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Abstract. We use computability-theoretic tools to measure the complexity

of recognising a direct decomposition of an abelian group from its symbolic

presentation. More specifically, we compare degrees of decidable categoricity
of abelian groups and their natural direct summands.

We prove the following results. If G is a decidable homogeneous completely

decomposable group, then the degree of decidable categoricity of G is either
0 or 0′. As a non-trivial and unexpected application of our methods, we

show that every decidable copy of a non-divisible homogeneous completely

decomposable group has an algorithm for linear independence. We then look
at torsion abelian groups and compare them to abelian p-groups. We prove

that every decidable reduced abelian p-group of a finite Ulm type has degree of
decidable categoricity c ∈ {0(n) : n ∈ ω}. In contrast, for every Turing degree

d d.c.e. in and above 0(2k+1) there is a decidable reduced torsion abelian group

G of a finite Ulm type such that G has degree of decidable categoricity d.

1. Introduction

It is well-known that direct decompositions play a central role in the classification
of broad natural subclasses of abelian groups. For instance, each torsion abelian
group splits into the direct sum of its maximal p-subgroups. It may seem obvious
that the classification of countable torsion abelian groups is thus completely reduced
to the Ulm classification of their p-components. Also, consider a direct power of
some fixed H 5 (Q,+), say G =

⊕
i∈ωH. Such groups are called homogeneous

completely decomposable. It is natural to assume that classifying homogeneous
completely decomposable groups is essentially the same as classifying subgroups
of the rationals by their Baer types [3]. Interestingly, the classifications of torsion
and homogeneous completely decomposable abelian groups are not necessarily as
well-behaved as the classifications of their natural summands; details below. We
have only started to understand these subtle properties of direct decompositions
which are related to definability and computability. In this article we use methods
of computable structure theory to systematically investigate into these effects.

Computable structure theory [1, 16] is a modern subject in mathematical logic
invented by Mal’tsev [31, 32] and Rabin [37] in the 1960s. The main objects of such
studies are computable algebraic structures. An algebraic structure is computable if
its domain can be coded in such a way that the algebraic operations become Turing
computable upon the codes of elements; such a coding is called a computable copy
or a constructivisation of the structure. For example, a group-presentation with
solvable word problem [30] can be viewed as a computable copy of the group,
see [33] for details. For almost 60 years computable structure theory was a self-
motivated subject that was focused on algorithmic aspects of algebra. Recently the
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theory has found applications beyond computable mathematics, most notably in
relation to Vaught Conjecture in model theory [35] and to classification problems
in commutative algebra [23, 14, 15, 38].

How is Turing computability related to classification? We give several examples
coming from abelian group theory. In the 1970s, Fuchs and others discovered patho-
logical decompositions and proved the existence of “large” indecomposable groups
[21]. These discoveries suggested that the approach to classification of abelian
groups up to isomorphism via direct decomposition has rather significant limita-
tions, see the chapter on indecomposable groups in [21] for a discussion. Recently,
this intuition has been formally clarified by Riggs [38] who used computability-
theoretic tools to show that there is no reasonable characterisation of countable
directly indecomposable abelian groups. The decomposability problem is naturally
Σ1

1, meaning that it involves a second-order existential quantification over all sub-
groups of the given group. Riggs showed that the problem is Σ1

1-complete; this
means that any other Σ1

1-problem can be reduced to the decomposability problem
for countable abelian groups. Although the result of Riggs is formally stated in
terms of computable groups, it can be re-formulated in purely syntactical or topo-
logical terms to cover all countable groups. Thus, no “local” algebraic condition
can possibly capture direct decomposability of a countable abelian group.

In contrast to indecomposable groups, completely decomposable groups have a
rather developed algebraic structural theory, see [3, 21, 28]. A group is completely
decomposable if it splits into a direct sum of additive subgroups of the rationals.
Thier classification theory works well if we have access to at least one full decom-
position of a given group. However, suppose all we have is a group presentation
X in some general sense, e.g., by generators and relations. Is X completely de-
composable? It seems that asking whether X admits a complete decomposition
is a proper second-order question, just as in the case of indecomposable groups.
Using methods of computable structure theory, Downey and Melnikov [15] showed
that it takes six alternations of merely first-order quantifiers to say that a group is
completely decomposable [15]. This upper bound is a lot better than Σ1

1 for inde-
composable groups; no finite number of first-order quantifiers can possibly capture
a Σ1

1-complete property. Completely decomposable groups do admit a reasonable
classification, and the result of Downey and Melnikov formally measures the com-
plexity of this classification.

If we can measure the complexity of a classification problem, then we can compare
the complexities of two such problems. For instance, is classifying countable com-
pletely decomposable groups harder than describing their elementary summands?
Here the situation is somewhat unexpected. Consider the homogeneous case, that
is, assume that all the elementary summands of a completely decomposable group
are isomorphic to some fixed H 5 Q. Downey and Melnikov [11] proved that
reconstructing a full decomposition of a homogeneous completely decomposable
G = ⊕iH based solely on its presentation requires an analysis of three first-order
quantifiers, and this upper bound is optimal. In stark contrast, enumerating the
Baer type of H 5 Q is a quantifier-free process. Therefore, any complete decom-
position of ⊕iH encodes a lot more information about the group than the Baer
invariant of its elementary building block H.

In the results discussed above, the mentioned first-order quantification is often
external in the following sense. For example, saying that two elements a and b of an
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abelian group are linearly (Prüfer) independent is the same as asking whether there
exist integers m,n 6= 0 such that ma+nb = 0. This statement involves an existential
quantification over m and n, but integers are not in the language of additive groups.
However, from the perspective of Turing computability, searching for a witness in
the group is the same as searching for a Gödel index of a formula of the form
ma + nb = 0 that holds in the group. This external formula can be transformed
into a first-order statement within the hereditarily finite expansion of the group,
as clarified in [18]. Another way of viewing such formulae involves computable
infinite conjunctions and disjunctions; the resulting language Lcω1ω enjoys several
nice syntactical properties such as a variant of compactness [1].

It is natural to ask if the subtle effects of direct decompositions discussed above
can be described using only internal first-order properties, in the usual model-
theoretic sense. To make the question formal we use the notion of a decidable
group suggested by Ershov [17]. In a decidable group there is an algorithm that
decides (internal) first-order statements about tuples of its elements. A computable
copy with such an algorithm is called a strong constructivisation of the group, or
its decidable copy. Decidable algebraic structures – and decidable abelian groups
in particular – are much better behaved than the more general computable struc-
tures [17, 36, 27, 5]. Hopefully, having access to the first-order diagram of a group
will allow for a much simpler description of decomposability.

Our first main result partially confirms our intuition. It is stated in terms of
(Turing) degrees of categoricity [20]. The degree of categoricity of a computable
algebraic structure A is the least Turing degree – if it exists – that can compute
an isomorphism between any two computable copies of A. Similarly, the degree
of decidable categoricity [24] of a decidable A is the least Turing degree that can
compute an isomorphism between any two decidable copies of A. There is a tight
connection between Scott families – these are Lcω1ω back-and-forth invariants of a
group – and the number of iterations of the Halting problem necessary to compute
its degree of (decidable) categoricity. For example, modulo a mild assumption on
uniformity, DegCat(G) = 0(n) says that the automorphism orbits of tuples ḡ ∈ G
can be uniformly described by Lcω1ω-formulae of complexity Σcn+1 where n + 1 is

optimal. (As usual, 0(n) stands for the nth iterate of the Halting problem.)
Obviously, the degree of categoricity of any H 5 Q is 0, which is the Turing

degree of computable sets. In contrast, Downey and Melnikov [11] constructed ex-
amples of homogeneous completely decomposable groups having 0′′ as their degree
of categoricity. It is not hard to see the their result is equivalent to saying that cal-
culating a complete full decomposition of such group may require 0′′. Their result
can be fully relativised and re-stated in terms of Lcω1ω; we omit it. We prove:

Theorem 1.1. The degree of categoricity of any decidable homogeneous completely
decomposable group is either 0 or 0′, where both possibilities can be realised.

The result is relativisable, so it is not really restricted to (Turing) decidable
copies. It follows that allowing access to the first-order diagram of a group removes
some of the pathology related to decomposition, but not all of it. However, our
methods imply that decidable homogeneous completely decomposable groups are
rather well-behaved. Our second main result illustrates one such pleasant applica-
tion of our techniques to independent sets.
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Recall that linear (Prüfer) independence is not an “internal” first-order property.
Also, a Prüfer independent set does not have to agree with any complete decomposi-
tion of a completely decomposable group unless the group is divisible. In our search
for a uniform proof of Theorem 4.3 we discovered the following highly unexpected
result which connects the seemingly unrelated properties of direct decomposability,
decidability, and Prüfer independence.

Theorem 1.2. Suppose that G is a homogeneous completely decomposable group
which is not divisible. Then every decidable copy of G has an algorithm for linear
independence.

It is well-known that every computable torsion-free abelian group has a com-
putable copy with a computable basis [10, 25], but this is typically some other copy
of the group. We emphasise that the theorem above holds for every decidable copy
of the group. Both the result itself and its proof are somewhat counter-intuitive.
We conjecture that omitting at least one of the three premises in the statement
of the theorem will allow for a counter-example. Furthermore, it seems that we
cannot significantly relax the algebraic assumption on the group G in the theorem.

As a consequence of Theorem 4.4, the proof of Theorem 4.3 must be non-uniform
for the following reason. The only diagonalisation tool in the case of divisible abelian
groups is linear independence. However, it follows that in the non-divisible case we
provably cannot use independence to diagonalise. Non-uniformity of proofs seems
to be somewhat typical in the study of decidable abelian groups. The proof of our
third main result on torsion groups will be “even more” non-uniform.

We turn to a discussion of torsion abelian groups. Recall that a torsion abelian
group splits into the direct sum of its maximal p-subgroups. This elementary fact
typically justifies the almost total elimination of torsion abelian groups from alge-
braic texts. Clearly, the decomposition into p-components is uniformly computable,
so it may seem that the computable theory of torsion abelian groups can also be
completely reduced to that of p-groups. This is unfortunately not the case. Com-
putably categorical abelian p-groups – these are the groups whose degree of cat-
egoricity is 0 – admit an explicit algebraic description [40, 22, 33]. In contrast,
Melnikov and Ng [34] have recently showed that no such explicit description is pos-
sible in the general torsion case. Intuitively, each separate p-component of a torsion
abelian group can be used as an individual coding location, while abelian p-groups
are “smooth”.

Computable categoricity is not relativisable for torsion abelian groups [34], but
the induced notion of decidable categoricity is relativisable for arbitrary struc-
tures [36]. With this in mind, we sought for a positive result saying that decidable
torsion and decidable p-groups are indistinguishable from the point of view of cate-
goricity. Our analysis of Ulm type 1 groups supported this intuition, see Section 3.1.
Nonetheless, we discovered that degrees of decidable categoricity are not preserved
under taking direct sums of p-groups of Ulm type > 1, and therefore the discussed
above pathologies are intrinsically not first order in the model-theoretic sense.

Theorem 1.3. Let K be the class of all decidable torsion abelian groups of finite
Ulm type1.

1This means that the types of p-components of each such group are bounded by some n ∈ ω
specific to the group.
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(1) If G in K is a p-group, then its degree of decidable categoricity is of the
form 0(n) for some n ∈ ω.

(2) In contrast, each Turing degree d.c.e. in and above 0(2k+1) (for some k ∈ ω)
is the degree of decidable categoricity of some G in K.

The notion of a d.c.e. in and above degree will be defined in due course; such
degrees are much more general than just the finite iterates of the Turing jump in (1)
of the theorem.

Recall that we mentioned that our result on torsion groups will be highly non-
uniform. The proof of the first clause uses three substantially different strategies
in three different cases. The proof also exploits various techniques such as com-
putable p-basic trees [2, 12] and the Ash-Knigh-Oates jump inversion [2]. In order
to build decidable presentations of p-groups in (2), we introduce a new jump in-
version which allows us to pass from a ∆0

2 computable group to a decidable one
(see Proposition 3.3). All these techniques are specific to groups of finite Ulm type,
and usually work only for reduced p-groups. We leave open whether (1) can be
extended to the non-reduced case, or beyond groups of finite Ulm type. However,
it is not hard to show that the natural upper bounds in (1) will still remain opti-
mal (compare this to Barker [4]), but the coding part in (1) becomes an issue at
transfinite levels.

The outline of the paper is as follows. Section 2 contains the preliminaries.
In Section 3, prove the results on decidable torsion groups. Section 4 deals with
homogeneous completely decomposable groups.

2. Preliminaries

All considered groups are abelian. By P we denote the set of all prime numbers.
For p ∈ P and n ∈ ω, Z(pn) denotes the cyclic group of order pn, and Z(p∞) is the
quasicyclic p-group. For k ∈ ω, pk is the kth prime number (under the standard
ordering).

For a structure S, Th(S) denotes the first-order theory of S. For a string σ ∈
ω<ω, len(σ) denotes the length of σ.

2.1. Decidable categoricity. Let d be a Turing degree. A decidable structure S
is decidably d-categorical if for any decidable copy A of S, there is a d-computable
isomorphism from A onto S. If d = 0, then we say that S is decidably categorical.

Decidably categorical structures have a nice model-theoretic characterization
[36]. To state it we need a few more definitions. Suppose that L is a countable
language, and M is an L-structure. A first-order L-formula ψ(x0, . . . , xn) is a
complete formula of the theory Th(M) if M |= ∃x̄ψ(x̄) and for any L-formula
ϕ(x̄), we have either M |= ∀x̄[ψ(x̄) → ϕ(x̄)], or M |= ∀x̄[ψ(x̄) → ¬ϕ(x̄)]. A
structureM is an atomic model if any tuple ā fromM satisfies a complete formula
of Th(M). Recall that a structure M is a prime model (of the theory Th(M))
if M is elementary embeddable into any model of Th(M). It is well-known (see,
e.g., [8]) that M is a prime model if and only if M is a countable atomic model.
A structure M is called an almost prime model if there is a finite tuple c̄ from M
such that (M, c̄) is a prime model.
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Theorem 2.1 (Nurtazin’s criterion [36]). Suppose that M is a decidable structure
in a language L. Then M is decidably categorical if and only if there is a finite
tuple c̄ from M with the following properties:

a) (M, c̄) is a prime model;
b) given an (L ∪ {c̄})-formula ψ(x̄), one can effectively check whether ψ is a

complete formula of the theory Th(M, c̄).

In particular, any decidably categorical structure is an almost prime model.

The decidable categoricity spectrum of a decidable structure S is the set

DecCatSpec(S) = {d : S is decidably d-categorical}.

If c is the least degree in the spectrum DecCatSpec(S), then c is called the degree
of decidable categoricity of S.

Goncharov [24] initiated the systematic investigation of decidable categoricity
spectra. In particular, Goncharov [24] showed that any computably enumerable
(c.e.) Turing degree is a degree of decidable categoricity for some prime model.
In [5] this result was extended to hyperarithmetical degrees: If α is a computable
successor ordinal and d is a degree such that d ≥ 0(α) and d is c.e. in 0(α), then d
is a degree of decidable categoricity.

Note that decidable categoricity is closely connected to computable categoricity:
For a Turing degree d, a computable structure S is d-computably categorical if for
any computable presentation A of S, there is a d-computable isomorphism from A
onto S. The degree of categoricity of S is the least degree d such that S is d-com-
putably categorical. For various results on degrees of categoricity, see [6, 9, 19, 20].

2.2. Decidable abelian groups. For a non-zero n ∈ ω, let (n | ·) be the following
unary predicate:

(n | x) iff ∃y(ny = x).

A subgroup A of G is pure if for all a ∈ A and n ∈ ω \ {0}, (n | a) in G implies
that (n | a) in A. If S is a subset of a torsion-free G, then 〈S〉∗ denotes the least
pure subgroup of G that contains S. (If the group is not torsion-free then there
may be no such least pure subgroup.)

Proposition 2.1 (Ershov [17], see also [27, Proposition 1.1]). A countable abelian
group G is decidable if and only if the theory Th(G) is decidable and the structure
(G, pk | ·)p∈P, k∈ω is computable.

Following [17, Chap. 3, § 4] and [27, § 7.1], we recall the definitions of Szmielew
invariants. Let G be an abelian group and G{pn} = {x ∈ G : pnx = 0}. For p ∈ P
and non-zero n, k ∈ ω, one can define the following first-order formulas:

(1) G |= Ap,n,k iff G contains ⊕1≤i≤kZ(pn) as a pure subgroup. (Ap,n,k is an
∃∀-formula.)

(2) G |= Bp,n,k iff ⊕1≤i≤kZ(pn) is a subgroup of G. (Bp,n,k is an ∃-formula.)
(3) G |= C ′p,n,k(g1, . . . , gk) iff the elements g1, . . . , gk ∈ G satisfy the following:

If we consider their images g′1, . . . , g
′
k in the quotient group G = G/G{pn},

then g′1 + pG, . . . , g′k + pG are linearly independent in G/pG. (C ′p,n,k is an

∀-formula.)
(4) Cp,n,k = ∃x1 . . . ∃xkC ′p,n,k(x1, . . . , xk). (This is an ∃∀-formula.)

The Szmielew invariants of G are defined as follows.



DECOMPOSITIONS OF DECIDABLE ABELIAN GROUPS 7

a) αp,n(G) = sup{k ∈ ω : G |= Ap,n,k}.
b) βp(G) = inf{sup{k ∈ ω : G |= Bp,n,k} : n ∈ ω}.
c) γp(G) = inf{sup{k ∈ ω : G |= Cp,n,k} : n ∈ ω}.

Szmielew [41] proved that abelian groups G and H are elementarily equivalent if
and only if G and H have the same Szmielew invariants.

2.3. Effective algebra for torsion groups. Here we give a brief overview of
effective algebraic techniques that will be used in the proofs of the results on torsion
groups.

Let A be an abelian group. The p-height of an element a ∈ A is defined as
follows:

hAp (a) =

{
maximal k ∈ ω such that pk | a in A, if such a k exists,
infinite, otherwise.

We say that the p-height hAp is computable if it is a computable function from the
domain of A into ω ∪ {∞}. If the group A is clear from the context, then we will
omit the superscript A in hAp .

For a p-group A, the elements of infinite p-height generate a subgroup A′ of A.
Iterating this process define a subgroup A(α) for every ordinal α. The non-zero
elements of Aα = A(α)/A(α+1) have finite height. If A is countable, then there is a
countable α such that

A(α) = A(α+1).

The least such α is called the Ulm type of the p-group A.
One can show that the Ulm factors Aα are direct sums of cyclic p-groups. This

leads to the following well-known classification of isomorphism types:

Theorem 2.2 (Ulm). The isomorphism type of a countable reduced p-group is
completely determined by the isomorphism types of its Ulm factors.

Call a countable p-group A multicyclic if it is isomorphic to a direct sum of cyclic
and quasicyclic p-groups, i.e.

A ∼=
⊕

0<k<ω

(
⊕

0≤i<nk

Z(pk))⊕
⊕

0≤i<m

Z(p∞),

where 0 ≤ nk ≤ ω and 0 ≤ m ≤ ω. The character of a multicyclic p-group A is the
set

χ(A) = {(k, l) : 0 < k < ω, 0 < l < 1 + nk}.
We say that the character χ(A) is bounded if there is a natural number K such
that k ≤ K for any pair (k, l) from χ(A). A set X ⊆ ω2 is called a character if
X = χ(B) for some multicyclic p-group B.

Proposition 2.2 (obtained in the proof of [13, Theorem 3.1]). Let A be a com-
putable multicyclic p-group. Then one can find, effectively in hAp , a complete de-
composition

⊕
i Vi of A into cyclic and quasicyclic summands. Furthermore, the

procedure is uniform in p, A, and hAp .

We will use the technique of p-basic trees to work with p-groups.

Definition 2.1 ([39]). A p-basic tree is a set X together with a binary operation
pn · x of the sort {pn : 0 < n < ω} ×X → X such that:

(1) there is a unique element 0 ∈ X for which p · 0 = 0,
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(2) pk · (pm · g) = pk+m · g, for all g ∈ X and k,m ∈ ω, and
(3) for every element x ∈ X, there is a natural number n with pn · x = 0.

If a prime p is fixed, then one can think of a p-basic tree as a rooted tree with
0 being the root. Given a p-basic tree X, one obtains a p-group G(X) as follows:
The set X \ {0} is treated as the set of generators for G(X), and we add px = y
into the collection of relations if p · x = y in X. Every countable abelian p-group
is generated by some p-basic tree [39]. Each element of the group G(X) can be
uniquely expressed as

∑
x∈X mxx, where mx ∈ {0, 1, . . . , p− 1}.

Lemma 2.1. Let T be a computable p-basic tree such that the relation

TR(x, k) := (the tree rank of x is at least k), where x ∈ T, k ∈ ω,

is computable. Then the p-group G(T ) is decidable if and only if the theory Th(G(T ))
is decidable.

Proof. Suppose that Th(G(T )) is decidable. Given a non-zero element g ∈ G(T ),
one can effectively find the elements x0, . . . , xn ∈ T such that g =

∑
i≤nmixi,

where mi ∈ {1, 2, . . . , p − 1}. Then the condition (pk | g) holds if and only if the
tree rank of every xi is at least k. Hence, by Proposition 2.1, the group G(T ) is
decidable. �

Non-isomorphic trees can produce isomorphic p-groups. Here we will not give a
complete description of the congruence relation ∼ on rooted trees which is defined
by the rule: T ∼ X iff the groups G(T ) and G(X) are isomorphic. The reader
is referred to [39] for the detailed analysis of ∼. Instead, we will describe an
elementary transformation of a tree T which does not change the isomorphism type
of the corresponding p-group G(T ).

Suppose that T is a p-basic tree (treated as a rooted tree). Consider the following
procedure:

Take a simple chain extending v ∈ T , detach it, and

attach this chain to the root of T .

The procedure is called stripping. If the tree rank of v does not change after
stripping, then the stripped tree T1 and the original tree T give rise to isomorphic
p-groups: G(T1) ∼= G(T ). This process can be iterated: informally speaking, one
can replace infinitely many simple chains at once (while preserving tree ranks),
and obtain a fully stripped tree representing the same group. For example, a fully
stripped tree for a reduced p-group of Ulm type 1 is just a collection of finite simple
chains attached to 0.

In our proofs, we will also use a more subtle notion of the p-height, sometimes it
is called the ordinal p-height : Consider a p-basic tree T which represents a p-group
A. If g =

∑
v∈F mvv, where F is a finite subset of T and 0 < mv < p, then the

p-height of v is the minimum of the tree-ranks of v ∈ F . The definition does not
depend on the choice of T , and it can be given by using a direct approach which
does not refer to trees at all. Furthermore, if hAp (g) = k < ω, then the ordinal

p-height of g is equal to k. If hAp (g) is infinite, then the ordinal p-height of g is
either an infinite ordinal, or ∞. Hence, when it is clear from the context, we will
not specify which particular notion of p-height we use.
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Theorem 2.3 (Ash, Knight, and Oates [2]; Khisamiev [26]). Suppose that A is a
countable reduced p-group of Ulm type N < ω. Then the following conditions are
equivalent:

(1) A has a computable copy;
(2) A has a computable p-basic tree representing it;
(3) (a) for every i < N , the character χ(Ai) is a Σ0

2i+2 set, and
(b) for every i < N , the set

#Ai := {n : (n, 1) ∈ χ(Ai)}

is 0(2i)-limitwise monotonic.

For a natural number n, a computable structure S is relatively ∆0
n categorical

if for any copy A ∼= S with domain subset of ω, there is a ∆0
n(A)-computable

isomorphism from A onto S.

Proposition 2.3 (Barker [4, Proposition 6.6]). Let k be a natural number, and A
be a computable reduced p-group.

(1) If A(k+1) is a finite group and the character χ(Ak) is unbounded, then A is
relatively ∆0

2k+2 categorical.
(2) Suppose that Ak is isomorphic to

F ⊕
⊕
i∈ω

Z(pm),

where 0 < m < ω and F is a finite group. Then A is relatively ∆0
2k+1

categorical.
(3) Suppose that χ(Ak) is bounded and Ak is isomorphic to

B ⊕
⊕
i∈ω

Z(pl)⊕
⊕
j∈ω

Z(pm),

where B is a group and 0 < l < m < ω. Then A is relatively ∆0
2k+2

categorical.

In particular, any computable reduced p-group of Ulm type N < ω is relatively
∆0

2N categorical.

3. p-Groups vs. torsion groups

In this section, we show that any decidable reduced p-group has degree of de-
cidable categoricity c ∈ {0(n) : n ∈ ω} (Theorem 3.1). On the other hand, every
Turing degree d which is d.c.e. in and above 0(2k+1), k ∈ ω, is a degree of decid-
able categoricity for some reduced torsion group (Theorem 3.3). We start with the
case of Ulm type 1, where we show that there is no difference between degrees of
decidable categoricity of p-groups and torsion groups (Proposition 3.1).

3.1. Ulm type 1. We start from considering the simplest case — groups of Ulm
type 1. The theorem below shows that these groups do not witness the differences
that we aim to illuminate.

Proposition 3.1. Any decidable torsion group of Ulm type 1 has degree of decidable
categoricity d ∈ {0,0′}.
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The proof consists of three parts: Lemma 3.1 establishes the statement of the
theorem in the reduced case. Lemma 3.2 considers p-groups of Ulm type 1. In
particular, it gives a criterion of decidable categoricity for multicyclic p-groups.
At last, Lemma 3.3 uses the preceding two lemmas to complete the proof of the
theorem.

Lemma 3.1. Any decidable reduced torsion group of Ulm type 1 is decidably cate-
gorical.

Proof. Suppose that A is a decidable reduced torsion group of Ulm type 1. For a
prime p, consider the p-component Ap of A. Since A has Ulm type 1, Ap is a mul-
ticyclic p-group. Note that the structures (Ap, p

k |)k∈ω are computable, uniformly
in p.

Let B be a decidable copy of A. It is sufficient to build (uniformly in p) a
computable isomorphism fp from Ap onto Bp. Since A is reduced and decidable,

the p-heights h
Ap
p and h

Bp
p are computable. Using Proposition 2.2, we construct

effective complete decompositions Ap =
⊕

i∈I Ui and Bp =
⊕

i∈I Vi into cyclic
summands. Furthermore, given i, one can effectively calculate the orders of Ui
and Vi. Therefore, using a back-and-forth construction, it is not hard to build a
computable isomorphism fp : Ap ∼= Bp. �

Lemma 3.2. Suppose that A is a decidable p-group of Ulm type 1. Then the
following hold:

(a) If A is reduced or the character χ(A) is bounded, then A is decidably cate-
gorical.

(b) If A is not reduced and χ(A) is unbounded, then A has degree of decidable
categoricity 0′.

In particular, the degree of decidable categoricity for A is either 0 or 0′.

Proof. (a) The reduced case was already discussed in Lemma 3.1. Suppose that
A is a decidable non-reduced multicyclic p-group with a bounded character. Fix
a natural number K such that the order of any cyclic summand in A is less than
pK . Then for an element a ∈ A, the condition hp(a) =∞ is equivalent to (pK | a).
Hence, the p-height hAp is computable, and one can show, similarly to the proof of
Lemma 3.1, that A is decidably categorical.

(b) Let A be a decidable non-reduced multicyclic p-group with an unbounded
character. It is easy to show that the character χ(A) is computable (e.g., using the
formulas Ap,n,k from the definition of Szmielew invariants). Recall that hp(a) is
infinite if and only if ∀k(pk | a). Therefore, the p-height hAp is 0′-computable, and
again, using an argument similar to that of Lemma 3.1, it is not hard to prove that
A is decidably 0′-categorical.

Since χ(A) is a computable set, it is easy to build a copy A0 of A such that the
structure (A0, q

k |)q∈P,k∈ω is computable: Here we only sketch a construction. For
simplicity, assume that the reduced part of A is isomorphic to

⊕
k∈ω Z(pmk), where

0 < m0 < m1 < . . . . Then we take a decidable copy D0 of the divisible part of A
(obtained, e.g, from Proposition 2.1), and set

A0 = D0 ⊕
⊕
k∈ω

〈ak〉,

where ak is an element of the order pmk .
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Since Th(A0) = Th(A) is decidable, by Proposition 2.1, A0 is also decidable.
Moreover, the p-height hA0

p is computable. Now, in order to prove that 0′ is the
degree of decidable categoricity for A, it is sufficient to build a decidable copy B of
A with hBp ≥T 0′.

For simplicity, we build B for the case when A ∼= Z(p∞)⊕
⊕

k∈ω Z(pmk), where
0 < m0 < m1 < . . . . The general case can be treated in a similar way.

We will construct a computable p-basic tree T for B. Lemma 2.1 shows that
it is sufficient to guarantee that for any g ∈ T and any k ∈ ω, one can effectively
check whether the tree rank of g is at least k. This condition will be ensured by
the following property: Let T [g, s] denote the tree with the root g which contains
all descendants of g in the tree T [s] (constructed at a stage s). Then any s and any
g ∈ T [s] will satisfy one of the two conditions:

(1) either T [g, t] = T [g, s] for all t ≥ s, or
(2) the rank of T [g, s+ 1] is strictly greater than the rank of T [g, s].

Fix a strongly computable sequence of finite sets {W s}s∈ω such that
⋃
sW

s = ∅′,
W s ⊆W s+1, card(W s+1−W s) ≤ 1, and s 6∈W s for all s. W.l.o.g., we may assume
that W 2t = W 2t+1 for any t.

The construction of T proceeds in stages. At a stage s, we build a finite tree
T [s] ⊆ ω<ω with root Λ, and we choose a terminal node tns in T [s] with the
following properties: The length of tns is equal to (s+ 1), and for any i ≤ s, tns(i)
is even iff i 6∈W s.

Stage 0. Set T [0] = {Λ, 〈0〉} and tn0 = 〈0〉.
Stage s + 1. If W s+1 = W s, then find the least mi which has not already been

used in the construction. Attach a fresh simple chain of length mi to the root of
T [s]. Let tns+1 := tnŝ 0, and put tns+1 into T [s+ 1].

Suppose that W s+1 −W s = {k}. Note that k ≤ s. Let σ := tns � k. Find the
least unused mi > len(tns) − k with the following property: Consider a tree T1
which is obtained from T [s] by appending two simple chains — the first one has
length (mi + k − len(tns)) and is attached to tns, and the second one has length
L := mi + k+ 1 and is attached to σ. Then the fully stripped version of T1 gives a
rise to a p-group Z(pL)⊕ Z(pmi)⊕

⊕
j∈F Z(pmj ) for some finite set F with i 6∈ F .

Attach a fresh simple chain of size (mi + k − len(tns)) to tns. Define tns+1 as
follows:

tns+1(j) :=

 tns(j), if j 6= k and j ≤ s,
a fresh odd number, if j = k,
0, if j = s+ 1,

and add every τ ⊆ tns+1 into T [s+ 1].
This completes the description of the construction. Let T :=

⋃
s∈ω T [s], and con-

sider the p-group B := G(T ). It is not difficult to establish the following properties
of the construction.

Claim 3.1. (1) If g is a terminal node in T [s] and g 6= tns, then g is a terminal
node in any T [r], where r ≥ s.

(2) For any i ∈ ω, there is a limit tn∗(i) = lims tns(i). Moreover, if i 6∈ ∅′,
then tn∗(i) = 0. If i ∈ ∅′, then tn∗(i) is odd.

(3) The tree T has only one infinite path P = (tn∗(0), tn∗(1), tn∗(2), . . . ).
(4) Recall that TR(x, k) is true iff the tree rank of x is at least k. Suppose that

g is an element from T [s]. Let s1 ≥ s be the least stage such that either tns1
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is not a descendant of g, or T [s1] |= TR(g, k). Then we have T |= TR(g, k)
if and only if T [s1] |= TR(g, k).

The last item of the claim and Lemma 2.1 together imply the following: In order
to prove the decidability of the group B, it is sufficient to show that B is isomorphic
to A.

Consider T̂ , the fully stripped version of the tree T . Roughly speaking, one can

obtain the tree T̂ using the following procedure: Whenever we see that tns+1 is
not a child of tns, we find the least k such that tns(k) 6= tns+1(k), take the node
gs := 〈tns(0), tns(1), . . . , tns(k)〉, and strip all the descendants of gs (which have
not already been stripped), while preserving the tree ranks. The procedure shows

that T̂ consists of only one infinite chain and infinitely many finite chains that are
attached to the root. Hence, the divisible part of B is isomorphic to Z(p∞), and B
has Ulm type 1. Moreover, attaching fresh chains at non-zero stages ensures that

the character χ(G(T̂ )) is equal to {(mk, 1) : k ∈ ω}. Thus, B is isomorphic to A.
Now note the following:

• If i 6∈ ∅′, then there is a node σ ∈ T such that σ(i) = 0 and the p-height of
σ in B is infinite. Furthermore, for any τ ∈ T , if τ(i) 6= 0, then hBp (τ) is
finite.
• Suppose that i ∈ ∅′. Then there is a node σ ∈ T such that σ(i) is odd and
hBp (σ) =∞. Moreover, for any τ ∈ T with τ(i) even, we have hBp (τ) <∞.

Hence, hBp ≥T ∅′. Lemma 3.2 is proved. �

Lemma 3.3. Suppose that A is a decidable torsion group of Ulm type 1.

(a) If there is a prime p such that the p-component Ap is non-reduced and has
an unbounded character, then A has degree of decidable categoricity 0′.

(b) If every Ap is either reduced or has a bounded character, then A is decidably
categorical.

Proof. (a) First, note that for a prime q, the group Aq is computable, and the q-he-

ight h
Aq
q is 0′-computable, uniformly in q. Therefore, for a decidable copy B ∼= A,

one can build a 0′-computable isomorphism fq from Aq onto Bq, uniformly in q.
The map

⋃
q∈P fq is easily extended to a 0′-computable isomorphism from A onto

B. Thus, A is decidably 0′-categorical.
Fix a prime p such that the p-component Ap is non-reduced and has an un-

bounded character. Note that the theory Th(Ap) is decidable: Ap is a p-group, and
for any formula ψ ∈ {Ap,n,k, Bp,n,k, Cp,n,k : n, k ∈ ω}, we have Ap |= ψ iff A |= ψ.
Thus, one can obtain a recursive axiomatization for Th(Ap). By Proposition 2.1,
Ap is a decidable structure.

The proof of Lemma 3.2 shows that there are two decidable copies B0 and B1 of
Ap such that for any isomorphism f from B0 onto B1, we have f ≥T 0′. Consider
the groups

C0 = B0 ⊕
⊕

q∈P\{p}

Aq, C1 = B1 ⊕
⊕

q∈P\{p}

Aq.

It is not hard to show that the structures C0 and C1 are decidable copies of A,
and any isomorphism from C0 onto C1 computes 0′. Therefore, 0′ is the degree of
decidable categoricity for A.
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(b) Suppose that every p-component of A is either reduced or has a bounded

character. We show that the p-height h
Ap
p is computable, uniformly in p.

Given a non-zero element a ∈ Ap, we search for the least k ∈ ω such that one of
the following two cases hold:

(i) A |= (pk | a) and A |= (pk+1 6 | a). Then h
Ap
p (a) = k.

(ii) A |= (pk | a) and A |= ∀x[(pk | x)→ (pk+1 | x)]. Then h
Ap
p (a) =∞.

If the p-height of a (inside Ap) is finite, then a will eventually satisfy case (i) and
a cannot satisfy (ii). If the p-height of a is infinite, then the character of Ap is
bounded and a will eventually satisfy (ii).

Since the group A is decidable, the described procedure computes the height

h
Ap
p , uniformly in p. Therefore, using Proposition 2.2, one can build a computable

isomorphism between any two decidable presentations of A. Lemma 3.3 and Propo-
sition 3.1 are proved. �

3.2. Jump inversions. Our results on degrees of categoricity will heavily use the
jump inversions that are based on the technique of computable p-basic trees. Here
we give a brief overview of these inversions.

Ash, Knight, and Oates [2] introduced a procedure which allows to pass from
a Π0

2 p-basic tree C to a “nice” computable p-basic tree U (see the proposition
below). The proof of the result can be found in [2], see also [12] for a discussion
and an extended sketch of the proof.

Proposition 3.2 (Ash, Knight, and Oates [2]). Let T be a computable p-basic tree
of Ulm type 1, where the root 0 has tree-rank ω. Suppose that C is a Π0

2 subtree of
ω<ω (C is treated as a p-basic tree). Then there exists a computable p-basic tree
U expanding C such that the p-group G(U)0 is isomorphic to G(T ), and G(U)′ is
isomorphic to G(C).

Suppose that A is a countable p-group. Roughly speaking, Proposition 3.2 allows
us to pass from a ∆0

3 presentation of A′ and a computable presentation of A0 = A/A′

to a computable copy of A: Consider A0 = G(T ) and A′ = G(C), and recall that
any ∆0

2(X) subtree of ω<ω is isomorphic to a Π0
1(X) subtree.

We also introduce a new jump inversion which will be useful in working with
decidable groups:

Proposition 3.3. Let X ⊆ ω × ω be a computable unbounded character. Suppose
that C is a Π0

1 subtree of ω<ω. Then there exists a computable p-basic tree U
expanding C with the following properties:

(1) the p-group G(U)0 has character X,
(2) G(U)′ ∼= G(C), and
(3) given a node v ∈ U and a natural number k, we can effectively check whether

the tree-rank of v is at least k.

Proof sketch. This is essentially a modified version of Proposition 3.2. Fix a com-
putable sequence of trees {C[s]}s∈ω such that C =

⋂
s∈ω C[s] and C[s] ⊇ C[s + 1]

for all s. W.l.o.g., we assume that for any σ ∈ C[0] and any i < len(σ), σ(i)
is an even number. For simplicity, we consider X = {(nk, 1) : k ∈ ω}, where
0 < n0 < n1 < n2 < . . . .

An informal idea of the construction is as follows. We want to copy the tree
C, and for every node v ∈ C, we attach infinitely many fresh finite chains to v.
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The size of each of the chains is equal to some ni, and every ni is used only once:
in particular, any two different chains have different sizes. If this naive attempt
is successful, then the resulting tree U will give a rise to a p-group which has the
first two of the required properties: The nodes which have infinite tree-ranks are
precisely the nodes from C (this is the second required property). Moreover, if we
do the stripping procedure, we will see that any chain (from above) of size ni can
be represented as a simple chain which emanates from the root of U . Therefore,
every Z(pni) detaches as a direct summand in G(U). Furthermore, we ensured that
χ(G(U)0) = X (i.e. the first required property).

The main problem here is that the tree C is given by a Π0
1 approximation, hence,

sometimes we need to give up on some nodes v from C[s]. In order to guarantee
that the third required property holds, we proceed as follows. Suppose that at some
stage we want to give up on two nodes σ and τ , where σ is a child of τ . Then we first
deal with σ by choosing a large fresh ni and attaching a fresh chain of size (ni− 1)
to σ. Only after that, we are allowed to abandon this σ and to start dealing
with τ (in a similar way). The described procedure is justified by the following
reasoning. Since σ “dies” forever (i.e. after that particular stage we will never add
descendants of σ into U), all the descendants of σ, and σ itself, can be fully stripped
by relocating a finite number of chains. The last chain that will be stripped is the
longest chain which goes through σ, i.e. the chain (σ, σ1, σ2, . . . , σni−1). The chain
will be detached from τ and attached to the root of U . Since the size of this chain
is equal to ni, we will preserve the desired character X: the group Z(pni) still
detaches as a direct summand in G(U).

Now we present a more formal description of the construction. At a stage s, we
build a finite tree U [s]. At stage 0, set U [0] = {Λ}.

At an odd stage s = 2t + 1, for every node v from U [s] ∩ C[t], choose a fresh
nj and attach a fresh simple chain of size nj to this v. After that, find the least
unused nk and attach a fresh chain of size nk to the root of the tree. The chains
are chosen in such a way that for any τ from a chain, the last symbol of τ is an
odd number.

Suppose that s = 2t + 2. If U [s] ∩ C[t] = U [s] ∩ C[t + 1] (i.e. we do not see
any changes in the considered nodes from C[t]), then choose (the least) σ from
C[t+ 1]− U [s] and add all τ ⊆ σ into U .

If U [s] ∩ C[t] 6= U [s] ∩ C[t + 1], then there is a node σ ∈ U [s] such that σ ∈
C[t+ 1]−C[t]. Suppose that U [s]∩ (C[t+ 1]−C[t]) = {σ0, σ1, . . . , σk}. We assume
that a condition σi ⊂ σj implies that i < j. For every i ≤ k, we choose a large
fresh nm and attach a fresh chain of size (nm − 1) to σi.

This concludes the description of the construction. It is not hard to show that
the tree U has the desired properties. In particular, for any v ∈ U [s], there is the
following dichotomy: either the tree-rank of v in U [s+1] is strictly greater then the
tree-rank in U [s]; or the tree-rank of v does not grow after stage s. This ensures
the third condition of the theorem. �

Proposition 3.3 will be used in the following way: Suppose that A is a countable
p-group which has a decidable presentation. The proposition allows us to pass from
a ∆0

2 presentation of A′ and a computable presentation of A0 to a decidable copy
of A (note that the decidability follows from Lemma 2.1).
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3.3. Degrees of decidable categoricity for reduced p-groups. The main re-
sult of the subsection is the following

Theorem 3.1. Let G be a decidable reduced p-group of a finite Ulm type. Then G
has degree of decidable categoricity d ∈ {0(m) : m < ω}.

In order to prove the theorem, we obtain a similar result for computable cate-
goricity which we believe is new, at least in this form:

Theorem 3.2. Let G be a computable reduced p-group of a finite Ulm type. Then
G has degree of categoricity d ∈ {0(m) : m < ω}.

The simulteneous proof of these two theorems will be split into two parts: The
first part calculates degrees of categoricity for computable reduced p-groups of
small Ulm type (to be explained below). The second part uses these calculations
and jump inversions to finish the proof.

3.3.1. Groups of small Ulm type. The proofs of Theorems 3.1 and 3.2 will use
induction on Ulm type N . Therefore, we need to establish the base of induction by
considering some specific cases for p-groups of Ulm type N ≤ 2:

Lemma 3.4. Let A be a computable reduced p-group of Ulm type N ≤ 2.

(a) Suppose that A has Ulm type 1, the character χ(A) is bounded, and

A ∼= B ⊕
⊕
i<ω

Z(pk)⊕
⊕
j<ω

Z(pl),

where B is a group and 0 < k < l < ω. Then A has degree of categoricity
0′.

(b) If A′ is finite and the character χ(A0) is unbounded, then A has degree of
categoricity 0′.

(c) Suppose that A′ is isomorphic to

F ⊕
⊕
i<ω

Z(pk),

where F is a finite group and 0 < k < ω. Then A has degree of categoricity
0′′.

Proof. (a) It is not hard to verify that A is relatively ∆0
2 categorical (it follows, e.g.,

from part (3) of Proposition 2.3, or [7, Theorem 3.5]). Now it is sufficient to show
that there are two computable copies C and D of A such that for any isomorphism
f : C ∼= D, we have f ≥T 0′.

First, we build a “nice” p-basic tree T for C. If the character X := χ(A) contains
(n, 1) for a number n, then we find

rn := card({m : (n,m) ∈ X}),

and we attach exactly rn simple chains of size n to the root of T . The procedure
is effective, since X is a bounded character. This gives rise to a computable group
C := G(T ) isomorphic to A. Moreover, the p-height hCp is a computable function.

A “bad” p-basic tree U is constructed as follows. Take T and attach to its root
infinitely many new chains of size k. Let {σi}i∈ω be an effective list of terminal
nodes of these chains. If i belongs to ∅′, then we attach a fresh chain of size (l−k) to
the node σi. Define D := G(U), and note that hDp (σi) = l − 1 iff i ∈ ∅′. Moreover,
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it is easy to show that D is a copy of A. Hence, hDp ≥T 0′, and C,D are desired
computable presentations of A.

(b) Part (1) of Proposition 2.3 implies that A is relatively ∆0
2 categorical. As in

the proof of (a), we will “encode” 0′ into isomorphisms between two computable
presentations of A.

We build two computable p-basic trees T and U (treated as subtrees of ω<ω).
As usual, we may assume that the domains of T and U are disjoint. Moreover,
when needed, we may think of an element g ∈ G(T ) ∪ G(U) as a natural number
(using some effective encoding from G(ω<ω) into ω). For V ∈ {T,U}, 0V denotes
the root of V .

Trees T [0] and U [0] are defined as follows. Fix finite p-basic trees T ′ and U ′ such
that G(T ′) ∼= G(U ′) ∼= A′. Since the group A′ is finite, we may assume that any
non-root node from T ′ has at most one child (consider the fully stripped version
of T ′). A similar convention holds for U ′. For every node v ∈ T ′ ∪ U ′, attach a
computable set of new children H(v) := {wi(v) : i ∈ ω} to v. We say that H(v) is
the set of (v)-witnesses.

Suppose that V ∈ {T,U}. Our construction will guarantee that if a node u has
more than one child in V , then u ∈ V ′. Therefore, if u 6∈ V ′ and u ∈ V [s], then
there is a well-defined notion of the last descendant of u in V [s]: There is only one
(maximal) simple chain going through u inside V [s], and the last descendant of u
is the terminal node of this chain.

Our construction will satisfy the following series of requirements:

Re: If f is an isomorphism from G(T ) onto G(U), then for the (0T )-witness
w0
e := we(0T ), its image f(w0

e) must be greater (under the standard ordering
of natural numbers) than

ψ(e) := 1 +
∑

i≤e, ϕi(e)↓

ϕi(e).

We argue that satisfying all Re-s is enough: Indeed, consider a total function
ξ : e 7→ f(w0

e). If every Re is satisfied, then ξ dominates every partial computable
function. Therefore, we have f ≥T ξ ≥T 0′.

We choose limitwise monotonic functions g(x) and h(x) such that:

• For any non-zero n and k, we have (n, k) ∈ χ(A0) iff card({x : g(x) = n}) ≥
k.

• For any x, (h(x), 1) ∈ χ(A0) and h(x) < h(x+ 1).

The existence of these functions follows, e.g., from [7, Lemma 2.13] (recall that the
character χ(A0) is unbounded). We fix limitwise monotonic approximations of the
functions: g(x)[s] and h(x)[s]. W.l.o.g., one can assume that h(x)[s] < h(x+ 1)[s]
for any x, s. We also choose a limitwise monotonic approximation ψ(e)[s] of the
function ψ from the Re-requirements.

Strategy for meeting Re. Choose a fresh number xe. We attach a simple chain
of size (h(xe)− 1) to the node w0

e in T . (Surely, at the current stage s0, we do not
know the real value of h(xe). Thus, we use the size (h(xe)[s0]− 1) and after s0, we
will do chain updates, to be explained below.)

When the value ψ(e)[s] grows, we say that Re requires attention and proceed as
follows. Find all elements v from the tree U [s] with the following properties: pkv is
a (u)-witness for some u ∈ U ′ and k ∈ ω, and there is an element g ∈ G(U [s]) such
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that g ≤ω ψ(e)[s + 1] and g is a linear combination (in G(U [s])) which includes
v with a non-zero coefficient. For each such v, find its last descendant dv (inside
U [s]), choose a fresh number mv > xe + 1 + len(dv), and attach a fresh chain of
size (h(mv)− len(dv) + len(pk+1v)) to dv. Thus, the length of the last descendant
of v goes up from len(dv) to (len(pk+1v) + h(mv)). Declare that the requirement
Re does not require attention.

Note that pk+1v ∈ U ′ and (after all required chain updates) the stripping will
ensure that the p-group Z(ph(mv)) will detach as a direct summand in G(U) — this
is an explanation for the choice of the length of the chain attached to dv.

Now we clarify the intuition behind the strategy. Given an element g ∈ G(U),
one can think of it as a (potential) image of w0

e ∈ G(T ) under an isomorphism. If
g ≤ω ψ(e), then at some stage s, we will see that g ∈ G(U [s]) and g ≤ω ψ(e)[s+ 1].
Suppose that g =

∑
v∈F lvv, where F is a finite subset of U [s] and 0 < lv < p.

For every v ∈ F − U ′, our strategy attaches a fresh chain to the last descendant
dv. The length of this chain is at least (h(mv) − len(dv)) ≥ h(mv − len(dv)) ≥
h(xe + 1) > h(xe). This ensures that (ph(xe)+1 | g) in G(U). On the other hand,
(ph(xe)+1 6 |w0

e) in G(T ). Therefore, for any isomorphism f : G(T )→ G(U), we must
have f(w0

e) > ψ(e), and the Re-requirement is satisfied.
Our main concern in the construction is that we need to ensure that both trees T

and U give rise to p-groups isomorphic to A. This will be done via Ulm’s theorem:

• the tree T ′ will contain precisely the nodes from T with an infinite tree-rank,
and
• the character χ(G(T )′) will be equal to χ(A).

Since T ′ is finite, these conditions imply that G(T ) is isomorphic to A.

Construction. During the construction, we will put labels on (v)-witnesses:

(1) Every (0T )-witness w0
e will eventually obtain a permanent label [h; z] for

some z ∈ ω.
(2) For v ∈ (T ′ ∪ U ′) − {0T }, a (v)-witness can obtain one of labels [g; z] or

[h; z], where z ∈ ω.

The intuition behind the labels is the following: A label on a (v)-witness w encodes
the length of the last descendant of w. For example, if some w ∈ T obtains a label
[g; z] and this label is never deleted, then the length of (the unique) chain attached
to w in T will be equal to (g(z)− 1).

For a tree V ∈ {T,U} and k, s ∈ ω, we introduce the update number UN(V ; k, s):
this is the cardinality of the set

{x : there is v ∈ V [s] such that v is labelled by [h;x] and h(x)[s] = k}.

Update numbers will help us to track down the character χ(A′) and to encode
it into the tree V : Essentially, UN(V ; k, s) keeps counting the number of direct
summands Z(pk), built inside V [s] by following the approximation h(x)[s].

At an odd stage s+ 1 = 2t+ 1, we find the least z ≤ s such that:

(i) no element from T [s] is labelled by [g; z], and
(ii) UN(T ; g(z)[s], s) < card({z1 ≤ s : g(z1)[s] = g(z)[s]}).
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If this z is found, then we choose the least (v)-witness y from T [s] such that v 6= 0T
and y does not have children. Put the label [g; z] onto y and attach a fresh simple
chain of size (g(z)[s]− 1) to y.

After that, for every v ∈ T ′, we choose a fresh number xv and put the label
[h;xv] onto the least (v)-witness wv such that wv never had any labels before. We
call this wv a special (v; s)-witness (at stage s+ 1).

At the end, we do the chain updating for T :

(1) If a (v)-witness w has a label [h;x] and the length of the chain hanging
from w (inside T [s]) is less than L := (h(x)[s] − 1), then extend the chain
to length L.

(2) Suppose that some (v)-witness w has a label [g; z], and the (current value
of the) update number UN(T ; g(z)[s], s) is greater than

card({z1 ≤ s : g(z1)[s] = g(z)[s]}).
Then delete the label [g; z], find a fresh number x′ such that h(x′) > g(z)[s],
and put the label [h;x′] onto w. Repeat this procedure until there are no
such “bad” witnesses w.

(3) If a (v)-witness w has a label [g;x] and the length of the chain hanging
from w is less than M := (g(x)[s]− 1), then extend the chain to length M .

We also do similar actions for the tree U , i.e. searching for the least z with (i-ii)
and chain updating.

Consider an even stage s+ 1 = 2t+ 2. First, for every e < t with ψ(e)[s− 1] <
ψ(e)[s+1], we declare that Re requires attention. We also assume that Rt requires
attention. After that for every e ≤ t, if Re requires attention, we follow the strategy
for Re, described above.

This concludes the description of the construction. The verification is based on
the following claim:

Claim 3.2. Suppose that V ∈ {T,U}.
(1) The set of nodes from V with infinite tree-ranks is equal to V ′.
(2) Let n be a non-zero natural number, and let

rn := card({k : (n, k) ∈ χ(A′)}).
Then V contains precisely rn chains P of size n such that the beginning of
P is a (v)-witness for some v ∈ V ′, and the end of P is a terminal node in
V .

(3) Every requirement Re is satisfied.

Proof. (1) Let v ∈ V ′. Note that any (v)-witness w eventually obtains a label. If
at some stage s, w was labelled by, say, [g; z], then the chain hanging from w inside
T has length at least g(z)[s]. Hence, the choice of special (v; s)-witnesses ensures
that the tree-rank of v is infinite (recall that the function h is strictly increasing).

If v ∈ V − V ′, then pkv is a (u)-witness for some k ∈ ω and u ∈ V ′. Note that
the labels of form [h;x] are never removed, and if a label [g; z] is removed, then it
is immediately replaced by some [h;x]. Therefore, the chain emanating from u has
a finite size, and the tree-rank of v is finite.

(2) First, assume that rn is infinite. Then there is a stage s∗ such that for any
x and any s ≥ s∗, we have either h(x)[s] = h(x)[s∗] ≤ n or h(x)[s] > n (recall that
h(x)[s] < h(x+ 1)[s]). Moreover, there are infinitely many numbers y > n+ 1 such
that there is a stage sy ≥ s∗ with g(y)[sy] = g(y) = n. After the stage sy, the label
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[g; y] will be eventually put on some wy, and it will never be removed. Thus, it will
produce a required chain Py of size n.

Suppose that rn is finite. Consider a stage s∗ with the following properties:

• If y is a number with g(y) = n, then we have g(y)[s] = n for any s ≥ s∗.
We call the corresponding label [g; y] a nice n-label.

• For any x and any s ≥ s∗, either h(x)[s] = h(x)[s∗] ≤ n or h(x)[s] > n.

Working with update numbers guarantees one of the two final outcomes:

(1) If there is no x with h(x) = n, then there will be exactly rn “permanent”
nice n-labels (i.e. eventually these labels will stay forever).

(2) If there is (a unique) x∗ with h(x∗) = n, then there will be exactly (rn− 1)
“permanent” nice n-labels.

In any case, the construction produces exactly rn required chains of size n.
(3) Note that the requirements do not injure each other. Since ψ is a limitwise

monotonic function, Re can require attention only finitely many times. Since the
number xe (which is chosen by Re) does not change, we will eventually satisfy Re,
as it was argued in the paragraph after the strategy description. �

Recall that V ∈ {T,U}. The first item of the claim shows that G(V )′ is iso-
morphic to A′. The second item implies the following: the stripping procedure
reveals that the character χ(G(V )′) is equal to χ(A). Hence, by Ulm’s Theorem,
G(V ) ∼= A. The third item shows that for any isomorphism f : G(T ) ∼= G(U), we
have f ≥T 0′.

(c) Relative ∆0
3 categoricity of A follows from part (2) of Proposition 2.3. Now

we will build two computable rooted trees T and U such that G(T ) ∼= G(U) ∼= A
and the isomorphisms between G(T ) and G(U) “encode” 0′′.

Fix a limitwise monotonic function g(x) such that for any non-zero n and k,
we have (n, k) ∈ χ(A0) iff there are at least k different numbers x with g(x) =
n. Such a function g exists, since the character χ(A0) is Σ0

2 and the set #A0 is
limitwise monotonic (recall Theorem 2.3). Let g(x)[s] be a limitwise monotonic
approximation of g(x).

Choose a computable relation R(x, y) such that e ∈ ∅′′ if and only if ∃∞yR(e, y).
Fix a computable tree T ′ such that G(T ′) is isomorphic to

A′ ∼= F ⊕
⊕
i∈ω

Z(pM ),

where 0 < M < ω and F is a finite group. Since F is finite, w.l.o.g., we may
assume that in T ′, every non-root node has at most one child. Let {ui : i ∈ ω} be
an effective list of all terminal nodes from T ′.

First, we give the construction of a “nice” tree T . For every i, we add a com-
putable set of children {u(i, j) : j ∈ ω} to ui. In the construction, we will put labels
of form [g;x] on nodes u(i, j).

At a stage s, we do the following actions:

(1) Find the least x0 such that no node is labelled by [g;x0]. Choose the least
pair (i, j) such that u(i, j) is not labelled and put [g;x0] onto u(i, j). Attach
a chain of length (g(x0)− 1) to u(i, j).

(2) For every i ≤ s, choose the least ji such that u(i, ji) is not labelled. Find
a number xi such that no node is labelled by [g;xi] and g(xi) > s. Put the
label [g;xi] onto u(i, ji) and attach a chain of length (g(xi)− 1) to u(i, j).
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It is not hard to verify the following

Claim 3.3. (1) T ′ is precisely the set of nodes with infinite tree-rank in T . In
particular, this implies that G(T )′ ∼= A′.

(2) The characters χ(G(T )0) and χ(A0) are equal. Thus, by Ulm’s Theorem,
G(T ) is isomorphic to A.

(3) Given an element g ∈ G, one can effectively check whether g has an infinite
p-height.

Second, we construct a “bad” tree U . We choose a limitwise monotonic function
h(x) such that h(x) < h(x + 1) and (h(x), 1) ∈ χ(A0) for all x. Let h(x)[s] be its
limitwise monotonic approximation such that h(x)[s] < h(x+ 1)[s] for all x, s.

Fix a computable tree U ′ such that G(U ′) ∼= A′ and every non-root node of U ′

has at most one child. Consider two effective lists of vertices: {ui}i∈I is the list of
all terminal nodes from U ′ with length not equal to M , and {vi}i∈ω is the list of
all terminal nodes of U ′ such that len(vi) = M .

We want to guarantee the following condition: a node vi has tree-rank ω if and
only if i ∈ ∅′′. This fact and an isomorphism G(U) ∼= A together will ensure that
any isomorphism from G(U) onto G(T ) must compute 0′′.

As in before, we consider computable sets of children: {u(i, j)}j∈ω are children
of ui, and {v(i, j)}j∈ω are children of vi. The key difference here is that we add
all u(i, j) into our U , but we will add the nodes v(i, j) one at a time. We will put
labels of form [g;x], [h;x], and {h;x} on nodes from U .

At a stage s, we proceed as follows:

(1) Find the least x0 such that no node is labelled by [g;x0]. Choose the least
pair (i, j) such that u(i, j) is not labelled and put [g;x0] onto u(i, j). Attach
a chain of length (g(x0)[s]− 1) to u(i, j).

(2) For every i ∈ I with i ≤ s, choose the least ji such that u(i, ji) is not
labelled. Find a number xi such that no node is labelled by [g;xi] and
g(xi) > s. Put the label [g;xi] onto u(i, ji) and attach a chain of length
(g(xi)[s]− 1) to u(i, j).

(3) For every k ≤ s, if the predicate R(k, s) is true, then do the following
actions:

(3.1) If a child of vk has a label {h;x}, then replace it with the label [h;x].
(3.2) Choose a fresh number z such that h(z)[s] is greater than (1+len(vk)).

Add a new child v(k, j) into U , put the label {h; z} onto v(k, j), and
attach a chain of size (h(z)[s]− len(vk)− 1) to v(k, j).

(4) For every l ≤ s, we search for the least labels [g;x] and [h; z] (or [g;x]
and {h; z}) such that some elements are labelled by them and g(x)[s] =
h(z)[s] = l. If there are such labels, then we choose a fresh number z′ and
replace [g;x] with [h; z′].

(5) We do the chain updating in a natural way: E.g., if some node τ ∈ U has a
label [g;x] and g(x)[s − 1] < g(x)[s], then extend (if needed) the (unique)
chain hanging from τ to length (g(x)[s]−1). A similar procedure is applied
to the labels [h;x]. We emphasize the following important feature which
was not used in the proof of the (b)-part of the lemma: If τ has a label
{h;x}, then we update the chain to the length (h(x)[s]− len(τ)− 1).

We claim that the group G(U) is isomorphic to A:
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• If k ∈ ∅′′, then every child v(k, j), j ∈ ω, is added into U . Moreover, this
child obtains a permanent label of form [h; z] and grows a chain of length
h(z). Hence the tree-rank of vk is exactly ω.

• If k 6∈ ∅′′, then the node vk has only finitely many children in U . Each of
these children τ (except the last one) has a label [h;xτ ], and the last child
σ has a label {h; yσ}, where yσ > xτ . If we apply stripping to vk, then we
will see that the groups Z(ph(xτ )) and Z(ph(yσ)) detach as direct summands
in G(U)′.
• The two previous items show that after stripping, we will have G(U)′ ∼=
G(U ′) ∼= A′.
• The chain updating and our dealing with labels (described above) ensure

that χ(G(U)0) = χ(A0). Hence, by Ulm’s Theorem, we have G(U) ∼= A.

Every isomorphism f from G(U) onto G(T ) must compute 0′′: In G(T ), we can
decide whether the p-height of an element is equal to ω by a computable procedure.
On the other hand, 0′′ is Turing reducible to the set of elements from G(U) with
p-height ω. Lemma 3.4 is proved. �

We emphasize the following important feature of the proof of Lemma 3.4: Con-
sider an arbitrary oracle X and go through the X-relativized version of the proof,
i.e., we analyze the X-relativized constructions of the trees T and U . It is not hard
to show that the witnessing sets (to be defined below) in all three items of the
lemma can be kept computable, although the resulting trees T and U will be just
X-computable.

Definition 3.1. Consider the three items of the proof of Lemma 3.4:

(a) In the first item, the T -witnessing set is the set of all terminal nodes from
T with length k. The U -witnessing set is the set {σi : i ∈ ω} from U .

(b) The T -witnessing set is the set {w0
e : e ∈ ω}. The U -witnessing set is the

set {wi(v) : v ∈ U ′, i ∈ ω}.
(c) The T -witnessing set is the set {u′j : j ∈ ω}, the set of all ui from T ′

such that the length of ui is equal to M . The U -witnessing set is the set
{vi : i ∈ ω} ⊂ U ′.

3.3.2. Proofs of Theorems 3.1 and 3.2. First, we obtain the result on computable
categoricity:

Proof of Theorem 3.2. Suppose that A is a computable reduced p-group of a finite
Ulm type M . Then there is a natural number N such that A satisfies exactly one
of the following three cases:

(i) A(N+1) is a finite group, and the character χ(AN ) is unbounded. Further-
more, if A(N+1) = 0, then M = N + 1. If A(N+1) 6= 0, then M = N + 2.

(ii) AN is isomorphic to

F ⊕
⊕
i∈ω

Z(pk),

where 0 < k < ω and F is finite. Moreover, M = N + 1 and A(N) = AN .
(iii) χ(AN ) is bounded and AN is isomorphic to

B ⊕
⊕
i∈ω

Z(pk)⊕
⊕
j∈ω

Z(pl),
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where 0 < k < l < ω and B is a group. Furthermore, M = N + 1 and
A(N) = AN .

Formally, the proof should involve induction on N (or Ulm type M). Note that
the base of induction is already given by Lemma 3.4. Now we outline a more
informal proof for the first of the three cases above.

By the first part of Proposition 2.3, the group A is relatively ∆0
2N+2 categorical.

Hence, we want to encode the Turing degree 0(2N+1) into the isomorphisms between
two copies G(T ) and G(U) of A. These copies will be represented by computable
p-basic trees T and U , respectively.

Recall that by Theorem 2.3, the character χ(AN ) is a Σ0
2N+2 set and #AN is

0(2N)-limitwise monotonic. Thus, the relativized version of Lemma 3.4.(b) allows
us to build two 0(2N)-computable trees T (N) and U (N) with G(T (N)) ∼= G(U (N)) ∼=
A(N) such that

(1) (∀f : G(T (N)) ∼= G(U (N)))[f ≥T 0(2N+1)].

Without loss of generality, we may assume that the trees T (N) and U (N) are
Π0

2N subtrees of ω<ω: Our only concern here is that the property (1) is preserved.
This is ensured by the following: Since the witnessing sets (see the discussion after
Lemma 3.4) can be chosen computable, we can preserve their computability while
transferring from a ∆0

2(0(2N−1)) subtree of ω<ω to a Π0
1(0(2N−1)) subtree of ω<ω.

Now we use the jump inversion from (relativized) Proposition 3.2 for C =

T (N) and a 0(2N−2)-computable tree T̂ representing the group AN−1 (recall that
χ(AN−1) is Σ0

2(0(2N−2)) and #AN−1 is 0(2N−2)-limitwise monotonic). We ob-
tain two 0(2N−2)-computable trees T (N−1) and U (N−1) such that G(T (N−1)) ∼=
G(U (N−1)) ∼= A(N−1).

Suppose that h is an isomorphism from G(T (N−1)) onto G(U (N−1)). Then T (N)

is a subtree of T (N−1) and h1 := h � G(T (N)) is an isomorphism from G(T (N))
onto G(U (N)), since U (N) is precisely the set of all nodes with infinite rank inside
U (N−1). Hence, by (1) we have

h ≥T h1 ≥T 0(2N+1).

Moreover, again, our witnessing sets are kept computable inside T (N−1) and U (N−1).
Thus, we can iterate the jump inversion from Proposition 3.2, until we obtain

computable trees T (0) and U (0) such that G(T (0)) ∼= G(U (0)) ∼= A and for any
isomorphism h from G(T (0)) onto G(U (0)), we have h ≥T 0(2N+1).

The proof of the cases (ii) and (iii) can be arranged in a similar way: For (ii), we
encode the degree 0(2N) into the isomorphisms between G(T ) and G(U). For (iii),
we use 0(2N+1). Theorem 3.2 is proved. �

Proof of Theorem 3.1. This is obtained similarly to the previous proof. If we deal
with the case (i), then we proceed as before, modulo the following two key modifi-
cations:

(1) Note that the structure (A, pk |)k∈ω is computable, thus, in A, the condition
“the p-height of an element g is at least ω” is equivalent to a Πc

1 condition ∀k(pk | g).
Therefore, an analysis of the proof of Proposition 2.3 reveals that A is ∆0

2N+1

categorical relative to decidable presentations. Thus, we will encode 0(2N) into the
isomorphisms between G(T ) and G(U).
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(2) Using the jump inversion of Ash, Knight, and Oates, we obtain a sequence
of trees {T (N), U (N), T (N−1), U (N−1), . . . , T (1), U (1)} such that for V ∈ {T,U} and
a non-zero i ≤ N , we have:

• V (i) is 0(2i−1)-computable and G(V (i)) ∼= A(i),
• for any isomorphism f : G(T (i))→ G(U (i)), we have f ≥T 0(2N).

This can be done, since the decidability of A implies that χ(Ai) is a Σ0
2i+1 set and

#Ai is 0(2i−1)-limitwise monotonic. We may assume that T (1) and U (1) are Π0
1

subtrees of ω<ω.
After that, we use the jump inversion from Proposition 3.3 (we apply it to a tree

V ∈ {T (1), U (1)} and the computable character χ(A0)) and obtain two computable
trees T and U representing p-groups isomorphic to A. Lemma 2.1 shows that the
groups G(T ) and G(U) are decidable. Moreover, any isomorphism from G(T ) onto
G(U) computes 0(2N). �

3.4. Examples of degrees of decidable categoricity for torsion groups.

Theorem 3.3. Let k be a natural number. Suppose that d is a Turing degree such
that d is d.c.e. in and above 0(2k+1). Then there is a decidable, reduced torsion
group with degree of decidable categoricity d.

Proof. Essentially, we follow the lines of the proof of Theorem 3.1: First, we show
that any d.c.e. degree d is a degree of categoricity for a computable torsion group
(Lemma 3.5). Then, we use this fact and jump inversions to establish the theorem.

Lemma 3.5. Let X be an oracle. Suppose that d is a Turing degree d.c.e. in
and above X. Then there is an X-computable torsion group A with the following
properties:

(i) any two X-computable presentations of A are d-computably isomorphic,
and

(ii) there is an X-computable Ã ∼= A such that any isomorphism f : Ã ∼= A
computes d.

Proof. A relativized version of the argument from [20, Theorem 3.1] shows that one
can choose a set D ∈ d such that D is d.c.e. in X and for any oracle Y , we have:

(2) (D is c.e. in Y ) ⇒ D ≤T Y ⊕X.

Suppose that D = W − V , where V ⊆W are X-c.e. sets.
The desired group A is built as a sum

⊕
p∈PAp. Recall that for k ∈ ω, pk denotes

the k-th prime number. We define Apk = Bk ⊕ Ck, where:

(a) If k = 2m, then

Bk ∼= Z(p2k), Ck ∼=
{

Z(pk), if m 6∈ X,
Z(p3k), if m ∈ X.

(b) If k = 2m+ 1, then

Bk ∼=
{

Z(p2k), if m 6∈ V,
Z(p3k), if m ∈ V ;

Ck ∼=
{

Z(pk), if m 6∈W,
Z(p3k), if m ∈W.

It is easy to show that the structure A is X-computable. Suppose that Â is
an X-computable copy of A. Recall that D ≥T X, thus, one can D-computably
recover an isomorphism from the p2m-component of A onto the p2m-component
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of Â, uniformly in m. Now we want to build an isomorphism f between the pk-

components Apk and Âpk , where k = 2m + 1. If m ∈ D, then we know the
isomorphism type of Apk , and hence, we can build f in a natural way. If m 6∈ D,

then first, we find subgroups of A and Â isomorphic to Z(pk)⊕Z(p2k), and establish
an isomorphism f0 between them. If after that we find out that m ∈ V , then we

extend f0 to an isomorphism f : Apk
∼= Âpk , where Apk

∼= Z(p3k) ⊕ Z(p3k). Indeed,
such an extension is possible: Suppose that ā = a0, a1, . . . , al is a tuple consisting of
all elements from dom(f0), and b̄ = f0(a0), f0(a1), . . . , f0(al). Then ā and b̄ satisfy
the same addition tables, and furthermore, for each i, the p-height of ai is equal to

the p-height of bi. This implies that (A, ā) ∼= (Â, b̄).

Therefore, A satisfies the property (i). An X-computable copy Ã ∼= A is con-
structed similarly to A, but we use the following finite groups:

(a’) If k = 2m, then

B̃k ∼=
{

Z(p2k), if m 6∈ X,
Z(p3k), if m ∈ X;

C̃k ∼=
{

Z(pk), if m 6∈ X,
Z(p2k), if m ∈ X.

(b’) If k = 2m+ 1, then

B̃k ∼=
{

Z(p2k), if m 6∈W,
Z(p3k), if m ∈W ;

C̃k ∼=

 Z(pk), if m 6∈W,
Z(p2k), if m ∈W − V,
Z(p3k), if m ∈ V.

Recall that for a group G, G{p} = {x ∈ G : px = 0}. Let f be an isomorphism

from Ã onto A. For m ∈ ω, choose a non-zero element bm ∈ B̃2m{p}. Then m ∈ X
if and only if f(bm) ∈ C2m{p}. Thus, f ≥T X.

Let dm be a non-zero element from B̃2m+1{p}. Then m 6∈ D iff either f(dm) ∈
B2m+1{p}, or m ∈ V . Hence, D is c.e. in (f ⊕ X). By (2), we obtain that
D ≤T (f ⊕X) ≡T f . Lemma 3.5 is proved. �

Now suppose that d is a degree d.c.e. in and above 0(2k+1). By Lemma 3.5,
we obtain two 0(2k+1)-computable groups A(k+1) and B(k+1) which satisfy the
following:

• any 0(2k+1)-computable copies of A(k+1) are d-computably isomorphic,
• A(k+1) and B(k+1) are isomorphic, and every f : A(k+1) ∼= B(k+1) com-

putes d.

For simplicity, we give a proof for the case k = 2. Notice that the proof of
Lemma 3.5 implies that there are uniformly 0(5)-computable sequences of trees

{T (3)
m }m∈ω and {U (3)

m }m∈ω such that T
(3)
m is a pm-basic tree giving rise to the pm-

component (A(3))pm , and U
(3)
m gives rise to (B(3))pm .

Fix a computable rooted tree V such that for each non-zero n ∈ ω, V contains
a unique chain of size n attached to the root. It is easy to show that V represents
a reduced multicyclic p-group with the character X0 = {(n, 1) : 0 < n < ω}.

For each m ∈ ω, we apply the jump inversion of Ash, Knight, and Oates (Propo-

sition 3.2) to the trees T
(3)
m and V , and we obtain a 0(3)-computable sequence of

trees {T (2)
m }m∈ω. Applying the jump inversion to U

(3)
m and V , we obtain a tree

U
(2)
m . Consider 0(3)-computable groups

A(2) =
⊕
m∈ω

Gm(T (2)
m ), B(2) =

⊕
m∈ω

Gm(U (2)
m ),
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where Gm(S) is the pm-group corresponding to a rooted tree S. It is not hard to
show that for C ∈ {A(2), B(2)}, the group

(3) C [1] =
⊕
p∈P
{g : g is from the p-component of C, and g has an infinite

p-height}

is isomorphic to A(3). This implies that any 0(3)-computable copies of A(2) are d-
computably isomorphic. Moreover, A(2) ∼= B(2), and every f : A(2) ∼= B(2) computes
d.

Applying the inversion from Proposition 3.2 to T
(2)
m and V (also, to U

(2)
m and

V ), we obtain 0′-computable sequences of trees {T (1)
m }m∈ω and {U (1)

m }m∈ω. The
0′-computable groups

A(1) =
⊕
m∈ω

Gm(T (1)
m ), B(1) =

⊕
m∈ω

Gm(U (1)
m )

have the following properties:

• any 0′-computable copies of A(1) are d-computably isomorphic,
• A(1) ∼= B(1), and any f : A(1) ∼= B(1) computes d.

At last, we apply the jump inversion from Proposition 3.3 (using a tree V ∈
{T (1)

m , U
(1)
m }, m ∈ ω, and the character X0) and obtain two computable sequences

of trees {Tm}m∈ω and {Um}m∈ω. Define

A =
⊕
m∈ω

Gm(Tm), B =
⊕
m∈ω

Gm(Um).

The groups A and B are isomorphic, and every isomorphism from A onto B com-
putes d.

We show thatA is a decidable group with degree of decidable categoricity d. Note
that the structure (A, pk |)p∈P,k∈ω is computable: by Lemma 2.1, for x ∈ Gm(Tm),
we can effectively check whether (pkm | x), and this is uniform in m ∈ ω. Now we
consider the formulas from the definition of Szmielew invariants: for every p ∈ P,

• A |= Ap,n,k if and only if k = 1;
• A |= Bp,n,k for all non-zero n and k;
• A |= Cp,n,k for all non-zero n and k.

Thus, the theory Th(A) is recursively axiomatizable and hence, decidable. By
Proposition 2.1, A is decidable. A similar argument shows that B is also decidable.

If C is a decidable copy of A, then the group C [1] from (3) is a 0′-computable
copy of A(1). Thus, any two decidable copies of A are d-computably isomorphic.
Therefore, d is the degree of decidable categoricity for A. Theorem 3.3 is proved.

�

Similarly to Theorem 3.3, one can prove the following

Corollary 3.1. Let k be a natural number. Suppose that d is a Turing degree such
that d is d.c.e. in and above 0(2k). Then there is a computable, reduced torsion
group with degree of categoricity d.
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4. Homogeneous completely decomposable groups

4.1. Effective algebra for completely decomposable groups. Following [11],
we give preliminaries on effective algebraic techniques that will be used for work-
ing with completely decomposable groups. Here Q denotes the additive group of
rationals.

Let G be a torsion-free group. Elements g0, g1, . . . , gn from G are linearly inde-
pendent if for any c0, c1, . . . , cn ∈ Z, the equality c0g0+c1g1+ · · ·+cngn = 0 implies
that c0 = c1 = · · · = cn = 0. An infinite set of elements is linearly independent
if every its finite subset is linearly independent. A maximal linearly independent
subset is a basis. All bases of G have the same cardinality, and this cardinality is
called the rank of G.

For k ∈ ω, consider the pk-height hGpk : G→ ω ∪ {∞}. For a non-zero g ∈ G, the
sequence

χ(g) =
(
hGp0(g), hGp1(g), hGp2(g), . . .

)
is called the characteristic of the element g in G.

Suppose that α = (k0, k1, k2, . . . ) and β = (l0, l1, l2, . . . ) are two characteristics.
We say that α ≤ β if ki ≤ li for all i ∈ ω (here m <∞ for all m ∈ ω).

Characteristics α and β are equivalent (denoted by α ' β) if there are only
finitely many n with kn 6= ln, and kn, ln are finite for these n. The '-equivalence
classes are called types.

We write t(g) for the type of an element g. If G ≤ Q is non-zero (equivalently,
rk G = 1) then all non-zero elements of G have equivalent types. Therefore, for a
group G of rank 1, there is a well-defined notion of the type of G, written t(G),
which is equal to the type of any non-zero element in G.

Theorem 4.1 ([3]). Suppose that G and H are countable torsion-free groups of
rank 1. Then G and H are isomorphic if and only if t(G) = t(H).

A torsion-free group G is completely decomposable if G is a direct sum of groups
each having rank 1. A completely decomposable group is homogeneous if all its
elementary summands are isomorphic.

Definition 4.1 ([11]). Let S be a set of primes, and let G be a torsion-free group.
If S 6= ∅, then elements b1, . . . , bk from G are called S-independent in G if for all
integers m1, . . . ,mk and all p ∈ S, we have:(

p |
k∑
i=1

mibi

)
⇒

k∧
i=1

(p | mi).

If S = ∅, then elements are S-independent if they are linearly independent. Note
that S-independence always implies linear independence.

Every maximal S-independent set of G is called an S-basis of G. An S-basis is
excellent if it is a maximal linearly independent subset of G.

In this section, we always assume that P is a set of primes, and we use the

notation P̂ := P \ P . By Q(P ) we denote the localization of integers by the set P ,
i.e., the additive subgroup of rationals generated by the set

{1/pm : p ∈ P, m ∈ ω}.

We define GP :=
⊕

i∈ω Q
(P ).
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For a given characteristic α = (k0, k1, k2, . . . ) and a torsion-free group G, we
consider a subgroup

G[α] = {g ∈ G : χ(g) ≥ α}.
We also define the group Q(α) as the subgroup of Q generated by the set

{1/ptm : m ∈ ω, t < 1 + km}.

Theorem 4.2 ([11, Theorem 4.10]). Suppose that G =
⊕

i∈ωH, where H ≤ Q and
t(H) = f . Let α = (α0, α1, α2, . . . ) be a characteristic of type f . Then the group
G[α] is isomorphic to GP , where

P = {pi : i ∈ ω, αi =∞}.

Moreover, if B is an excellent P̂ -basis of G[α], then G is generated by B over Q(α).

Proposition 4.1 ([11, Lemma 5.2]). Suppose that G =
⊕

i∈ωH, where H ≤ Q
and t(H) = f . Consider a characteristic α = (α0, α1, α2, . . . ) of type f and the set
P = {pi : αi = ∞}. Let G1 and G2 be computable copies of G. If both G1[α] and

G2[α] have Σ0
n excellent P̂ -bases, then there is a ∆0

n computable isomorphism from
G1 onto G2.

Definition 4.2 ([11, Definition 3.4]). A structure C is a computable presentation
of a (left) module M over a ring R if:

(1) the ring R is isomorphic to a c.e. subring R1 of a computable ring R2;
(2) C is a computable presentation of M as an abelian group; and
(3) there is a computable function f : R1×C → C which maps (r,m) to r ·m ∈

C, for every r ∈ R1 and m ∈ C.

In [11], it was shown that for a set of primes P , the group GP is computably
presentable as an abelian group if and only if it is computably presentable as a
module over Q(P ).

Suppose that M is a module over a ring R. If S is a subset of M , then spanR(S)
denotes the R-span of S.

Lemma 4.1 ([11, Lemma 4.6]). Let P be a set of primes. Suppose that B =
{b0, . . . , bk} ⊆

⊕
i≤nQ

(P )ei, and B is a linearly independent set. Then there exists

a set C = {c0, . . . , cn} ⊆
⊕

i≤nQ
(P )ei, and coefficients r0, . . . , rk ∈ Q(P ) such that:

(1)
⊕

i≤nQ
(P )ci =

⊕
i≤nQ

(P )ei, and

(2) spanQ(P )({r0c0, . . . , rkck}) = spanQ(P )(B).

4.2. Decidable presentations. In this subsection, we obtain a criterion of decid-
able presentability for homogeneous completely decomposable groups.

Let α = (k0, k1, k2, . . . ) be a characteristic. We say that α is computable if the
function f : i 7→ ki is a total computable function from ω to ω ∪ {∞}. Note that
the computability of a characteristic is a type-invariant property. Hence, a type f
is called computable if every α ∈ f is computable.

Proposition 4.2. Suppose that G =
⊕

i∈ωH, where H ≤ Q and the type of H is
equal to f . Then G has a decidable copy if and only if f is computable (as a total
computable function from ω to ω ∪ {∞}).

Proof. (⇒). Suppose that G is decidable. Fix p ∈ P. Choose a non-zero element
g ∈ H, and note the following:
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a) If hHp (g) <∞, then w.l.o.g., we may assume that (p 6 | g). This implies that
for any non-zero n and k, we have G |= Cp,n,k, where Cp,n,k is the formula
from the definition of Szmielew invariants. In particular, γp(G) = ω.

b) If hHp (g) =∞, then for all n and k, we have G 6|= Cp,n,k. Hence, γp(G) = 0.

Therefore, since the theory Th(G) is decidable, the set {p : hHp (g) = ∞} is com-

putable. Furthermore, if hHp (g) < ∞, then the p-height of g inside H can be
computed effectively. Thus, the type f is computable.

(⇐). Suppose that f is computable. First, it is not difficult to show that the
theory Th(G) is decidable: G is a torsion-free abelian group, and checking the truth
of the formulas Cp,n,k is effective in f (as explained above). Using the Szmielew
invariants, it is easy to write down a recursive axiomatization for Th(G).

Now it is sufficient to build a copy of G such that its relations (pk | ·), where
p ∈ P and k ∈ ω, are uniformly computable. A “nice” copy of H is constructed as
follows: Let H̃ be the group Q(χ(g)), where g is a fixed non-zero element from H.

It is clear that t(H̃) = f, hence, by Theorem 4.1, H̃ is isomorphic to H.

Consider an irreducible fraction m/n from H̃, where m ∈ Z\{0} and n ∈ ω\{0}.
Suppose that m = pl ·m1, where (p 6 | m1). Then the fraction m/n is divisible by

pk in H̃ if and only if one of the following conditions holds:

(1) hHp (g) =∞, or

(2) hHp (g) = t <∞ and k ≤ l + t.

Therefore, w.l.o.g., one may assume that the structure (H̃, pk |)p∈P,k∈ω is com-
putable.

Let G̃ =
⊕

i∈ω H̃. Suppose that a non-zero x ∈ G̃ is equal to g0 + g1 + · · ·+ gn,

where gi 6= 0 and for i 6= j, gi and gj belong to different copies of H̃. Then

x is divisible by pk if and only if (pk | gi) inside H̃, for every i ≤ n. Thus,

(G̃, pk |)p∈P,k∈ω is a computable structure, and by Proposition 2.1, the group G̃ is
a decidable copy of G. Proposition 4.2 is proved. �

4.3. Decidable categoricity. We describe degrees of decidable categoricity of
homogeneous completely decomposable groups:

Theorem 4.3. If G is a decidable, homogeneous completely decomposable group,
then G has degree of decidable categoricity d ∈ {0,0′}.

Proof. Suppose thatG =
⊕

i∈ωH, whereH ≤ Q and t(H) = f . By Proposition 4.2,
the type f is computable. Fix a characteristic α = (α0, α1, α2, . . . ) of type f . Let
P = {pk : αk =∞}.

First, we prove that G is always decidably 0′-categorical. By Proposition 4.1, it
is sufficient to show that for any decidable copy A of G, the subgroup A[α] has a Σ0

2

excellent P̂ -basis. The proof of this fact essentially follows that of [11, Theorem 5.1],
hence, some of the details are omitted.

If P̂ = ∅, then A[α] = A. In order to build an excellent ∅-basis C of A, we only
need to know the linear dependency relation in A, and this relation is Σ0

1. Hence,
it is easy to construct the required Σ0

2 basis C.

For P̂ 6= ∅, a procedure of finding an excellent P̂ -basis C is arranged as follows.
We build C as

⋃
n∈ω Cn, where Cn ⊆ Cn+1. At a non-zero stage n, we do the

following actions:

(1) Take the n-th element gn from the subgroup A[α].



DECOMPOSITIONS OF DECIDABLE ABELIAN GROUPS 29

(2) Find an extension Cn of Cn−1 in A[α] such that Cn is a finite P̂ -independent
set, and Cn ∪ {gn} is linearly dependent. In [11], it was shown that such
an extension Cn can always be found.

It is clear that the constructed C is an excellent P̂ -basis of A[α]. Now it is sufficient
to establish the following:

Lemma 4.2. The procedure described above is effective in 0′.

Proof. Choose an element h0 ∈ A with χ(h0) = α. Then the property “χ(g) ≥ α”
is equivalent to an infinitary formula∧

p∈P̂

∧
k∈ω

[(pk | h0)→ (pk | g)].

Thus, since A is decidable, A[α] is a Π0
1 subgroup in A.

We need to show that for a finite set B ⊆ A[α], one can, effectively in 0′ and

uniformly in B, check whether B is P̂ -independent.

The condition “a set {b0, b1, . . . , bn} is P̂ -independent in A[α]” can be written
via a formula

(4)
∧

m∈Zn+1

∧
p∈P

[(
(p ∈ P̂ ) & ∃x

(
x ∈ A[α] & px =

n∑
i=0

mibi

))
→

n∧
i=0

p | mi

]
.

Since A[α] is a Π0
1 subgroup, the formula (4) is Πc

2. Nevertheless, in [11], it was
shown that it can be rewritten as an equivalent Πc

1-formula:

a. Note that the condition (αj < k), where αj is the j-th coordinate of the
characteristic α, is equivalent to a computable condition ¬(pkj | h0).

b. For every pj ∈ P̂ , the Σc2 formula

∃x

(
x ∈ A[α] & pjx =

n∑
i=0

mibi

)
is equivalent to a Σc1 formula

(5) ∃k(∃y ∈ A)

[
(αj < k) & pkj y =

n∑
i=0

mibi

]
Since (4) is equivalent to a Πc

1 condition, the procedure for finding an excellent

P̂ -basis C is effective in 0′. Lemma 4.2 is proved. �

Lemma 4.2 and Proposition 4.1 together imply that the group G is decidably

0′-categorical. We consider three cases depending on the set P̂ :

Case 1. Suppose that P̂ = ∅. This implies that H is isomorphic to the group of
rationals and G ∼=

⊕
i∈ω Q. Following a classical paper of Mal’tsev [31], we sketch

a proof for the fact that 0′ is the degree of decidable categoricity for G =
⊕

i∈ω Q.
It is well-known that the standard copy Gst of G is decidable (e.g., use Propo-

sition 2.1). Moreover, in Gst, we can effectively check whether a finite set B is
linearly dependent. It is sufficient to build a decidable copy A of G and two com-
putable sequences of elements {ae}e∈ω and {be}e∈ω such that the set {ae, be} is
linearly dependent in A if and only if e ∈ ∅′. We construct A as a sum

⊕
e∈ω Ae.

Fix an effective enumeration of the group He := Qae + Qbe. At a stage s, if
e 6∈ ∅′[s], then set Ae[s] := He[s]. If s0 is the first stage such that e ∈ ∅′[s0], then



30 N. BAZHENOV, S. GONCHAROV, AND A. MELNIKOV

find a fresh natural number N such that N is greater than absolute value of any
product (m · n · k · l), where m,n, k, l ∈ Z and

m

n
ae +

k

l
be ∈ He[s0].

Declare be := ae/N and after stage s0, construct Ae as the group Qae. This
concludes Case 1.

Case 2. Suppose that P̂ is a finite non-empty set. An analysis of the proof of
Lemma 4.2 reveals that for any decidable copy G1 of G, one can find a c.e. excellent

P̂ -basis of G1[α]:

• Since P̂ is finite, G1[α] is a computable subgroup of G1.

• For pj ∈ P̂ , the formula (5) is equivalent to a computable condition

p
αj+1
j |

n∑
i=0

mibi.

Hence, by Proposition 4.1, the group G is decidably categorical.

Case 3. Suppose that P̂ is an infinite set. W.l.o.g., we may identify G with
its standard decidable copy which was built in Proposition 4.2. Recall that the
copy was arranged as a sum

∑
i∈ω Q(α). One may assume that the group Q(α) is

decidable.
We define a subgroup G[> α] as follows:

G[> α] := {g ∈ G : χ(G) ≥ α & χ(G) 6= α}.

It is easy to show that the groups G[α] and G[> α] are computable: e.g., if

h =
pl0i0p

l1
i1
. . . plmim
n

, where 0 < lt < ω,

is an irreducible fraction from Q(α), then h ∈ G[> α] if and only if there is a
number it, t ≤ n, with αit <∞.

A “bad” copy G1 of G is constructed as a sum
⊕

e∈ωHe. Fix a computable
sequence of generators {ae}e∈ω. Choose an effective enumeration of the group
Q(α)ae. At a stage s, if e 6∈ ∅′[s], then define He[s] := (Q(α)ae)[s]. If s0 is

the first stage such that e ∈ ∅′[s0], then choose a fresh prime p ∈ P̂ such that
p > card(He[s0 − 1]) and(m

n
ae ∈ He[s0 − 1]

)
⇒ p > max{|m|, |n|}.

We pick a new generator be and declare p · be = ae. After the stage s0, we construct
He as the group Q(α)be.

It is easy to show that χ(ae) ' α, hence, He
∼= Q(α) and G1 is a computable copy

of G. Since G is a decidable structure, the theory Th(G1) is decidable. Suppose
that k ∈ ω, p is a prime, and h ∈ He. Then (pk | h) inside He if and only if one of
the following conditions holds:

• p 6∈ P̂ ;

• p ∈ P̂ , and there is a stage s such that card(He[s]) > p, be 6∈ He[s], and
(pk | h) inside Q(α)ae;

• p ∈ P̂ , and there is a stage s such that be ∈ He[s], and (pk | h) inside
Q(α)be.
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Therefore, by Proposition 2.1, the group G1 is decidable. The construction ensures
that (the domain of) the subgroup G1[> α] computes 0′: Indeed, if e ∈ ∅′, then
χ(ae) > α. If e 6∈ ∅′, then χ(ae) = α. Theorem 4.3 is proved. �

4.4. Linear independence. For homogeneous completely decomposable groups
G, we establish an unexpected connection between the decidability of G (which is
essentially a first-order property) and the decidability of the linear independence
in G (which is described by a computable infinitary formula).

Theorem 4.4. Suppose that G is a homogeneous completely decomposable group
which is not divisible. Then every decidable copy of G has an algorithm for linear
independence.

The proof of the theorem consists of two parts: In the first part (Subsec-
tion 4.4.1), we give a proof for the case when G is a free group, i.e. G ∼=

⊕
i∈ω Z.

This proof is simpler, but it already contains all the key ideas. The second part
(Subsection 4.4.2) proves the general case.

Note that the theorem substantially uses the non-divisibility of G: If G is divis-
ible, then it is easy to construct a decidable copy of G such that its linear indepen-
dence relation is Turing equivalent to 0′ (e.g., see the proof of Theorem 4.3).

4.4.1. The free group.

Lemma 4.3. For every decidable copy G of the free abelian group ⊕i∈ωZ, there is
an algorithm for linear independence.

Proof. Fix a prime number p. We give a description of an algorithm for linear
independence.

Given a tuple ā = a0, . . . , ak from G, we simultaneously run two procedures:

(i) Search for linear dependencies for {a0, . . . , ak} in a usual way.
(ii) The second procedure (we call it the generalized Euclidean Algorithm)

works as follows. We check whether there exist m0, . . . ,mk ∈ Zp such
that not all of mi-s are zeros, and the formal sum

∑
i≤kmiai is divisible

by p in the group G. Consider two cases:
Case 1. If such m0, . . . ,mk do not exist, then declare the tuple ā independent

and stop.
Case 2. Once such m0, . . . ,mk are found, consider a formal abelian group

F :=

〈
a0, . . . , ak, x

∣∣ px =
∑
i≤k

miai

〉
ab

,

where a0, . . . , ak, x are viewed as symbols. The group F is freely gen-
erated abelian. We effectively calculate its generators b0, . . . , bk. Then
the generalized Euclidean Algorithm repeats with the tuple b0, . . . , bk
from G in place of a0, . . . , ak.

The correctness of the algorithm described above is verified in the next two
claims.

Claim 4.1. Suppose that ā = a0, . . . , ak are linearly independent. Then the gener-
alized Euclidean Algorithm eventually halts on ā.

Proof. Consider a free abelian group

A := 〈a0, . . . , ak〉 = Za0 ⊕ · · · ⊕ Zak.
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The pure subgroup B := 〈a0, . . . , ak〉∗ is also free, and the rank of B is equal to
k + 1.

Every iteration of the generalized Euclidean Algorithm replaces the current group
by a strictly larger subgroup inside B:

(6) A = 〈a0, . . . , ak〉 ( 〈b0, . . . , bk〉 ( 〈b′0, . . . , b′k〉 ( · · · ⊆ B.
Indeed, since the set {a0, . . . , ak} is P-independent, the combination v :=

∑
i≤kmiai

is not divisible by p inside A, but (p | v) inside 〈b0, . . . , bk〉.
One can show (e.g., by applying Lemma 4.1 with P = ∅) that there exist (free)

bases of A and B — ξ0, . . . , ξk and η0, . . . , ηk, respectively, such that

ξ0 = l0η0, . . . , ξk = lkηk,

where l0, . . . , lk are integers. In particular, this implies that the cardinality of the
quotient group B/A is finite. Therefore, only finitely many inclusions in (6) can
be strict. On the other hand, if the generalized Euclidean Algorithm takes another
step, then it must produce a strictly larger subgroup of B. Therefore, the algorithm
eventually halts. �

Claim 4.2. If the generalized Euclidean Algorithm halts on ā = a0, . . . , ak, then ā
are linearly independent.

Proof. Note that at every stage of the algorithm, we have

spanQ(b0, . . . , bk) = spanQ(a0, . . . , ak)

in the formal Q-module
∑
i≤k Qbi. This implies that the Z-ranks of {a0, . . . , ak} and

{b0, . . . , bk} must also be equal. Hence, w.l.o.g., we may assume that the algorithm
halts on the tuple a0, . . . , ak itself.

Assume that ā are linearly dependent, i.e. we have

n0a0 + · · ·+ nkak = 0

for some integers n0, . . . , nk, where not all ni are zeros. If every ni is divisible by
p, then

pn′0a0 + · · ·+ pn′kak = 0, where ni = pn′i, i ≤ k.
Therefore, n′0a0 + · · ·+ n′kak = 0, since the group G is torsion-free.

Hence, one may assume that ni = pli + ri, where 0 ≤ ri < p, and there is at
least one non-zero ri. Then we conclude that∑

i≤k

(pli + ri)ai = 0 ⇒
∑
i≤k

riai = −p
∑
i≤k

liai,

and
∑
i≤k riai is a nonzero p-divisible element in G. This contradicts our assump-

tion that the algorithm halts on the tuple ā. �

Lemma 4.3 is proved. �

4.4.2. General case. Suppose that G is a decidable group such that G ∼=
⊕

i∈ωH,
where H ≤ Q and t(H) = f . As usual, we choose a computable characteristic
α = (α0, α1, α2, . . . ) of type f . Fix a prime p = pi0 such that αi0 <∞. W.l.o.g., we
assume that αi0 = 0 (if needed, one can replace α with α′ ' α). Let P = {pi : αi =
∞}.

For a tuple ā = a0, . . . , an from G, we simultaneously run the same pair of algo-
rithms as in the proof of Lemma 4.3. We verify the work of generalized Euclidean
Algorithm.
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Lemma 4.4. Suppose that ā is a linearly independent tuple. Then the generalized
Euclidean Algorithm halts on ā after finitely many steps.

Proof. Note that there exists a non-zero integer t such that ta0, . . . , tak ∈ G[α].
Since αi0 = 0, we may assume that p 6 | t. We fix such an integer t, and we will
work with the elements ta0, . . . , tak.

Observe that every integer linear combination of ta0, . . . , tak belongs to G[α].
Moreover, every p-root (if it exists) of an element b ∈ G[α] is itself in G[α] (recall
again that αi0 = 0).

Whenever we adjoin an element x to the group 〈a0, . . . , ak〉 such that px =∑
imiai, mi ∈ Zp, we also adjoin tx to 〈ta0, . . . , tak〉, and p(tx) =

∑
imi(tai). If

the former action properly extends 〈a0, . . . , ak〉 under inclusion, then the latter also
properly extends 〈ta0, . . . , tak〉 (since p 6 | t).

Note that B := 〈ta0, . . . , tak〉∗ ∩ G[α] is a free module of a finite rank over
the localization Q(P ): Indeed, by Theorem 4.2, the group G[α] is isomorphic to⊕

i∈ω Q
(P ), and hence it can be treated as a free Q(P )-module of infinite rank.

Since Q(P ) is a principal ideal domain and B is a submodule of G[α], B is also a
free Q(P )-module (see, e.g., [29, Theorem 7.1 in Chap. 3]).

Consider a Q(P )-module

A := spanQ(P )(ta0, . . . , tak) ∩G[α] ⊆ G[α].

The Q(P )-rank of the module is equal to the Q(P )-rank of {ta0, . . . , tak} which is
itself equal to the rank of {a0, . . . , ak}.

Now we have Q(P )-modules A ⊆ B. Extending A by a new p-root gives a sub-
module of B properly extending A: Indeed, if the generalized Euclidean Algorithm
adjoins a new root x, then the set {ta0, . . . , tak} is {p}-independent in A, but it is
{p}-dependent in 〈ta0, . . . , tak, tx〉 ∩G[α].

Consider a chain of Q(P )-modules:

(7) A ( C0 ( C1 ( C2 ( · · · ⊆ B.
We show that any such proper chain between A and B must be finite.

By Lemma 4.1, we can choose Q(P )-free bases ξ0, . . . , ξk and η0, . . . , ηk of A and
B, respectively, such that for some non-zero integers l0, . . . , lk, we have ξi = liηi.
Every submodule C with A ⊆ C ⊆ B is also k-generated, with generators being
linear combinations of η0, . . . , ηk with integer coefficients.

Suppose that elements

cj = uj,0η0 + · · ·+ uj,kηk, j = 0, . . . , k, uj,i ∈ Z,

generate C over Q(P ). Any such C is completely described by the classes cj + A,
j = 0, . . . , k. In other words, C can be described by a tuple (ξ0, . . . , ξk, c0, . . . , ck)
which consists of generators over Q(P ), but these generators are dependent over
Q(P ).

If we proceed with coefficient reductions u′j,i := (uj,i mod li), i, j ≤ k, and define

c′j = u′j,0η0 + · · ·+ u′j,kηk,

then the tuples (ξ0, . . . , ξk, c
′
0, . . . , c

′
k) and (ξ0, . . . , ξk, c0, . . . , ck) will describe the

same module C. Since there exist only finitely many such tuples (ξ0, . . . , ξk, c
′
0, . . . , c

′
k),

any strictly increasing chain (7) must be finite. Therefore, for a linearly indepen-
dent tuple ā, the generalized Euclidean Algorithm must eventually halt. Lemma 4.4
is proved. �
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Using the same proof as in Claim 4.2 (since it only requires that G is torsion-
free), one can show the following: If the generalized Euclidean Algorithm halts
on a tuple ā, then the tuple is linearly independent. This concludes the proof of
Theorem 4.4.
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