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\What Is. geometric integration?

®» A numerical method for a differential equation which inherits
some property of the equation exactly.

® The property should be possible to impose exactly, while
still constraining the solution in some useful way.

®» Examples: preserving first integrals, symmetries, phase
space volume, symplecticity for Hamiltonian systems,
reversibility, Lyapunov functions
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A basic example
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The leapfrog method



Feynman'sLectures on Physics

should use the acceleration midway between the two times at which the velocity
is to be found. Thus the equations that we shall actually use will be something
like this: the position later is equal to the position before plus e times the velocity
at the time in the middie of the interval. Similarly, the velocity at this halfway point
is the velocity at a time ¢ before (which is in the middle of the previous interval)
plus e times the acceleration at the time ¢. That is, we use the equations

x( + € = x() + ev(r + €/2),

ot + €/2) = v(t — €/2) + eald), (9.16)
a(t) = —x(1).
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Newton’s Principia, Book |, Theorem |

40 NEWTON'S MATHEMATICAL PRINCIPLES

SECTION II

The determination of centripetal forces.

PROPOSITIONI. THEOREM I

The areas which revolving bodies describe by radii drawn to an immovable
centre of force do lie in the same immovable planes, and are proportional
to the times in which they are described.

For suppose the time to be divided into equal parts, and in the first part
of that time let the body by its innate force describe the right line AB. In
the second part of that time, the same would (by Law 1), if not hindered,

S A
proceed directly to ¢, along the line Be equal to AB; so that by the radii AS,
BS, ¢S, drawn to the centre, the equal areas ASB, BSe, would be described.
But when the body is arrived at B, suppose that a centripetal force acts at
once with a great impulse, and, turning aside the body from the right line
Be, compels it afterwards to continue its motion along the right line BC.




The leapfrog.method. ..
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IS simple

IS fast

IS relatively accurate

IS time-reversible

preserves momentum and angular momentum
has no drift of energy

preserves guasiperiodic orbits [KAM tori]
produces qualitatively correct chaotic orbits

Is symplectic
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Channel & Scovel, 1990
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Figure 2. Comparson of third-order s1A (e} and o fourth-order kK1 (4} for the Heneno-
Heiles system. The initial condition wae (0.11,0.12,0,12,0.12) and energy 0020 G52 The
imestep was 15 and 1200 000 tmesteps were computed



What is symplecticity?

® Phase space T*() carries a symplectic 2-form w

» Flow of Hamilton’s equations :xw = —dH satisfies
exp(tX)*w = w

®» The leapfrog method also satisfies p*w = w



What is symplecticity?

velocity
e

—
position \




Missed opportunities

A Freeman Dyson
“I am acutely aware of the fact that the marriage between

mathematics and physics, which was so enormously fruitful in
past centuries, has recently ended in divorce.”

|

VIC 2004 — p.10/26



The ice ages explained
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(Sverker Edvarddson 2002)




Simulation.of.cold water
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Backward.error analysis

Let G be a set of diffeomorphisms with a tangent space G at the
identity. Let o =1 4+ (At)X + o(At) € G. Then

® If o € C" then there exists X € G such that

@ = exp(AtX) + O((At)")
® If pis analytic then ¢ = exp(AtX) + O(e~ /A1),
Therefore properties generic to G are (almost) preserved.

For example, let G = symplectic maps, G=Hamiltonian vector
fields. Then symplectic integrators have bounded energy errors

for exponentially long times O(e*/ A1),
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Splitting.methods

Let X = > " ; X; with X, X; € G. Use the integrators
©1(At) = exp(AtX7) o...exp(AtX,)
p2(At) = @1 (AL/2)p1 (—AL/2)
Pa(AL) = pa(2At)pa((1 — 22) At)pa(2AtL), 2z =(2—2"%)7!

where

p; = exp (AtX + O((At)’ ).
Requires knowing

» an explicit form (generating function) for all X € G
» a way of constructing lots of integrable X; € G.
® the Baker-Campbell-Hausdorff formula

exp(A) exp(B) = exp (A+ B+ 4[A, Bl + ¢[A, [A,B]] +...) \



Analysis.of splitting methods

Quickly leads to studying L(X1, Xo,...), the free Lie algebra
generated by the X;.

Simplest and most common case: split the Hamiltonian
H=T+V =3pM(q)p+ V(q) and study L(T, V).

This Lie algebra is not free, because T' is quadratic in p, leading
to [V, [V,[V,T]]] = 0.

Itis Ly(T, V), the Lie algebra of classical mechanics.
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Polynomial gradings

Definition. A Lie algebra L is of class 3 (‘polynomially graded’) if
itis graded, i.e. Ly = @, Ln, and its homogeneous

subspaces L,, satisfy

Ly, L] C Lyym—1ifn > 0orm > 0; and
[Lo, Lo =0

We call the grading of L its grading by degree.

L (T, V') also has the standard grading by order (= number of
Lie brackets + 1), which satisfies Lz = €,y L™ and
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The Lie algebra of classical mechanics

Theorem.

Lyp(T, V) = Z& L(T, [T, Z))

where Z = {V, [V, [V, T]],...} is an infinite set of degree-0
(potential energy) functions.

: n 1 n
dim L(T, V') ~ —a”,

n

where o = 1.82542377420108.. . . is the entropy of classical
mechanics.

(Recall that in the free case, dim L"(A, B) ~ %2" (Witt 1936).)
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GF for CM

e” ] where z(t) = Y02 dim Lg(T, V)t".



Classification of dynamical systems

Sets of dynamical systems can form a

® semigroup (examples: systems with Lyapunov functions,
systems which contract volume)

® symmetric space closed under (¢, 1)) — ity (example:
maps with a reversing symmetry ¢! = RpR™1)

» group (examples: all diffeomorphisms, symplectic maps,
volume-preserving maps)

with linearizations to a Lie wedge, Lie triple, and Lie algebra
respectively.
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The big picture

o 0k Wb

to find all groups, semigroups, and symmetric spaces of
diffeomorphisms

to find their normal forms

to find a way to detect the structure in a given system
to study their relationships under intersection

to study the dynamics of their perturbations

to determine the characteristic dynamics and invariants of
each class

to develop good (i.e. simple, fast, stable) integrators for

each class
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\What was - known in 1895
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What is known.in 2003

Lie was right!
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Nonprimitive groups of diffeomorphisms

® preserve some foliation of phase space (leaves map to
leaves)

» may preserve some (e.g. symplectic) structure on the
leaves

» may preserve some structure on the space of leaves

» may have some complicated interaction between the leaves
and the leaf space




Example

Let G be a Lie group acting on the Poisson manifold (P, {, }). Let
H : P — be a G-invariant Hamiltonian. Its flow preserves 4

foliations:
1. the level sets of H
2. the level sets of the momentum map of G
3. the symplectic leaves of P
4. the orbits of G

More generally, a diffeomorphism ¢ on a manifold M can
preserve any set of foliations, which must contain @, M, and be
closed under intersections and joins. That is, the set of foliations

forms a lattice (generalizes Kodaira & Spencer 1961). \
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Lattices with.< 3 foliations
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The big picture
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to find all groups, semigroups, and symmetric spaces of
diffeomorphisms

to find their normal forms

to find a way to detect the structure in a given system
to study their relationships under intersection

to study the dynamics of their perturbations

to determine the characteristic dynamics and invariants of
each class

to develop good (i.e. simple, fast, stable) integrators for

each class
Thank you for your attention! \
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