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Outline

The main question:

Which classes of finitely generated structures
contain complicated structures?

The particular focus will be on groups.

General outline:

1 Descriptions (Scott sentences) of finitely generated structures, and in
particular groups, among countable structures.

2 A notion of universality using computable functors (or equivalently
effective interpretations).

3 Descriptions (quasi Scott sentences) of finitely generated structures
among finitely generated structures.



Scott Sentences of Finitely Generated
Structures



Infinitary Logic

Lω1ω is the infinitary logic which allows countably infinite conjunctions and
disjunctions.

There is a hierarchy of Lω1ω-formulas based on their quantifier complexity
after putting them in normal form. Formulas are classified as either Σ0

α or
Π0
α, for α < ω1.

A formula is Σ0
0 and Π0

0 is it is finitary quantifier-free.

A formula is Σ0
α if it is a disjunction of formulas (∃ȳ)ϕ(x̄ , ȳ) where ϕ

is Π0
β for β < α.

A formula is Π0
α if it is a conjunction of formulas (∀ȳ)ϕ(x̄ , ȳ) where

ϕ is Σ0
β for β < α.



Examples of Infinitary Formulas

Example

There is a Π0
2 sentence which describes the class of torsion groups. It

consists of the group axioms together with:

(∀x)⩔
n∈N

nx = 0.

Example

There is a Σ0
1 formula which describes the dependence relation on triples

x , y , z in a Q-vector space:

⩔
(a,b,c)∈Q3∖{(0,0,0)}

ax + by + cz = 0



Examples of Infinitary Formulas

Example

There is a Σ0
3 sentence which says that a Q-vector space has finite

dimension:

⩔
n∈N

(∃x1, . . . , xn)(∀y) y ∈ span(x1, . . . , xn).

Example

There is a Π0
3 sentence which says that a Q-vector space has infinite

dimension:

⩕
n∈N

(∃x1, . . . , xn) Indep(x1, . . . , xn).



Scott Sentences

Let A be a countable structure.

Theorem (Scott)

There is an Lω1ω-sentence ϕ such that:

B countable, B ⊧ ϕ⇐⇒ B ≅ A.

ϕ is a Scott sentence of A.

Example

(ω,<) has a Π0
3 Scott sentence consisting of the Π0

2 axioms for infinite
linear orders together with:

∀y0⩔
n∈ω

∃yn < ⋅ ⋅ ⋅ < y1 < y0 [∀z (z > y0) ∨ (z = y0) ∨ (z = y1) ∨⋯ ∨ (z = yn)] .



An Upper Bound on the Complexity of Finitely Generated
Structures

Theorem (Knight-Saraph)

Every finitely generated structure has a Σ0
3 Scott sentence.

Often there is a simpler Scott sentence.



A Scott Sentence for the Integers

Example

A Scott sentence for the group Z consists of:

the axioms for torsion-free abelian groups,

for any two elements, there is an element which generates both,

there is a non-zero element with no proper divisors:

(∃g ≠ 0)⩕
n≥2

(∀h)[nh ≠ g].



d-Σ0
2 Sentences

ϕ is d-Σ0
2 if it is a conjunction of a Σ0

2 formula and a Π0
2 formula.

Σ1
##

Σ2
##

Σ3
##

Σ1 ∩Π1

99

%%

d-Σ1
// Σ2 ∩Π2

99

%%

d-Σ2
// Σ3 ∩Π3

99

%%

d-Σ3
// ⋯

Π1

;;

Π2

;;

Π3

;;

Theorem (Miller)

Let A be a countable structure. If A has a Σ0
3 Scott sentence, and also

has a Π0
3 Scott sentence, then A has a d-Σ0

2 Scott sentence.



A Scott Sentence for the Integers

Example

A Scott sentence for the group Z consists of:

the axioms for torsion-free abelian groups,

for any two elements, there is an element which generates both,

there is a non-zero element with no proper divisors:

(∃g ≠ 0)⩕
n≥2

(∀h)[nh ≠ g].

This is a d-Σ0
2 Scott sentence.



A Scott Sentence for the Free Group

Example (CHKLMMMQW)

A Scott sentence for the free group F2 on two elements consists of:

the group axioms,

every finite set of elements is generated by a 2-tuple,

there is a 2-tuple x̄ with no non-trivial relations such that for every
2-tuple ȳ , x̄ cannot be expressed as an “imprimitive” tuple of words
in ȳ .

This is a d-Σ0
2 Scott sentence.



d-Σ0
2 Scott Sentences for Many Groups

Theorem (Knight-Saraph, CHKLMMMQW, Ho)

The following groups all have d-Σ0
2 Scott sentences:

abelian groups,

free groups,

nilpotent groups,

polycyclic groups,

lamplighter groups,

Baumslag-Solitar groups BS(1,n).

Question

Does every finitely generated group have a d-Σ0
2 Scott sentence?



Characterizing the Structures with d-Σ0
2 Scott Sentences

The first step is to understand when a finitely generated structure has a
d-Σ0

2 Scott sentence.

Theorem (A. Miller, HT-Ho, Alvir-Knight-McCoy)

Let A be a finitely generated structure. The following are equivalent:

A has a Π0
3 Scott sentence.

A has a d-Σ0
2 Scott sentence.

A is the only model of its Σ0
2 theory.

some generating tuple of A is defined by a Π0
1 formula.

every generating tuple of A is defined by a Π0
1 formula.

A does not contain a copy of itself as a proper Σ0
1-elementary

substructure.



Proof, First Direction

Suppose that A does not contain a copy of itself as a proper
Σ0

1-elementary substructure.

Let p be the ∀-type of a generating tuple for A.

We can write down a d-Σ0
2 Scott sentence for A:

there is a tuple x̄ satisfying p, and

for all tuples x̄ satisfying p and for all y , y is in the substructure
generated by x̄ .



Proof, Second Direction

Now suppose that A does contain a copy of itself as a proper
Σ0

1-elementary substructure.

Take the union of the chain

A ≺Σ0
1
A ≺Σ0

1
A ≺Σ0

1
⋯ ≺Σ0

1
A
∗.

Then A∗ has the same Σ0
2 theory as A, but is not finitely generated.

In particular, A does not have a d-Σ0
2 Scott sentence.



A Complicated Group

Theorem (HT-Ho)

There is a computable finitely generated group G which does not have a
d-Σ0

2 Scott sentence.

The construction of G uses small cancellation theory and HNN extensions.

Theorem (HT-Ho)

There is a computable finitely generated ring Z[G ] which does not have a
d-Σ0

2 Scott sentence.

This is just the group ring of the previous group.



No Complicated Fields

Theorem (HT-Ho)

Every finitely generated field has a d-Σ0
2 Scott sentence.

Proof idea:

An embedding of a finitely generated field F into itself makes F an
algebraic extension of itself.

Algebraic extensions cannot be Σ0
1-elementary.



Open Questions

Question

Does every finitely presented group have a d-Σ0
2 Scott sentence?

Question

Does every commutative ring have a d-Σ0
2 Scott sentence?

Question

Does every integral domain have a d-Σ0
2 Scott sentence?



Computable Functors, Effective
Interpretations, and Universality



Computable Dimension

Definition

The computable dimension of a computable structure A is the number of
computable copies up to computable isomorphism.

Theorem (Goncharov; Goncharov and Dzgoev; Metakides and
Nerode; Nurtazin; LaRoche; Remmel)

All structures in each of the following classes have computable dimension
1 or ω:

algebraically closed fields,

real closed fields,

torsion-free abelian groups,

linear orderings,

Boolean algebras.



Finite Computable Dimension > 1

Theorem (Goncharov)

For each n > 0 there is a computable structure with computable dimension
n.

Theorem (Goncharov; Goncharov, Molokov, and Romanovskii;
Kudinov)

For each n > 0 there are structures with computable dimension n in each
of the following classes:

graphs,

lattices,

partial orderings,

2-step nilpotent groups,

integral domains.



Hirschfeldt, Khoussainov, Shore, and Slinko in Degree Spectra and
Computable Dimensions in Algebraic Structures, 2000:

Whenever a structure with a particularly interesting computability-
theoretic property is found, it is natural to ask whether similar ex-
amples can be found within well-known classes of algebraic struc-
tures, such as groups, rings, lattices, and so forth... The codings
we present are general enough to be viewed as establishing that the
theories mentioned above are computably complete in the sense
that, for a wide range of computability-theoretic nonstructure type
properties, if there are any examples of structures with such prop-
erties then there are such examples that are models of each of
these theories.



Universal Classes

Theorem (Hirschfeldt, Khoussainov, Shore, Slinko)

Each of the classes

undirected graphs,

partial orderings,

lattices,

integral domains,

commutative semigroups, and

2-step nilpotent groups.

is complete with respect to

degree spectra of nontrivial structures,

effective dimensions,

degree spectra of relations,

degrees of categoricity,

Scott ranks,

categoricity spectra, ...



A Better Definition of Universality

The problem: We can always add more properties to this list.

Solution one (Miller, Poonen, Schoutens, Shlapentokh): Use computable
category theory.

Theorem (Miller, Poonen, Schoutens, Shlapentokh)

There is a computable equivalence of categories between graph and fields.

Solution two (Montalbán): Use effective bi-interpretations.

Theorem (Montalbán)

If A and B are bi-interpretable, then they are essentially the same from the
point of view of computable structure theory. In particular, the complexity
of their optimal Scott sentences are the same.

These two solutions are equivalent.



Effective Interpretations

Let A = (A;PA0 ,P
A
1 , ...) where PAi ⊆ Aa(i).

Definition

A is effectively interpretable in B if there exist a uniformly computable
∆0

1-definable relations (DomBA,∼,R0,R1, ...) such that

(1) DomBA ⊆ B<ω,

(2) ∼ is an equivalence relation on DomBA,

(3) Ri ⊆ (B<ω)a(i) is closed under ∼ within DomBA,

and a function f BA ∶Dom
B
A → A which induces an isomorphism:

(DomBA/ ∼;R0/ ∼,R1/ ∼, ...) ≅ (A;PA0 ,P
A
1 , ...).



Computable Functors

Definition

Iso(A) is the category of copies of A with domain ω. The morphisms are
isomorphisms between copies of A.

Recall: a functor F from Iso(A) to Iso(B)

(1) assigns to each copy Â in Iso(A) a structure F (Â) in Iso(B),

(2) assigns to each isomorphism f ∶ Â→ Ã in Iso(A) an isomorphism
F (f )∶F (Â)→ F (Ã) in Iso(B).

Definition

F is computable if there are computable operators Φ and Φ∗
such that

(1) for every Â ∈ Iso(A), ΦD(Â) is the atomic diagram of F (A),

(2) for every isomorphism f ∶ Â→ Ã, F (f ) = Φ
D(Â)⊕f⊕D(Ã)
∗ .



Equivalence

An effective interpretation of A in B induces a computable functor from B
to A.

Theorem (HT-Melnikov-Miller-Montalbán)

Effective interpretations of A in B are in correspondence with computable
functors from B to A.

By “in correspondence” we mean that every computable functor is
effectively isomorphic to one induced by an effective interpretation.



Equivalence

Theorem (HT-Melnikov-Miller-Montalbán)

Effective bi-interpretations between A and B are in correspondence with
effective equivalences of categories between A and B.

Theorem (HT-Miller-Montalbán)

Non-effective bi-interpretations between A and B are in correspondence
with Borel equivalences of categories between A and B and with
continuous isomorphisms between the automorphism groups of A and B.



A Definition of Universality

Definition

A class C of structures is universal if each structure A is uniformly
effectively bi-interpretable with a structure in C.

Theorem

Each of the following classes is universal:

undirected graphs,

partial orderings,

lattices, and

fields,

and, after naming finitely many constants,

integral domains,

commutative semigroups, and

2-step nilpotent groups.



Classes Which Are Not Universal

Theorem

Each of the following classes is not universal:

algebraically closed fields,

real closed fields,

abelian groups,

linear orderings,

Boolean algebras.

Proof: In these classes, the computable dimension can only be 1 or ω.



Universality for Finitely Generated Structures

What about for finitely generated structures? These are never going to be
universal. So we have to restrict our attention to finitely generated
structures.

Definition

Let C be a class of finitely-generated structures. C is universal among
finitely generated structures if every finitely generated structure is
uniformly effectively bi-interpretable with one in C.

Example

Fields are not universal among finitely generated structures.



Finitely Generated Groups Are Universal

Theorem (HT-Ho)

Finitely generated groups are universal among finitely generated structures
(after naming some constants).

Moreover, the orbits of the constants are Σ0
1 definable.

So now, instead of constructing a finitely generated group with some
property, we can construct a finitely generated structure in whatever
language we like.



Quasi Scott Sentences



Quasi Scott Sentences

When we constructed a group with no d-Σ0
2 Scott sentence before, we

used an infinitely generated group with the same Σ0
2 theory. What

happens if we ask for a description of a finitely generated group within the
class of finitely generated groups?

Definition

We say that a sentence ϕ is a quasi Scott sentence for a finitely generated
structure A if A is the unique finitely generated structure satisfying ϕ.

Fact (HT-Ho)

Each finitely generated structure has a Π0
3 quasi Scott sentence.

Let p be the atomic type of a generating tuple of A. The Π0
3 quasi Scott

sentence for A says that every tuple is generated by a tuple of type p.



A Partial Characterization

When does a finitely generated structure have a simpler description?

It turns out that things are more complicated than they were before.

Theorem (HT-Ho)

Let A be a finitely generated structure. The following are equivalent:

The Σ0
2 theory of A has more than one finitely generated model.

There is a finitely generated structure B not isomorphic to A such
that A ≺Σ0

1
B and B ≺Σ0

1
A.

The Σ0
2 theory of A contains both the Σ0

2 and the Π0
2 sentences true of A.



A Complicated Structure

Theorem (HT-Ho)

There is a finitely generated structure whose Σ0
2 theory has more than one

finitely generated model. This structure has no d-Σ0
2 quasi Scott sentence.

In particular, it is possible to have both a Σ0
3 and a Π0

3 quasi Scott
sentence without having a d-Σ0

2 quasi Scott sentence.

Corollary (HT-Ho)

There is a finitely generated group whose Σ0
2 theory has more than one

finitely generated model. This group has no d-Σ0
2 quasi Scott sentence.



d-Σ0
2 Quasi Scott Sentences

We do not have a complete characterization of structures with d-Σ0
2 quasi

Scott sentences.

One can still often write one down by hand.



Simple Quasi Scott Sentence But No Simple Scott
Sentence

Theorem (HT-Ho)

There is a finitely generated structure which has no d-Σ0
2 Scott sentence,

but has a d-Σ0
2 quasi Scott sentence.

We build a finitely generated structure which is a Σ0
1-elementary

substructure of itself, but not of any other finitely generated structure.

Corollary (HT-Ho)

There is a finitely generated group which has no d-Σ0
2 Scott sentence, but

has a d-Σ0
2 quasi Scott sentence.



Open Questions

Question

Characterize the finitely generated structures which are the only
finitely-generated models of their Σ0

2 theory, but which do not have a d-Σ0
2

quasi Scott sentence?

Question

Are there any such models?


