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Abstract

Recognising new or unusual features of an environ-
ment is an ability which is potentially very useful
to a robot. This paper demonstrates an algorithm
which achieves this task by learning an internal rep-
resentation of ‘normality’ from sonar scans taken
as a robot explores the environment. This model
of the environment is used to evaluate the novelty
of each sonar scan presented to it with relation to
the model. Stimuli which have not been seen before,
and therefore have more novelty, are highlighted by
the filter. The filter has the ability to forget about
features which have been learned, so that stimuli
which are seen only rarely recover their response
over time. A number of robot experiments are pre-
sented which demonstrate the operation of the filter.
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1 Introduction

Novelty detection, recognising when a particular
stimulus has not been seen before, is a very use-
ful ability for both animals and robots. This pa-
per presents an algorithm which allows a robot to
detect novel stimuli. The novelty filter described
learns a representation of an environment and then
detects deviations from that model by evaluating
the novelty of each feature presented.

A novelty filter has many potential uses on a mo-
bile robot. For instance, it could be used as an
attentional mechanism, directing the robot’s atten-
tion to newer features, which may be important
and have not previously been learned [11]. This
reduces the amount of processing needed to deal
with the robot’s sensory perceptions. The novelty
filter could also enable the robot to be used as an
inspection agent. A model is built by the robot
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of a ‘clean’ area, which has been inspected by hu-
mans and is known to exhibit no undesirable fea-
tures. The robot then explores the wider environ-
ment and marks those stimuli which are not present
in the model and therefore were not in the original
environment,.

This paper demonstrates the behaviour of the
novelty filter when the inputs to it are sonar scans
taken while a robot explores an environment using
a wall-following behaviour. One property of the
novelty filter which is investigated here is the abil-
ity to forget. This means that it will still find to be
novel any stimuli which are seen only infrequently.
This is useful because it ensures that these features
are always considered novel, not learned over time.
This can help the robot to deal with dynamic en-
vironments, where things may change over time. If
an event happens only occasionally we would like it
to be considered novel, but without forgetting the
robot will learn to recognise it no matter what the
time interval between occurrences.

1.1 Related Work

The best known example of a novelty detector is
the Kohonen Novelty Filter [9, 8]. This is an au-
toencoder neural network which is trained using
backpropagation of error [2]. Once the network has
been trained, presenting an input to the network
produces one of the learned outputs, and taking
the bitwise difference between the two displays the
novel components of the input.

A number of other researchers have proposed
novelty filters. Ypma and Duin [22] proposed a
novelty detector based on the self-organising map.
Training data was used to train the map, so that
the data formed organised neighbourhoods. Then,
when any data caused a neuron to fire which was
beyond a predefined threshold from any of the
neighbourhoods, the data was considered to be
novel. This technique depends very strongly on the
choice of threshold and assumes that the data pre-
sented to the network formed strictly segmented



neighbourhood clusters. The technique has been
used by Taylor and Maclntyre [18] to detect ma-
chinery faults. The network was trained on data
recorded while the machine was operating without
problems, and data deviating from this pattern was
taken as novel.

The technique of training the network on ‘nor-
mal’ data and then attempting to recognise
whether inputs come from the learned probability
distribution is a common one when there is little
data from a particular class, such as machine faults,
but lots of data from the other classes. It has been
used for topics as diverse as mammogram scans [17]
to machine breakdowns [12, 21].

An alternative method was proposed by Ho and
Rouat [6] whose model is based on an integrate-
and-fire network. The algorithm times how long it
takes the oscillatory network to settle to a stable so-
lution, reasoning that inputs which have been seen
previously will converge faster than novel ones.

2 The Novelty Filter

The novelty filter described in this paper works on
the principle that something is novel if it has not
been seen before. The question is how to recog-
nise that an item is new. If we know in advance
what everything in the environment will look like
then it is relatively simple to train the robot to
recognise each of those features. However, this is
usually not possible. Instead, if the robot learns
to ignore anything which it has seen before, then,
it will only respond to novel things. This is some-
thing which animals do quite well [14]. There are
then two parts to the desired system - learning to
recognise features that have been seen before, and
evaluating their novelty. The first part, recognis-
ing features, is a pattern recognition problem and
has been considered widely in the neural network
literature. One possible solution is the Kohonen
Self-Organising Map [8], which is described below.
The second problem, how to evaluate the novelty,
is considered in section 2.2.

2.1 The Self-Organising Map

The Self-Organising Map (SOM) of Kohonen [8] is
a clustering mechanism which clusters input vec-
tor in a topological way, so that perceptions which
are similar excite similar regions of the network.
The SOM is used here to perform Learning Vector
Quantisation, choosing a winning neuron that best
matches the input and moving that neuron and its
neighbours closer to the input vector. It does this
by selecting the neuron with the minimum distance
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Figure 1: Left: An example of how the synaptic efficacy
drops when habituation occurs. In both curves, a constant
stimulus S(t) = 1 is presented, causing the efficacy to fall.
The stimulus is reduced to S(t) = 0 at time ¢ = 60 where
the graphs rise again, and becomes S(t) = 1 again at
t = 100, causing another drop. The two curves show the
effects of varying 7 in equation 3. It can be seen that a
larger value of 7 causes both the learning and forgetting
to occur faster. The other variables were the same for
both curves, @ = 1.05 and yo = 1.0.

between itself and the input. The distance is de-
fined by:
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where v(t) is the input vector at time ¢, w; the
weight between input ¢ and the neuron and the sum
is over the N components of the input vector. The
weights for the winning neuron and its eight topo-
logical neighbours are updated by:

wi(t + 1) = wi(t) +n(t) (v(t) —wit)) (2)

where 7 is the learning rate, 0 < 5j(¢t) < 1. A square
map field, comprising 100 neurons arranged in a 10
by 10 grid, was used in the experiments reported
here. The neighbourhood size was kept constant at
+1 unit and the learning rate n was 0.25, so that
the network was always learning.

2.2 Evaluating the Novelty

Once a feature has been classified using the SOM,
the novelty filter needs to assign a novelty value
to the reading. A simple counter could be kept on
each neuron, recording the number of times that
each neuron has fired, and the output reduced ac-
cordingly. This is biologically implausible and does
not allow for any forgetting of stimuli. When an an-
imal stops responding to a feature which has been
presented to it repeatedly, the animal is said to have
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Figure 2: The novelty filter. The input layer connects to
a clustering layer which represents the feature space, the
winning neuron (i.e., the one ‘closest’ to the input) passing

its output along a habituable synapse to the output neuron
so that the output received from a neuron reduces with
the number of times it fires.

habituated to the signal. Habituation, thought to
be one of the simplest forms of plasticity in the
brain [19], has been detected in a wide range of ani-
mals from the sea slug Aplysia [1, 4] to humans [14].
The increase in the response to an habituated stim-
ulus when the stimulus is withdrawn is called disha-
bituation. It is thought to be a separate process
acting on the habituable synapses [5].

Several researchers have proposed models of the
phenomenon of habituation, including Groves [5],
Wang and Hsu [20] and Stanley [16]. It is the model
of Stanley, described below, which is used here. The
synaptic efficacy, y(t), decreases according to the
following equation:

TdZ—Egt) =alyo —yt)] - S(), (3)

where yg is the original value of y, 7 and « are time
constants governing the rate of habituation and re-
covery respectively, and S is the stimulus presented.
The activity of the winning neuron and its neigh-
bours are propagated up the synapse, so the input
is S(t) = d (d defined in equation 1). Using equa-
tion 3 we can control how strongly a synapse re-
sponds to an input. The first time a synapse fires
its value is high, but each time it is used its strength
decreases, as can be seen in the graph in figure 1.
Neurons which do not belong to the winning neigh-
bourhood give an input of S(¢) = 0 to the synapse.
This has the affect of causing the efficacy of the
synapse to increase, or ‘forget’ some of its inhibi-
tion, dishabituation.
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Figure 3: The Nomad 200 mobile robot.

2.3 Putting it all together

By attaching an habituable synapse to each of the
neurons in the SOM, a novelty filter is produced.
The network is shown in figure 2. The only remain-
ing question is how the constants « and 7 should be
chosen. In order for the network to learn quickly,
the synapse of the winning neuron should habit-
uate rapidly. By choosing a value of 7 = 3.33,
the synapse decreases to below 90% of its original
value within 5 iterations. The neighbourhood neu-
rons, which recognise similar perceptions, have a
smaller amount of habituation, 7 = 14.33 and the
other neurons, which are forgetting, have a longer
time period, 7 = 100. This is because we do not
want the network to forget perceptions too rapidly.
Using this value a perception will recover from com-
plete habituation in about 280 presentations.

3 Experiments

The experiments presented investigate the ability
of the novelty filter to learn a model of an exter-
nal environment through periodic sonar scans taken
while exploring, and to detect deviations from that
model. The effects of the forgetting mechanism are
demonstrated.

3.1 The Robot

A Nomad 200 mobile robot (shown in figure 3)
was used to perform the experiments. The band of
infra-red sensors mounted at the bottom of the tur-
ret of the robot were used to perform a pre—trained
wall-following routine [13], and the 16 sonar sen-
sors at the top of the turret were used to provide
perceptions of the robot’s environment. The an-
gle between the turret and base of the robot was
kept fixed. The input vector to the novelty filter
consisted of the 16 sonar sensors, each normalised
to be between 0 and 1, were thresholded at about
4 metres. The readings were inverted so that inputs
from sonar responses received from closer objects
were greater.
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Figure 4: Diagrams of the environments used. The robot is shown facing in the direction of travel adjacent to the wall
that it followed. The environments are two similar sections of corridor. The photographs show the environments as they

appear from the starting position of the robot. The notice boards which can be seen in environment B are above the

height of the robot’s sonar sensors, and were therefore not detected.

3.2 Experimental Procedure

The experiments each consisted of a number of tri-
als. In each trial, the robot started from an ar-
bitrarily chosen starting point, and moved using a
wall-following behaviour. Every 10cm along the
route, the smoothed readings from the sonar sen-
sors were presented to the novelty filter, which pro-
duced a novelty reading. Once the robot had trav-
elled 10m it stopped and saved the neural network
weights. The robot was then returned to the start-
ing point using manual control and the same pro-
cedure repeated with the updated network weights.

After each training trial, where the novelty filter
learned about the environment, the learning mech-
anism was turned off and a non-learning trial per-
formed. The sonar inputs still generated output
from the novelty filter to record the novelty of per-
ceptions, but the robot did not learn.

3.3 Environments

Two environments were used in the experiments,
together with a control environment for training.
The two environments are shown in figure 4. They
are similar sections of corridor on the second floor
of the Computer Science building at the University
of Manchester. The corridors are 1.7m wide and

have walls made from painted breezeblock. Doors
made of varnished wood lead from the corridors
into offices.

4 Results

4.1 Experiment One

The first experiment aimed to demonstrate the abil-
ity of the novelty filter to learn a representation
of an environment and recognise novel features, so
that the robot could be used as an inspection agent.
The novelty filter was initialised randomly and then
the robot was put into environment A. The left of
figure 5 shows the results of this. The figures show
the response of the output neuron to the input vec-
tor of sonar readings that it receives every 10cm
along the route it travelled. At the top of the fig-
ure is a diagram of the environment that the robot
was travelling in at the time. Initially it can be
seen that everything is novel, but where the robot
perceives only wall, it rapidly learns to recognise
this. The next thing that it notices is the crack in
the wall on its right and then the doors. It is inter-
esting to note that the robot finds the first crack
more novel in the third run than in the second.
This is because perceptions of such small features
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The results of the first experiment. The graphs on the left show the response of the output neuron of the

Figure 5:

novelty filter as the robot moves within environment A when learning and not learning. Once it has stopped detecting

novelty features (so that the activity of the output neuron is low), the robot was moved into environment B. The results of

this are shown on the right, and are discussed in section 4.1. The final picture on the right shows the results of investigating

environment B after prior training in a completely different control environment.



vary greatly depending upon the precise position of
the robot. Only the cracks and the doorways are
highlighted in the later trials. After two more learn-
ing trials, the novelty filter has learned an accurate
representation of the environment, as can be seen
from the lack of response from the output neuron
in trial 6.

Once the novelty filter stopped finding anything
novel in environment A, the robot was moved into
environment B. This is a similar environment to A
(see figure 4). The right of figure 5 shows the re-
sults of this. The only things which the robot finds
to be novel in this environment are the perceptions
of the doorways. This is because the doors are inset
further into the wall in this environment. The con-
trol trial demonstrates the responses of the novelty
filter when the robot is put into environment B af-
ter training in a control environment. For this the
robot was driven around in an open area, travelling
close to a wall, into the open space and back to the
wall. It can be seen that the robot finds the en-
vironment to be considerably more novel after this
training.

4.2 Experiment Two

The second pair of experiments (shown in figure 6)
were designed to show the behaviour of the forget-
ting part of the novelty filter. Two different experi-
ments were performed. In both the network weights
learned when exploring environment A were used.
The first trial shows that the novelty filter had
learned about this environment, since the robot did
not find anything novel. A door in the environment
was then opened (shown as Environment A* at the
bottom of figure 6), and the robot learned about
this new environment. A cardboard box was placed
in the doorway. This was of sufficient height to be
seen by the infra-red sensors which were respon-
sible for the wall-following, but not by the sonar
sensors. After each learning trial in this environ-
ment, the door was closed and a non-learning trial
in environment A was performed. The figures show
that while no other features are detected, the open
door is initially novel, but is learned over the three
trials, and the closed door is initially recognised but
is found progressively more novel as the novelty fil-
ter forgets about this perception (since the filter is
not learning when the robot perceives the closed
door).

The right of figure 6 shows the second experi-
ment. A similar technique was used, again starting
with the network weights learned in environment
A in the first experiment. The robot learned about
environment B, and after each learning trial was
returned to environment A for a non-learning trial.
Similar results can be seen - the robot initially finds

parts of environment B novel, but learns to recog-
nise it over the trials, while environment A, which
is recognised at first, becomes more novel. Obvi-
ously, only particularly features of environment A
are found novel, those which are not also seen in en-
vironment B. These are the crack in the wall near
the beginning of the environment and the doorway,
which is set into the wall less than those in envi-
ronment B.

5 Summary and Conclusions

The experiments described have demonstrated that
the novelty filter can be used to learn a model of an
environment and detect deviations from this model.
The second experiment demonstrated the ability
of the filter to forget perceptions that have been
learned previously. This means that the novelty fil-
ter will find novel features which are seen only occa-
sionally or not seen for a long time. Therefore it can
be trained in dynamic environments, where unfore-
seen and undesirable perceptions, such as people
walking past the robot, can occur.

There are a number of areas which need further
investigation. The integration of a number of ad-
ditional sensory systems will allow the filter to be
more widely applicable. In particular, the output
of a monochrome CCD camera will be used. The
images will need to be extensively preprocessed be-
fore being presented to the novelty filter to reduce
computational time. In addition, an investigation
into alternatives to the Self-Organising Map (SOM)
used in this work is underway. There are a number
of well documented problems with the SOM, such
as the fact that the size of the network needs to be
pre-determined, which means that the network can
fill up, so that novel stimuli are incorrectly recog-
nised as familiar. One possible solution is to use a
growing network such as the Growing Neural Gas
of Fritzke [3], another is to use a Mixture of Ex-
perts [7], with each expert learning a representation
of a particular feature and voting on the novelty of
perceptions. A committee of networks, where net-
works of varying sizes and training regimes vote on
the response to a particular input [10, 15] could also
be used.
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Figure 6: A demonstration of the effects of forgetting. In the figure on the left the robot was accustomed to environment

A. The environment was then changed by opening a door (shown at the bottom of the figure) and the robot learned this
new environment, with forgetting turned on. It can be seen that after every exploration, the trial with the door closed finds

more novelty in this feature. A similar experiment is shown on the right, but using environments A and B. The results are

similar and are discussed in section 4.2.
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