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What is geometric integration?

A numerical method for a differential equation which inherits
some property of the equation exactly.
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What is geometric integration?

A numerical method for a differential equation which inherits
some property of the equation exactly.

The property should be possible to impose exactly, while
still constraining the solution in some useful way.

Examples: preserving first integrals, symmetries, phase
space volume, symplecticity for Hamiltonian systems,
reversibility, Lyapunov functions
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A basic example

Earth
(initial position)

Earth
(after half a day)

Earth
(after a whole day)

Sun

The leapfrog method

Loup Verlet, 1967
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Feynman’sLectures on Physics
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Newton’s Principia, Book I, Theorem I
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The leapfrog method. . .

is simple

is fast

is relatively accurate

is time-reversible

preserves momentum and angular momentum

has no drift of energy

preserves quasiperiodic orbits [KAM tori]

produces qualitatively correct chaotic orbits

is symplectic
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Channel & Scovel, 1990
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What is symplecticity?

Phase space T ∗Q carries a symplectic 2-form ω

Flow of Hamilton’s equations iXω = −dH satisfies
exp(tX)∗ω = ω

The leapfrog method also satisfies ϕ∗ω = ω
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What is symplecticity?
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Missed opportunities

Freeman Dyson
“I am acutely aware of the fact that the marriage between
mathematics and physics, which was so enormously fruitful in
past centuries, has recently ended in divorce.”
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The ice ages explained

(Sverker Edvarddson 2002)
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Simulation of cold water

1
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Simulation of cold water

2
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Simulation of cold water
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Simulation of cold water
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Simulation of cold water
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Simulation of cold water
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Simulation of cold water
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Simulation of cold water
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Simulation of cold water
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Simulation of cold water
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Simulation of cold water
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Simulation of cold water
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Simulation of cold water
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Simulation of cold water
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Simulation of cold water

15
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Simulation of cold water

15
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Simulation of cold water

15
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Backward error analysis

Let G be a set of diffeomorphisms with a tangent space G at the
identity. Let ϕ = 1 + (∆t)X + o(∆t) ∈ G. Then

If ϕ ∈ Cr then there exists X̃ ∈ G such that
ϕ = exp(∆tX̃) + O((∆t)r)

If ϕ is analytic then ϕ = exp(∆tX̃) + O(e−a/∆t).

Therefore properties generic to G are (almost) preserved.

For example, let G = symplectic maps, G=Hamiltonian vector
fields. Then symplectic integrators have bounded energy errors
for exponentially long times O(ea/∆t).
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Splitting methods

Let X =
∑n

i=1Xi with X,Xi ∈ G. Use the integrators

ϕ1(∆t) = exp(∆tX1) ◦ . . . exp(∆tXn)

ϕ2(∆t) = ϕ1(∆t/2)ϕ
−1
1 (−∆t/2)

ϕ4(∆t) = ϕ2(z∆t)ϕ2((1 − 2z)∆t)ϕ2(z∆t), z = (2 − 21/3)−1

where
ϕj = exp

(
∆tX + O((∆t)j+1)

)
.

Requires knowing

an explicit form (generating function) for all X ∈ G

a way of constructing lots of integrable Xi ∈ G.

the Baker-Campbell-Hausdorff formula
exp(A) exp(B) = exp

(
A+B + 1

2 [A,B] + 1
6 [A, [A,B]] + . . .

)
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Analysis of splitting methods

Quickly leads to studying L(X1,X2, . . .), the free Lie algebra
generated by the Xi.

Simplest and most common case: split the Hamiltonian
H = T + V = 1

2pM(q)p+ V (q) and study L(T, V ).

This Lie algebra is not free, because T is quadratic in p, leading
to [V, [V, [V, T ]]] ≡ 0.

It is LP(T, V ), the Lie algebra of classical mechanics.
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Polynomial gradings

Definition. A Lie algebra L is of class P (‘polynomially graded’) if
it is graded, i.e. LP =

⊕
n≥0 Ln, and its homogeneous

subspaces Ln satisfy

[Ln, Lm] ⊆ Ln+m−1 if n > 0 or m > 0; and

[L0, L0] = 0

We call the grading of L its grading by degree.

LP(T, V ) also has the standard grading by order (= number of
Lie brackets + 1), which satisfies LP =

⊕
m>0 L

m and

[Ln, Lm] ⊆ Ln+m.
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The Lie algebra of classical mechanics

Theorem.
LP(T, V ) = Z ⊕ L(T, [T,Z])

where Z = {V, [V, [V, T ]], . . .} is an infinite set of degree–0
(potential energy) functions.

dimLn
P(T, V ) ∼

1

n
αn,

where α = 1.82542377420108 . . . is the entropy of classical
mechanics.

(Recall that in the free case, dimLn(A,B) ∼ 1
n2n (Witt 1936).)
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GF for CM
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Classification of dynamical systems

Sets of dynamical systems can form a

semigroup (examples: systems with Lyapunov functions,
systems which contract volume)

symmetric space closed under (ϕ,ψ) 7→ ϕψ−1ϕ (example:
maps with a reversing symmetry ϕ−1 = RϕR−1)

group (examples: all diffeomorphisms, symplectic maps,
volume-preserving maps)

with linearizations to a Lie wedge, Lie triple, and Lie algebra
respectively.
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The big picture

1. to find all groups, semigroups, and symmetric spaces of
diffeomorphisms

2. to find their normal forms

3. to find a way to detect the structure in a given system

4. to study their relationships under intersection

5. to study the dynamics of their perturbations

6. to determine the characteristic dynamics and invariants of
each class

7. to develop good (i.e. simple, fast, stable) integrators for
each class

VIC 2004 – p.20/26



What was known in 1895

conformal 

all differential equations

all "primitive" equations

symplectic
volume

preserving

"nonprimitive"

equations

all

contact

conformal volume preserving

symplectic
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What is known in 2003

Lie was right!

all differential equations

all "primitive" equations

symplectic
volume

preserving

"nonprimitive"

equations

all

contact

conformal volume preserving

symplectic

conformal 

VIC 2004 – p.22/26



Nonprimitive groups of diffeomorphisms

preserve some foliation of phase space (leaves map to
leaves)

may preserve some (e.g. symplectic) structure on the
leaves

may preserve some structure on the space of leaves

may have some complicated interaction between the leaves
and the leaf space
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Example

Let G be a Lie group acting on the Poisson manifold (P, {, }). Let
H : P → be a G-invariant Hamiltonian. Its flow preserves 4
foliations:

1. the level sets of H

2. the level sets of the momentum map of G

3. the symplectic leaves of P

4. the orbits of G

More generally, a diffeomorphism ϕ on a manifold M can
preserve any set of foliations, which must contain ∅, M , and be
closed under intersections and joins. That is, the set of foliations
forms a lattice (generalizes Kodaira & Spencer 1961).
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Lattices with ≤ 3 foliations
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The big picture

1. to find all groups, semigroups, and symmetric spaces of
diffeomorphisms

2. to find their normal forms

3. to find a way to detect the structure in a given system

4. to study their relationships under intersection

5. to study the dynamics of their perturbations

6. to determine the characteristic dynamics and invariants of
each class

7. to develop good (i.e. simple, fast, stable) integrators for
each class

Thank you for your attention!
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