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Abstract. It is known that the class of (not necessarily distributive) count-
able lattices is HKSS-universal, and it is also known that the class of countable

linear orders is not universal with respect to degree spectra and computable

categoricity. We investigate the intermediate class of distributive lattices.
We build the distributive lattice with the degree spectrum {d : d 6= 0}. It is

not known whether a linear order with this property exists. We also show that

there is a computably categorical distributive lattice which is not relatively
∆0

2-categorical. It is well-known that no linear order can have this property.

We leave open whether countable distributive lattices are HKSS-universal.

1. Introduction

Our investigations contribute to the general program that aims to understand
computability-theoretic properties of countably infinite algebraic structures from
common classes (such as groups, fields, linear orders etc). In this paper we study
computability-theoretic properties of the class of distributive lattices. One way
of comparing different classes is to study certain effective invariants that can be
realized by a structure in the class. For example, the degree spectrum of a struc-
ture is the collection of all Turing degrees that can compute a copy of the struc-
ture. It is well-known that any low4 Boolean algebra is isomorphic to a recur-
sive one [1]. In contrast, there exists an abelian group that has non-low3-degrees
serving as its degree spectrum [2]. We can definitely conclude that the classes of
countable Boolean algebras and countable abelian groups are substantially different
from the computability-theoretic point of view. But which class is computationally
“harder”? There are several ways to compare computability-theoretic complexity
of two classes of structures, see e.g. [3, 4, 5].

Suppose we want to compare classes using some specific computability-theoretic
invariant (or property) P such as degree spectra. Hirschfeldt, Khoussainov, Shore,
and Slinko [3] introduced the notion of a class of structures which is complete with
respect to property P . We follow [6] and call such classes HKSS-complete, and the
property will usually be clear from the context. For the formal definition of a HKSS-
complete class, the reader is referred to [3, Definition 1.21] (see also [6, Definition
4.6]). The idea is the following: If a countable structure has some interesting
computability-theoretic property, then for any HKSS-complete class K, there is
a structure S ∈ K possessing the same property. In other words, the notion of
HKSS-completeness tries to capture the intuitive notion of computability-theoretic
universality of the class. As has been discovered in [5], HKSS-completeness is
typically witnessed by a Lcω1ω-definable functor from any countable class to the
universal class, we omit details. The most important effective properties include
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degree spectra, effective dimension, expansion by constants, and degree spectra of
relations, see [3] for definitions and discussion. We typically aim to show that a
class is complete with respect to all these properties, and indeed we are not aware
of any natural example of a class that would be complete with respect to some of
these properties but not the other ones.

Hirschfeldt, Khoussainov, Shore, and Slinko ([3, Theorem 3.3]) proved that the
class of non-distributive lattices is HKSS-complete. Hence, there is the following
natural question:

Problem. Is the class of distributive lattices universal from the computability-
theoretic point of view? More formally, is the class of distributive lattices HKSS-
complete?

One special nice class of distributive lattices, namely the class of linear orders,
has been studied intensively (see surveys [7, 8]). Although it is known that linear
orders are not universal with respect to degree spectra (e.g., Richter [9]), many
complex degree spectra can be realised in the class of linear orders [8, 10]. It is also
well-known that linear orders are not universal with respect to computable cate-
goricity and computable dimension. Recall that the ∆0

α-dimension of a structure
M is the number of computable copies of the structure up to ∆0

α-isomorphism. A
structure is ∆0

α-categorical if its ∆0
α-dimension is 1. Much work has been done on

∆0
α-categoricity and ∆0

α-dimension of linear orders. For instance, Goncharov and
Dzgoev [11] and independently, Remmel [12] proved that for a computable linear
order L, the following conditions are equivalent:

(1) L is computably categorical,
(2) L is relatively computably categorical,
(3) the successor relation of L is a finite set.

Furthermore, Goncharov and Dzgoev [11] also proved that the computable dimen-
sion (i.e., the ∆0

1-dimension) of a computable linear order is either 1 or ω. Ash [13]
obtained a complete and satisfactory description of ∆0

α-categorical well-orders, for
any computable α. McCoy [14, 15] studied ∆0

2- and ∆0
3-categorical linear orders.

Frolov [16] has proved that there exists a linear order that is ∆0
3-categorical but

not relatively ∆0
3-categorical.

Nonetheless, not much is known about distributive lattices which are not nec-
essarily linearly ordered. Selivanov [17] investigated computably enumerable dis-
tributive lattices. Turlington [18] proved that for any Turing degree d, there is a
countable distributive lattice with the degree spectrum {c : c ≥ d}. Bazhenov [19]
showed the following: For any computable successor ordinal α ≥ 4 and any non-zero
natural number n, there is a computable distributive lattice with ∆0

α-dimension n.

Our results provide a good evidence that the class of countable distributive lat-
tices could be universal. In particular, our results show that computable distributive
lattices can possess some effective properties that computable linear orders cannot
have. We leave open whether countable distributive lattices are HKSS-complete.

As the first main result, we prove:

Theorem 1.1. There exists a countable distributive lattice whose degree spectrum
is exactly the non-computable Turing degrees.

In Section 3 we prove a more general result that allows to code any family of
finite sets into a countable distributive lattice. To prove Theorem 1.1 it remains to



COMPUTABLE DISTRIBUTIVE LATTICES 3

use the well-known result [20]. We note that it is still open whether there exists a
linear order with such degree spectrum.

The second main result is:

Theorem 1.2. There is a computably categorical distributive lattice which is not
relatively ∆0

2-categorical.

As far as we know, this is the first known example of this sort from a natural
enough algebraic class that would not be HKSS-complete. (Here “natural” means
“not specifically made up to satisfy the property”). In Section 4, we construct a
computable distributive lattice which is computably categorical but not relatively
computably categorical. This weaker result has a simpler proof. Note that this
weaker result contrasts with the theorem on linear orders ([11, 12]) mentioned
above. In Section 5, we extend the technique of Section 4 to prove Theorem 1.2.

2. Preliminaries

We treat lattices as structures in the language L0 = {∨2,∧2}. Recall that a
lattice is bounded if it has the least element 0 and the greatest element 1. For a
lattice D, PO(D) denotes the partial order corresponding to D.

Assume that L is a linear order, and {An}n∈L is a sequence of partial orders.
The L-sum of the sequence {An}n∈L is the structure on the universe {(x, n) : n ∈
L, x ∈ An}. The ordering on the L-sum is defined as follows: (x, n) ≤ (y,m)
iff n <L m or (n = m)&(x ≤An

y). Let Sum(An;L) denote the L-sum of the
sequence {An}n∈L.

It is not difficult to prove the following claim (e.g., use the ideas from [18, pp.
8–10]).

Lemma 2.1. Suppose that L is a linear order and {Mn}n∈L is a sequence of
distributive lattices. Then the order Sum(PO(Mn);L) is a distributive lattice.
Moreover, if the order L and the sequence {Mn}n∈ω are both computable, then
there is a computable copy of the distributive lattice Sum(PO(Mn);L).

Lemma 2.1 allows us to use the following notation.

Notation 2.1. If L is an X-computable linear order and {Mn}n∈L is an X-com-
putable sequence of distributive lattices, then by Sum(Mn;L) we denote the nat-
ural X-computable copy of the distributive lattice Sum(PO(Mn);L).

If the order L has exactly k elements, then we will sometimes writeM1⊕M2⊕
. . .⊕Mk in place of Sum(Mi;L).

Let η denote the standard computable copy of the order of rationals. Fix a com-
putable sequence of computable infinite sets {Yk}k∈ω with the following properties:⋃
k Yk = N, Yi ∩ Yj = ∅ for i 6= j, and for any i and j, if a, b ∈ Yi and a <η b, then

there is an element c such that c ∈ Yj and a <η c <η b.
Assume that {Mn}n∈ω is an X-computable sequence of distributive lattices. If

a ∈ η and a ∈ Yk, then set Na =Mk. The shuffle sum of the sequence {Mn}n∈ω
(denoted by Shuf(Mn)) is the structure Sum(Na; η).

Proposition 2.1 (Selivanov [17, Lemma 1]). There exists a computable sequence
of finite distributive lattices {D0

n}n∈ω such that for any i 6= j, D0
i does not embed

into D0
j .
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Figure 1. The lattices D0
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Assume that A and B are bounded lattices. Then (A⊕0B) denotes the quotient
lattice of (A⊕ B) modulo the congruence

E0 =
{

(1A, 0B), (0B, 1A)
}
∪ {(x, x) : x ∈ A ∪ B} .

For a tuple of natural numbers ā = (a1, a2, . . . , an), let D0(ā) denote the lattice
(D0

a1 ⊕0 D0
a2 ⊕0 . . .⊕0 D0

an).

3. Degree spectra

The first main result of the paper (Theorem 1.1) follows from the more general
fact below.

Theorem 3.1. Let S be a countable family of finite subsets of ω. There is a
countable distributive lattice DS such that the degree spectrum of DS is equal to the
enumeration spectrum of the family S.

Proof. For a finite set F = {a0 <ω a1 <ω . . . <ω an−1}, let

Perm(F ) =
{

(0, aσ(0) + 1, aσ(1) + 1, . . . , aσ(n−1) + 1) : σ is a permutation of n
}
.

Set Perm(∅) = {(0)}. Fix a function h : ω → ω<ω such that the range of h is equal
to the set

U =
⋃
F∈S

Perm(F ).

For k ∈ ω, letMk = D0(h(k)). We claim that the lattice DS = Shuf(Mk) satisfies
the desired conditions.

First, assume that the Turing degree of a set X belongs to the enumeration
spectrum of S. In other words, there is a computable function f(x) such that

S =
{
WX
f(n) : n ∈ ω

}
.
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For n, s ∈ ω, we define the finite set

Pn,s = Perm
(
WX
f(n),s

)
.

We build the X-computable sequence of lattices. At step s, we work with a fi-
nite collection of finite lattices At,sj , t ≤ s, j ≤ p(t, s). We ensure the following
conditions:

(1) for any n ≤ s and ā ∈ Pn,s, there is an index j ≤ p(n, s) such that the
lattices D0(ā) and An,sj are isomorphic,

(2) for any n ≤ s and j ≤ p(n, s), there is a tuple ā ∈ Pn,s such that An,sj ∼=
D0(ā), and

(3) An,sj ⊆ An,s+1
j for all n and j.

For example, assume that for some s, we have WX
f(0),s = {0, 1} and WX

f(0),s+1 =

{0, 1, 2}. Then at step s, we had p(0, s) = 1 and there were finite lattices A0,s
0
∼=

D0(0, 1, 2) and A0,s
1
∼= D0(0, 2, 1). At step s + 1, we set p(0, s + 1) = 5 and we

“glue“ new copies of D0(3) on top of the lattices A0,s
0 and A0,s

1 . We define A0,s+1
j ,

2 ≤ j ≤ 5, as fresh copies of the lattices D0(0, 3, 1, 2), D0(0, 3, 2, 1), D0(0, 1, 3, 2),
and D0(0, 2, 3, 1), respectively.

For n ∈ ω and j ≤ lims p(n, s), set Nn,j =
⋃
s∈ω A

n,s
j . Then it is not difficult

to prove that the structure Shuf(Nn,j) is an X-computable isomorphic copy of
the lattice DS . Since the structure DS is not automorphically trivial, the result of
Knight [21] implies that degT (X) lies in the degree spectrum of DS .

Now assume that A is an isomorphic copy of the lattice DS , and a is the Turing
degree of the atomic diagram of A. First, we prove the following algebraic lemma.

Lemma 3.1. Assume that k ∈ ω and g : D0
k ↪→ DS is an isomorphic embedding.

Then there are an index n ∈ ω and a lattice N ⊆ DS with the following properties:

(1) N is a copy of Mn in DS ,
(2) h(n) = (a0, a1, . . . , at−1, k, at+1, at+2, . . . , ap) for some p ∈ ω and t ≤ p,

and
(3) N = N0⊕0N1⊕0 . . .⊕0Nt−1⊕0 g(D0

k)⊕0Nt+1⊕0Nt+2⊕0 . . .⊕0Np, where
Ni ∼= D0

ai for all i.

Proof. Here we give the sketch of the proof. The omitted details can be easily
reconstructed or found in [17] or [18, pp. 68–71]. Note that if x and y are incom-
parable elements in DS , then they must belong to the same copy of some Mj in
DS . Hence, all the elements of g(D0

k) belong to the lattice N which is the copy of
Mn (in DS) for some n.

Assume that h(n) = (a0, a1, . . . , ap) and N = N0 ⊕0 N1 ⊕0 . . . ⊕0 Np, where
Ni ∼= D0

ai for all i ≤ p. Then one can use essentially the same argument as in [18]

to show that there is a number t ≤ p such that g(D0
k) ⊆ Nt. Therefore, we may

assume that g is an isomorphic embedding from D0
k into D0

at . By Proposition 2.1,
g is an isomorphism and at = k. �

We describe the construction of an a-c.e. enumeration νA of the family S.
At step s, we build a finite sequence of tuples ās0, ā

s
1, . . . , ā

s
q(s) and a sequence of

functions gs0, g
s
1, . . . , g

s
q(s) such that for every i ≤ q(s), gsi is an embedding of the

lattice D0(āsi ) into A, and gsi ⊆ gs+1
i . Set q(0) = −1.
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At step s + 1, search for the least b ≤ s and j ≤ q(s) such that there is an
embedding g∗ : D0(āsj , b) ↪→ A with the following properties: gsj ⊆ g∗ and y ≤ s for

all y from the range of g∗. If such numbers b and j exist, then define ās+1
j = (āsj , b)

and gs+1
j = g∗. After that, find the (least under Gödel numbering) function g′ such

that g′ embeds D0
0 into A and g′ ∩ gsi = ∅ for all i ≤ q(s). Set q(s+ 1) = q(s) + 1,

ās+1
q(s+1) = (0), and gs+1

q(s+1) = g′. If i ≤ q(s) and i 6= j, then define ās+1
i = āsi and

gs+1
i = gsi .

For n ∈ ω, let

νA(n) = {m ∈ ω : ∃s
(
the number (m+ 1) occurs in the tuple āsn

)
}.

It is easy to see that the enumeration νA is a-c.e. Moreover, Lemma 3.1 implies that
for every n, we have νA(n) ∈ S. The choice of the function g′ in the construction
above guarantees that for every F ∈ S, there is a number m such that νA(m) = F .
Thus, νA is an enumeration of S and a lies in the enumeration spectrum of S. This
concludes the proof of Theorem 3.1. �

Wehner [20] proved that there is a family S0 of finite sets such that the enumera-
tion spectrum of S0 contains precisely the non-zero degrees. This and Theorem 3.1
imply that distributive lattices can realize the degree spectrum obtained by Sla-
man [22] and Wehner [20], thus we have Theorem 1.1.

4. Relative computable categoricity

Before we prove Theorem 1.2 we give a detailed proof of the simpler result below.
Theorem 1.2 will have to deal with a more complicated coding components, but
many features of the below construction will also appear in the proof of Theorem 1.2.

Theorem 4.1. There is a computable distributive lattice A which is computably
categorical but not relatively computably categorical.

Proof. Fix an effective enumeration {(Θe, c̄e)}e∈ω of all c.e. families of existential
L0-formulas, where Θe is a family of formulas with parameters from c̄e. Without
loss of generality, we may assume that every Θe satisfies the following conditions:

(1) every formula ψ(x̄, c̄e) ∈ Θe is of the form

ψ = ∃y1∃y2 . . . ∃yn
(
φ1(x̄, ȳ, c̄e) & . . . & φk(x̄, ȳ, c̄e)

)
,

where every φi is either atomic, or negation of an atomic formula, and
(2) if φ is an atomic subformula of some ψ ∈ Θe, then φ satisfies one of the

following:
(2a) φ = (t0 = t1), where each ti is either a constant from c̄e or a variable,
(2b) φ = (t0 ∗ t1 = t2), where ∗ ∈ {∨,∧} and each ti is either a constant

from c̄e or a variable.

We also fix an effective enumeration {Me}e∈ω of all computable (partial) L0-
structures.

The computable distributive lattice A will be isomorphic to the shuffle sum
Shuf(Bk), where each of the structures Bk has the following property: there is a
number r ∈ ω such that Bk is isomorphic to one of the lattices D0(2r), D0(2r, 2r+1),
or D0(2r + 1, 2r).

We build the structure A and satisfy the following requirements:

R: A is a shuffle sum.
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Ie: If Me
∼= A, then Me

∼=∆0
1
A.

Sj : (Θj , c̄j) is not a Scott family for the structure A.

Fix a computable sequence of computable infinite, pairwise disjoint sets {Yk}k∈ω
such that

⋃
k Yk = N. In addition, we assume that for any i and j, if a, b ∈ Yi and

a <η b, then there is an element c such that c ∈ Yj and a <η c <η b.
We say that a number a is a k-colored box if a ∈ Yk. A lattice B lies in the box

a at stage s if B is the sublattice of As on the universe {(x, a) : x ∈ ω} ∩ |As|. A
box a is empty at stage s if As has no elements of the form (x, a), x ∈ ω. We use
the following convention: if a <η b and (x, a), (y, b) ∈ As, then (x, a) <As (y, b).

We ensure the following property: if two different k-colored boxes are non-empty
at the end of stage s, then they must contain isomorphic finite lattices.

We have two basic actions for building A:
(1) Putting a finite lattice N into an empty box a: The strategy takes a fresh

copy of the structure N on the universe {(x, a) : x ∈ F}, where F is a finite set,
and adds it to the lattice As.

(2) Glueing a finite lattice N to all k-colored boxes: For every non-empty k-co-
lored box a, the strategy proceeds as follows. If the box a contains a lattice B, then
the strategy “glues” a fresh copy of N on top of B. After the procedure, the box a
contains an isomorphic copy of (B ⊕0 N ).

At stage s, we say that a lattice N0 is younger than a lattice N1 if there are a
color k and different k-colored boxes a0 and a1 such that:

(1) Ni lies in the box ai at stage s, and
(2) there is a stage t < s at which the box a0 was non-empty and a1 was empty.

Strategy for meeting R. The only node working for the R-requirement is ∅
(i.e., the root of the tree of strategies). This node has only one outcome act. At
each stage s, it proceeds as follows. Assume that k ∈ ω and there is (the least)
k-colored box a such that it contains a lattice N at the beginning of the stage s.
For every such k, the R-strategy finds the least empty k-colored box b and puts N
into the box b.

Strategy for meeting Sj. Assume that σ is an Sj-strategy and

Θj = {∃ȳiψi(x̄i, ȳi, c̄j) : i ∈ ω},
where every ψi is a quantifier-free formula.

(1) Choose a large number r and find the least k such that every k-colored box
is empty at the current stage. Denote such k by c(σ). Assume that a0 is
the k-colored box with the least number. Put the lattice D0(2r) into the
box a0 and fix the tuple b̄ = (b0, b1, . . . , bN ) such that the newly added copy
of D0(2r) has the universe {b0 <ω b1 <ω . . . <ω bN}. We choose b̄ such
that bi /∈ c̄j for all i ≤ N .

(2) For every formula ψi, i ≤ s, search for a tuple d̄ such that As |= ψi(b̄, d̄, c̄j).
(3) If such a formula and a tuple are found, glue the lattice D0(2r + 1) to all

k-colored boxes.
(4) Wait until the next stage at which σ is accessible.
(5) Find the least k1 such that every k1-colored box is empty. Denote such k1

by c1(σ). Put a copy of D0(2r+ 1, 2r) into the least empty k1-colored box.
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While the strategy is searching at Step (2), it has outcome wait. Once it found
a formula ψi and a tuple d̄, it has outcome act.

Strategy for meeting Ie. Assume that σ is an Ie-node on the tree of strategies.
The node σ has outcomes ∞, 0, 1, 2, . . . . Let s be a current stage, and k be the
number of stages less than s at which σ had outcome ∞.

The strategy σ builds the mapping fσ using the back-and-forth method. We set
fσ[0] = ∅.

Let B(σ, s) be the substructure of As such that it contains precisely the following
elements:

(i) for each τ ⊂ σ such that τ ŵait ⊆ σ, the youngest (k + 1) lattices lying in
the c(τ)-colored boxes;

(ii) for each τ ⊂ σ such that τ âct ⊆ σ and τ has reached Step (5), the youngest
(k + 1) lattices in the c(τ)-colored boxes and the youngest (k + 1) lattices
in the c1(τ)-colored boxes;

(iii) for each τ 6⊂ σ such that τ is incomparable with σ k̂ and τ is an Sj-strategy,
the youngest l lattices in the c(τ)-colored boxes and the youngest l1 lattices
in the c1(τ)-colored boxes. Here l (l1) is the minimum of k + 1 and the
number of non-empty c(τ)-colored (c1(τ)-colored) boxes in As;

(iv) for each a ∈ ω such that {(x, a) : x ∈ ω} ∩ dom(fσ[s − 1]) 6= ∅, the lattice
lying in the box a.

At stage s, we search for an isomorphic embedding g : B(σ, s) ↪→Me,s such that
g ⊇ fσ[s−1]. If such an embedding g is found, then search for a sublattice C ⊆ Me,s

such that C is isomorphic to one of the lattices described in the conditions (i)–(iii)
above, and the universe of C is disjoint with the range of g. If such a lattice found,
then again search for an isomorphic embedding g1 : (g(B(σ, s))∪C) ↪→ As such that
g1 ⊇ g−1. If such g1 found, then σ has outcome ∞ at stage s and fσ[s] = g−1

1 .
Otherwise, σ has outcome k and fσ[s] = fσ[s− 1].

Construction. For an Sj-strategy, we order the outcomes as act<wait. For
an Ie-strategy, we order the outcomes as ∞ < . . . <2<1<0. The 0th level of the
priority tree is devoted to the R-strategy. For the other levels, each level is devoted
(in some effective fashion) to one of requirements Sj or Ie. As usual, at stage s we
visit strategies of length at most s, and they act in order of priority.

Verification. First, notice that actions of the R-strategy ensure that A is a
shuffle sum of finite distributive lattices. Hence, by construction, A is a computable
distributive lattice. The next lemma is similar to Lemma 3.1.

Lemma 4.1. Assume that t ∈ ω and g : D0
t ↪→ A is an isomorphic embedding. Let

r = [t/2]. There are b ∈ ω and a finite lattice N ⊆ A with the following properties:

(1) g(D0
t ) is a sublattice of N ,

(2) N is a structure on the universe {(x, b) : x ∈ ω} ∩ |A|,
(3) if t is odd, then there is a lattice N0

∼= D0(2r) such that N = N0 ⊕0 g(D0
t )

or N = g(D0
t )⊕0 N0,

(4) if t is even, then N satisfies one of the following:
(4a) N = g(D0

t ), or
(4b) there is a lattice N1

∼= D0(2r + 1) such that N = g(D0
t ) ⊕0 N1 or

N = N1 ⊕0 g(D0
t ).

Lemma 4.2. The structure A is computably categorical.
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Proof. Assume that a structure Me is isomorphic to A and σ is an Ie-strategy
along the true path.

For an Sj-strategy τ , suppose that a lattice N lies either in a c(τ)-colored box,
or in a c1(τ)-colored box. Consider the following four cases for τ :

(1) Suppose that τ ⊂ σ. Since σ is on the true path, N will never grow once
σ begins considering it. Thus, if N lies in the domain of fσ, then by Lemma 4.1,
fσ(N ) is one of the summands in the shuffle sumMe. In other words, the mapping
fσ is correct on N .

(2) If τ is incomparable with σ, then τ can never be visited after σ begins
considering N . Therefore, again, fσ is correct on N .

(3) Suppose that τ ⊇ σ̂∞. Then there are two subcases:
(3a) If the final outcome of τ is wait, then, as in Case (1), fσ is correct on N .
(3b) Assume that the final outcome of τ is act. If τ never reaches Step (5),

then there is r such that N ∼= D0(2r, 2r+ 1) and by Lemma 4.1, fσ eventually will
be correct on N . Suppose that τ reaches Step (5). Then the lattices added by τ
eventually will become isomorphic either to D0(2r, 2r + 1) or to D0(2r + 1, 2r) for
some fixed r. Assume that s0 is the first stage at which τ reaches Step (5). If at
stage s0, N [s0] lies in the domain of fσ[s0], then the choice of the mapping fσ[s0]
guarantees that N [s0] is isomorphic to D0(2r, 2r+1). Thus, after stage s0, N never
grows and fσ is correct on N .

(4) Suppose that τ ⊇ σ k̂ for some k ∈ ω. If σ considers N at some stage s, then
σ has had outcome∞ more than k times by stage s. Hence, N will never grow and
fσ is correct on N .

The argument above proves the following claim. If N is a summand from the
shuffle sum A and there is a stage s such that N [s] ∩ dom(fσ[s]) 6= ∅, then fσ(N )
is a summand in the shuffle sum Me.

We now show that the node σ̂∞ also belongs to the true path. In order to prove
this, assume that k is the true outcome of σ. Thus, k is the number of all stages
at which σ had outcome ∞. Let s0 be the last stage at which σ had outcome ∞.
Since Me

∼= A and fσ is correct on every summand from A, one can find a stage
s > s0 such that σ has outcome ∞ at stage s. This is a contradiction. Hence, ∞
is the true outcome of σ.

Since fσ uses the back-and-forth construction, fσ is a computable isomorphism
from A onto Me. �

Lemma 4.3. The lattice A is not relatively computably categorical.

Proof. Assume that σ is an Sj-strategy along the true path. Recall that b̄ =
b0, b1, . . . , bN is the tuple from Step (1) of the Sj-strategy σ. If the true outcome
of σ is wait, then there is no formula ψ ∈ Θj such that A |= ψ(b̄). Suppose that
the true outcome of σ is act. Fix the formula ψi and the tuple d̄ from Step (2) for
σ. Let N be the summand of A such that b̄ ∈ N . Note that N ∼= D0(2r, 2r + 1).

Since A is a shuffle sum, there is a summand N ′ in A with the following prop-
erties:

• For every y ∈ N ′, y /∈ (c̄j ∪ d̄).
• N ′ = N ′0 ⊕0 N ′1, where N ′0 ∼= D0(2r + 1) and N ′1 ∼= D0(2r).
• Fix a mapping g : b̄→ N ′1 such that g is an isomorphism of lattices, and set
b′i = g(bi) for all i ≤ N . Then for every x ∈ (c̄j ∪ d̄) \ b̄ and every i ≤ N ,
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we have

(x ≤A bi iff x ≤A b′i), and (bi ≤A x iff b′i ≤A x).

Suppose that dk ∈ d̄. Then set d′k = b′i if there is a number i ≤ N such that dk = bi.
Otherwise, define d′k = dk.

Since ψi is a quantifier-free formula and ∃ȳiψi ∈ Θj , it is not difficult to show
that A |= ψi(b̄

′, d̄′, c̄j). Therefore, the tuples b̄ and b̄′ are not automorphic and they
satisfy the same formula from Θj . Thus, Θj is not a Scott family for A. �

This concludes the proof of Theorem 4.1. �

5. Relative ∆0
2-categoricity

In this section we prove Theorem 1.2: There exists a computable distributive
lattice A which is computably categorical but not relatively ∆0

2-categorical.

Proof of Theorem 1.2. The proof is an extension of the proof of Theorem 4.1. The
notation is the same as in Theorem 4.1.

For a computable structure M and a Σc2-formula ψ, the statement “M |=
ψ(x̄, c̄)” is effectively equivalent to the formula (∀∞y)φ(x̄, c̄, y) for some computable
relation φ. Thus, we fix an effective enumeration {(Θj , c̄j)}j∈ω of all c.e. families
of formulas of this form, and we will diagonalize against (Θj , c̄j), j ∈ ω.

Again, we satisfy the following requirements:

R: A is a shuffle sum.
Ie: If Me

∼= A, then Me
∼=∆0

1
A.

Sj : (Θj , c̄j) is not a Scott family for A.

The lattice A will be isomorphic to the shuffle sum Shuf(Bk), where each of the
structures Bk is isomorphic to one of the following (for some r, q ∈ ω):

(A) D0
(
2r(2q + 3), 2r(2q + 1), . . . , 2r · 3

)
⊕0 D0

(
2r, 2r · 3, . . . , 2r(2q + 1)

)
,

(B) D0
(
2r(2q + 1), 2r(2q − 1), . . . , 2r · 3

)
⊕0 D0

(
2r, 2r · 3, . . . , 2r(2q + 3)

)
,

(C) D0
(
2r(2q + 5), 2r(2q + 3), . . . , 2r · 3

)
⊕0 D0

(
2r, 2r · 3, . . . , 2r(2q + 1)

)
,

(D) D0
(
2r(2q + 1), 2r(2q − 1), . . . , 2r · 3

)
⊕0 D0

(
2r, 2r · 3, . . . , 2r(2q + 5)), or

(E) the infinite sum D0(. . . , 2r · 5, 2r · 3, 2r, 2r · 3, 2r · 5, . . .).
Assume that N0 and N1 are finite lattices. We define the following additional

action for building A:
[N0,N1]-Gluing for all k-colored boxes: For every non-empty k-colored box a,

one proceeds as follows. If the box a contains a lattice B, then we glue a fresh copy
of N0 to bottom of B, and glue a copy of N1 on top of B. In other words, the
procedure constructs an isomorphic copy of (N0 ⊕0 B ⊕0 N1) in the box a.

The strategy for meeting R is the same as in Theorem 4.1.

Strategy for meeting Sj. Suppose that σ is an Sj-strategy. The node σ has
outcomes ∞, 0, 1, 2, . . . . Let s be a current stage, and k be the number of stages
less than s at which σ had outcome ∞. Suppose that

Θj = {(∀∞y)ψi(x̄i, c̄j , y) : i ∈ ω} ,
where every ψi is a computable relation. In the description below, we assume that
all newly added elements do not belong to c̄j . Set v0 = w0 = −1 and q0 = 3.



COMPUTABLE DISTRIBUTIVE LATTICES 11

(1) Let t < s be the last stage at which σ was accessible. If there is no such
stage, then set t = 0.

(2) If t = 0 (i.e., s is the first stage at which σ is visited), then choose a large
number r. For each i ∈ {1, 2}, proceed as follows. Find the least number
mi such that every mi-colored box is empty. Denote mi by ci(σ). Let ai be
the mi-colored box with the least number. Put the lattice D0(2r) into the
box ai. Fix the tuple b̄i which constitutes the universe of the newly added
copy of D0(2r). If i = 1, then do [0,D0(2r · 3)]-gluing for the m1-colored
box. If i = 2, then do [D0(2r · 3), 0]-gluing for the m2-colored box.

(3) If t 6= 0 and σ had outcome∞ at stage t, then we do [D0(2r(qt−2)), 0]-gluing
for all c1(σ)-colored boxes, and [0,D0(2r(qt−2))]-gluing for all c2(σ)-colored
boxes.

(4) Find the least (under Gödel numbering) pair (vs, ws) such that vs ≤ s,
ws ≤ s, and both ψws(b̄1, c̄j , y) and ψws(b̄2, c̄j , y) are true for all y with
vs ≤ y ≤ s. If there is no such pair, then set vs = ws = −1.

(5) If t = 0 or (vs, ws) = (vt, wt), then σ has outcome k and qs = qt.
(6) Otherwise, do [0,D0(2r(qt + 2))]-gluing for all c1(σ)-colored boxes and do

[D0(2r(qt + 2)), 0]-gluing for all c2(σ)-colored boxes. The strategy σ has
outcome ∞ and qs = qt + 2.

Strategy for meeting Ie. Let σ be an Ie-node in the tree of strategies. The
actions of σ are the same as in Theorem 4.1, modulo the following modifications in
the definition of the structure B(σ, s):

• In (i), we need to consider strategies τ ⊂ σ such that τ m̂ ⊆ σ for some
m ∈ ω.
• In (ii), we deal with strategies τ ⊂ σ such that τ̂∞ ⊆ σ. Obviously, here

we need not talk about Step (5).

Construction. Again, we order the outcomes as ∞ < . . . <2<1<0, and the
0th level of our priority tree is devoted to the R-strategy. As usual, the tree of
strategies is organized in some effective fashion, and the strategies act in order of
priority.

Verification. Note that the constructed structure A is a shuffle sum of dis-
tributive lattices.

Lemma 5.1. The lattice A is computably categorical.

Proof. Suppose thatMe
∼= A and σ is an Ie-strategy along the true path. Consider

an Sj-strategy τ and a lattice N ⊆ A such that N lies in a ci(τ)-colored box for
some i ∈ {1, 2}. First, we need to prove the following:

Claim. For every x ∈ N , fσ(x) is eventually defined. Moreover, fσ(N ) is a
summand in the shuffle sum Me.

We consider the only non-trivial case for τ : we assume that τ ⊇ σ̂∞. Let s0 be
the first stage at which τ was accessible. For simplicity, suppose that our τ chooses
r = 0, and N [s0] ∼= D0(1, 3).

Since Me is isomorphic to A, there is the least stage s′0 > s0 such that N [s0] ⊆
dom(fσ[s′0]). Similarly to Lemma 4.2, one can show that all the elements of
fσ(N )[s′0] lie in the same summand of Me. Hence, if τ never has outcome ∞,
then fσ is correct on N .
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Let s1 be the first stage at which τ has outcome∞. Evidently, s1 ≥ s′0. We have
N [s1] ∼= D0(1, 3, 5), and after stage s1, the strategy σ tries to extend fσ to N [s1]. If
σ fails to do it, then we consider the summand B inMe which contains fσ(N )[s′0].
The failure of σ implies that the lattice B is isomorphic neither to D0(1, 3, 5), nor
to D0(5, 3, 1). Thus Me 6∼= A; a contradiction. Therefore, there is the first stage
s′1 > s1 such that N [s1] ⊆ dom(fσ[s′1]).

If τ is never visited after stage s1, then again, fσ is correct on N . Therefore,
consider the first stage s2 > s1 at which τ is visited. Note that s2 ≥ s′1 and
N [s2] ∼= D0(3, 1, 3, 5). If σ fails to extend fσ to N [s2], then the summand B is
isomorphic neither to D0(3, 1, 3, 5), nor to D0(5, 3, 1, 3). This implies thatMe 6∼= A.
Hence, we can find the least s′2 > s2 such that N [s2] ⊆ dom(fσ[s′2]). Using the same
reasoning, one proceeds to costruct the sequence of stages s0 < s′0 ≤ s1 < s′1 ≤ . . .
such that for every m ∈ ω,

N [s2m+1] ∼= N [s2m]⊕0 D0(2m+ 5), N [s2m+2] ∼= D0(2m+ 3)⊕0 N [s2m+1],

and N [sm] ⊆ dom(fσ[s′m]).
The argument above shows that the structure N satisfies one of the two cases:

(a) N is isomorphic to one of the lattices from (A)–(D), and there is a stage
s∗ such that N [s∗] ⊆ dom(fσ[s∗]) and N [s] = N [s∗] for all s ≥ s∗; or

(b) N is isomorphic to the lattice from (E), and for every x ∈ N , there is a
stage s such that x ∈ dom(fσ[s]).

In both cases, the mapping fσ is correct on N . This concludes our informal expla-
nation.

Using the claim, it is not difficult to prove that the node σ̂∞ belongs to the
true path and fσ is a computable isomorphism from A onto Me. �

Lemma 5.2. The structure A is not relatively ∆0
2-categorical.

Proof. Suppose that Θj is a Scott family for the lattice A. Let σ be the Sj-strategy
along the true path. Fix the tuples b̄1 and b̄2 from Step (2) for the node σ.

First, assume that there is ψ ∈ Θj such that

(1) A |= ψ(b̄1) & ψ(b̄2).

Fix the least i such that the formula ψ = (∀∞y)ψi(x̄i, c̄j , y) satisfies (1). We find
a stage s∗ and a number v∗ such that (vs, ws) = (v∗, i) for all s ≥ s∗. Let m be
the number of all stages t ≤ s∗ such that σ has outcome ∞ at stage t. After stage
s∗, the outcome of σ is always m. This implies that the tuple b̄1 lies in one of the
lattices from (B), and b̄2 belongs to a lattice from (A). Hence, the tuples b̄1 and b̄2
are not automorphic, and Θj cannot be a Scott family for A.

Now assume that there is no formula ψ ∈ Θj with the property (1). Then the
value (vs, ws) changes infinitely often, and the true outcome of σ is ∞. Thus, each
b̄i lies in the infinite lattice from (E), and the tuples b̄1 and b̄2 are automorphic.
This contradicts the assumption that Θj is a Scott family for A. �

This concludes the proof of Theorem 1.2. �
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K. Ambos-Spies, B. Löwe, and W. Merkle (editors), Mathematical Theory and Computational

Practice, Proc. CiE 2009, (Lect. Notes Comp. Sci., 5635), 198–207. Springer, Berlin, 2009.

[5] M. Harrison-Trainor, A. Melnikov, R. Miller, A. Montálban, Computable functors and ef-
fective interpretability, J. Symb. Log., to appear.

[6] A. Montálban, Computability theoretic classifications for classes of structures, Pro-

ceedings of ICM 2014, to appear. URL: https://math.berkeley.edu/~antonio/papers/

ClassesOfStructures.pdf

[7] R.G. Downey, Computability theory and linear orderings. In: Yu.L. Ershov, S.S. Goncharov,

A. Nerode, and J.B. Remmel (editors), Handbook of Recursive Mathematics, vol. 2, (Stud.
Logic Found. Math., 139), 823–976. Elsevier Sci. B.V., Amsterdam, 1998.

[8] A. Frolov, V. Harizanov, I. Kalimullin, O. Kudinov, R. Miller, Spectra of highn and non-
lown degrees, J. Log. Comput., 22:4 (2012), 755–777.

[9] L.J. Richter, Degrees of structures, J. Symb. Log., 46:4 (1981), 723–731.

[10] R. Miller, The ∆0
2-spectrum of a linear order, J. Symb. Log., 66:2 (2001), 470–486.

[11] S.S. Goncharov, V.D. Dzgoev, Autostability of models, Algebra Logic, 19:1 (1980), 28–37.

[12] J.B. Remmel, Recursively categorical linear orderings, Proc. Am. Math. Soc., 83:2 (1981),

387–391.
[13] C.J. Ash, Recursive labelling systems and stability of recursive structures in hyperarithmeti-

cal degrees, Trans. Am. Math. Soc., 298:2 (1986), 497–514.

[14] C.F.D. McCoy, ∆0
2-categoricity in Boolean algebras and linear orderings, Ann. Pure Appl.

Logic, 119:1–3 (2003), 85–120.

[15] Ch.F.D. McCoy, Partial results in ∆0
3-categoricity in linear orderings and Boolean algebras,

Algebra Logic, 41:5 (2002), 295–305.
[16] A.N. Frolov, Effective categoricity of computable linear orderings, Algebra Logic, 54:5 (2015),

415–417.

[17] V.L. Selivanov, Algorithmic complexity of algebraic systems, Math. Notes, 44:6 (1988), 944–
950.

[18] A. Turlington, Computability of Heyting algebras and distributive lattices. PhD thesis, Uni-
versity of Connecticut, 2010.

[19] N.A. Bazhenov, Effective categoricity for distributive lattices and Heyting algebras, submit-

ted.
[20] S. Wehner, Enumerations, countable structures and Turing degrees, Proc. Am. Math. Soc.,

126:7 (1998), 2131–2139.

[21] J.F. Knight, Degrees coded in jumps of orderings, J. Symb. Log., 51:4 (1986), 1034–1042.
[22] T.A. Slaman, Relative to any nonrecursive set, Proc. Am. Math. Soc., 126:7 (1998), 2117–

2122.

https://math.berkeley.edu/~antonio/papers/ClassesOfStructures.pdf
https://math.berkeley.edu/~antonio/papers/ClassesOfStructures.pdf

	1. Introduction
	2. Preliminaries
	3. Degree spectra
	4. Relative computable categoricity
	5. Relative 02-categoricity
	References

