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Abstract

This paper considers the problem of measuring the differences between de-
formations. It is intended to be applied in the context of applications such as
the analysis of sets of non-rigidly registered medical images, where diffeo-
morphic warps between pairs of images establish a dense pixel-to-pixel cor-
respondence. We introduce a new spline with explicit boundary conditions,
and show how this can be used to generate general flows of bounded dif-
feomorphisms. Techniques are developed to describe an arbitrary continuous
diffeomorphism and to invert and interpolate between such diffeomorphisms.
We show how these constructions and the geodesic distance can be used in
the analysis of training sets of general diffeomorphic warps.

1 Introduction
The analysis and interpretation of medical images is a difficult, yet important task. Within
one imaging modality the normal appearance of an anatomical region can vary widely
across a population and over time; abnormalities associated with disease can similarly
have a wide variation. Variability is further increased when combining data from different
imaging modalities (e.g., CT, MRI and PET). One popular approach to dealing with this
variability is to map all images into some common reference frame. While some part
of this mapping may be affine, in general the complete mapping will also have some
non-linear component. Generating suitable non-linear mappings is known as non-rigid
registration and several methods have been developed, usually by analogy with natural
processes such as fluid or elastic warping [4, 9, 12].

In this paper, we concentrate on the case where a dense (i.e., pixel-to-pixel) non-
linear correspondence has been established across a set of images, by whatever method.
The set of warps that define the correspondence implicitly encode information about the
variability of the structures present in the images. Quantifying such anatomical variability
via analysis of such sets of warps is the focus of this paper. Previous work (e.g., [3, 11])
has considered the construction of parameterised models of deformation fields. However,
there are two possible problems with such approaches. Firstly, the warps they consider
are not exact diffeomorphisms – the possibility exists for folding or tearing the images.
Such a warp is in some sense ambiguous and is not generally invertible. Secondly, the
statistical models are constructed on some space of warp parameters; the imposition of
a Euclidean metric on such a space is rather ad hoc. It is well-known from the field of
statistical shape modelling that arbitrary or inappropriate choice of parameters can lead to
highly non-optimal models [6].
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Here, we consider the case where the warping functions are constrained to be smooth,
whilst also not tearing or folding the image. The warp functions are then bijective, invert-
ible and differentiable to some order. Furthermore, if the objects considered are discrete
and bounded, it seems that the appropriate set of warp functions to consider will belong
to the group of diffeomorphisms with some non-trivial boundary conditions. We will use
a metric on the space of such bounded diffeomorphisms that is defined with reference to
the fact that the space of warps is a group. Camion and Younes [5] have shown how to
construct such a metric. It relies on a parameterisation of diffeomorphisms that is based
on the positions of a set of control points. However in their implementation, they focus
solely on the problem of inexact matching of image-based landmarks, rather than on the
representation and analysis of sets ofarbitrary diffeomorphisms. We choose to focus on
the latter problem, and emphasise that the warp control points we will construct donot
have any direct correspondence with image-based landmarks or image features.

To this end, we present a new optimisation algorithm for calculating geodesics in
the space of diffeomorphisms. We show that our representation of diffeomorphisms is
general, in that it can be used to approximate an arbitrary diffeomorphism to any required
degree of accuracy. Furthermore, we show that within this representation, we can invert
and interpolate between arbitrary warps. We then explore the relationship between this
metric-based approach and conventional parameter-based models of variation.

2 Representing Arbitrary Bounded Diffeomorphisms
2.1 The Deformation Field
Suppose that we wish to construct a diffeomorphism that maps a set of control points
{x(0)

i : i = 1 . . . nc} to the points{x(1)
i = x(0)

i + vi}, where{vi} are the control
point displacements. One method of extending this mapping to the whole space is to
interpolate the displacements. This is the approach used by Bookstein [2], who considers
the thin-plate spline interpolant of the displacements{vi} → v(x). The solution for the
displacement fieldv(x) is then the minimiser of the functional Lagrangian:

L[v] =
∫

Rn

dx|Lv(x)|2 + λ
∑nc

i=1
|v(x(0)

i )− vi|2. (1)

If L is the differential operatorL = 4 = ∇2 then the first term is the approximate Will-
more energy [14] (i.e., the bending energy) of the displacement fields. The second term
includes a Lagrange multiplierλ to impose theexactconstraint that the displacement field
has the required value at the control points. Taking ordinary and functional derivatives of
the Lagrangian, we obtain:

dL
dλ

=
∑nc

i=1
|v(x(0)

i )− vi|2 = 0 ⇒ v(x(0)
i ) = vi, (2)

1
2

(
δL

δv(x)

)
= 42v(x) + λ

∑nc

i=1
δ(x− x(0)

i ) [v(x)− vi] = 0

⇒ 42v(x) ∝
∑nc

i=1
δ(x− x(0)

i ) [v(x)− vi] . (3)

The non-affine part of the solutions of equations (2, 3) can be expanded in terms of some
Green’s functionG(x,y) of the biharmonic equation thus:

42
(x)G(x,y) ∝ δ(x− y), v(x) =

∑nc

i=1
αiG(x,x(0)

i ), (4)



Figure 1:From the left: The original image, optimal control point paths and the unit circle
(in gray), the thin-plate spline interpolant of the deformation field, the clamped-plate spline
interpolant of the deformation field and the geodesic interpolating spline.

where the subscript indicates that derivatives are taken with respect to the first argument
only. The coefficients{αi} are completely determined by fitting the solution to the con-
straints. The 2D thin-plate spline uses the Green’s function:

G̃(x,y) = −|x− y|2 log |x− y|2. (5)

However, the thin-plate spline interpolant is onlyasymptotically flat, and has no specific
boundary conditions. A new spline with explicit boundary conditions is the subject of the
next section.

2.2 Clamped-Plate Splines
The thin-plate spline interpolant potentially affects every point in the space. In the context
of an image of a discrete object or objects that may be unrelated, such global warps are
unsuitable. We hence require a deformation that acts only within some specified bounded
region1, and that vanishes smoothly at the boundary of the region, that is, we specify
both Dirichlet and Neumann boundary conditions. We therefore introduce a new spline
interpolant, which we will call theclamped-plate spline. This is defined for an arbitrary
number of dimensions based on the general Green’s function of the biharmonic (clamped-
plate) equation given by Boggio [1], which in two dimensions, takes the form:

G(x,y) = |x− y|2
(

1
2
(A2 − 1)− log A

)
, A(x,y) =

√
|x|2|y|2 − 2x · y + 1

|x− y| . (6)

The general Green’s function has the boundary conditions that it is zero and has zero
normal derivative on the boundary of the unit ball inRn. The clamped-plate spline inter-
polant for the deformation fields is constructed as before (note that there is no affine part).

v(x) =
∑nc

i=1
αiG(x,x(0)

i ). (7)

So, we now have a method for interpolating the displacement field with specified bound-
ary conditions. However, only in the limit of small deformations are interpolants of the
deformation field guaranteed to be diffeomorphic, whether we consider thin-plate splines,
clamped-plate splines or the Gaussian interpolant considered by Camion and Younes [5].
An example illustrating this is shown in Figure 1, where the thin-plate spline and clamped-
plate spline interpolants of the deformation field both show folding.

1This could be approximated to any required accuracy by using additional control points for the thin-plate
spline, positioned on the required boundary. Solving for the expansion coefficients involves the inversion of a
matrix whose size is given by the number of control points, hence this approximation would greatly increase the
computational cost.



2.3 Geodesic Interpolating Splines
Since the deformation field interpolant is only diffeomorphic for small deformations, the
usual approach to constructing large-deformation diffeomorphisms is to consider them as
a sequence of small deformations [5, 10, 8, 13]. We introduce the flow-timet, where:

x(0)
i → xi(t = 0), x(1)

i → xi(t = 1). (8)

The control points now trace out paths{xi(t)}, the velocities of which are constrained by
a time-dependant deformation (velocity) field:

dxi(t)
dt

= v(t,xi(t)). (9)

The functional Lagrangian (1) can then be generalised thus [5]:

L =

1∫

0

dt

∫

Rn

dx |Lv(t,x(t))|2 + λ

nc∑

i=1

1∫

0

dt

∣∣∣∣v(t,xi(t))− dxi(t)
dt

∣∣∣∣
2

. (10)

Camion and Younes [5] use this form of the Lagrangian for the case ofinexact landmark
matching only, where the functional Lagrangian is optimised over thewhole of the paths
{xi(t)}, with the end-points of the paths being held fixed. The first term, which is the
time-integrated bending energy of the velocity field, defines a metric distance for the flow
in the space of diffeomorphisms. We will consider theexactmatching case. We expand
the velocity fields in terms of the Green’s function as before:

v(t,x(t)) =
∑nc

i=1
αi(t)G(x(t),xi(t)), (11)

where the functions{αi(t)} are determined by theexactmatching constraint:

v(t,xj(t)) =
dxj(t)

dt
=

∑nc

i=1
αi(t)G(xi(t),xj(t)). (12)

Consider an arbitrary smooth set of paths{xi(t)} with velocities{vi(t) = dxi(t)
dt }:

42
xv(t,x(t)) =

∑nc

i=1
αi(t)δ(x(t)− xi(t)) (13)

∴ l [{xi(t)}] =

1∫

0

dt

∫

Rn

dx |Lv(t,x(t))|2 =

1∫

0

dt

∫

Rn

dx v(t,x) · (42
xv(t,x)

)

=
∑nc

i=1

1∫

0

dt αi(t) · v(t,xi(t)), (14)

wherel [{xi(t)}] is the metric distance in the space of diffeomorphisms along the flow
path determined by the set of control point paths{xi(t) : i = 1, . . . , nc}. Hence, op-
timising the above expression for the metric distance with respect to varying the control
point paths corresponds to constructing a geodesic in the space of diffeomorphisms.

So, given such anoptimal set of control point paths{x̃i(t)}, the optimal velocity field
ṽ(t,x(t)) is totally determined. We can hence determine the path of an arbitrary test point
x(0) by a simple integration. This then defines the complete action of a diffeomorphism
of the unit disc, which is parameterised by the initial and final positions of the control
points. We will denote the functional form of such a geodesic interpolating spline (GIS)
diffeomorphism thus:



ω ≡ ω({xi(0)}, {xi(1)}) ∈ Diff
(
D2

)
, (15)

where Diff
(
D2

)
is the group of diffeomorphisms of the unit discD2 with the bound-

ary conditions as described above. Given a sufficiently large set of control points this
representation can, in principle, be used to describeany element of the group of diffeo-
morphisms. The geodesic distance (14) can then be written as the metric function:

{d : Diff
(
D2

)× Diff
(
D2

) → R+}, d (e, ω ({xi(0)}, {xi(1)})) = l [{xi(t)}] , (16)

ande is the group identity element. As noted by Camion and Younes [5], this metric has
several important properties. In particular, it is invariant under the action of the group:

d(g, h) ≡ d(e ◦ g, e ◦ h) ≡ d(f−1 ◦ g, f−1 ◦ h) ∀ f, g, h ∈ Diff
(
D2

)
, (17)

where◦ is the group multiplication. That is, the geodesic distance between the two warps
g andh is independent of the choice of the reference warp (or image), where here we have
considered the identitye or a general group elementf .

3 Implementation
Camion and Younes [5] describe an algorithm for optimising the Lagrangian in equation
(10) within the context of inexact matching of image-based landmarks. However, we note
here that optimising with a fixed value ofλ (as in [5]) isnot the same as the analytical
optimisation of the same expression, whereλ is a Lagrange multiplier. Their algorithm
can lead to a severe mis-match between the velocity fields and the control point paths;
the paths for the control points constructed from the velocities give only approximate
(and poorly-controlled) matching of the end-points, whilst the flows constructed from the
exact-matching control point paths are far from optimal.

We consider the more general problem of representing anarbitrary diffeomorphism;
we hence require exact matching of the optimal paths and flows. We have developed an
algorithm to minimise the metric distance in equation (14) directly (see the Appendix for
details). The Appendix also includes exact analytic results that enabled us to check our
algorithm and to verify that the algorithm of Camion and Younes does not give the optimal
paths or flows. We were also able to considerably improve the convergence time (by up
to a factor of 30 in some cases) by using these analytic results to initialise the algorithm,
rather than initialising with constant-velocity, straight line paths, as in [5].

4 Applying Diffeomorphic Warps to Images
We now consider the action of the group Diff

(
D2

)
on pixelated images. We define an

image to be a scalar (grayscale) or vector (colour) functionI defined on a set of pixel
positions. For an initial,d-dimensional unwarped image, the set of pixel positions will
lie on a regular (hyper)cubic lattice of pointsSe ∈ Rd. A group elementg acts on this
to produce a warped set of pixel positionsS = g(Se). Two elementsg, h ∈ Diff

(
D2

)
are equivalent with respect to their action on a pixel setS if g(S) = h(S). We take the
warped imageI ′ to be that obtained by the push-forward map, so that:

g : I → I ′, where I ′(g(S)) ≡ I(S). (18)

Note that in the examples we will present, the warped imagesI ′(g(S)) arenot resampled,
but plotted as surfaces whose facets are thedeformedpixels. The boundary of the warped
region in the images is shown by the white circle.



Figure 2: The maximum (•) and mean (·)
pixel discrepancies between a warp and its
approximant as a function of nc.

Figure 3: The geodesic distance d(e, ω) as
a function of nc for 4 random warps.

Figure 4: Left: Original image, Centre: Cauchy warp, Right: Approximant with control
points shown. Image size 166× 166. Maximum discrepancy 3.2 pixels, mean 0.77 pixels.

4.1 Approximating an Arbitrary Bounded Diffeomorphism
Suppose that we have an arbitrary diffeomorphismg that acts on some dense pixel setSe.
We can iteratively construct a GIS approximantω(Se) ≈ g(Se) to this warp. Taking as
the initial approximantω = e, nc = 0:

• Find the pixel positiony ∈ Se where the difference|ω(y)− g(y)| is maximal
• Add this point to the existing set of control points ofω, with endpointsy andg(y)

• Update the warpω
• Iterate until convergence
The algorithm was tested by applying it to a set of random exact diffeomorphisms.

The test diffeomorphisms were generated using a generalisation of the 1D techniques
described in [7]. The cumulative distribution function of a wrapped Cauchy function
was used to create anexactdiffeomorphism of the unit disc with the required boundary
conditions (see Figure 4 for an example). The parameters of the Cauchy warps were
chosen at random, and a concatenation of several such warps used to generate each test
warp. The test pixel setSe was of size166 × 166 over the square of side length 2. The
discrepancies between the two warped pixel sets were then compared over the area of the
inscribed unit circle (shown in Figure 2). As can be seen from the figure, the approximant
quickly converges, giving a mean discrepancy of size0.9±0.1 pixels ((5.4±0.6)×10−3

in units of the circle radius) when 10 control points are included. As is shown in Figure
3, the calculated geodesic distanced(e, ω) also converges rapidly.



Figure 5:An example warp and its inverse,
with a maximum discrepancy of 0.6 pixels.

Figure 6:The mean maximum discrepancy
in pixels as a function of the number of time-
steps. Test image size 166× 166 pixels.

4.2 Inverting an Arbitrary Bounded Diffeomorphism
Consider an arbitrary GIS warpµ = ω({xi(0)}, {xi(1)}). The exact inverse of this warp
is given by:

µ−1 = ω({xi(1)}, {xi(0)}), (19)
that is, we just reverse the initial and final positions of the control points. The numerical
accuracy of our algorithm with respect to this result was tested by taking a random set of
GIS warps{µa : a = 1 . . . 20} with 4 control points. The initial positions of the control
points were held fixed, and the final positions chosen at random. For each warp, the in-
verse was calculated as above, and the accuracy of the inversion calculated by comparing
µ−1

a (µa(Se)) andSe (see Figure 5 for an example). The algorithm was run for a range of
values ofT , the number of time-steps, where a new random set of 20 warps was generated
for each value ofT . As can be seen from Figure 6, the mean maximum discrepancy is
well below half a pixel for values ofT of 10 and above.

4.3 Interpolating Between Arbitrary Bounded Diffeomorphisms
Suppose that we have some training set of warps{ga : a = 1 . . . n}. As we have shown
in section 4.1, such a set can be represented by GIS warps to any required degree of
accuracy, provided the number of control pointsnc is large enough. So, we now consider
the equivalent set of GIS warps{µa}, where the control points have been chosen so that
the initial positions are the same across the set. That is:

ga ≈ µa = ω({pi}, {ya
i }), a = 1 . . . n, i = 1 . . . nc, (20)

where{pi} are fixed reference points. The information about the distribution of the set
of warps in the space of diffeomorphisms is encoded by the set of geodesic distances
between all pairs of warps:

d(µa, µb) ≡ d(e, µa ◦ µ−1
b ) ≡ d(e, µb ◦ µ−1

a ). (21)

To calculate these distances, we need to be able to construct warps of the formµb ◦ µ−1
a ,

which is the warp which interpolates betweenµa andµb. We will consider an approximant
to this warp thus:

νab = ω({ya
i }, {yb

i}). (22)
It is an approximant in the sense that it is equivalent to the exact warpµb ◦ µ−1

a when we
consider its action on the control point positions. Since the control points tend to be the
set of points for which the displacement generated by the warp is largest we would expect



Figure 7:Warps µa(Se) and µb(Se), and their interpolant
νab applied to µa(Se) (see text for details). The maximum
discrepancy between the 2nd and 3rd images is 1.5 pixels.

Figure 8: The distribution
of maximum discrepancies in
pixels across a test set.

Figure 9: The training set of hand shapes.

that νab should be a reasonable approximation to the exact warp. This was tested by
generating a set of warps{µa} as in section 4.1. For each pair of warps, the approximant
νab was calculated. The accuracy of the approximation was calculated by comparing
νab(µa(Se)) andµb(Se) since:(

µb ◦ µ−1
a

)
(µa(Se)) ≡ µb(Se). (23)

An example is shown in Figure 7. The results for the maximum discrepancy per warp pair
across a test set with50 independent pairs of warps is shown in Figure 8. Note that in only
one case is the maximum discrepancy over 3 pixels, and in80% of cases the maximum
discrepancy is less than one pixel.

5 Building Models
In this section, we consider the case where the warps are generated from real data. We
take as our training set a Statistical Shape Model (SSM) [6] built from 17 shape examples,
each with 12 landmark points. The shapes were extracted from images of a real hand in
motion (Figure 9). The landmark points defining the shapes become the control points
for our warps; hence the GIS warps so constructed map the landmark points of the shapes

Figure 10: Geodesic vs. Maha-
lanobis distance for all pairs.

Figure 11: Geodesic vs. Mahalanobis distance for
variation of the first mode of the SSM.



between the training examples (note that the lines in Figure 9 are for the purposes of
illustration only). We then compare the Mahalanobis distances between pairs of shapes
with the geodesic distance of the GIS warp that interpolates between them (see Figure
10). The relationship is approximately monotonic. In Figure 11, we study the effect
of varying the first linear mode of the SSM. This corresponds to opening and closing
of the fingers. Note that the geodesic distance penalises those variations that cause a
change in connectivity (i.e., crossing of the fingers), whilst the linear SSM (which exactly
corresponds to a linear model built on the space of warp parameters), does not.

6 Conclusions
We have presented a novel interpolating spline, the clamped-plate spline, which (unlike
the thin-plate spline), generates warps that are strictly limited in extent. By composing
sequences of such warps, we can generate exact diffeomorphisms, which are defined in
terms of a small number of control points. We show that this representation of diffeomor-
phisms isgeneral, and can be used to approximate an arbitrary diffeomorphism to any
required degree of accuracy. Furthermore, we show how this representation includes a
definition of a metric distance on the space of diffeomorphisms, allowing us to compute
a geodesic distance between warps that respects the properties of the diffeomorphism
group. This geodesic distance will enable us to develop meaningful statistics of deforma-
tions. Finally, we have compared using metric distance and parameter-based approaches
to modelling the space of warps. We have shown that the metric correctly penalises de-
formations that alter the topology, whereas a linear model on the parameter space does
not.

The techniques are likely to prove widely applicable, particularly in medical image
analysis where object shape and shape change is frequently studied. The mathematical
basis of these techniques exists for an arbitrary number of dimensions, hence can in prin-
ciple be extended higher numbers of dimensions (e.g., 3D voxellated images).
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Appendix - Implementation
The continuum variablesxi(t),vi(t) = dxi

dt
are approximated by piecewise linear variables thus:

xi(t) → qi(τ), τ = 1 . . . T + 1, i = 1 . . . nc, where t =
τ − 1

T
vi(t) → Dqi(τ) = T (qi(τ + 1)− qi(τ)) , τ = 1 . . . T. (24)

The coefficients�i(τ) are then calculated by inverting the equation:

Dqi(τ) =
Xnc

j=1
�j(τ)G(qj(τ),qi(τ)), (25)

which enables us to calculate the metric distance:

l [{qi}] =

ncX
i=1

TX
τ=1

�i(τ) ·Dqi(τ). (26)

The optimal control point paths are then found by optimising the metric distance with respect to the
variable parts of the control point paths{qi(τ), τ = 2 . . . T}, where we use standard MATLAB
optimisation routines.

The only remaining issue is the choice of initial values for the paths{qi(τ)}. For the case of
one control point, we have obtained an exact analytic solution of equation (14) for the optimisation



of the metric distance. Using polar coordinates, and taking the polar angleθ as the dependent
variable rather than the timet, the general solution has the form:

r(θ) = k cos (θ − ψ)−
p

k2 cos2 (θ − ψ)− 1 (27)

t(θ) = A tanh−1

��p
k2 − 1 cot (θ − ψ)

�±1
�

+ B, (28)

where the parametersk, ψ, A andB are determined by fitting to the end-points. The general form
of r(θ) describes the arc of a circle of varying centre and radius that intersects the unit circle at right
angles. We have found that initialising the algorithm with such paths for the case of multiple control
points gives a considerable improvement in the convergence time over the case of initialising with
constant-velocity straight-line paths. It also gives us an independent check of the validity of our
algorithm when applied to the case of one control point.
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