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Lω1ω is the infinitary logic which allows countably infinite conjunctions and
disjunctions.

There is a hierarchy of Lω1ω-formulas based on their quantifier complexity
after putting them in normal form. Formulas are classified as either Σ0

α or
Π0
α, for α < ω1.

A formula is Σ0
0 and Π0

0 is it is finitary quantifier-free.

A formula is Σ0
α if it is a disjunction of formulas (∃ȳ)ϕ(x̄ , ȳ) where ϕ

is Π0
β for β < α.

A formula is Π0
α if it is a conjunction of formulas (∀ȳ)ϕ(x̄ , ȳ) where

ϕ is Σ0
β for β < α.

A formula is computable if the conjunctions and disjunctions are over
computable sets of formulas.



Example

There is a computable Π0
2 sentence which describes the class of torsion

groups. It consists of the group axioms together with:

(∀x)⩔
n∈N

nx = 0.

Example

There is a computable Σ0
1 formula which describes the dependence relation

on triples x , y , z in a Q-vector space:

⩔
(a,b,c)∈Q3∖{(0,0,0)}

ax + by + cz = 0



Example

There is a computable Σ0
3 sentence which says that a Q-vector space has

finite dimension:

⩔
n∈N

(∃x1, . . . , xn)(∀y) y ∈ span(x1, . . . , xn).

Example

There is a computable Π0
3 sentence which says that a Q-vector space has

infinite dimension:

⩕
n∈N

(∃x1, . . . , xn) Indep(x1, . . . , xn).



Let A be a countable structure.

Theorem (Scott)

There is an Lω1ω-sentence ϕ such that:

B countable, B ⊧ ϕ⇐⇒ B ≅ A.

ϕ is a Scott sentence of A.

Example

(ω,<) has a computable Π0
3 Scott sentence consisting of the Π0

2 axioms for
infinite linear orders together with:

∀y0⩔
n∈ω

∃yn < ⋅ ⋅ ⋅ < y1 < y0 [∀z (z > y0) ∨ (z = y0) ∨ (z = y1) ∨⋯ ∨ (z = yn)] .



Example

(ω + ω,<) has a computable Σ0
4 Scott sentence consisting of the Π0

2

axioms for infinite linear orders together with:

there are two elements a and b such that a is the least element and b is
greater than a, and there are infinitely many elements between a and b
and infinitely many elements greater than b, and every element is an nth
successor (for some n) of either a or b.



Let A be a countable structure.

Definition (Montalbán)

SR(A) is the least ordinal α such that A has a Π0
α+1 Scott sentence.

Theorem (Montalbán)

Let α a countable ordinal. The following are equivalent:

A has a Π0
α+1 Scott sentence.

Every automorphism orbit in A is Σ0
α-definable without parameters.

A is uniformly (boldface) ∆0
α-categorical without parameters.



For computable structures, we need to talk about computable ordinals.

Definition

ωCK
1 is the least non-computable ordinal.

ωx
1 is the least non-x-computable ordinal.

Theorem (Sacks)

The countable admissible ordinals greater than ω are exactly the ordinals
of the form ωx

1 .



Let A be a computable structure.

Theorem (Nadel)

A has Scott rank ≤ ωCK
1 + 1.

Moreover:

SR(A) < ωCK
1 if A has a computable Scott sentence.

SR(A) = ωCK
1 if each automorphism orbit is definable by a

computable formula, but A does not have a computable Scott
sentence.

SR(A) = ωCK
1 + 1 if there is an automorphism orbit which is not

defined by a computable formula.

This all relativizes.



Let A be an x-computable structure.

Theorem (Nadel)

A has Scott rank ≤ ωx
1 + 1.

Moreover:

SR(A) < ωx
1 if A has a x-computable Scott sentence.

SR(A) = ωx
1 if each automorphism orbit is definable by an

x-computable formula, but A does not have an x-computable Scott
sentence.

SR(A) = ωx
1 + 1 if there is an automorphism orbit which is not defined

by an x-computable formula.



It is not too hard to build computable structures of each computable Scott
rank α < ωCK

1 .

The more difficult cases are building computable structures of Scott rank
ωCK
1 and ωCK

1 + 1. We say that such structures have high Scott rank.



Theorem (Harrison)

There is a computable linear order of Scott rank ωCK
1 + 1 with order type

ωCK
1 (1 +Q).

Theorem (Chan, Montalbán, Harrison, Kleene)

There is a computable operator Φ so that for all x ∈ 2ω, Φ(x) is a linear
order with Scott rank ωx

1 + 1 and order type ωx
1(1 +Q).

Note that the order type does not depend on x , but only on ωx
1 .



Theorem (Chan, Montalbán, Harrison, Kleene)

There is a computable operator Φ so that for all x ∈ 2ω, Φ(x) is a linear
order with Scott rank ωx

1 + 1 and order type ωx
1(1 +Q).

Steps of the construction:

1 The “relation y is not hyperarithmetic in x” is Σ1
1(x) and so there is

an x-computable tree T whose paths are pairs ⟨y , f ⟩ where f
witnesses that y is not hyperarithmetic in x . T is x-computable
uniformly in x and has no x-hyperarithmetic path.

2 Take the Kleene-Brouwer order on T : s ≤KB t if and only if
▸ t ≺ s or
▸ s(n) < t(n) and t ↾ n = s ↾ n.

We get an x-computable linear order L with no x-hyperarithmetic
descending sequence.

3 L has order type ωx
1(1 +Q) + α for some α < ωx

1 .

4 L ⋅ ω has order type ωx
1(1 +Q).
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How do you build a computable structure of Scott rank ωCK
1 ?

Theorem (Makkai)

There is a ∆0
2 structure of Scott rank ωCK

1 .

Theorem (Knight, Millar)

There is a computable structure of Scott rank ωCK
1 .

I will talk about a later construction of Calvert, Knight, and Millar.

Theorem (Calvert, Knight, Millar)

There is a computable thin homogeneous tree with no bound on the
ordinal tree ranks at all levels. It has Scott rank ωCK

1 .



Assign to each node in a tree its tree rank:

rk(x) = 0 if x is a leaf.

rk(x) is otherwise the least ordinal (or possibly ∞) greater than the
ranks of the children of x .

If rk(x) = ∞, then there is a path through x .

Definition

A tree T is thin if there is a computable ordinal bound on the ordinal tree
ranks at each level of the tree.



Definition

A tree T is homogenous if:

Whenever x has a successor of rank α, it has infinitely many
successors of rank α.

If some element at level n has a successor of rank α, every element at
level n with rank > α has a successor of rank α.



We want to build a computable tree which is thin, homogeneous, and has
no bound on the ordinal tree ranks.

Definition

A tree T is thin if there is a computable ordinal bound on the ordinal tree
ranks at each level of the tree.

Definition

A tree T is homogenous if:

Whenever x has a successor of rank α, it has infinitely many
successors of rank α.

If some element at level n has a successor of rank α, every element at
level n with rank > α has a successor of rank α.



The Harrison order is a “natural structure”:

it is easily described (in natural language)

it does not require making any choices

it can be built with a construction which relativizes

The structure of Scott rank ωCK
1 that we built is not natural in any of

these senses.

Question

Is there a natural computable structure of Scott rank ωCK
1 ?



We will rephrase this question as asking for a construction which
relativizes.

Question

Is there a computable (or even Borel) operator Φ such that:

for all x , y ∈ 2ω, if Φ(x) ≅ Φ(y) ⇐⇒ ωx
1 = ω

y
1

for all x ∈ 2ω, Φ(x) is a computable structure of Scott rank ωx
1

Let Fω1 be the equivalence relation which makes

x Fω1 y ⇐⇒ ωx
1 = ω

y
1 .

Descriptive set theorists call such an operator Φ a classification of Fω1 by
structures.



Theorem (Chan)

Suppose that Φ is a ∆1
1 operator such that for all x , y ∈ 2ω,

Φ(x) ≅ Φ(y) ⇐⇒ ωx
1 = ω

y
1 .

Then for all x, SR(Φ(x)) ≥ ωx
1 .



We show that there is no natural construction of a computable structure
of Scott rank ωCK

1 :

Theorem (Chan, HT, Marks)

There is no Borel operator Φ such that:

for all x , y ∈ 2ω, Φ(x) ≅ Φ(y) ⇐⇒ ωx
1 = ω

y
1

for all x ∈ 2ω, Φ(x) is a computable structure of Scott rank ωx
1

Equivalently: If Φ is a classification of Fω1 by structures, then for some x ,
Φ(x) has Scott rank ωx

1 + 1.



Question

Is there a ∆1
1 operator Φ such that:

for all x , y ∈ 2ω, Φ(x) ≅ Φ(y) ⇐⇒ ωx
1 = ω

y
1

for some x ∈ 2ω, Φ(x) is a computable structure of Scott rank ωx
1?



Until recently, the structures we have talked about and built were
essentially all of the examples we had.

Because there are so few examples of computable structures of high Scott
rank, there are many general questions about them that we don’t know
the answer to.

I’m going to talk about two other constructions of new models of high
Scott rank:

Structures of Scott rank ωCK
1 and ωCK

1 + 1 which are not computably
approximable.

A structure of Scott rank ωCK
1 whose computable infinitary theory is

not ℵ0-categorical.

The latter is joint work with Greg Igusa and Julia Knight.



Definition

Given a model A, we define the computable infinitary theory of A,

Th∞(A) = {ϕ a computable Lω1ω sentence ∣ A ⊧ ϕ}.

The computable infinitary theory of the Makkai-Knight-Millar structure
was ℵ0-categorical.

Question (Millar-Sacks)

Is there a computable structure of Scott rank ωCK
1 whose computable

infinitary theory is not ℵ0-categorical?

Any other models of the same theory would necessarily be non-computable
and of Scott rank at least ωCK

1 + 1.



Theorem (Millar-Sacks)

There is a structure A of Scott rank ωCK
1 whose computable infinitary

theory is not ℵ0-categorical.

A is not computable, but ωA1 = ωCK
1 . (A lives in a fattening of LωCK

1
.)

Freer generalized this to arbitrary admissible ordinals.

Theorem (HT-Igusa-Knight)

There is a computable structure of Scott rank ωCK
1 whose computable

infinitary theory is not ℵ0-categorical.
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1 . (A lives in a fattening of LωCK

1
.)

Freer generalized this to arbitrary admissible ordinals.

Theorem (HT-Igusa-Knight)

There is a computable structure of Scott rank ωCK
1 whose computable

infinitary theory is not ℵ0-categorical.



The Harrison linear order is approximated by the computable ordinals:

For every computable sentence ϕ true of the Harrison linear order, there is
a computable ordinal α such that (α,<) ⊧ ϕ.

So the Harrison linear order is a “limit” of the computable ordinals.

Let T be the computable tree of Scott rank ωCK
1 from the previous slides.

Theorem (Calvert, Knight, Millar 2006)

There is a sequence Tα of computable trees such that SR(Tα) < ω
CK
1 and

Tα ≡α T.

So T is a limit of computable structures of low Scott rank in the same way.



Definition

A is computably approximable if every computable infinitary sentence ϕ
true in A is also true in some computable B ≇ A with SR(B) < ωCK

1 .

The Harrison linear order is computably approximated by the computable
ordinals.

Question (Goncharov, Calvert, Knight)

Is every computable model of high Scott rank computably approximable?



Theorem (HT)

There is a computable model A of Scott rank ωCK
1 + 1 and a Πc

2 sentence
ψ such that:

A ⊧ ψ

B ⊧ ψÔ⇒ SR(B) = ωCK
1 + 1.

The same is true for Scott rank ωCK
1 .

Corollary

There are computable models of Scott rank ωCK
1 and ωCK

1 + 1 which are
not computably approximable.



I was initially interested in a different question.

Let ϕ be a sentence of Lω1ω.

Definition

The Scott spectrum of ϕ is the set

SS(T ) = {α ∈ ω1 ∣ α is the Scott rank of a countable model of T}.

Question

Classify the Scott spectra.



Theorem (HT, in ZFC + PD)

The Scott spectra of Lω1ω-sentences are exactly the sets of the following
forms, for some Σ1

1 class of linear orders C:

1 the well-founded parts of orderings in C,

2 the orderings in C with the non-well-founded part collapsed to a single
element, or

3 the union of (1) and (2).

The construction, from C, of an Lω1ω-sentence does not use PD, and:

We can get a Πin
2 sentence.

If the class C is lightface, then we get a Πc
2 sentence.

The Harrison linear order, with each element named by a constant,
forms a Σ1

1 class with a single member. From (1) we get {ωCK
1 } as a

Scott spectrum and from (2) we get {ωCK
1 + 1}.



Definition

sh(Lω1,ω) is the least countable ordinal α such that, for all computable
Lω1ω-sentences T :

T has a model of Scott rank α
⇓

T has models of arbitrarily high Scott ranks.

Question (Sacks)

What is sh(Lω1,ω)?

Theorem (Sacks, Marker, HT)

sh(Lω1,ω) = δ
1
2 , the least ordinal which has no ∆1

2 presentation.
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⇓
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Question

Classify the Scott spectra of Lω1ω-sentences in ZFC.

Question

Classify the Scott spectra of computable Lω1ω-sentences.

Question

Classify the Scott spectra of first-order theories.


