
Saving the World from Bad Beans:
Deployment-Time Confinement Checking

Dave Clarke
Institute of Information and

Computing Sciences
Utrecht University

Utrecht, The Netherlands

dave@cs.uu.nl

Michael Richmond
Almaden Research Center

International Business
Machines
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ABSTRACT
The Enterprise JavaBeans (EJB) framework requires devel-
opers to preserve architectural integrity constraints when
writing EJB components. Breaking these constraints allows
components to violate the transaction protocol, bypass se-
curity mechanisms, disable object persistence, and be sus-
ceptible to malicious attacks from other EJBs. We present
an object confinement discipline that allows static verifica-
tion of components’ integrity as they are deployed into an
EJB server. The confinement rules are simple for develop-
ers to understand, require no annotation to the code of EJB
components, and can be efficiently enforced in existing EJB
servers.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.1.5 [Programming Techniques]: Object-oriented
Programming; D.2.11 [Software Engineering]: Software
Architectures

General Terms
Languages, Verification, Reliability

Keywords
Enterprise JavaBeans, Confinement, Deployment Tools

1. INTRODUCTION
The Enterprise JavaBeans (EJB) architecture [45, 24, 38]

is designed to support enterprise scale software systems.
EJB applications are comprised of a collection of EJB com-
ponents (called beans) that are assembled into the desired
application and executed on an EJB server.

Internally, an EJB Server wraps developer-supplied beans
in a wrapper that provides capabilities such as security, per-
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sistence, transactions, and so forth. The integrity of the EJB
architecture depends upon every bean being confined within
its wrapper, and all access to each bean being mediated via
that wrapper.

Unfortunately, malicious or erroneous developers can cre-
ate bean objects which can escape from the confines of their
wrappers. Without the wrappers’ confinement, beans can
be accessed directly, and the benefits and protection pro-
vided by the EJB architecture are lost. For example, meth-
ods may be invoked on beans outside the required transac-
tion or security context, so rollbacks will not be performed
when transactions fail; privileged methods may be invoked
by clients who don’t have the necessary security credentials;
and beans may mount malicious attacks on other, uncon-
fined, beans.

This is essentially a confinement problem: the EJB archi-
tecture must prevent access to the internal objects imple-
menting each bean, and permit access only through the as-
sociated wrapper. Large-scale changes to the EJB architec-
ture to remove this vulnerability are not feasible, as the EJB
architecture is already well established in the marketplace,
and is widely used to implement large scale systems. As
beans are written by third-parties, hand-checking, verifica-
tion, or certification to ensure confinement properties is also
impractical, without a large infrastructure to introduce cer-
tifying compilation [17] and proof-carrying code [34]. Sim-
ilarly, changing the EJB specification to require program-
ming language support for confinement, such as Ownership
Types [16] or Confined Types [48] is impractical given the
investment in the existing architecture.

To solve this problem, we introduce a simple confine-
ment discipline for Enterprise JavaBeans. This discipline
can be thought of as a programming convention which can
be checked statically whenever a component is deployed into
an EJB server, and, by preventing unconfined EJB compo-
nents from being deployed, preserves the integrity of the
EJB architecture.

The confinement discipline is designed to be simple, easy
for developers to understand, and ensures that their designs
will match the constraints imposed by the EJB architecture
without requiring developers to significantly change their
work flow. The confinement checking relies solely upon the
Java bytecode and deployment descriptor of the bean to be
deployed, is efficient to execute, and so could be incorpo-
rated into production EJB servers.

The confinement analysis we perform is coarse-grained



when compared to previous approaches such as Grothoff
et al. [19]. As a result, our analysis is relatively cheap,
avoiding, for example, any expensive control flow analysis.
Nevertheless, our results demonstrate that our approach is
appropriate for ensuring confinement in the EJB domain.

Confinement has been proposed in various forms in the
literature, however to the best of our knowledge, this is the
first application of confinement analysis to realistic systems
used in commercial software environments. Ensuring con-
finement in this setting is a vital part of maintaining the
integrity of these systems. As such, we advocate that future
versions of the EJB specification require the enforcement of
EJB confinement in the manner we discuss.

This paper is structured as follows. Section 2 reprises the
basics of the Enterprise JavaBeans architecture. Section 3
describes the confinement problem in more detail with Sec-
tion 4 presenting the design of our confinement checker. Sec-
tion 5 outlines the implementation of our confinement tool
and presents our experience with applying this tool to a va-
riety of EJB components. Section 6 evaluates our approach
and considers some alternatives, Section 7 places our work in
the context of related work, and finally Section 8 concludes
the paper.

2. ENTERPRISE JAVA BEANS
The Enterprise JavaBeans (EJB) architecture specifica-

tion [45] defines a component architecture designed to sup-
port the implementation of enterprise scale applications. In-
dividual EJB components (or beans) are separately devel-
oped black box components that are designed to be assem-
bled to form an application. Each bean consists of Java code
to implement the behavior of the bean, plus an XML deploy-
ment descriptor describing its properties and requirements
for security, transactions, persistence, and so on. An EJB
server provides the necessary runtime environment to host
Enterprise JavaBeans. The EJB architecture is designed to
be implemented either as a stand-alone application server
to which Java-based clients may connect and interact with
the hosted applications, or as part of the larger Java 2 En-
terprise Edition (J2EE) architecture which is designed to
support n-tier web-enabled distributed applications. The
EJB architecture specification defines the role and behavior
of an EJB server in hosting EJBs.

2.1 EJB Life-cycle
Enterprise JavaBeans have a richer life-cycle than tradi-

tional software applications [45, 46]. Figure 1 shows the
phases of the life-cycle of an EJB and the possible transi-
tions between different phases in the lifetime of a compo-
nent, and the EJB specification defines a range of roles for
the people involved with each phase of the EJBs life-cycle.

The phases of an EJBs life-cycle are:

1. development — during which an EJB is written in
Java, and packaged with appropriate deployment de-
scriptors by a bean developer.

2. deployment — during which additional deployment
descriptors may be added or modified by the applica-
tion assembler. After these changes have been made
the EJB is actually deployed onto the server.

Development

Undeployment

Deployment

Service Available

Figure 1: The life-cycle of an EJB component.

3. service availability — during which the EJB is avail-
able for use on the server. Clients may instantiate
EJBs and invoke methods on these instances, and

4. undeployment — during which the EJB and all in-
stances of it are removed from the server. This may be
the first step in updating a bean with a new version,
or may be due to the EJB no longer being necessary.

The deployment phase is the key difference between the
EJB life-cycle and that of other software components, and
represents the “third-party” nature of EJBs and the sepa-
ration of roles between a bean developer (writing individ-
ual beans) and an application assembler (combining them
into an application). During deployment, an application as-
sembler (or separate deployer or system administrator) will
adjust properties in the bean’s deployment descriptor that
specify security roles and permissions, the bean’s transac-
tion and persistence needs, and any bean-specific properties
that can be used to modify bean behavior. Technically, de-
ployment culminates in the transfer of a bean’s compiled
code and deployment description into an EJB server, and
the automatic generation of wrapper objects used within
the EJB server itself.

2.2 Component Structure
Within an EJB server, each EJB instance is comprised of a

pair of objects: an actual EJB object1 and an EJB Interface

object, as shown in Figure 2. The EJB object implements
the functional or business logic and holds any required state
of the component bean [45]. This is the object that the de-
veloper implements, that the application assembler uploads
to the server, and that provides the behavior required of
the component. For example, in a shopping cart bean, the
EJB object would implement methods such as addItem(),
removeItem(), getTotalCost(), and placeOrder().

An EJB object may use a number of other objects inter-
nally to implement the business logic of the EJB component,
just as any other object-oriented design typically delegates
complex behavior to many communicating objects. The ob-
jects which help to implement the business logic of an EJB
are known as Helper objects and are also shown in Fig-
ure 2. EJBs often also use additional objects to transfer
data in or out: these objects are known as Transfer ob-
jects [29]. A shopping cart bean could have a helper object

1The EJB terms for these objects are EJB and EJBObject
respectively. We have chosen to adjust these terms to avoid
the confusing circumlocutions such as “EJB Object object”
that result.
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Figure 2: EJB component structure highlighting objects which must be contained.

such as a SalesTaxCalculator and a transfer object such as
an OrderLineCollection. Helper and transfer objects are
written by bean developers along with the bean to which
they belong, and are generally deployed together in a single
component archive.

In contrast, the EJB Interface (EJBI) object is the reifi-
cation of the component’s external interface as an object in
the system. The EJB Interface object is typically compli-
ant with the Java Remote Method Invocation (RMI) speci-
fication [44]. This means that objects in other Java virtual
machines, possibly on different hosts, may hold a reference
to the EJBI and perform method invocations in a network-
transparent way. All method invocations on the EJB compo-
nent are required to pass through an EJB Interface object
on the component, irrespective of the location of the caller.

The implementation of an EJB Interface object is gener-
ated automatically by the EJB server during deployment,
based on a Java interface provided by the bean developer
and specified in the deployment descriptor. The EJBI ob-
ject typically implements or controls many of the services
that the EJB architecture offers to individual beans, includ-
ing transaction management, persistence, and security. To
provide these services, the EJB server inserts a number of
hooks into the call path of the component in the implemen-
tation of the EJB Interface. These hooks perform up-calls
to the server to request various services on behalf of the
component [45].

The EJB container is an architectural abstraction that
acts as the interface between an EJB component instance
and the EJB server on which it is hosted [45]: in practice, an
EJB Interface object will invoke its container, and the con-
tainer then invokes the server proper. An EJB server may
host any number of containers, with each container poten-
tially hosting any number of components. In most existing
EJB servers a new container is created for each type of bean
during deployment. This container will then only host EJB
instances of the type currently being deployed. That is, if
an EJB server hosts Shopping Cart and Stock Item EJBs,
the server will host every Shopping Cart instance in one
container, and every Stock Item in a separate container.

Each component type is also associated with an EJB Home

object which is shared between all component instances of
the same type on a single EJB server. An EJB Home object

acts as an object factory for instances of the component
type with which it is associated. Any client that requires a
new component instance must first obtain the correct EJB

Home object from the system name service then call create()
on the EJB Home object itself. An EJB Home object may
also implement methods to allow clients to find component
instances which have previously been created on the server.
In some cases, these instances may have been created in
previous system sessions and then persisted to secondary
storage for later retrieval.

As with the EJB Interface, the EJB Home is generated
automatically by the EJB server during deployment based
on an interface provided by the bean developer. The bean
developer, therefore, must create three Java files to specify
an Enterprise JavaBean: Java interfaces for the EJB Home

and EJB Interface objects, and a Java class for the EJB

that implements the business logic for the bean — along
with a deployment descriptor. During deployment the EJB
server generates implementations of the EJB Home and EJB

Interface objects and instantiates one EJB Home object and
a container if necessary.

3. A CONFINEMENT PROBLEM
Figure 2 shows how the structure of the EJB server is de-

signed to provide an EJB object with an external interface,
the EJB Interface object, through which method invoca-
tions are performed. Indeed, in the EJB architecture, no
object other than the EJB Interface object should ever re-
ceive a direct reference to the EJB (or to any of its internal
Helper objects). Any such reference would allow direct ac-
cess to the EJB, bypassing the protection provided by the EJB
Interface. That is, an EJB Interface acts as a mandatory
wrapper, proxy [41] or decorator [18] surrounding the EJB
object. The correct functioning of the EJB server requires
that a bean’s implementation remains confined behind its in-
terface object with all access being performed via the EJBI.

Unfortunately, if an internal object (either an EJB object
or one of its helpers) does become accessible outside the EJBI
wrapper (i.e. becomes unconfined) the integrity constraints
of the EJB architecture are broken. External clients will
then be able to access the bean object or its helpers directly,
thus bypassing the control and management that is provided
by the EJB Interface wrapper.
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Figure 3: Illustration of references that could potentially escape an EJB component.

For example, the EJB architecture supports method-level
security checking implemented in the EJBI object; bypassing
the security layer may enable unauthorized access to other-
wise restricted data. Similarly the EJB Interface object
implements the EJB’s transactions, persistence, and object
swapping services. Invoking methods outside the transac-
tion contexts provided by the EJBI can introduce inconsis-
tencies into shared backing databases and prevent transac-
tions rollbacks and commits from being executed properly;
avoiding the persistence services can allow a bean’s state to
be changed by a method without this change being mirrored
in the local persistent store; finally, attempts to call methods
on an EJB may cause serious server problems if the actual
bean object itself has been pooled by the server to reduce
its memory use. Any of these situations can undermine per-
formance or integrity, or result in unexpected exceptional
behaviour on the server hosting the unconfined bean.

The EJB architecture is built around a strong notion of
confinement. Thus, it is important that future EJB specifi-
cations enforce this notion of confinement as emerging ap-
plication server technologies, such as component migration
[38], typically rely heavily on the complete confinement of
individual components.

3.1 Breaching Confinement
Figure 3 illustrates the range of inter-object references

that may occur within an EJB component. To ensure the
integrity of the EJB architecture, our primary concern is to
prevent references to confined objects a and b from escaping
the EJB Interface. Meanwhile, we must allow the return of
references to transfer objects c either by copy or reference.
The return of references to external beans (or rather their
EJB Interfaces) such as d , must also be allowed, irrespective
of the type of the EJB Interface.

The whole premise of Enterprise JavaBeans is that indi-
vidual beans will be written by third parties and compiled
outside of the server framework, possibly by persons of mali-
cious intent. As Java is an object-oriented language, object
references are unrestricted: any object may be accessed from
anywhere [35]. Even if a bean were required to store its in-
ternal references in private fields, its developer could expose
those private references simply by writing public methods
that return them. Thus, it is quite possible for malicious

or erroneous developers to violate the confinement relation-
ship between the EJB Interface and the EJB object and
its helper objects — by writing methods which return these
objects directly; by creating transfer objects that store refer-
ences to these objects, and then copying the transfer objects
outside; or by giving references to these objects to shared
external objects which have somehow been passed to the
EJB.

This problem is particularly unpleasant as unwitting de-
velopers can inadvertently violate containment simply by
using the Java keyword “this” to pass the current object
as an argument, or return it to the caller. This idiom is
illustrated in the method badReturn() shown below. When
developing an EJB component, if the developer wishes to
pass or return the current component they are required to
use the result of the method getEJBObject() in place of
“this”, as illustrated by the method goodReturn().

public class CartBean implements SessionBean {
protected SessionContext context;
// Called once by container during bean creation
public void setSessionContext(SessionContext _ctx) {

this.context = ctx;
}
...
// incorrect way to return reference to bean
public CartEJBI badReturn() {

return(this);
}
// correct way to return reference to bean
public CartEJBI goodReturn() {

return(context.getEJBObject());
}
...

}

3.2 Bean Verification
In spite of the consequences of the server losing its ar-

chitectural integrity, the EJB specification does not require
that the confinement of beans be enforced. Existing EJB im-
plementations, such as the EJB Reference Implementation
[42], certainly do not enforce confinement and thus allow the
deployment and use of unsafe beans.

On the other hand, most EJB implementations (includ-
ing the EJB Reference Implementation, Oracle9i [36], and
JBoss [31]) do include stand-alone verifier tools that de-



velopers can use to check their beans’ Java code and de-
ployment descriptors. Generally, these tools make syntactic
checks for consistency between the various code files and the
deployment descriptor — for example, that various method
names, parameters, and types are consistent across all the
files, and that (where appropriate) they match signatures
required by the EJB specification.

Amongst other things, the verifiers can raise errors on
EJBs which expose the class of the EJB object from the EJBI
wrapper. The current EJB specification [45] does require
that references to the types of EJB objects cannot appear
in the interfaces of the EJB Interface wrappers. Checking
this condition will not, however, catch even simple cases
where the EJB instances are returned via variables of a super
type such as java.lang.Object, or where a reference to an
EJB object will escape the component as a field of another
object.

class BadBean implements SessionBean {
...
public Object exposeMyself() {

return (Object) this;
}
Mole OopsIDidItAgain() {

return new Mole(this);
}

}

More complex cases, such as ensuring that a bean’s helper
objects remain within the bean, and that transfer objects do
not accidentally expose an EJB objects or its helpers, cannot
be handled by these verifiers. Furthermore, these verifiers
must be run manually by bean developers: they are not
incorporated into the respective EJB servers. Beans that
fail the verifier can still be deployed without errors being
detected by the server — until, of course, the confinement
problems appear.

3.3 Confinement Model
To solve this problem, we first establish a confinement

model that captures the confinement relationships discussed
above. That is, we determine which objects are confined,
which are not confined, and which manage the boundary
between the confined and unconfined objects.

Every EJB constitutes a single unit of confinement defin-
ing a single confined space. Objects which exist within this
space are confined and no references to them may leak to ob-
jects outside of this space. For a bean, the confined objects
are the EJB and any associated helper objects.

Topologically, every path in the object graph from an un-
confined object to a confined object must pass through a
boundary object. In our case, any path from an object
which is not part of a given bean instance to the EJB ob-
ject or one of its helpers must pass through the EJBI object.
This implies that if an object has a reference to a confined
object, then it too is confined or on the boundary; confined-
ness is a virus transmitted via reference, blocked only by the
prophylactic boundary.

Objects on the boundary thus form the interface to the
unit of confinement. These objects exist to allow controlled
access to the objects within the unit of confinement. The
interface objects are permitted to access the confined ob-
jects and may be referenced by objects that exist outside
of the confined space. Thus, the objects on the boundary
constitute the points at which references to confined objects
can leak to the rest of this system.

Interface Status Role

EJBHome Boundary User extended
System provided

EJBLocalHome Boundary User extended
System provided

EJBObject Boundary User extended
System provided

EJBLocalObject Boundary User extended
System provided

EnterpriseBean Confined User implemented
(via sub-interface)

EntityBean Confined User implemented
SessionBean Confined User implemented
MessageDrivenBean Confined User implemented

SessionSynchronization Confined User implemented
(optional)

EJBContext Confined System provided
EntityContext Confined System provided
SessionContext Confined System provided
MessageDrivenContext Confined System provided

Handle Unconfined System provided
HomeHandle Unconfined System provided

EJBMetaData Unconfined System provided

Figure 4: Status of javax.ejb Interfaces

For an EJB component, the objects on the boundary are
the EJBHome and EJBI objects. The interfaces for these ob-
jects are supplied by the bean developer, however, as these
objects’ implementations are generated by the EJB server
during deployment, we can fortunately trust that the server
safely implements these objects without introducing code
that breaches confinement.

Any transfer objects used by the bean are outside the unit
of confinement. This means that references to these objects
can be passed across the confinement boundary, however to
maintain confinement we will have to place restrictions on
their use (see Section 4.3 below).

We’ve analyzed the interfaces provided by the javax.ejb

API and classified them according to their confinement re-
quirements. This classification is shown above in Figure 4,
along with the provenance of each interface.

Any user provided object which implements a subtype
of EnterpriseBean including EntityBean, SessionBean and
MessageDrivenBean is determined to be confined according
to our classification. In the EJB architecture, every EJB

object is required to implement one of these interfaces. We
assume all other objects within the same Java package as
the EJB object are that object’s helpers and so must also be
confined. (Other schemes are possible.)

In addition, we introduce a new field to the deployment
descriptor used to describe the bean to the server. This field
is a list of classes which are confined, inclusive of the package
containing the EJB object. Any objects from packages not
listed in this field are unconfined, as far as the given bean is
concerned.

This means that using the common EJB development ap-
proach of defining all classes for a single bean in one package
will result in the safest confinement relationship — assum-
ing that all objects referenced by the EJB object are helper
objects. Where transfer objects are required, the developer
must actively declare their classes in a separate package.2

2An alternative solution in which the developer must specify



Note that this confinement model can be enforced by
checking only confined and boundary classes. Our rules do
not constrain unconfined classes, and so such classes need
not be checked.

4. CHECKING BEAN CONFINEMENT
Section 3 has defined a confinement model for EJB. To

be practically useful, we need to ensure this that model is
enforced within the EJB system and architecture. There a
number of approaches to addressing confinement problems
(e.g. [1, 2, 48, 12, 16, 19, 33, 8]) though none satisfies
the constraints imposed by Enterprise JavaBeans. In this
section, we examine those constraints, before delving into
the particulars of our problem, and ultimately producing a
developer discipline for addressing bean confinement.

4.1 Forces on Feasible Solutions
Several forces constrain the approach that may be used to

address the problem of bean confinement: checking must be
performed on the deployed bytecode, the EJB architecture
is effectively unchangeable, and we must make a minimal
impact on deployment.

4.1.1 Bytecode Checking
EJB components are developed in a separate environment

from the EJB server to which they are submitted as Java
bytecode. An EJB is written externally, by an unknown
source, and generated by an unknown compiler which may
not even have been a Java compiler. Consequently, the char-
acteristics of the source programming language and compiler
cannot be specified or modified. This separation of respon-
sibilities for compilation and execution is one of the key
benefits of the EJB architecture, so we cannot consider ap-
proaches which change this model.

Certifying compilation [17] and proof-carrying code [34]
could be used to ensure that an EJB was compiled using a
tool that enforces confinement. These approaches, however,
would force EJB developers to change their development
tools in order to support EJB confinement checking.

As discussed in Section 2.1, the EJB life-cycle involves an
additional step, known as deployment, between compilation
and execution. Since changes to EJB development tools are
not feasible, deployment-time is the earliest point in the life-
cycle that confinement checking can be performed.

4.1.2 Unchangeable Architecture
EJB servers from a range of vendors are in widespread

use today. These servers are generally built to execute on
standard Java Virtual Machines. As a result, any approach
to enforcing EJB confinement may only minimally impact
EJB servers. Changes to the JVM and the EJB architecture
are not feasible, as these technologies are well established
and in widespread use. We can (and do) assume that the
EJB server implementation does not violate the confinement
relationships behind the scenes.

The solution we present requires no changes to the core
EJB architecture. Rather, we require the deployment tool
perform a series of checks over the bytecode of the bean as
it is transfered to the server. If any of these checks fail, then

each confined class or package individually is conceivable,
however we feel that this may overly complicate the creation
of deployment descriptors.

an error message is displayed and the deployment is aborted.
To support these checks we propose that the an EJB’s de-
ployment descriptor is extended to identify the helper and
transfer objects.

4.1.3 Deployment Impact
To have minimal effect on the deployment phase, our con-

finement checking must be efficient. This precludes the use
of complicated program analysis. Additionally, since EJBs
may be deployed individually, we do not have access to all of
the final application thus preventing the use of full program
analysis.

To enable agreement between bean developers and ven-
dors in their understanding of the constraints required, we
require that those constraints be simple to understand and
implement. Furthermore, we want to be more flexible than
existing approaches to confinement by allowing classes to be
used by different beans.

These constraints restrict the machinery we can bring to
our aid, as well as limiting where we can apply it.

4.2 Developer Requirements
The core of our proposal imposes a small number of syn-

tactic confinement constraints onto beans’ code. Figure 5
summarizes the confinement constraints which we require
EJB components to satisfy in order to be verified by our
confinement checking tool and thus ensure that they main-
tain the integrity of the EJB architecture. This tool can
categorize classes based on the breakdown shown in Fig-
ure 4. That is, the classes which are on the boundary, those
which are confined, and those which are outside.

CB1

All classes implementing an EJB must be confined,
such as classes implementing the EnterpriseBean in-
terface, any other confined interface in Figure 4, and
any helper classes a developer specifies.
Interfaces extending boundary interfaces are on the
boundary.
All other classes are unconfined.

CB2
No confined type can appear in the signature of a
boundary method, nor in static fields, nor as an ex-
ception.

CB3 No confined type can be cast to an unconfined type.

CB4 No unconfined type can be cast to a confined type.

CB5
No field, method, or static of an unconfined class hav-
ing a confined type is accessible in confined code.
Exceptions cannot be caught at confined types.

CB6
No confined class may extend an unconfined class,
except java.lang.Object.

Figure 5: Confinement constraints for Enterprise
JavaBeans.

To use this tool, the developer specifies (nominally in the
deployment descriptor) those objects that are used as helper
objects, and thus confined, and those that are used as trans-
fer objects, and thus not confined. For the current version of
our tool, the developer specifies a list of the confined pack-



ages for a bean: all non-EJB classes within such a package
are also considered to be confined. In most cases, the devel-
oper will create two packages: one that is confined and con-
tains all the EJB classes and any associated helper classes,
and the other containing any required transfer objects.

This ensures that developers using the common EJB de-
velopment approach — defining all classes for a single bean
in one package — will receive the safest confinement rela-
tionship. That is, the assumption that all objects referenced
by the EJB object are helper objects and thus confined. In
the case where a transfer object is required, the developer
must actively declare this class in a separate package.

4.3 Developer Discipline for Modular
Confinement

To maintain our confinement model, we wish to prevent
unconfined code from accessing confined objects. The access
could be based on carelessness on the part of the confined
code, which may inadvertently pass a reference out, or it
could be more elaborate, whereby an unconfined class at-
tempts to appear confined by sub-classing classes which the
confined code thinks are confined. Our rules guard against
all such accesses (Figure 5).

In this section, we explain how our rules work, and through
exhaustive coverage of the different ways which references to
confined objects could leak (which are more or less stan-
dard across programming languages [26]), we argue that
they cover all bases.

To illustrate various points, we have used the following ex-
ample code. From the perspective of class Confined, classes
SomeConfined and ConfinedException are considered con-
fined. The class Unconfined is not confined and treats ev-
erything it can get its hands on as unconfined.

class Confined {
Unconfined non;

}

class SomeConfined extends Confined { ... }

class Unconfined extends SomeConfined {
void throwsConfined() throws ConfinedException {

...
}
SomeConfined meAsConfined() {

return (SomeConfined) this;
}
void takeIt(Confined it) {

it.stealAndMunge();
}

}

class ConfinedException {
Confined data;

}

class UnConfinedException extends ConfinedException {}

We also assume that we are working in a scope defining
at least the following variables:

Confined con;
Unconfined non;

4.3.1 Confinement
CB1 states the fundamental property of our model; that

certain classes must be considered as confined, others are on

the boundary, and the remainder are unconfined, as dictated
by the EJB architecture.

4.3.2 Casting
Subtyping (or more specifically typecasting) is trouble-

some as it permits type information to be forgotten or impre-
cisely reconstructed. As we use type information to repre-
sent whether something is confined or otherwise, rules CB3
and CB4 ensure that this information is not lost via widen-
ing nor gained via narrowing.

Widening (upcast) can be used to forget that an object
has a confined type, enabling it to pass through the bound-
ary from inside to out. The expression (Object)con, for
example, could enable the confined contents of the variable
con to leak out of the confinement area. Furthermore, as
classes outside can use class Confined, they can do the cast
in the other direction and access the confined object. We
prevent the initial widening using rule CB3.

Narrowing (downcast) enables an outside object to be
passed in as some unconfined type and be cast to a type
which is confined (but not necessarily in the same place)
and thus capable of storing confined objects. This form of
spoofing is possible because one Java type may correspond
to different regions of confinement. Rule CB4 prevents an
object of type Unconfined being cast to type Someconfined,
and thus prevents this form of spoofing.

4.3.3 Subclassing
Inherited code that may not know that an object is con-

fined may pass itself (or other confined objects) to outside
objects. It may not be possible to subject all such classes
to our tests, or such classes may be written in a manner
which is safe but too subtle for our tool to check. We trust
a few special classes such as java.lang.Object to avoid this
problem, whereas the majority of classes we simply cannot
trust. Untrusted code could pass out instances of itself via
static fields, for example. If extended by a confined class,
then this behavior could occur through a call to superclass
methods. As there is no way to avoid this behavior with the
simple approach we take, we simply avoid it via rule CB6.

Conversely, code inheriting from a confined class may vio-
late the confinement expectations of the original class, thus
creating opportunities for spoofing. This is similar to the
issues that rule CB6 is designed to prevent. Whereas rule
CB6 is designed to prevent super class behavior from violat-
ing containment, rule CB4 is designed to prevent subclass
behavior from violating containment. If it were possible to
cast an unconfined type down to a confined type, then the
confined type may end up calling the unconfined type within
the confined space as the result of a call to super. This se-
quence would then allow the unconfined type to spoof the
confined type.

4.3.4 Fields and Methods
There are a number of ways a confined object can be

leaked through fields and methods. The majority of our
confinement rules are designed to tackle these leaks.

First, an unconfined object may obtain a confined object
from a field, or, similarly, a confined object could be re-
turned from a method to an outside object. These cases are
prevented by a combination of rules CB2, CB3, and CB6.
By prohibiting confined types from appearing on the bound-
ary via rule CB2, we prevent their direct escape. Addition-



ally, by preventing casts from confined types to unconfined
types with rule CB3, we prevent their escape as types that
are permitted on the boundary. We also rely on the super
classes not doing anything untoward, so we only allow sub-
classing of confined classes and java.lang.Object in rule
CB6.

Second, a confined object could be assigned to the field
of an object that is not confined, or, similarly, a confined
object could be passed as an argument to a method of an
unconfined object. Since we do not check unconfined code,
such classes may extend confined classes, though the ob-
jects will (at least initially) be separate. Such objects, as
they are unconfined, can be accessed in confined code. Rule
CB4 prevents these objects from being cast to a confined
type, which would lead to confusion over whether the object
was confined or not, as mentioned above. The interface of
the unconfined type may include fields and methods which
have confined types in their signatures. An object imple-
menting such an interface could leak confined objects to the
outside, so rule CB5 prohibits this. For example, if the
code non.takeIt(this) could appear within confined code,
it would result in a reference to a confined object leaking to
an unconfined object.

4.3.5 Statics
Static fields carrying confined values are trouble. A con-

fined object could be assigned to a static field that is ac-
cessible to objects outside the confinement boundary or by
different instances of the same confined type. Additionally,
static fields defined in unconfined code that contain values
of a confined type are too freely accessible to trust with con-
fined objects. Thus, they must not be accessed from within
confined code. For similar reasons, we exclude and protect
against accessing static methods from within confined code.
Although these restrictions on statics may seem constrict-
ing, the EJB specification actively discourages bean devel-
opers from using static fields. “An EJB is not allowed to
use read/write static fields. Using read-only static fields is
allowed. Therefore, all static fields must be declared as fi-
nal.”[45] — although the current EJB specification does not
require EJB servers to enforce this requirement.

4.3.6 Exceptions
Exceptions cross boundaries between objects, bypassing

the usual return mechanism. Once again, this opens two
possible channels by which leaks may occur: A confined
object could be thrown as an exception; or an unconfined
exception may be caught at a confined type. The second case
is illustrated in the following example code, which occurs in
a confined context:

try { non.throwsConfined() }
catch (ConfinedException ce)
{ // thinks ce is confined, but it’s not }

Thinking the exception is confined could lead to leaks, be-
cause the unconfined originator of the exception may have
retained a reference. Catching this exception would be ex-
cluded by rule CB5, though in practice it is sufficient to
never consider an exception class as confined.

4.3.7 Native Methods
A native method can pass objects around under the hood,

violating confinement. Fortunately, classes with native meth-
ods cannot be deployed by the EJB server.

4.3.8 Reflection
Java’s reflection mechanism enables traversal of the object

graph irrespective of any desired containment model. As
such, code using reflection may violate the confinement of
any bean. In fact, code using reflection may also violate
the internals of the server and thereby subvert the server’s
access to deployed beans.

An EJB server relies heavily on the Java reflection mech-
anism to perform the code analysis required to generate the
appropriate wrapper implementations (see section 2.2). It
would be possible for our confinement checker to prevent
the deployment of beans that use reflection. There are how-
ever, legitimate situations where it is appropriate for an EJB
component to use the Java Reflection API [39].

We are focused primarily on preventing developers from
inadvertently violating confinement. Any use of reflection is
necessarily intentional and thus, we choose to trust devel-
opers who use it rather than impose constraints that would
hinder the use of the EJB platform.

Figure 6 summarizes the effects of our constraints from
the perspective of confined code. All combinations are cov-
ered: whether an object is moved into or out of an area of
confinement; and whether the static (as it appears in code)
and dynamic (actual class) types of the object are confined
or unconfined, as far as the confined code is concerned.

5. IMPLEMENTATION AND EXPERIENCE
For experimental purposes, we implemented our deploy-

ment checker as a standalone tool. Using this tool, we ana-
lyzed a number of existing beans that we obtained from the
web, together with some beans we crafted ourselves. Our
results show that our confinement model is compatible with
existing EJB development approaches. Additionally, the use
of our tool can prevent developers from using conventional
and otherwise safe Java idioms which would result in errors
in the resulting beans, for example, returning this from a
business method on the bean.

5.1 Deployment Checking Tool
Our confinement checking tool implements the tests de-

scribed above by performing a simple traversal of the con-
tents of a class file. The tool uses the soot framework for
manipulating Java bytecode from McGill University [47].
Among a wealth of other things, this framework provides
jimple, a simple typed representation of Java Bytecode,
and the appropriate library support to manipulate it. The
deployment tool was consequently straightforward to imple-
ment, requiring only 700 lines of Java.

For each class submitted to the tool we determine from its
type and from the deployment descriptor whether it is con-
fined, on the boundary, or unconfined. We do not subject
unconfined classes to any checks. The only boundary classes
permitted are those extending one of the EJBI interfaces de-
fined by the EJB specification and shown in Figure 4. These
must be interfaces, and we traverse their declared meth-
ods to ensure that they do not contain any confined types.
A confined class is checked in a single pass which mainly
searches for places where widening or narrowing could oc-
cur, as well as checking various interfaces, static fields and
methods, and exceptions. If one of the tests fails, an error



Dynamic type Confined Confined Unconfined Unconfined
Static type Confined Unconfined Confined Unconfined

Inside to out
blocked at boundary
(CB2)

no widening from confined
to unconfined (CB3)

malformed class
(CB6)

“Don’t believe his lies”†

(CB5)

Outside to In
blocked at boundary
(CB2)

no narrowing from unconfined
to confined (CB4)

blocked at boundary
(CB2)

“Don’t believe his lies”†

(CB5)

CB1 merely tells us which types are definitely confined or otherwise
† Confined objects which an unconfined object has are most likely not our confined objects.

Figure 6: Confinement Scenarios Summarized (from the perspective of confined code)

message is shown to the client and the bean is rejected. Fig-
ure 7 shows an example of the error messages generated by
our confinement checking tool.

...
[dc] Processing class: mar.basicfail.SampleEJBI
[dc] Class is on boundary - proceeding with boundary

checks
[dc] Boundary class has confined in interface (CB2).
[dc] Offending Method (in return type):

returnAsSessionBean
[dc] Boundary class has confined in interface (CB2).
[dc] Offending Method (in return type):

returnAsSampleEJB
...
[dc] Return statement violates CB3/4
[dc] Value type = mar.basicfail.SampleEJB
[dc] Return type = java.lang.Object
[dc] Offending statement: return r0
[dc]
[dc] Deployment failed!!!
...

Figure 7: Snippet of confinement tool output gen-
erated in case of error.

5.2 Testing Existing Beans
To test our tool, we used it to analyze a number of beans.

We developed a few simple test beans, some of which in-
tentionally violate the confinement model (in one case also
violating the EJB specification — although that bean was
subsequently accepted for deployment by the standard J2EE
RI server). In addition, we analyzed a number of publically
available beans that we obtained from web. These beans are
from from the Pet Store application [43] used in Javasoft’s
J2EE tutorial for their J2EE Reference Implementation and
from IBM’s WebSphere Trade application [22] as used in
IBM’s benchmark suite. Of these downloaded beans, three
from the Pet Store application required minor restructur-
ing of their package layout. In each of these, the required
changes involved modifying the package name of the trans-
fer classes and amending the appropriate import statements
to reflect this package change. Our findings are summarized
in Figure 8.

We took each example bean and inspected the code to
determine which classes were helpers and which were trans-
fer objects. Only three beans used transfer objects: these
were rewritten to move the transfer objects’ classes into a
separate package. We compiled the code to Java Bytecode,
which we submitted our deployment checker. The results are
given in Figure 8. Only three beans failed to be accepted by
the deployment checker, though two of these were written

specifically to fail to test our checker. The remainder of the
beans were accepted with no further changes to their source
code. This suggests that our approach is compatible with
existing approaches to writing EJBs.

It is worth investigating in detail why the third failing
bean was not passed by the checker as we had expected.
When processing the bean TradeBean, the tool reported the
following cryptic error (reformatted):

Invocation which violates CB3/4.
Offending expression: staticinvoke <java.util.Collections:
void sort(java.util.List,java.util.Comparator)>(r1, $r13)
argument number 2

After tracking down the error in the source code, we found
that it corresponds to the second of the following lines of
code.

ArrayList sortedQuotes = new ArrayList(quotes);
java.util.Collections.sort(sortedQuotes,

new quotePriceComparator());

The class quotePriceComparator is an inner class defined
in the TradeBean. Since the TradeBean is confined, then its
inner classes must also be confined. However, the instance
of the confined class is passed to a static method thereby
violating confinement rule CB3.

Here is the implementation of the offending class:

class quotePriceComparator
implements java.util.Comparator {

public int compare(Object quote1, Object quote2) {
double change1 = ((LocalQuote) quote1).getChange();
double change2 = ((LocalQuote) quote2).getChange();
return
new Double(change2).compareTo(new Double(change1));

}
}

This is pretty innocuous, since it not only does not re-
fer to the instance of TradeBean, its interface provides no
way for the TradeBean instance to leak. A more sophisti-
cated analysis could have detected this. Instead, we believe
that this class need not be nested, and certainly need not
be confined, since the objects which it compares (of type
LocalQuote) are not confined. Moving this class out of the
confined package resolves the problem.

(As an interesting aside, the WebSphere application had
many classes named with the suffix Bean, although many of
them were actually transfer objects rather than EJB objects.
This unusual naming practice is likely to cause difficulties
for those trying to maintain confinement without our help.)

The execution times of our tool on various beans are in-
cluded in Figure 8. These times represent a fraction of the



Name Description Source Size1 Time2 Comments

Simple int return Returns int from method authors 52 1.33 Accepted

Simple EJB return Returns EJB object as various types authors 64 1.42 Failed (CB3/4)‡

Simple Helper Returns helper object from method authors 119 1.94 Failed (CB3/4)‡

Simple Transfer Returns transfer object from method authors 119 1.53 Accepted
PS Inventory Inventory EJB from Pet Store application Javasoft 215 1.22 Accepted
PS Address Address EJB from Pet Store application Javasoft 373 1.22 Accepted∗

PS CreditCard CreditCard EJB from Pet Store application Javasoft 318 1.27 Accepted∗

PS ContactInfo ContactInfo EJB from Pet Store application Javasoft 431 4.83 Accepted∗

PS CustomerAccount CustomerAccount EJB from Pet Store application Javasoft 196 3.55 Accepted
PS CustomerProfile CustomerProfile EJB from Pet Store application Javasoft 263 1.73 Accepted
PS Customer Customer EJB from Pet Store application Javasoft 179 3.52 Accepted
WS Account Account EJB from WebSphere Trade application IBM 503 5.30 Accepted
WS AccountProfile AccountProfile EJB from WebSphere Trade application IBM 349 1.18 Accepted
WS Holding Holding EJB from WebSphere Trade application IBM 336 1.25 Accepted
WS KeyGen KeyGen EJB from WebSphere Trade application IBM 132 1.22 Accepted
WS KeySequence KeySequence EJB from WebSphere Trade application IBM 156 6.46 Accepted
WS Order Order EJB from WebSphere Trade application IBM 465 1.24 Accepted
WS Quote Quote EJB from WebSphere Trade application IBM 700 1.25 Accepted

WS Trade Trade EJB from WebSphere Trade application IBM 1205 5.88 Failed (CB3/4)†

1 size given in lines of code (including comments)
2 analysis timings in seconds on a iBook 800MHz PowerPC G3, running Mac OS X Version 10.2.4
∗ after transfer objects were moved to an unconfined package
† accepted after minor modification (see text) ‡ written to fail (see text)

Figure 8: Summary of results of checking various simple test beans and several ‘real-world’ EJB components.

time taken to deploy a bean using existing deployment tools.
For comparison, our tool takes 1.42 seconds to check the
confinement properties of our SimpleEJB bean, whereas de-
ployment of this bean, on the J2EE Reference Implementa-
tion server, takes from 16 to 24 seconds depending on the
server state. As such, the deployment time overhead due to
confinement checking is not significant compared to existing
deployment times.

As the soot framework loads and type checks classes
lazily, and thus interacts with our deployment phase, we
consider these times to be an upper bound which could be
significantly improved by a little optimization, by using a
more specialized implementation, and by caching the results
of previously computed analyses. The timings are nonethe-
less encouraging as they are already small. Each bean class
is checked only once at deployment time and thus have no
effect on the subsequent use of a bean.

6. DISCUSSION
The approach we propose for ensuring bean confinement

is simple for all parties: simple for a developer to under-
stand and abide by and simple for an EJB Server vendor to
implement correctly and efficiently, imposing little overhead
on the deployment phase. Furthermore, it requires virtually
no change to existing EJB servers, and very little change
to user code. In any case, these changes primarily solidify
and enforce relationships which are implicit in the current
specification. Last but not least, our approach introduces
no run-time overhead.

In addition to these benefits, our approach has some less
obvious ones which came about because our rules are tai-
lored to our particular application. By adopting an asym-
metric approach, whereby we check only that confined code
defends itself against confinement leaks, rather than check-
ing potentially malicious code, we need not check unconfined

code and gain obvious efficiency benefits. Furthermore, our
approach is modular. Confinement is specified per unit of
deployment and can be different in different units. Uncon-
fined code is unrestrained and different beans can share the
same classes. A class can be considered confined with re-
spect to two different beans, or confined in one and not in
another, or even used freely within unconfined code. This
plurality is enabled by the defensive and asymmetric ap-
proach: rather than globally stating that a class is confined,
confinement is relative to a particular unit of deployment.
Parametric classes, as in Ownership Types [16], would have
achieved the same effect with rather more effort.

Unfortunately our approach also has a number of weak-
nesses due both to Java’s weak type system and the fact
that we must interface with existing library code. The main
place this shows up is with collections. As a simple example,
a bean may wish to use a vector to store a collection of helper
objects. Unfortunately, rule CB5 prevents the fruitful use of
java.util.Vector, as the element type java.lang.Object

is not confined. There are a number of ways around this
problem:

• We could provide additional analysis for collections
(much of java.util) to ensure that the collection pro-
vides the appropriate degree of confinement, that the
collection is used within confined code in a confined
manner, and that the developer never exploits the small
gap between where an object in the collection is of
type java.lang.Object and when it is recast to the
appropriate confined type. The required analysis is
relatively simple and is equivalent to showing that the
class is generic [23] and sensibly treats elements with
the type parameter as type (for example, by not cast-
ing them to java.lang.Object).

• We could invent a class ConfinedObject which can
safely be treated as confined (this could replace or
complement java.lang.Object). All confined classes



could extend this class. We could then supply a library
of collections which take confined objects and them-
selves can be confined. Because of our constraints,
these can be treated as confined and not appear in the
interface, or be safely used in unconfined code. But
this suggests another alternative.

• Rather than introduce a special object class, we can
just specify java.lang.Object as being confined and
enable a whole lot of java.lang and java.util to be
confined (those classes which satisfy our conditions).
Then we can use collections freely in confined code.
The only problem then is that neither the collection
nor java.lang.Object can appear in boundary inter-
faces. In relation to rule CB5, this could be a severe
problem.

The generic version of Confined Types goes some way to ad-
dressing this problem, though it lacks the required support
at the bytecode level [48].

In any of these cases, it would be sensible to cache (or
even pre-compute) which library classes can be treated as
confined. We could even check which static methods, such
as the one we encountered in Section 5.2, do not affect con-
finement — technically, those which borrow their arguments
[20]. As an aside, note that arrays can store confined ob-
jects, so long as they are not cast to Object[], which rule
CB3 prevents.

A number of alternative approaches could have been ap-
plied to address EJB confinement but were not suitable for
a number of reasons.

A programming language that supported confinement via
Ownership Types [16] or Confined Types [48] (with some
extension) could have been used. Apart from requiring that
the developer change languages, the checking is performed
too early, as the server accepts only Java bytecode. This sug-
gests that the fact that the desired confinement constraints
are satisfied could be recorded in the bytecode, via a sort
of proof-carrying code [34]. The proof of confinement could
then be checked at deployment time. Not only does this ap-
proach require appropriate programming language and com-
piler support, we feel that the underlying technology has not
yet reached the degree of maturity to be placed in the hands
of EJB developers.

A stronger module system which was designed with con-
finement in mind would alleviate the difficulty discussed
with collection objects. While stronger module systems for
Java exist [3, 6], none as far as we are aware support a con-
finement discipline. In any case, this approach is again not
feasible because it would force the developer to change lan-
guages or compiler. Under our scheme, the developer can
continue using Java and her favorite compiler.

One alternative which would place no demands on the
developer nor the compiler is to leave the entire bytecode
analysis up to the deployment checker, perhaps using escape
analysis [7], without any support from a programming disci-
pline. Relying on program analysis suffers from a number of
potential problems. A sophisticated program analysis is not
likely to be as efficient as our approach, because it would
need to analyze both confined and unconfined code. Sophis-
ticated analysis tend to be sensitive to small changes in code,
so (especially if different vendors implemented different al-
gorithms) a bean may run on one vendor’s EJB server but
not on another. If the constraints that are checked are hard

to understand, vendors would be likely to abandon confine-
ment checking altogether.

Other approaches we considered include sand-boxing [32]
to completely separate beans from each other, perhaps us-
ing Java’s proposed Isolate API [30], and bytecode rewriting
[40] or program monitoring [28] to ensure that no references
to beans leak. All of these approaches would be difficult
to implement correctly, result in a loss of efficiency to en-
sure confinement, and require significant changes to the EJB
server. Additionally, a runtime solution would require spe-
cial exceptions to be raised or having the offending code
crash. Both of these unpleasant outcomes are avoided by
finding confinement violations in advance of execution.

To summarize: these approaches, we feel, throw too much
technology at what turns out to be a relatively simple prob-
lem. The solution we propose is lightweight and well-suited
to the problem at hand, and, as checking is done before the
beans are executed, developers can readily understand any
failing checks and there is no impact on the EJB server’s
run-time performance.

7. RELATED WORK
Pointer confinement is an issue of increasing importance

in object-oriented software, touted not only as beneficial for
software engineering, but also promising to make reasoning
simpler, opening more opportunities for optimization, and
closing security holes.

The work reported in this paper specializes the confine-
ment of pointers to the real-world setting of Enterprise Java-
Beans. The resulting confinement scheme has a different
character from the existing and more general approaches to
confinement and related problems that exist in the litera-
ture.

The Geneva Convention on the Treatment of Object Alias-
ing [21] precipitated a stream of proposals addressing alias-
ing, beginning with the overly strict disciplines of Islands
[20] and Balloons [2]. Other approaches followed that are
based on notions of ownership, read-only, anonymity, bor-
rowing and similar ideas. Boyland, Noble and Retert present
a capability calculus unifying many of these ideas [11], how-
ever, this is primarily descriptive and not intended for prac-
tical application. Clarke and Wrigstad [15] describe a more
type-theoretic perspective, expressing many of the same con-
cepts from Boyland et al. in a system based on ownership
types. Both papers provide good surveys of the area.

Ownership types can express that an object has an owner
and is not accessible outside that owner [16, 13, 12]. Own-
ership types originate from Flexible Alias Protection [35],
and have been applied in modular reasoning about programs
[33], expressing architectural constraints [1], in preventing
data races [9], deadlocks [8], and safe region-based memory
management in Real-time Java [10]. Ownership types are
capable of expressing the pointer confinement desired here,
at the cost of additional type annotations, and hence modi-
fications to languages, compilers, and most likely, run-time
systems.

Vitek and Bokowski take a more lightweight approach
than ownership types with their Confined Types [48]. Us-
ing a few simple annotations, Confined Types enable objects
to be confined within their defining Java package. Follow-
up work by Grothoff, Palsberg and Vitek [19] demonstrated
that program analysis performed by their kacheck bytecode



analysis framework obviates the need for annotations. As
the rules underlying Confined Types and the approach taken
closely resemble our EJB confinement model and its check-
ing, a detailed comparison is warranted.

Firstly, the granularity of the confinement specified be-
tween the two systems is different. Confined Types offers
package level confinement, whereas the confinement we of-
fer is per object (or more precisely, per bean). A relatively
small change to the rules of confinement — forbidding con-
fined objects access to the package scope — is required to
bridge this gap [14].

By having confinedness specified per package, Confined
Types do not permit a class to be used as confined in one
package (bean) and unconfined elsewhere — confined classes
are in essence sealed within the package. Not using packages
as confinement boundaries, and checking only confined code,
has enabled us to overcome this limitation. We can use the
same class in different beans and within unconfined code.

The aspect which is present in Confined Types but lack-
ing in our system is anonymous methods. These are meth-
ods which do not pass this to another object, and they
determine which methods can be safely inherited and used
within confined code. This enables a degree of flexibil-
ity, though it slices class interfaces into parts which can
and cannot be accessed. Rather than use the notion of an
anonymous method, we allow only existing confined code
and java.lang.Object to be subclasses. We actually per-
mit methods which would not be considered anonymous,
because our other rules guarantee that they behave sensi-
bly. Unfortunately, neither our work nor Confined Types
deals very well with collections and static methods such as
java.util.Collection.sort, discussed in Section 6. We
provide a number of choices for addressing collections, but
statics require further analysis.

Compared to Grothoff et al.’s kacheck framework [19], our
approach uses a significantly less sophisticated approach to
analysis. As such, our analysis does significantly less work
than the kacheck framework. Specifically, we do not do
a full confinement analysis — performing no flow and no
super-type analysis. On the other hand, our analysis finds
places where the boundary is crossed and checks the types
that may cross the boundary. As these checks are performed
purely by inspecting (typed) bytecode, they are relatively
inexpensive to implement and execute. In addition, we ana-
lyze only confined classes and boundary interfaces, and thus
the amount of code we analyze is also smaller.

In light of kacheck’s results, our results are perhaps some-
what surprising. We are able to ensure confinement in a
large proportion of our sample cases by performing a very
crude and semantically shallow analysis. We feel that this
is due to the domain in which we are working. The Enter-
prise JavaBeans model is naturally confinement oriented as
it is based on the use of wrapper objects as interfaces to the
EJB components. As such, our results naturally follow from
the properties of the domain. The kacheck authors noted
themselves that they expect their “numbers [representing
the amount of confined classes] will rise even further once
programmers start to write code with confinement in mind”
[19]. In addition, since we are not aiming for a general solu-
tion, we have been able to carefully select confinement rules
that work well in our domain. In contrast, Confined Types
may be more widely applicable, although we also expect to
be able to generalize our approach.

In private communication, Jan Vitek claims that Confined
Types can be encoded using existing Java mechanisms such
as interfaces and false exceptions. Unlike our system, this
would not permit a class to be used as confined in one part of
the code and unconfined in another. More importantly, ex-
isting confined type regimes can only confine objects within
a static scope, while our system confines objects within other
objects. Hogg’s Islands [20] are the only other ad-hoc alias
scheme to provide this level of protection, but Islands re-
quire significantly more programming-level support than the
scheme we present here.

On another front, Banerjee and Naumann prove a rep-
resentation independence theorem for Java programs which
exhibit a certain form of pointer confinement [4, 5]. This
theorem means that one can replace the implementation of
the confined entity by an equivalent one, irrespective of the
remainder of the program. The notion of confinement they
employ is slightly different from ours, in that it also pro-
hibits, in our terminology, different boundary objects from
referring to each other and confined objects from referring to
any external objects. Such a discipline would severely crip-
ple the EJB model. Furthermore, their analysis is performed
over all the code in a system, rather than just analyzing the
confined code. In any case, we stress that their main contri-
bution is the representation independence theorem, which is
to a large degree parametric in the confinement regime.

As a rough estimate, we place our proposal somewhere
between the the Confined Types analysis work and that
of Banerjee and Naumann, with the important result that
our analysis, though coarser than these previous approaches,
has provided good results without the costs associated with
more complex analysis.

In an abstract setting, Leroy and Rouaix confirm the folk-
lore that strongly-typed applets are more secure than un-
typed ones [27]. Applets are prevented from modifying cer-
tain sensitive locations using lexical scoping, procedural ab-
straction and type abstraction. Their work gives confidence
that ours is even possible — in a language such as C [25],
one would lack such confidence. An aspect which parallels
the work presented here is that they verify that checks be-
tween sensitive and insensitive data need to be applied at
the boundary. Leroy and Rouaix insert run-time checks at
these places in a type-based manner, whereas we perform a
static check.

As we mentioned in section 6, there are many other pos-
sible approaches to this problem including program analy-
sis, sandboxing, program monitoring via bytecode rewriting,
and proof-carrying code. Each of these approaches have
drawbacks that we deemed inappropriate for the EJB do-
main.

Along with our experience with our deployment checker, a
number of experimental studies have indicated that a signif-
icant amount of confinement exists in real-world programs,
through both examination of bytecode [19], or direct exam-
ination of object graph dumps [37]. These results suggest
that confinement is indeed prolific enough to warrant lan-
guage mechanisms to provide programmers a means of ex-
pressing it.

8. CONCLUSION
The EJB architecture depends upon (but does not en-

force) a containment constraint to protect its architectural
integrity. Without proper enforcement of this constraint, de-



veloper errors and malicious code can violate the integrity
of the EJB architecture with dire consequences: database
inconsistency, transaction failures, and security holes.

Our solution requires bean developers to specify for each
unit of deployment which objects are to be confined (os-
tensibly using package names) and to follow a disciplined
programming style to ensure that no confined object crosses
that boundary. The scheme is enforced during deployment
time as beans may be developed by unknown sources, al-
though compile time checks could easily be added to devel-
opment environments.

The changes we propose are relatively inexpensive to in-
corporate: we merely require that the confinement con-
straints implied by the EJB specification are enforced by
EJB Servers. Given the existing overhead of bean deploy-
ment — parsing XML deployment files, generating and com-
piling classes, and the frequent restarting of new JVMs —
our experimental results indicate that our analysis will have
negligible effect on deployment times. Furthermore, our ap-
proach does not require any changes to the JVM that is
hosting the EJB Server.

Although confinement has been proposed in various forms
in the literature, this is, to the best of our knowledge, the
first application of confinement analysis to realistic systems
that are used in commercial software environments. Be-
cause of the importance of maintaining confinement in this
setting, we advocate that future versions of the EJB speci-
fication require that confinement be specified in the manner
we have discussed and that compliant EJB servers enforce
this constraint.

From a broader perspective, we have demonstrated that
the work which we and others have been doing in the ab-
stract to address problems of confinement has a concrete,
practical application. A relatively simple confinement model
with natural, easily specified boundaries can protect the in-
tegrity of the Enterprise JavaBeans architecture, while mak-
ing very low demands on the developers and insignificant
demands on the run-time system.
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