in the construction so far. Spaces of this sort (i.e., the ‘abandoned’ or ‘initialised’
ones) will be called junk spaces of the second kind, or simply 2-junk. Note that the modulus of PR-compactness
of the space can be computed with the speed of P1.

4.2. The case of three R-strategies. To introduce P1, we wait for I(P0, P1) = I(P1, P0) = ∅ unless P1 is
declared ‘wrong’ (see Remark 4.6). Before we introduce P2 we wait for P2 ̸∼=iso P0 and P2 ̸∼=iso P1. This also
includes the case when P1 has not yet been introduced, which must be because it is currently looking isomorphic
to some other space in the list. (But we still check P2 ̸∼=iso P1 directly, though it is perhaps not necessary.)

If P1 was introduced but then discovered wrong, we do not introduce P2 unless it is not isometric to the finitely
many 1-junk spaces of diameter close to the diameter of P2 and also not isometric to the 2-junk space left in
place of P1 (after P1 was eliminated from (Fi)i∈ω).

4.3. The general case. Each junk space will be given a priority. When we attempt to introduce Pe into the
sequence (Fi)i∈ω , we will check whether it is not isometric to the finitely many spaces in the F -sequence that
are of higher priority. (Those will include all spaces currently copying Pi with i < e.) We will also not introduce
Pe unless it is not isometric to any of the 1-junk spaces having their diameter smaller than the (potential) diameter
of Pe; there are only finitely many such spaces. (If Fj copied Pk and Pk is now ‘dead’ and turned into 2-junk,
Fj still has priority of Pk.)

For the general case, we naturally extend the case of three R-strategies, as follows:
(1) If we need to introduce another Fs at a stage s, but there is no Pj available to copy into Fs, then we

pick n very large and set Fs equal to the discrete 1-junk space {0, . . . , n} ⊆ R of diameter n + 1. In
particular, it can be chosen so that its diameter is guaranteed to be larger than the diameters of all Pj ,
j ≤ s.

(2) To introduce (an F -space copying) Pj , we first verify that it is not isometric to:
(a) Pi, i < j,
(b) the finitely many 1-junk spaces having their diameters less than or equal to (our best guess for) the

diameter of Pi, i < j,
(c) the finitely many 2-junk spaces that used to copy some Pi with i < j.

In particular, if Fk is copying some Pj , then (by Remark 4.6) Fk will never be isomorphic to any of the
Pi, i < j, even if Pj is eventually discovered to be ‘wrong’. Also, and for the same reason, Fk will never be
isomorphic to any of the finitely many Ft in the construction with t < k. This is because either their diameter is
too big, or we will explicitly require Fk to be non-isometric to them before allowing Fk to copy Pj .

Finally, when m > k, then either Fm is a 1-junk whose diameter is way too large, or it is a 2-junk, or it is
copying some Pℓ, ℓ > j. If Fm is a 2-junk structure, then it must be that at some earlier stage Fm attempted
to copy Pℓ, for ℓ > j. But this was possible because we discovered that Pℓ (if it is not wrong) cannot possibly
be isometrically isomorphic to Pj . When Pℓ died, we replaced it with a finite 2-junk space while keeping the
new points inside the cover witnessing that Pj cannot possibly be isometrically isomorphic to Pℓ, in the sense
of Remark 4.6. This argument also shows that in the case when Fm is copying some Pℓ, we have that Pℓ is not
isometrically isomorphic to Fk.

In the construction, we simply let the strategies act according to their instructions, as described above. By
a straightforward induction, each requirement is met. Indeed, the argument above shows that the constructed
sequence (Fi)i∈ω is a Friedberg enumeration for the family of all PR-compact Polish spaces. The reader should
also note that the index of the primitive recursive running time of Fi is primitive recursive in i; we give more
details. Indeed, each Fi is either a 1-junk space, or eventually copies some Pj , or is a 2-junk space. If it is a
1-junk space, and it was initially declared to be such a space, then its running time can be assumed to be linear. If
Fi was introduced to copy some Pj , where j is determined by the construction, then its computation will be that
of Pj , up to a primitive recursive delay. This will also remain true if Pj is later discovered to be wrong, in which
case we switch gears in the construction and turn Fi into a 2-junk space. In this case, the speed with which the
metric in Fi will be calculated will primitively recursively depend on the primitive recursive presentation of U.
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In summary, in all cases the running time of Fi primitively recursively depends on the running time of Pj , U, and
the running time of the overall construction. Note that the construction is also primitive recursive in the sense
that we are not waiting for any unbounded search to finish its work before we finish a stage. (All searches that are
implemented in the construction are spread over many steps, thus keeping the running time of each individual step
primitively recursively bounded.) It follows that the running time of Fi is primitive recursive, and furthermore
its index can be obtained primitively recursively from i.

Theorem 1.3 is proved.
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