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Abstract14

Transient gradual typing imposes run-time type tests that typically cause a linear slowdown in15

programs’ performance. This performance impact discourages the use of type annotations because16

adding types to a program makes the program slower. A virtual machine can employ standard just-17

in-time optimizations to reduce the overhead of transient checks to near zero. These optimizations18

can give gradually-typed languages performance comparable to state-of-the-art dynamic languages,19

so programmers can add types to their code without affecting their programs’ performance.20
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1 Introduction27

“It is a truth universally acknowledged, that a dynamic language in possession of a28

good user base, must be in want of a type system.”29
with apologies to Jane Austen.30

Dynamic languages are increasingly prominent in the software industry. Building on31

the pioneering work of Self [20], much work in academia and industry has gone into making32

them more efficient [13, 14, 66, 24, 23, 25]. Just-in-time compilers have, for example, turned33

JavaScript from a naïvely interpreted language barely suitable for browser scripting, into34

a highly efficient ecosystem, eagerly adopted by professional programmers for a very wide35

range of tasks [44].36

A key advantage of these dynamic languages is the flexibility offered by the lack of a37

static type system. From the perspective of many computer scientists, software engineers,38

and computational theologists, this flexibility has the disadvantage that programs without39

types are more difficult to read, to understand, and to analyze than programs with types.40

Gradual Typing aims to remedy this disadvantage, adding types to dynamic languages while41

maintaining their flexibility [16, 48, 50].42

There is a spectrum of different approaches to gradual typing [22, 28]. At one end — “pluggable43

types” as in Strongtalk [17] or “erasure semantics” as in TypeScript [8] — all types are erased44
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before the execution, limiting the benefit of types to the statically typed parts of programs,45

and preventing programs from depending on type checks at run time. In the middle, “tran-46

sient” or “type-tag” checks as in Reticulated Python offer first-order semantics, checking47

whether an object’s type constructor or supported methods match explicit type declarations48

[49, 11, 46, 60, 29]. Reticulated Python also supports an alternative “monotonic” semantics49

which mutates an object to narrow its concrete type when it is passed into a more spe-50

cific type context. At the other end of the spectrum, behavioral typechecks as in Typed51

Racket [59, 57], Gradualtalk [3], and Reticulated Python’s proxies, support higher-order52

semantics, retaining types until run time, performing the checks eagerly, and giving detailed53

information about type violations as soon as possible via blame tracking [63, 2]. Finally,54

Ductile typing dynamically interprets a static type system at runtime [7]. Unfortunately,55

any gradual system with run-time semantics (i.e. everything more complex than erasure)56

currently imposes a significant run-time performance overhead to provide those semantics57

[56, 62, 42, 6, 45, 55, 29, 30].58

The performance cost of run-time checks is problematic in itself, but also creates perverse59

incentives. Rather than the ideal of gradually adding types in the process of hardening a60

developing program, the programmer is incentivized to leave the program untyped or even61

to remove existing types in search of speed. While the Gradual Guarantee [50] requires that62

removing a type annotation does not affect the result of the program, the performance profile63

can be drastically shifted by the overhead of ill-placed checks. For programs with crucial64

performance constraints, for new programmers, and for gradual language designers, juggling65

this overhead can lead to increased complexity, suboptimal software-engineering choices, and66

code that is harder to maintain, debug, and analyze.67

In this paper, we focus on the centre of the gradual typing spectrum: the transient,68

first-order, type-tag checks as used in Reticulated Python and similar systems. Several69

studies have found that these type checks have a negative impact on programs’ performance.70

Chung, Li, Nardelli and Vitek, for example, found that “The transient approach checks types71

at uses, so the act of adding types to a program introduces more casts and may slow the72

program down (even in fully typed code).” and say “"transient semantics. . . is a worst case73

scenario. . . , there is a cast at almost every call"” [22]. Greenman and Felleisen find that74

the slowdown is predictable, as transient checking “imposes a run-time checking overhead75

that is directly proportional to the number of [type annotations] in the program"” [28], and76

Greenman and Migeed found a “clear trend that adding type annotations adds performance77

overhead. The increase is typically linear.” [29].78

In contrast, we demonstrate that transient type checks can be “almost free” via a just-79

in-time compiler to an optimizing virtual machine. We insert gradual checks naïvely, for80

each gradual type annotation. Whenever an annotated method is called or returns, or an81

annotated variable is accessed, we check types dynamically, and terminate the program with82

a type error if the check fails. Despite this simplistic approach, a just-in-time compiler can83

eliminate redundant checks—removing almost all of the checking overhead, resulting in a84

performance profile aligned with untyped code.85

We evaluate our approach by adding transient type checks to Moth, an implementation86

of the Grace programming language built on top of Truffle and the Graal just-in-time87

compiler [67, 66]. Inspired by Richards et al. [45] and Bauman et al. [6], our approach88

conflates types with information about the dynamic object structure (maps [20] or object89

shapes [65]), which allows the just-in-time compiler to reduce redundancy between checking90

structure and checking types; consequently, most of the overhead that results from type91

checking is eliminated.92
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The contributions of this paper are:93

demonstrating that VM optimizations enable transient gradual type checks with low94

performance cost95

an implementation approach that requires only small changes to existing abstract-syntax-96

tree interpreters97

an evaluation based on classic benchmarks and benchmarks from the literature on gradual98

typing99

2 Gradual Types in Grace100

This section introduces Grace, and motivates supporting transient gradual typing in the101

language.102

2.1 The Grace Programming Language103

Grace is an object-oriented, imperative, educational programming language, with a focus104

on introductory programming courses, but also intended for more advanced study and105

research [9, 19]. While Grace’s syntax draws from the so-called “curly bracket” tradition of106

C, Java, and JavaScript, the structure of the language is in many ways closer to Smalltalk:107

all computation is via dynamically dispatched “method requests” where the object receiving108

the request decides which code to run, and returns within lambdas that are “non-local”,109

returning to the method activation in which the block is instantiated [27]. In other ways,110

Grace is closer to JavaScript than Smalltalk: Grace objects can be created from object111

literals, rather than by instantiating classes [10, 35] and objects and classes can be deeply112

nested within each other [37].113

Critically, Grace’s declarations and methods’ arguments and results can be annotated114

with types, and those types can be checked either statically or dynamically. This means the115

type system is intrinsically gradual: type annotations should not affect the semantics of a116

correct program [50], and the type system includes a distinguished “Unknown” type which117

matches any other type and is the implicit type for untyped program parts.118

The static core of Grace’s type system is well described elsewhere [34]; here we explain119

how these types can be understood dynamically, from the Grace programmer’s point of view.120

Grace’s types are structural [9], that is, an object implements a type whenever it implements121

all the methods required by that type, rather than requiring classes or objects to declare122

types explicitly. Methods match when they have the same name and arity: argument and123

return types are ignored. A type thus expresses the requests an object can respond to, for124

example whether a particular accessor is available, rather than a nominal location in an125

explicit inheritance hierarchy.126

Grace then checks the types of values at run time:127

the values of arguments are checked after a method is requested, but before the body of128

the method is executed;129

the value returned by a method is checked after its body is executed; and130

the values of variables are checked whenever written or read by user code.1131

In the spectrum of gradual typing, these semantics are closest to the transient typechecks of132

Reticulated Python [60, 29]. Reticulated Python inserts transient checks only when a value133

1 Checking on read in addition to writes may seem unnecessary. For the rational, see Section 6.2.
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flows from untyped to typed code, while Grace inserts transient checks only at explicit type134

annotations (but in principle checks every annotation every time).135

2.2 Why Gradual Typing?136

Our primary motivation for this work is to provide a flexible system to check consistency137

between an execution of a program and its type annotations. A key part of the design138

philosophy of Grace is that the language should not force students to annotate programs139

with types until they are ready, so that teachers can choose whether to introduce types, early,140

late, or even not at all.141

A secondary goal is to have a design that can be implemented with only a small set of142

changes to facilitate integration in existing systems.143

Both of these goals are shared with much of the other work on gradual type systems, but144

our context leads to some different choices. First, while checking Grace’s type annotations145

statically may be optional, checking them dynamically should not be: any value that flows146

into a variable, argument, or result annotated with a type must conform to that type147

annotation. Second, adding type annotations should not degrade a program’s performance,148

or rather, programmers should not be encouraged to improve performance by removing149

type annotations. And third, we allow the programmer to execute a program even when150

not statically type-correct. Allowing such execution is useful to students, where they can151

see concrete examples of dynamic type errors. This is possible because Grace’s static type152

checking is optional, which means that an implementation cannot depend on the correctness153

or mutual compatibility of a program’s type annotations.154

Unfortunately, existing gradual type implementations do not meet these goals, particularly155

regarding performance; hence the ongoing debate about whether gradual typing is alive,156

dead, or some state in between [56, 62, 42, 6, 45, 29, 30].157

2.3 Using Grace’s Gradual Types158

We now illustrate how the gradual type checks work in practice in the context of a simple159

program to record information about vehicles. Suppose the programmer starts developing160

this vehicle application by defining an object intended to represent a car (Listing 1, Line 1)161

and writes a method that, given the car object, prints out its registration number (Line 5).162

1 def car = object {
2 var registration is public := "JO3553"
3 }
4
5 method printRegistration(v) {
6 print "Registration: {v.registration}"
7 }

Listing 1 The start of a simple Grace program for tracking vehicle information.

Next, the programmer adds a check to ensure any object passed to the printRegistra-163

tion method will respond to the registration request; they define the structural type164

Vehicle [58] naming just that method (Listing 2, Line 1), and annotate the printRegis-165

tration method’s argument with that type (Listing 2, Line 5). The annotation ensures166

that a type error will be thrown if an object, passed to the printRegistration method,167
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1 type Vehicle = interface {
2 registration
3 }
4
5 method printRegistration(v: Vehicle) {
6 print "Registration: {v.registration}"
7 }

Listing 2 Adding a type annotation to a method parameter.

cannot respond to the registration message. Without the type check, the print method168

would cause a run-time error when interpolating the string. However, since type errors cause169

termination, the run-time error in the middle of the print implementation will now be170

avoided.171

In Listing 3, the programmer continues development and creates two car objects (Lines 9172

and 17), that conform to an expanded Vehicle type (Line 1).173

1 type Vehicle = interface {
2 registration
3 registerTo(_)
4 }
5
6 type Person = interface { name }
7 type Department = interface { code }
8
9 var personalCar : Vehicle :=

10 object {
11 var registration is public := "DLS018"
12 method registerTo(p: Person) {
13 print "{p.name} registers {self}"
14 }
15 }
16
17 var governmentCar : Vehicle :=
18 object {
19 var registration is public := "FKD218"
20 method registerTo(d: Department) {
21 print "some department {self}"
22 }
23 }
24
25 governmentCar.registerTo(
26 object {
27 var name is public := "Richard"
28 }
29 )

Listing 3 A program in development with inconsistently typed registerTo methods.

Note that each version of the registerTo method declares a different type for its parameter174

(Lines 12 and 20). When the programmer executes this program, both personalCar and175

governmentCar can be assigned to a variable declared as Vehicle because checking that176

assignment considers only that the vehicle has a registerTo method, but not the required177

argument type of that method. At Line 25 the developer attempts to register a government178

ECOOP 2019
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car to a person: only when the method (Line 20) is invoked will the gradual type test on179

the argument fail (the object that is passed in is not a Department because it lacks a code180

method).181

3 Graal, Truffle, Self-Optimization and Dynamic Adaptive182

Compilation183

This section gives a brief introduction into just-in-time compilation, and the main techniques184

we rely on for our optimizations.185

3.1 Self-Optimizing Interpreters186

Self-optimizing abstract-syntax-tree (AST) interpreters [68] are the foundation for the work187

presented here. Together with partial evaluation [66], self-optimization enables efficient188

dynamic language implementations that reach the performance of custom state-of-the-art189

virtual machines (cf. Section 5.2 and [41]). The framework for building such interpreters is190

called Truffle.191

The key idea is that an AST rewrites itself based on a program’s run-time values to192

reflect the minimal set of operations needed to execute the program correctly.193

As an example, consider the addition of two numbers in a dynamic language, possibly194

written simply as: a + b. Because there are no static types known, the run-time values195

for a and b could potentially be anything from an integer or a double, to a string or a196

collection, or any arbitrary objects that have a “+” method. In an self-optimizing interpreter,197

the expression may be represented by an add node, with two child nodes that each read a198

variable. The first time the add node executes, it may find that both values to be added199

are integers. It will then speculate that all future executions also see integers, and thus,200

rewrite itself to an add-integer node. This add-integer node will simply confirm that201

both values are integers, and then directly perform the integer addition. Compared to a202

general add node, we do not have to cover the cases for doubles, strings, and other kinds of203

objects, which results in much simpler code that can be more easily optimized. All other204

cases are supported by rewriting the add node to more general versions. This happens for205

instance, when the values are not integers, however, programs are often very monomorphic206

in practice, and so the speculation is highly beneficial.207

As a consequence of the rewriting, what often starts out as something close to a traditional208

AST, in the end incorporates additional knowledge about the execution. Thus, such trees209

should be referred to more correctly as execution trees rather than ASTs.210

3.2 Polymorphic Inline Caches for Optimizing Dynamic Behavior211

Polymorphic inline caches (PICs) [32] are a variation on the theme of caching run-time values212

to improve performance. Originally, they focused on method invocation in dynamic languages213

to avoid costly method lookups by caching the looked-up method for a specific type. For214

dynamic languages, PICs can be generalized to not only consider the receiver type, but215

instead for instance the object shape (cf. Section 3.3), which enables the optimizations we216

are aiming for.217

In a language such as JavaScript, a PIC would be used for instance for the following218

expression: obj.toString(). The dot can be thought of as the lexical representation of the219

method lookup. An implementation would keep a small cache for each such dot in the code.220

This means, for each lexical lookup location, we have a separate cache. PICs benefit from221
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the relatively monomorphic behavior of programs. A specific lexical lookup is likely to see222

only one kind of object in the obj variable, so the cache will usually have the correct method223

for the object ready and can avoid a costly lookup.224

3.3 Object Shapes: Metadata for Dynamic Objects225

Object shapes [65], which are also know as maps [20] or hidden classes, are in the most general226

case a type and usage profile for groups of objects. In languages such as Self, JavaScript, and227

Grace, we do not have traditional classes that define the set of fields for an object. The set of228

fields might even change over time. Furthermore, fields can theoretically store any possible229

value. However, in practice, the behavior of programs is again relatively monomorphic and230

objects created in a specific part of a program are likely to have always the same set of fields,231

which each are used to store only a small number of different kinds of values. For example,232

an object representing a counter would have a field count, which always stores integers, while233

an object representing a person may have always a field name that stores a string, but never234

an integer.235

Object shapes represent this run-time information in a way that allows a just-in-time236

compiler to represent objects in memory similarly to C structs, and then to generate highly237

efficient code. Object shapes can be conflated with additional information, for instance to238

represent knowledge about types [6, 45]. For the use of PICs, object shapes are important,239

because they give objects a form of identification that groups them, and which in practice,240

has similar properties with respect to monomorphic behavior as classes have.241

3.4 Just-in-Time Compilation with Graal and Truffle242

The Graal compiler is a just-in-time compiler for Java. For languages built on the Truffle243

framework, Graal comes with additional support for partial evaluation, which enables efficient244

native code generation for Truffle interpreters [66].245

As such, Graal is a metacompiler. This means that instead of compiling a specific246

program, in our case a Grace program, Graal compiles our Grace interpreter Moth for the247

execution of a specific Grace method. For simplicity, partial evaluation can be thought248

of a highly aggressive inlining strategy. It starts with the root node of a specific Grace249

method and inlines all code reachable from it, while considering the execution tree to be250

constant. To enable further optimizations, Graal does further inlining on the level of the251

Grace program, which is important to expose the same optimization opportunities classic252

just-in-time compilers have. The applied optimizations include for instance constant folding,253

common subexpression elimination, and loop-invariant code motion.254

Especially loop-invariant code motion and common subexpression elimination are im-255

portant to generate efficient native code for dynamic languages. Since we rely on techniques256

such as self-optimizing nodes, PICs and object shapes, which all introduce various checks, a257

compiler needs to move these out of loops, and remove redundant checks.258

By combining all the techniques sketched in this section, Graal and Truffle are able to259

execute dynamic languages as efficiently as virtual machines built for a specific language –260

but with much less implementation effort.261

4 Moth: Grace on Graal and Truffle262

Implementing dynamic languages as state-of-the-art virtual machines can require enorm-263

ous engineering efforts. Meta-compilation approaches [41] such as RPython [12, 14] and264

ECOOP 2019
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GraalVM [67, 66] reduce the necessary work dramatically, because they allow language265

implementers to leverage existing VMs and their support for just-in-time compilation and266

garbage collection.267

Moth [47] adapts SOMns [39] to leverage this infrastructure for Grace. SOMns is a268

Newspeak implementation [18] on top of the Truffle framework and the Graal just-in-time269

compiler, which are part of the GraalVM project. One key optimization of SOMns for this270

work is the use of object shapes [65], also known as maps [20] or hidden classes. They represent271

the structure of an object and the types of its fields. In SOMns, shapes correspond to the class272

of an object and augment it with run-time type information. With Moth’s implementation,273

SOMns was changed to parse Grace code, adapting a few of the self-optimizing abstract-274

syntax-tree nodes to conform to Grace’s semantics. Despite these changes Moth preserves the275

peak performance of SOMns, which reaches that of V8, Google’s JavaScript implementation276

(cf. Section 5.2 and Marr et al. [40]).277

4.1 Adding Gradual Type Checking278

One of the goals for our approach to gradual typing was to keep the necessary changes to279

an existing implementation small, while enabling optimization in highly efficient language280

runtimes. In an AST interpreter, we can implement this approach by attaching the checks281

to the relevant AST nodes: the expected types for the argument and return values can be282

included with the node for requesting a method, and the expected type for a variable can283

be attached to the nodes for reading from and writing to that variable. In practice, we284

encapsulate the logic of the check within a new class of AST nodes, specially to support285

gradual type checking. Moth’s front end was adapted to parse and record type annotations286

and attach instances of this checking node as children of the existing method, variable read,287

and variable write nodes.288

The check node uses the internal representation of a Grace type (cf. Listing 4, Line 13)289

to test whether an observed object conforms to that type. An object satisfies a type if all290

members required by the type are provided by that object (Line 5).291

Note, we use a pseudo code syntax similar to Python for all code examples that represent292

the implementation of Moth. We chose this syntax to avoid any confusion with our Grace293

examples (even though Moth is implemented in Java).294

1 class Type:
2 def init(members):
3 self._members = members
4
5 def is_satisfied_by(other: Type):
6 for m in self._members:
7 if m not in other._members:
8 return False
9 return True

10
11 def check(obj: Object):
12 t = obj.get_type()
13 return self.is_satisfied_by(t)

Listing 4 Sketch of a Type in our system and its check() semantics.
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1 global record: Matrix
2
3 class TypeCheckNode(Node):
4
5 expected: Type
6
7 @Spec(static_guard=`expected.check(obj)`)
8 def check(obj: Number):
9 pass

10
11 @Spec(static_guard=`expected.check(obj)`)
12 def check(obj: String):
13 pass
14
15 ...
16
17 @Spec(guard=`obj.shape==cached_shape`, static_guard=`expected.check(obj)`)
18 def check(obj: Object, @Cached(obj.shape) cached_shape: Shape):
19 pass
20
21 @Fallback
22 def check(obj: Any):
23 T = obj.get_type()
24
25 if record[T, expected] is unknown:
26 record[T, expected] = T.is_subtype_of(expected)
27
28 if not record[T, expected]:
29 raise TypeError("{obj} doesn't implement {expected}")

Listing 5 A sketch of the specializations in TypeCheckNode to minimize the run-time overhead
of type checking. A specialization is a minimal set of operations for one specific situation, e.g.,
that the value to be checked is some type of number.

4.2 Optimization295

There are two aspects to our implementation that are critical for a minimal-overhead solution:296

specialized executions of the type checking node, along with guards to protect these297

specialized versions, and298

a matrix to cache sub-typing relationships to eliminate redundant exhaustive subtype299

tests.300

Optimized Type Check Node The first performance-critical aspect to our implementation301

is the optimization of the type checking node. We rely on Truffle and its TruffleDSL [31]. This302

means we provide a number of special cases, which are selected during execution based on the303

observed concrete kinds of objects. A sketch of our type checking node using a pseudo-code304

version of the DSL is given in Listing 5. A simple optimization is for well known types such305

as numbers (Line 8) or strings (Line 12). The methods annotated with @Spec (shorthand306

for @Specialization) correspond to possible states in a state machine that is generated by307

the TruffleDSL. Thus, if a check node observes a number or a string, it will check on the308

first execution only that the expected type, i.e., the one defined by some type annotation, is309

satisfied by the object by using a static_guard. If this is the case, the DSL will activate310

this state. For just-in-time compilation, only the activated states and their normal guards311

ECOOP 2019
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1 class VariableReadNode(Node):
2 slot: FrameSlot
3 type_check: TypeCheckNode
4
5 @Spec
6 def do_read(frame: VirtualFrame):
7 value = frame.read(slot)
8 if type_check:
9 type_check.check(value)

10 return value

Listing 6 Sketch of a VariableReadNode using the TypeCheckNode to ensure Grace’s transient
semantics.

are considered. A static_guard is not included in the optimized code. If a check fails, or312

no specialization matches, the fallback, i.e., check_generic is selected (Line 22), which may313

raise a type error.314

For generic objects, we rely on the specialization on Line 18, which checks that the object315

satisfies the expected type. If that is the case, it reads the shape of the object (cf. Section 4)316

at specialization time, and caches it for later comparisons. Thus, during normal execution,317

we only need to read the shape of the object and then compare it to the cached shape with318

a simple reference comparison. If the shapes are the same, we can assume the type check319

passed successfully. Note that shapes are not equivalent to types, however, shapes imply320

the set of members of an object, and thus, do imply whether an object fulfills one of our321

structural types.322

The TypeCheckNode is used in Moth in all places that need to check types, which includes323

reading and writing variables as well as method requests and returns. Listing 6 shows a324

sketch of an AST node that implements reading from a local variable, which is stored in a325

frame object. A frame corresponds to a stack frame, sometimes also called an environment.326

Line 8 first checks whether a type check needs to be performed. Since type annotations327

are optional, it may not be necessary to check for a type. Note that type_check is a constant328

for just-in-time compilation (cf. Section 3.4), which enables subsequent optimizations. Line 9329

then calls the check() method on the TypeCheckNode, which may result in a type error. For330

a variable that only contains numbers, the type_check object would activate the number331

specialization in its state machine. For just-in-time compilation, this means only the code332

for checking numbers needs to be compiled, but none of the other specializations.333

In many cases, the specialization for objects would be activated in a TypeCheckNode,334

which checks the shape of an object against a cache. This check is identical to the check335

performed by a polymorphic inline cache (PIC, cf. Section 3.2). Since PICs are used for all336

method calls, they are very common in most programs, and these additional checks can often337

be removed easily via common subexpression elimination.338

Subtype Cache Matrix The other performance-critical aspect to our implementation is339

the use of a matrix to cache sub-typing relationships. The matrix compares types against340

types, featuring all known types along the columns and the same types again along the rows.341

A cell in the table corresponds to a sub-typing relationship: does the type corresponding342

to the row implement the type corresponding to the column? All cells in the matrix begin343

as unknown and, as encountered in checks during execution, we populate the table. If a344

particular relationship has been computed before we can skip the check and instead recall the345
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previously-computed value (Line 26 in Listing 5). Using this table we are able to eliminate346

the redundancy of evaluating the same type to type relationships across different checks in347

the program. To reduce redundancy further we also unify types in a similar way to Java’s348

string interning; during the construction of a type we first check to see if the same set of349

members is expressed by a previously-created type and, if so, we avoid creating the new350

instance and provide the existing one instead.351

Together the self-specializing type check node and the cache matrix ensure that our352

implementation eliminates redundancy, and consequently, we are able to minimize the353

run-time overhead of our system.354

5 Evaluation355

To evaluate our approach to gradual type checking, we first establish the baseline performance356

of Moth compared to Java and JavaScript, and then assess the impact of the type checks357

themselves.358

5.1 Method and Setup359

To account for the complex warmup behavior of modern systems [4] as well as the non-360

determinism caused by e.g. garbage collection and cache effects, we run each benchmark for361

1000 iterations in the same VM invocation.2 Afterwards, we inspected the run-time plots362

over the iterations and manually determined a cutoff of 350 iterations for warmup, i.e., we363

discard iterations with signs of compilation. As a result, we use a large number of data364

points to compute the average, but outliers, caused by e.g. garbage collection, remain visible365

in the plots. All reported averages use the geometric mean since they aggregate ratios.366

All experiments were executed on a machine running Ubuntu Linux 16.04.4, with Kernel367

3.13. The machine has two Intel Xeon E5-2620 v3 2.40GHz, with 6 cores each, for a total368

of 24 hyperthreads. We used ReBench 0.10.1 [38], Java 1.8.0_171, Graal 0.33 (a13b888),369

Node.js 10.4, and Higgs from 9 May 2018 (aa95240). Benchmarks were executed one by370

one to avoid interference between them. The analysis of the results was done with R 3.4.1,371

and plots are generated with ggplot 2.2.1 and tikzDevice 0.11. Our experimental setup is372

available online to enable reproductions.3373

5.2 Are We Fast Yet?374

To establish the performance of Moth, we compare it to Java and JavaScript. Moth is used in375

its untyped version, i.e., without type checks. For JavaScript we chose two implementations,376

Node.js with V8 as well as the Higgs VM. The Higgs VM is an interesting point of comparison,377

because Richards et al. [45] used it in their study. The goal of this comparison is to determine378

whether our approach could be applicable to industrial strength language implementations379

without adverse effects on their performance.380

We compare across languages based on the Are We Fast Yet benchmarks [40], which are381

designed to enable a comparison of the effectiveness of compilers across different languages.382

To this end, they use only a common set of core language elements. While this reduces the383

performance-relevant differences between languages, the set of core language elements covers384

2 For the Higgs VM, we only use 100 iterations, because of its lower performance. This is sufficient since
Higgs’s compilation approach induces less variation and leads to more stable measurements.

3 SM TODO merge changes, and tag final version https://github.com/gracelang/moth-benchmarks
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Figure 1 Comparison of Java 1.8, Node.js 10.4, Higgs VM, and Moth. The boxplot depicts
the peak-performance results for the Are We Fast Yet benchmarks, each benchmark normalized
individually based on the result for Java, which means all results for Java are 1.0, and its box
appears as a line. The dots on the plot represent the geometric mean reported as averages. For
these benchmarks, Moth is within the performance range of JavaScript, as implemented by Node.js,
which makes Moth an acceptable platform for our experiments.

only common object-oriented language features with first-class functions. Consequently, these385

benchmarks are not necessarily a predictor for application performance, but can give a good386

indication for basic mechanisms such as type checking.387

Figure 1 shows the results. We use Java as baseline since it is the fastest language388

implementation in this experiment. Note that we perform a unit conversion on the results389

separately for each benchmark, using the average of Java as 1 unit. While this conversion390

does not change the distribution of the data, it allows us to show it neatly on one plot.391

We see that Node.js (V8) is about 1.8x (min. 0.8x, max. 2.7x) slower than Java. Moth is392

about 2.3x (min. 0.9x, max. 4.3x) slower than Java. As such, it is on average 31% (min.393

−16%, max. 2.3x) slower than Node.js. Compared to the Higgs VM, which is on these394

benchmarks 10.4x (min. 1.5x, max. 163x) slower than Java, Moth reaches the performance of395

Node.js more closely. With these results, we argue that Moth is a suitable platform to assess396

the impact of our approach to gradual type checking, because its performance is close enough397

to state-of-the-art VMs, and run-time overhead is not hidden by slow baseline performance.398

5.3 Performance of Transient Gradual Type Checks399

The performance overhead of our transient gradual type checking system is assessed based400

on the Are We Fast Yet benchmarks as well as benchmarks from the gradual-typing literature.401

The goal was to complement our benchmarks with additional ones that are used for similar402

experiments and can be ported to Grace. To this end, we surveyed a number of papers [56,403

62, 42, 6, 45, 55, 29] and selected benchmarks that have been used by multiple papers. Some404

of these benchmarks overlapped with the Are We Fast Yet suite, or were available in different405

versions. While not always behaviorally equivalent, we chose the Are We Fast Yet versions406

since we already used them to establish the performance baseline. The selected benchmarks407

as well as the papers in which they were used are shown in Table 1.408

The benchmarks were modified to have complete type information. To ensure correctness409

and completeness of these experiments, we added an additional check to Moth that reports410

absent type information to ensure each benchmark is completely typed. To assess the411

performance overhead of type checking, we compare the execution of Moth with all checks412
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Table 1 Benchmarks selected from literature.

Fannkuch [62, 29]
Float [62, 42, 29]
Go [62, 42, 29]
NBody [36, 62, 29] used [40]
Queens [62, 42, 29] used [40]
PyStone [62, 42, 29]
Sieve [56, 42, 6, 45, 30] used [40]
Snake [56, 42, 6, 45, 30]
SpectralNorm [62, 42, 29]

disabled, i.e., the baseline version from Section 5.2, against an execution that has all checks413

enabled. We did not measure programs that mix typed and untyped code because with our414

implementation technique a fully typed program is expected to have the largest overhead.415

Peak Performance416

Figure 2 depicts the overall results comparing Moth, with all optimizations, against the417

untyped version. The run-time overhead, after discarding the warmup iterations, is on418

average 5% (min. −13%, max. 79%).419

The benchmark with the highest overhead of 79% is List. The benchmark traverses a420

linked list and has to check the list elements individually. Unfortunately, the structure of421

this list introduces checks that do not coincide with shape checks on the relevant objects.422

We consider this benchmark a pathological case and discuss it in detail in Section 6.1.423

Beside List, the highest overheads are on Richards (33%), CD (12%), Snake (14%), and424

Towers (12%). Richards has one major component, also a linked list traversal, similar to425

List. Snake and Towers primarily access arrays in a way that introduces checks that do not426

coincide with behavior in the unchecked version.427

In some benchmarks, however, the run time decreased; notably Permute (−13%), Graph-428

Search (−3%), and Storage (−8%). Permute simply creates the permutations of an array.429

GraphSearch implements a page rank algorithm and thus is primarily graph traversal. Storage430

stresses the garbage collector by constructing a tree of arrays. For these benchmarks the431

introduced checks seem to coincide with shape-check operations already performed in the432

untyped version. The performance improvement is possibly caused by having checks earlier,433

which enables the compiler to more aggressively move them out of loops. Another reason434

could simply be that the extra checks shift the boundaries of compilation units. In such cases,435

checks might not be eliminated completely, but the shifted boundary between compilation436

units might mean that the generated native code interacts better with the instruction cache437

of the processor.438

Warmup Performance439

To more precisely measure warmup, all relevant experiments were executed 30 times, with440

each running for 100 iterations. The resulting Figure 3 shows the first 100 iterations for each441

benchmark. For each iteration n, we normalized the measurements to the mean of iteration442

n of the untyped Moth implementation. Thus, any increase indicates a slow down because of443
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Figure 2 A boxplot comparing the performance of Moth with and without type checking. The
plot depicts the run-time overhead on peak performance over the untyped performance. On average,
transient type checking introduces an overhead of 5% (min. −13%, max. 79%). The average is
indicated as a line with long dashes. The visible outliers correspond to various complex aspects
of the overall system, e.g., including garbage collection and cache effects. Note that the axis is
logarithmic to avoid distorting the proportions of relative speedups and slowdowns.

typing. The darker lines indicate the means, while the lighter area indicates a 95% confidence444

interval.445

Looking only at the first few iterations, where we assume that most code is executed in446

the interpreter and might be affected by compilation activity, the overhead appears minimal.447

Only the Mandelbrot and CD benchmarks shows a noticeable slowdown.448

Mandelbrot with its distinctly slow first iteration can be explained by its code structure.449

Since it is a computational kernel with many primitive operations, but no method calls,450

optimized code is only reached after the first full benchmark iteration. The problem could451

be alleviated with on-stack-replacement for loops, which is currently not done. Since other452

benchmarks use methods, they reach compiled code earlier and do not exhibit the same453

first-iteration slowdown.454

PyStone however show various spikes. Since spikes appear in both directions (speedups455

and slowdowns), we assume that they indicate a shift, for instance, of garbage collection456

pauses, which may happen because of different heap configurations triggered by the additional457

data structures for type information.458

5.4 Effectiveness of Optimizations459

To characterize the concrete impact of our two optimizations, i.e., the optimized type checking460

node, which replaces complex type tests with checks for object shapes, and our matrix to461

cache sub-typing information, we look at the number of type checks performed by the462
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Figure 3 Plot of the run time for the first 100 iterations. The lines indicate the mean at iteration
n normalized to the untyped result, the lighter area indicates a 95% confidence interval. The first
iteration, i.e., mostly interpreted, seems to be affected significantly only for Mandelbrot, though CD
shows slower behavior in early warmup, too.

benchmarks, as well as the impact on peak performance.463

Impact on Performed Type Tests464

Table 2 gives an overview of the number of type tests done by the benchmarks during execution.465

We distinguish two operations check_generic and is_subtype_of, which correspond to466

the operations in Line 22 and Line 5 of Listing 4. Thus, check_generic is the test called467

whenever a full type check has to be performed, and is_subtype_of is the part of the check468

that determines the relationship between two types. The second column of Table 2 indicates469

which optimization is applied, and the following columns show the mean, minimum, and470

maximum number of invocations of the tests over all benchmarks.471

The baselines without optimizations are the rows with the results for neither of the472

optimizations being enabled. Depending on the benchmark, we see that the type tests are473

done tens of millions to hundreds of millions times for a single iteration of a benchmark.474
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Table 2 Type Test Statistics over all Benchmarks. This table shows how many of the type tests
can be avoided based on our two optimizations. As indicated by the numbers, the number of type
tests can vary significantly between benchmarks. Thus, the table shows the mean, minimum, and
maximum number of type tests across all benchmarks for a given configuration. With the use of
an optimized node that replaces type checks with simple object shape checks, check_generic is
invoked only for the first time that a lexical location sees a specific object shape, which eliminates
run-time type checks almost completely. Using our subtype matrix that caches type-check results,
invocations of is_subtype_of are further reduced by an order of magnitude.

Type Test Enabled Optimization mean #invocations min max
check_generic Neither 137,525,845 11,628,068 896,604,537

Subtype Cache 137,525,845 11,628,068 896,604,537
Optimized Node 292 68 1,012
Both 292 68 1,012

is_subtype_of Neither 134,125,215 11,628,067 896,604,534
Subtype Cache 16 10 29
Optimized Node 292 68 1,012
Both 16 10 29

Our optimizations reduce the number of type test invocations dramatically. As a result,475

the full check for the subtyping relationship is done only once for any specific type and a476

possible super type. Similarly, the generic type check is replaced by a shape check and thus477

minimizes the number of expensive type checks to the number of lexical locations that verify478

types combined with the number of shapes a specific lexical location sees at run time.479

Impact on Performance480

Figure 4 shows how our optimizations contribute to the peak performance. The figure depicts481

Moth’s peak performance over all benchmarks, depending on the activated optimizations. As482

for Figure 1, we do a per-benchmark unit conversion using Moth (untyped), preserving the483

distribution properties of the results, but enabling us to show the results on a single plot.484

As seen before in Figure 2, the untyped version is faster by 5%. Moth with both485

optimizations enabled as well as Moth with the optimized type-check node (cf. Listing 4)486

reach the same performance. This indicates that the subtype cache matrix is not strictly487

necessary for the peak performance. However, we can see that the subtype cache matrix488

improves performance by an order of magnitude over the Moth version without any type489

check optimizations. This shows that it is a relevant and useful optimization. Based on the490

numbers of Table 2, we see that this optimization is relevant for the very first execution491

of code. For code that has not executed before, having the global cache for the subtype492

relations gives the most benefit. After the first execution, the lexical caches in form of the493

type check nodes are primed with the same information, and the subtype cache matrix is494

only rarely needed. An example for code that benefits from the subtype cache matrix is unit495

test code, because most of the code is executed only once. While the performance of unit496

tests is not always critical, it can have a major impact on developer productivity.497
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Figure 4 Performance Impact of the Optimizations on the Peak Performance over all Benchmarks.
The boxplot shows the performance of Moth normalized to the untyped version, i.e., without any
type checks. This means all results for Moth (untyped) are 1.0 and its box appears as a line. The
dots on the plot represent the geometric mean reported as averages. The performance of Moth
with both optimizations and Moth with only the node for optimized type checks are identical. The
subtype check cache improves performance over the unoptimized version, but does not contribute to
the peak performance.

Impact on Memory Usage498

In our implementation, the subtype cache matrix is the largest additional data structure. We499

initialize it for up to 1000 types and use 1 byte per type combination. Java utilizes ca. 1MB500

of memory for the matrix. Additional memory is used to represent the type-check nodes501

at every lexical location. Since they behave like polymorphic inline caches (PIC) [32], their502

memory usage depends on the specific program execution. For the benchmarks used in this503

paper, the extra memory use can be up to 200KB.504

In the context of Graal and Truffle, this additional memory usage is small, since the505

metacompilation approach uses a lot of memory [41]. In a dedicated virtual machine, memory506

use can be further optimized and be as efficient as for other kinds of PICs.507

5.5 Transient Typechecks are (Almost) Free508

As discussed in the introduction, in many existing gradually typed systems, one would expect509

a linear increase of the performance overhead with the increasing number of type annotations.510

In this section, we show that this is not necessarily the case on our system. For this511

purpose, we use two microbenchmarks Check and Nest, which have at their core method512

calls with 5 parameters. The Check benchmark calls the same method 10 times in a row, i.e.,513

it has 10 call sites. The Nest benchmark has 10 methods with identical signatures, which514

recurse from the first one to the last one. Thus, there are still 10 method calls, but they515

are nested in each other. In both benchmarks, each method increments a counter, which516

is checked at the end of the execution to verify that both do the same number of method517

activations, and only the shape of the activation stack differs.518

Each benchmark exists in six variants, each variant in a separate file, going from having519

no type annotations over annotating only the first method parameter to annotating all 5520

parameters. To demonstrate the impact of compilation, we present the results for the first521
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Figure 5 Transient Typechecks are (Almost) Free. Two microbenchmarks, each with six variants,
demonstrate the common scenario of adding type annotations over time, which in our system does
not have an impact on peak performance. The benchmark variants differ only in the increasing
number of method arguments that have type annotations. We show the result for the first benchmark
iteration (a) and the one hundredth (b). Moth (neither), i.e., Moth without our two optimizations
sees a linear increase in run time. For the first iteration, we see some difference between Moth (both)
and Moth (untyped). By the hundredth iteration, however, the compiler has eliminated the overhead
of the type checks and both Moth variants essentially have the same performance (independent of
the number of method arguments with type annotations).

iteration as well as the hundredth iteration. The first iteration is executed at least partially522

in the interpreter, while the hundredth iteration executes fully compiled.523

Figure 5 shows that such a common scenario of methods being gradually annotated with524

types does not incur an overhead on peak performance in our system. The plot shows the525

mean of the run time for each benchmark configuration. Furthermore, it indicates a band526

with the 95% confidence interval. The yellow line, Moth (neither), corresponds to our Moth527

with type checking but without any optimizations. For this case, we see that the performance528

overhead grows linearly with the number of type annotations.529

For Moth (both) and Moth (untyped), we see for the first iteration that the band of530

confidence intervals diverges, indicating that the additional type checks have an impact on531

startup performance. However, for the hundredth iteration, the confidence intervals overlap532

for the optimized Moth as well as the one that does not perform typechecks. This means that533

Moth does not suffer from a general linear overhead for adding type checks. Instead, most534

type checks do not have an impact on peak performance. However, as previously argued for535

the List benchmark, this is only the case for checks that can be subsumed by shape checks536

(shape checks are performed whether or not type checks are present).537

5.6 Changes to Moth538

Outlined earlier in Section 4, a secondary goal of our design was to enable the implementation539

of our approach to be realized with few changes to the underlying interpreter. This helps to540

ensure that each Grace implementation can provide type checking in a uniform way.541

By examining the history of changes maintained by our version control, we estimate that542
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1 type ListElement = interface {
2 next
3 }
4
5 var elem: ListElement := headOfList
6 while (...) do {
7 elem := elem.next
8 }

Listing 7 Example for dynamic type checks not corresponding to existing checks.

our implementation of Moth required 549 new lines and 59 changes to existing lines. The543

changes correspond to the implementation of new modules for the type class (179 lines) and544

the self-specializing type checking node (139 lines), modifications to the front end to extract545

typing information (115 new lines, 14 lines changes) and finally the new fields and amended546

constructors for AST nodes (116 new lines, 45 lines changes).547

6 Discussion548

6.1 The VM Could Not Already Know That549

One of the key optimizations for our work and the work of others [6, 45] is the use of object550

shapes to encode information about types (in our case), or type casts and assumptions (in551

the case of gradually typed systems). The general idea is that a VM will already use object552

shapes for method dispatches, field accesses, and other operations on objects. Thus any553

further use to also imply type information can often be optimized away when the compiler554

sees that the same checks are done, and therefore can be combined by optimizations such as555

common subexpression elimination.556

This assumption breaks, however, when checks are introduced that do not correspond557

to those that exist already. As described in Section 4, our approach introduces checks for558

reading from and writing to variables. Listing 7 gives an example of a pathological case. It559

is a loop traversing a linked list. For this example our approach introduces a check, for the560

ListElement type, when (1) assigning to and reading from elem and (2) when activating561

the next method. The checks for reading from elem and activating the method can be562

combined with the dispatch’s check on object shape. Unfortunately, the compiler cannot563

remove the check when writing to elem, because it has no information about what value will564

be returned from next, and so it needs to preserve the check to be able to trigger an error565

on the assignment. For our List benchmark, this check induces an overhead of 79%.566

Compiler optimizations such as inlining are also insufficient for this particular case,567

because there are no guarantees about what elem does to implement next. The next method568

of a specific kind of ListElement may even have a type annotation for a return value. The569

best Graal can do in this example is to combine the check for the return value with the one570

writing to elem.571

Since the example shows a somewhat generic data structure, there is the question of572

whether the issue applies to other data structures as well. Our benchmarks use a range of573

data structures including hash maps, sets, and vectors, none of which show the issue, because574

in more complex programs the chance of already having a check there is high, and cases575

were there has not been one before seem to be rare — although one can always consider576

additional optimizations to eliminate further checks. For generic data structures, storage577
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strategies [13] could be used to encode type information about elements. This would allow578

the VM to check only once before a loop, and the loop could then rely on that check for579

guarantees about the elements of the data structure.580

6.2 Optimizations581

Read and Write Checks. As a simplification, we currently check variable access on both582

reads and writes. This approach simplifies the implementation, because we do not need to583

adapt all built-ins, i.e., all primitive operations provided by the interpreter. One optimization584

could be to avoid read checks. A type violation can normally only occur when writing to585

a variable, but not when reading. However, to maintain the semantics, this would require586

us to adapt many primitives. Examples for primitives are operations that activate blocks,587

which need to check their arguments or return values as well as any primitives that write to588

variables or fields. Given the number of primitives, this is error prone and incompleteness589

would result in missing type checks.590

By checking reads and writes in a few well defined locations, we get errors as soon as user591

code accesses fields and variables. Moreover, only a small set of locations required changes592

to the code, which simplified the implementation. Given the good results (cf. Sections 5.4593

and 5.6), we decided to keep read checks, because it is a more uniform and maintainable594

approach for an academic project.595

Dynamic Type Propagation. Another optimization could be to use Truffle’s approach to596

self-specialization [68] and propagate type information to avoid redundant checks. At the597

moment, Truffle interpreters typically use self-specialization to specialize the AST to avoid598

boxing of primitive types. This is done by speculating that some subtree always returns599

the expected type. If this is not the case, the return value of the subtree is going to be600

propagated via an exception, which is caught and triggers respecialization. This idea could601

possibly be used to encode higher-level type information for return values, too. This could602

be used to remove redundant checks in the interpreter by simply discovering at run time603

that whole subexpressions conform to the type annotations.604

Performance Impact of Types As seen in Section 6.1, there are cases where adding types605

may reduce performance, even so, in the best case this does not happen (cf. Section 5.5).606

While the expectation is that adding more types may result in higher potential for607

performance issues, in the context of dynamic and adaptive compilation as used for Moth,608

this is not necessarily the case. Since compilers rely on various heuristics, for instance for609

inlining, there may be situations where a fully typed program is faster than a program610

with fewer types. Since the checks need to be compiled themselves, they also influence611

such heuristics. This means it is possible that partially typed programs may show worse612

performance than fully typed ones.613

6.3 Threats to Validity614

This work is subject to many of the threats to validity common to evaluations of experimental615

language implementations. Our underlying implementation may contain undetected bugs that616

affect the semantics or performance of the gradual typing checks, affecting construct validity617

— we may not have implemented what we think we have. Given that, our benchmarking618

harness run on the same implementation is subject to the same risks, thus also affecting619

internal validity — we may not be measuring the implementation correctly. Moth is built on620
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the Truffle and Graal toolchain, so we expect external validity there at least — we expect the621

results would transfer to other Graal VMs doing similar AST-based optimizations. We have622

less external validity regarding other kinds of VMs (such as VMs specialized to particular623

languages, or VMs built via meta-tracing rather than partial evaluation). Nevertheless, we624

expect our results should be transferable as we rely on common techniques.625

Generalizability Finally, because we are working in Grace, it is less obvious that our results626

generalize to other gradually typed-languages. We have worked to ensure e.g. our benchmarks627

do not depend on any features of Grace that are not common in other gradually-typed628

object-oriented languages, but as Grace lacks a large corpus of programs the benchmarks629

are necessarily artificial, and it is not clear how the results would transfer to the kinds of630

programs actually written in practice. The advantage of Grace (and Moth) for this research631

is that their relative simplicity means we have been able to build an implementation that632

features competitive performance with significantly less effort than would be required for633

larger and more complex languages. On the other hand, more effort on optimisations could634

well lead to even better performance.635

Another aspect which limits generalizability is the specific semantics of Grace. Reticulated636

Python, Typed Racket, and Gradualtalk have semantics that need additional runtime support,637

and thus, we cannot draw any conclusions without further research.638

For languages such as Newspeak, Strongtalk, or TypeScript, where types do not have639

run-time semantics, one could add termination based on type errors to these languages, or640

simply avoid termination and report the errors after program completion as a debugging aid.641

For either option, our approach should apply and we would expect similar results.642

7 Related Work643

Although syntaxes for type annotations in dynamic languages go back at least as far as644

Lisp [54], the first attempts at adding a comprehensive static type system to a dynamic-645

ally typed language involved Smalltalk [33], with the first practical system being Bracha’s646

Strongtalk [17]. Strongtalk (independently replicated for Ruby [26]) provided a powerful and647

flexible static type system, where crucially, the system was optional (also known as pluggable648

[16]). Programmers could run the static checker over their Smalltalk code (or not); either way649

the type annotations had no impact whatsoever of the semantics of the underlying Smalltalk650

program.651

Siek and Taha [48] introduced the term “gradual typing” to describe the logical extension652

of this scheme: a dynamic language with type annotations that could, if necessary, be checked653

at runtime. Siek and Taha build on earlier complementary work extending fully statically654

typed languages with a “DYNAMIC” type—Abadi et al. ’s 1991 TOPLAS paper [1] is an655

important early attempt and also surveys previous work.656

Revived practical adoption of dynamic languages generated revived research interest,657

leading to the formulation of the gradual guarantee to characterize sound gradual type658

systems: informally “removing type annotations always produces a program that is still well659

typed” and also “evaluates to an equivalent value” [50], drawing on Boyland’s critical insight660

that such a guarantee must by its nature exclude code that reflects on the presence or absence661

of type declarations [15]. Moth ensures that the values passing through type annotations662

cannot be incompatible with those annotations and that type annotations cannot change663

program values, and Moth’s type tests consider only method names (not any further type664

annotations). This means that removing type annotations cannot cause a program to fail665
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or change its behaviour, satisfying the informal statement of the gradual guarantee. Moth666

does not meet the refined formal statement of the guarantee in Sieket al.’s [50]’s Theorem 5,667

however, because Theorem 5 requires all intermediate values conform to their inferred static668

types. Moth only checks at explicit type declarations, not inferred intermediate types.669

Type errors in gradual, or other dynamically checked, type systems will be detected670

at the type declarations, but often those declarations will not be at fault — indeed in a671

correctly typed program in a sound gradually typed system, the declarations cannot be at672

fault because they will have passed the static type checker. Rather, the underlying fault673

must be somewhere within the barbarian dynamically typed code trans vallum. Blame674

tracking [63, 52, 2] localizes these faults by identifying the point in the program where the675

system makes an assumption about dynamically typed objects, so can identify the root676

cause should the assumption fail. Different semantics for blame detect these faults slightly677

differently, and impose more or less implementation overhead [60, 51, 62].678

The diversity of semantics and language designs incorporating gradual typing has been679

captured recently via surveys incorporating formal models of different design options.680

Chung et al. [22] present an object-oriented model covering optional semantics (erasure),681

transient semantics, concrete semantics (from Thorn [11]), and behavioural semantics (from682

Typed Racket), and give a series of programs to clarify the semantics of a particular language.683

Greenman et al. take a more functional approach, again modelling erasure, transient (“first684

order”), and behavioural (“higher order”) semantics [28], and also present performance in-685

formation based on Typed Racket. Wilson et al. take a rather different approach, employing686

questionnaires to investigate the semantics programmers expect of a gradual typing system687

[64].688

As with languages more generally, there seem to be two main implementation strategies for689

languages mixing dynamic and static type checks: either adding static checks into a dynamic690

language implementation, or adding support for dynamic types to an implementation that691

depends on static types for efficiency. Typed Racket, for example, optimizes code with a692

combination of type inference and type declarations—the Racket IDE “optimizer coach” goes693

as far as to suggest to programmers type annotations that may improve their program’s694

performance [53]. In these implementations, values flowing from dynamically to statically695

typed code must be checked at the boundary. Fully statically typed code needs no dynamic696

type checks, and so generally performs better than dynamically typed code. Adopting a697

gradual type system such as Typed Racket [59] allows programmers to explicitly declare types698

that can be checked statically, removing unnecessary overhead. Ortin et al.’s [43] approach699

takes this to a logical extreme using a rule base to guide program specialisation at compile700

time based on abstract interpretation.701

On the other hand, systems such as Reticulated Python [60], SafeTypeScript [45], and702

our work here, take the opposite approach. These systems do not use information from703

type declarations to optimize execution speed, rather the necessity to perform (potentially704

repeated) dynamic type checks tends to slow programs down, so here code with no type705

annotations generally performs better than statically typed code, or rather, code with many706

type annotations. In the limit, these kinds of systems may only ever check types dynamically707

and may not involve a static type checker at all.708

As gradual typing systems have come to wider attention, the question of their imple-709

mentation overheads has become more prominent. Takikawa et al. [56] asked “is sound710

gradual typing dead?” based on a systematic performance measurement on Typed Racket.711

The key here is their evaluation method, where they constructed a number of different712

permutations of typed and untyped code, and evaluated performance along the spectrum [30].713



Roberts, Marr, Homer, Noble 15:23

Bauman et al. [6] replied to Takikawa et al.’s study, in which they used Pycket [5] (a tracing714

JIT for Racket) rather than the standard Racket VM, but maintained full gradually-typed715

Racket semantics. Bauman et al. are able to demonstrate most benchmarks with a slowdown716

of 2x on average over all configurations. Note that this is not directly comparable to our717

system, since typed modules do not need to do any checks at run time. Typed Racket only718

needs to perform checks at boundaries between typed and untyped modules, however, they719

use the same essential optimization technique that we apply, using object shapes to encode720

information about gradual types. Muehlboeck and Tate [42] also replied to Takikawa et al.,721

using a similar benchmarking method applied to Nom, a language with features designed to722

make gradual types easier to optimize, demonstrating speedups as more type information is723

added to programs. Their approach enables such type-driven optimizations, but relies on a724

static analysis which can utilize the type information, and the underlying types are nominal,725

rather than structural.726

Most recently, Kuhlenschmidt et al. [36] employ an ahead of time (i.e. traditional, static)727

compiler for a custom language called Grift and demonstrate good performance for code728

where more than half of the program is annotated with types, and reasonable performance729

for code without type annotations.730

Perhaps the closest to our approach are Vitousek et al. [60] (incl. [62, 29]) and731

Richards et al. [45]. Vitousek et al. describe dynamically checking transient types for732

Reticulated Python (termed “tag-type” soundness by Greenman and Migeed [29]). As with733

our work, Vitousek et al.’s transient checks inspect only the “top-level” type of an object.734

Reticulated Python undertakes these transient type checks at different places to Moth. Moth735

only checks explicit type annotations, while Reticulated Python implicitly checks whenever736

values flow from dynamic to static types. We refrain from a direct performance comparison737

since Reticulated Python is an interpreter without just-in-time compilation and thus per-738

formance tradeoffs are different. In recent experimental work, however, Vitousek et al. [61]739

have evaluated Reticulated Python’s transient semantics running on top of an unmodified740

PyPy JIT metacompiler. These results are broadly consistent with those presented here,741

finding similarly small slowdowns using just the tracing JIT, and reducing those slowdowns742

even further when some tests are elimited via static type inference.743

Richards et al. [45] take a similar implementation approach to our work, demonstrating744

that key mechanisms such as object shapes used by a VM to optimize dynamic languages can745

be used to eliminate most of the overhead of dynamic type checks. Unlike our work, Richards746

implement “monotonic” gradual typing with blame, rather than the simpler transient checks,747

and do so on top of an adapted Higgs VM. The Higgs VM implements a baseline just-in-time748

compiler based on basic-block versioning [21]. In contrast, our implementation of dynamic749

checks is built on top of the Truffle framework for the Graal VM, and reaches performance750

approaching that of V8 (cf. Section 5.2). The performance difference is of relevance here751

since any small constant factors introduced into a VM with a lower baseline performance752

can remain hidden, while they stand out more prominently on a faster baseline.753

Overall, it is unclear whether our results confirm the ones reported by Richards et al. [45],754

because our system is simpler. It does not introduce the polymorphism issues caused by755

accumulating cast information on object shapes, which could be important for performance.756

Considering that Richards et al. report ca. 4% overhead on the classic Richards benchmark,757

while we see 33%, further work seems necessary to understand the performance implications758

of their approach for a highly optimizing just-in-time compiler.759
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8 Conclusion760

As gradually typed languages become more common, and both static and dynamically761

typed languages are extended with gradual features, efficient techniques for gradual type762

checking become more important. In this paper, we have demonstrated that optimizing763

virtual machines enable transient gradual type checks with relatively little overhead, and764

with only small modifications to an AST interpreter. We evaluated this approach with Moth,765

an implementation of the Grace language on top of Truffle and Graal.766

In our implementation, types are structural and shallow: a type specifies only the names767

of members provided by objects, and not the types of their arguments and results. These768

types are checked on access to variables, when assigning to method parameters, and also on769

return values. The information on types is encoded as part of an object’s shape, which means770

that shape checks already performed in an optimizing dynamic language implementation can771

be used to check types, too. Being able to tie checks to the shapes in this way is critical for772

reducing the overhead of dynamic checking.773

Using the Are We Fast Yet benchmarks as well as a collection of benchmarks from the774

gradual typing literature, we find that our approach to dynamic type checking introduces an775

overhead of 5% (min. −13%, max. 79%) on peak performance. In addition to the results776

from further microbenchmarks, we take this as a strong indication that transient gradual777

types do not need to imply a linear overhead compared to untyped programs. However,778

we also see that interpreter and startup performance is indeed reduced by additional type779

annotations.780

Since Moth reaches the performance of a highly optimized JavaScript VM such as V8, we781

believe that these results are a good indication for the low peak-performance overhead of our782

approach.783

In specific cases, the overhead is still significant and requires further research to be784

practical. Thus, future research should investigate how the number of gradual type checks785

can be reduced without causing the type feedback to become too imprecise to be useful.786

One approach might increase the necessary changes to a language implementation, but787

avoid checking every variable read. Another approach might further leverage Truffle’s788

self-specialization to propagate type requirements and avoid unnecessary checks.789

Finally, we hope to apply our approach to other parts of the spectrum of gradual typing,790

eventually reaching full structural types with blame that support the gradual guarantee.791

This should let us verify that Richards et al. [45]’s results generalize to highly optimizing792

virtual machines, or alternatively, show that other optimizations for precise blame need to793

be investigated.794
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