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Abstract

When classes of structures are not first-order definable, we might still try to find
a nice description. There are two common ways for doing this. One is to expand the
language, leading to notions of pseudo-elementary classes, and the other is to allow
infinite conjuncts and disjuncts. In this paper we examine the intersection. Namely,
we address the question: Which classes of structures are both pseudo-elementary and
Lω1,ω-elementary? We find that these are exactly the classes that can be defined by
an infinitary formula that has no infinitary disjunctions.

1 Introduction

It is well-known that many properties of structures are not expressible in elementary first-
order logic, even by a theory rather than a single sentence. Common examples are the
property (of graphs) of being connected, the property (of abelian groups) of being torsion,
and the property (of linear orders) of being well-founded. To capture such properties, one
can pass to extensions of elementary first-order logic. This paper is about a characterization
of the common expressive power of two such extensions.

The first extension of elementary first-order logic that we consider allows countably infi-
nite conjunctions and disjunctions; this is, morally, similar to allowing quantifiers over the
(standard) natural numbers. One can then express properties such as being torsion by saying
“for each group element x, there is an n such that nx = 0,” or formally,

(∀x)⩔
n∈N

nx = 0.

This work grew out of initial discussions with Vakili about the generality of expressing properties not
definable in first-order logic in a pseudo-elementary way, and whether such phenomena might be of use for
model checking (as the pseudo-elementary definability of graph reachability was used for model checking by
Vakili in his thesis [Vak16] and with the third author in [VD14]). We thank one of the referees for pointing
us towards some very helpful references.

*Partially supported by Canadian NSERC Discovery Grant 312501.
�Supported by an NSERC Banting Fellowship.

1



This infinitary logic is known as Lω1,ω. One loses compactness, but gains other powerful
tools. For example, every countable structure is characterized, up to isomorphism among
countable structures, by a sentence of Lω1,ω [Sco65].

The second extension of elementary first-order logic allows existential second-order quan-
tifiers. For example, the property of a linear order being non-well-founded can be expressed
by the sentence “there is a set with no least element.” We work with existential second-
order quantifiers using the framework of pseudo-elementary classes (and so replace existential
second-order quantifiers with expansions of the language). More formally, we say that a class
K of τ -structures is pseudo-elementary (PC∆) if there is an expanded language τ∗ ⊇ τ and a
τ∗-theory T such that K consists exactly of the τ -structures admitting an τ∗-expansion to
a model of T . We will describe both of these extensions of first-order logic in more detail
later.

These two extensions of elementary first-order logic have different expressive powers. For
example, the class of non-well-founded linear orders is pseudo-elementary but not Lω1,ω-
definable. Also, the compliment of a pseudo-elementary class is not necessarily pseudo-
elementary, but the compliment of an Lω1,ω-definable class is again Lω1,ω-definable (by the
negation of the original defining sentence). Nevertheless, there are classes that are not ele-
mentary first-order axiomatizable, but that are both pseudo-elementary and Lω1,ω-definable.
The class of disconnected graphs is such an example; we provide a more detailed discussion
of various examples in Section 2.3. The main result of this paper is a complete classification
of such properties.

Theorem 1.1. Let K be a class of structures closed under isomorphism. The following are
equivalent:

1. K is both a pseudo-elementary (PC∆) class and defined by an Lω1,ω-sentence.

2. K is defined by a ⩕-sentence.

There is some notation in this theorem that we must explain. The ⩕-sentences in the
theorem are the Lω1,ω sentences which (in normal form) involve infinitary conjunctions, but
no infinitary disjunctions (see Definition 2.4). For example, the property of being infinite is
definable by the ⩕-sentence

⩕
n∈N

∃x1, . . . , xn(⋀
i≠j
xi ≠ xj).

The negation, the property of being finite, is Lω1,ω-definable by the sentence

⩔
n∈N

∀x1, . . . , xn(⋁
i≠j
xi = xj)

but this sentence is not a ⩕-sentence because it involves an infinitary disjunct. Although

⩕-formulas cannot have infinite disjunctions, they can have finite disjunctions.
The proof of (1)⇒(2) uses an argument inspired by the proof of Craig Interpolation for

Lω1,ω. This was originally proved by Lopez-Escobar [LE65] who also gave the following
corollary: a class which is both pseudo-elementary and co-pseudo-elementary with respect
to Lω1,ω (i.e., both Σ1

1 and Π1
1) is actually Lω1,ω-definable.

In the direction (2)⇒(1), there are several possible proofs. We give the simplest and
shortest argument in Section 4. A second proof is to note that any ⩕-sentence is equivalent
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to a closed game formula, and classes defined by such formulas are known to be PC∆ [Bar75,
Kol85]. We describe this in Section 5. A third proof, for which we do not give the details,
proceeds by coding computable formulas in models of weak arithmetic. This is an approach
that was taken by Craig and Vaught [CV58] to prove:

Theorem 1.2 (Craig and Vaught [CV58]). Every computably axiomatizable class in a finite
language is a basic pseudo-elementary class (PC′).

By a basic pseudo-elementary class, we mean the class of reducts of a basic elementary class
(one defined by a single sentence) in an expanded language. (See Definition 2.9 for the precise
definition of PC′.) The latter two proofs of our main Theorem 1.1 give a strengthening of
this result of Craig and Vaught:

Theorem 1.3. Let K be a class of structures in a finite language that is axiomatized by a
computable ⩕-sentence. Then K is a basic pseudo-elementary class (PC′).

Unfortunately, we do not know how to reverse Theorem 1.3. We conjecture:

Conjecture 1.4. A PC′ class which is also Lω1,ω-axiomatizable is axiomatizable by a com-
putable ⩕-sentence.

The argument in Section 4 for (2)⇒(1) of Theorem 1.1 goes through for ⩕-sentences of
Lκ,ω for any κ. However, we do not know if (1)⇒(2) holds for Lκ,ω for κ > ω1.

Question 1.5. For κ > ω1, is every PC∆ class defined by an Lκ,ω sentence actually defined
by a ⩕-sentence?

We note that interpolation fails in Lω2,ω [Mal71, Theorem 4.2]. Intriguingly, Malitz goes on
to give a proof system for Lκ,ω that goes through L(2<κ)+,κ that gives rise to an interpolation
theorem [Mal71, Section 5]. Shelah [She12] uses this to define a logic L1

κ that is intermediate
between Lκ,ω and Lκ,κ that has interpolation and other nice properties (when κ = ℶκ). This
suggests the right answer to Question 1.5 goes through L1

κ instead of Lκ,ω. However, this
logic lacks any syntax in the normal sense (formulas are defined by the existence of winning
strategies in a delayed Ehrenfeucht-Fraisse game), which causes additional problems, e.g., it
is not clear what a ⩕-sentence should mean, or what Skolem functions should look like.

2 Notation and Definitions

2.1 Infinitary Logic

For the most part, we follow Marker’s new book [Mar16]. Elementary first-order logic has a
number of properties which, while useful, make it hard to completely characterize structures.
For example, the Ryll-Nardzewski theorem says that any countably categorical structure is
relatively simple: for each n, there are only finitely many automorphism orbits of n-types.
The infinitary logic Lω1,ω adds more expressive power and hence allows us to characterize
every countable structure up to isomorphism among countable structures [Sco65].

The infinitary logic Lω1,ω is defined recursively in the same way as finitary first-order logic,
except that for Lω1,ω we can take countable conjunctions and disjunctions. Throughout the
paper, let τ be a countable language.
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Definition 2.1. The Lω1,ω(τ)-formulas are defined inductively as follows:

1. every atomic τ -formula is an Lω1,ω(τ)-formula,

2. if ϕ is an Lω1,ω(τ)-formula, then so are ¬ϕ, (∃x)ϕ and (∀x)ϕ,

3. if (ϕi)i∈ω are Lω1,ω(τ)-formulas with finitely many free variables, then so are ⩕i∈ω ϕi
and ⩔i∈ω ϕi.

In general, we will drop the reference to τ when it is clear what we mean.

Definition 2.2. An Lω1,ω formula is in Lω1,ω normal form if the ¬ only occurs applied to
atomic formulas.

Every Lω1,ω can be placed into a normal form. The negation ¬ϕ of a sentence ϕ in normal
form is not immediately in normal form itself; this gives rise to the formal negation ∼ϕ,
which is logically equivalent to ¬ϕ but is in normal form.

Definition 2.3. For any Lω1,ω-formula ϕ, the formula ∼ϕ is defined inductively as follows:

1. if ϕ is atomic, ∼ϕ is ¬ϕ,

2. ∼¬ϕ is ϕ, ∼(∃x)ϕ is (∀x)∼ϕ and ∼(∀x)ϕ is (∃x)∼ϕ,

3. ∼⩕i∈ω ϕi is ⩔i∈ω ∼ϕi and ∼⩔i∈ω ϕi is ⩕i∈ω ∼ϕi.

Definition 2.4. An Lω1,ω-sentence ϕ is a⩕-formula if it can be written in normal form with-
out any infinite disjunctions. More concretely, the ⩕-formulas are formed by the following
inductive process:

1. every finitary quantifier-free sentence is a ⩕-formula,

2. if ϕ is a ⩕-formula, then so are (∃x)ϕ and (∀x)ϕ,

3. if ϕ and ψ are ⩕-formulas, then so is ϕ ∨ ψ,

4. if (ϕi)i∈ω are ⩕-formulas with finitely many free variables, then so is ⩕i∈ω ϕi.

Remark 2.5. The third condition allowing one to take the disjunction of finitely many for-
mulas is in some sense unnecessary; any ⩕-formula is equivalent to one in which all of the
disjunctions occur on the inside. For example,

(⩕
i∈ω
ϕi) ∨ (⩕

i∈ω
ψi)

is equivalent to

⩕
i,j∈ω

ϕi ∨ ψj.

An Lω1,ω (or ⩕-) formula is computable if, essentially, there is a computable syntactic
representation of the formula (see [AK00]).
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2.2 Pseudo-elementary Classes

In this section, we follow the book by Hodges [Hod08]. Many classes of structures can be
described by the existence of some feature that can be added to them; for example, a linear
ordering is non-well-founded if it has a subset with no least element, and a group is orderable
if there exists an ordering. Such classes of structures may not be elementary, but by thinking
of them as pseudoelementary classes we can still apply the tools of model theory to them.
The main notion of pseudo-elementary class in infinitary model theory is the following:

Definition 2.6. We say that a class K of L-structures is a pseudoelementary class (PC∆-
class) if there is a language τ∗ ⊇ τ and an elementary first-order τ∗ theory T such that

K = {M ∣ there is a τ∗-structure M∗ expanding M with M∗ ⊧ T}.

Pseudoelementary classes have some nice properties such as being closed under ultraproducts.
(On the other hand, Lω1,ω-definable classes may not be closed under ultraproducts.)

Just as there is a distinction in model theory between elementary classes and basic
elementary classes, the former being axiomatized by a theory and the latter by a single
sentence, there is a distinction between pseudoelementary classes and basic pseudoelementary
classes.

Definition 2.7. We say that a class K of L-structures is a basic pseudoelementary class
(PC-class) if there is a language τ∗ ⊇ τ and an elementary first-order τ∗ sentence ϕ such that

K = {M ∣ there is a τ∗-structure M∗ expanding M with M∗ ⊧ ϕ}.

In finite model theory, it is basic elementary classes that play the more important role,
and indeed in finite model theory the term ∆-elementary class is often used for what we
call elementary classes, while the term elementary class is reserved for what we call basic
elementary classes. Similarly, the main notion of pseudoelementary class in finite model
theory is that of basic pseudoelementary classes. Basic pseudo-elementary classes seem to
have a connection with computability, e.g., Theorems 1.2 and 1.3.

Some classes seem like they should be pseudo-elementary but do not immediately fit
under the above definitions. For example, consider the class of multiplicative groups of
fields, i.e., a group G is in this class if there is a field F such that G = F ×. The field F is
not going to be a subset of the field G; rather, G will be a subset of F . We can expand
our definitions as follows to allow these types of classes, which we call PC′ and PC′

∆. The
classes PC′ and PC′

∆ differ from PC and PC∆ respectively in that in addition to expanding
the language, one is allowed to add additional elements.

Definition 2.8. Let τ ⊆ τ∗ be a pair of languages, with a unary predicate P ∈ τ∗ ∖ τ . Given
a τ∗-structure A, we denote by AP the substructure of A ∣ τ whose domain is PA (if this is
a τ -structure; otherwise AP is not defined).

Definition 2.9. We say that a class K of τ -structures is a basic pseudoelementary class
(PC′-class) if there is a language τ∗ ⊇ τ , with a unary relation P ∈ τ∗ ∖ τ , and a τ∗-formula
φ, such that

K = {AP ∣ A ⊧ φ and AP is defined}.

We say that K is a pseudoelementary class (PC′
∆-class) if φ is a first-order theory.
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We will always clarify whether a pseudoelementary class is PC∆ or PC′
∆, and whether a

basic pseudoelementary class is PC or PC′.
Note that in Definition 2.9, if the language is finite (or we are dealing with a PC′

∆-class),
it suffices to ask that

K = {AP ∣ A ⊧ φ}

as φ can say that AP is defined.
We have defined four different types of pseudo-elementary classes. However, it turns out

that PC∆ and PC′
∆ classes are actually the same; so for example the class of multiplicative

groups of fields, which is easily seen to be PC′
∆, is PC∆.

Theorem 2.10 (Theorem 5.2.1 of [Hod08]). Let K be a class of structures.

1. K is a PC∆-class if and only if it is a PC′
∆-class.

2. If all the structures in K are infinite, then K is a PC-class if and only if it is a PC′-
class.

In Example 2.15 we exhibit a class which is PC′ but not PC.
The proof of the first point in [Hod08] is not obvious and quite interesting. For the

second, essentially the only reason that PC and PC′ are different is that the model might be
finite; if a model is infinite, one could just have the elements of the model “wear two hats,”
on the one hand being the domain of the expansion of the original model, and on the other
hand playing the role of the elements of the new sort P .

2.3 Examples

In this section we will give a few examples of classes of various types, separating some of the
notions defined in the previous two sections, and including some applications of the theorems
of this paper.

The motivating example for this paper was the class of connected graphs. It is easier
to think of the compliment, the class of non-connected graphs. This class is both PC and
definable by a computable ⩕-sentence. Thus the class of connected graphs is both co-PC
and definable by a computable ⩔-sentence (the definition of which should be clear). These
classes are not elementary classes.

Example 2.11. Let τ = {R} the language of graphs. The class K of non-connected graphs
is a PC-class. Indeed, an undirected graph G = (G,R) is disconnected if and only if there is
a binary relation C of connectedness such that

1. (∀x)(∀y) [R(x, y)→ C(x, y)],

2. (∀x)(∀y)(∀z) [C(x, y) ∧C(y, z)→ C(x, z)], and

3. ¬(∀x)(∀y) C(x, y).

An undirected graph G is also disconnected if and only if

(∃x ≠ y)⩕
n∈ω

(∀u0, . . . , un)[x ≠ u0 ∨ ¬R(u0, u1) ∨ ¬R(u1, u2) ∨⋯ ∨ ¬R(un−1, un) ∨ un ≠ y].

So K is also defined by a computable ⩕-sentence.
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The prototypical example of a PC-class which is not Lω1,ω-definable is class of non-well-
founded linear orders.

Example 2.12. Let τ = {<} the language of linear orders. The class K of non-well-founded
linear orders is a PC-class as a linear order (S,<) is non-well-founded if and only if there is
a unary relation U such that

(∀x)[x ∈ U → (∃y)[y ∈ U ∧ y < x]].

K is not definable by any Lω1,ω formula.

A simple example where one can apply Theorem 1.3 is the class of infinite models.

Example 2.13. Let τ be any language and φ a finitary τ -sentence. The class K of infinite
models of φ is easily seen to be defined by the conjuction of φ and the computable⩕-sentence

⩕
n∈ω

(∃x0, . . . , xn) [⋀
i≠j
xi ≠ xj] .

By Theorem 1.3, K is a PC′-class, and by Theorem 2.10 it is a PC-class. Being slightly
clever, we can also see that K is a PC-class by noting that A ⊧ φ is infinite if and only if
there is a linear order < on A such that (∀x)(∃y)[x < y].

We have already mentioned the class of orderable groups.

Example 2.14. Orderable groups are a PC-class. By compactness, they are also universally
axiomatizable (in elementary first-order logic) by saying that every finite subset can be
ordered in a way that is compatible with the group operation.

Example 2.14 is a particular instance of a more general phenomena: if we take a PC-class
that such that (a) the expanded vocabulary only adds relations and (b) the added relations
are only universally quantified over, then the resulting class is actually elementary (though
it may require infinitely many axioms). This is very particular case in which we can answer
Conjecture 1.4.

As an application of Theorem 1.2, let us give an example of a PC′-class which is not a
PC-class.

Example 2.15. Define an elementary first-order theory T as follows. The language of T
will be the language of graphs. Fix an enumeration of the sentences φn in finite languages
Ln expanding the language of graphs. Note that for every finite graph G, we can decide
effectively whether there is an expansion of G to a model of φn. For each n, let Cn be cycle
of length n. Then, let T be the theory that says that there is no cycle of length n for exactly
those n where Cn does not have an expansion to a model of φn.

Note that T is c.e. and universal. By diagonalization, the models of T are not a PC-class,
though by Theorem 1.2 they are a PC′-class.

As suggested by Theorem 2.10, this example uses finite structures in an integral way.
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3 An Application of Craig Interpolation

To prove the direction (1) implies (2) of Theorem 1.1, we will adapt a proof of the Craig
Interpolation Theorem for Lω1,ω. We state the standard Craig Interpolation Theorem here
for completeness:

Theorem 3.1 (Craig Interpolation Theorem [LE65]). Suppose φ1 and φ2 are Lω1,ω-sentences
with φ1 ⊧ φ2. There is an Lω1,ω-sentence θ such that φ1 ⊧ θ, θ ⊧ φ2, and every relation,
function and constant symbol occurring in θ occurs in both φ1 and φ2.

The proof we adapt is not the original proof by Lopez-Escobar, but one that appears in
the book by Marker [Mar16]. The proof of Craig Interpolation makes use of consistency
properties. Consistency properties are the infinitary equivalent of Henkin-style constructions
in finitary logic. Consistency properties were first introduced by Makkai [Mak69]; the exact
definition we use seems to be due to Keisler [Kei71]. See also Definition 4.1 of [Mar16].

Definition 3.2. Let C be a countable collection of new constants. A consistency property
Σ is a collection of countable sets σ of Lω1,ω-sentences with the following properties. For
σ ∈ Σ:

(C1) if φ ∈ σ, then ¬φ ∉ σ;

(C2) if ¬φ ∈ σ, then σ ∪ {∼ φ} ∈ Σ;

(C3) if ⩕φ∈X φ ∈ σ, then for all φ ∈X, σ ∪ {φ} ∈ Σ;

(C4) if ⩔φ∈X φ ∈ σ, then there is φ ∈X such that σ ∪ {φ} ∈ Σ;

(C5) if (∀v)φ(v) ∈ σ, then for all c ∈ C, σ ∪ {φ(c)} ∈ Σ;

(C6) if (∃v)φ(v) ∈ σ, then there is c ∈ C such that σ ∪ {φ(c)} ∈ Σ;

(C7) let t be a term with no variables and let c, d ∈ C,

(a) if c = d ∈ σ, then σ ∪ {d = c} ∈ Σ;

(b) if c = t ∈ σ and φ(t) ∈ σ, then σ ∪ {φ(c)} ∈ Σ;

(c) there is e ∈ C such that σ ∪ {e = t} ∈ Σ.

Marker [Mar16] includes another condition, that a consistency property be closed under
subsets. However he shows in Exercise 4.1.4 that this is unnecessary. Keisler [Kei71] states
his definition in the same way as ours, and proves that the closure of a consistency property
under subsets is against a consistency property.

A consistency property is in some sense a recipe for building a model.

Theorem 3.3 (Model Existence Theorem). If Σ is a consistency property and σ ∈ Σ, there
is M ⊧ σ.
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We are now ready to prove our variant of the Craig Interpolation Theorem. We strengthen
the hypotheses to assume that one of the sentences is a ⩕-sentence, and in return, we get
that the interpolant is also a ⩕-sentence. The proof follows the same structure as that of
the Craig Interpolation Theorem in [Mar16] (Theorem 4.3.1).

Theorem 3.4. Suppose φ1 is a ⩕-sentence and φ2 is an Lω1,ω-sentence with φ1 ⊧ φ2. There
is a ⩕-sentence θ such that φ1 ⊧ θ, θ ⊧ φ2, and every relation, function and constant symbol
occurring in θ occurs in both φ1 and φ2.

Proof. Let C be a countable collection of new constants. Let τi be the smallest language
containing φi and C, and let τ = τ1 ∩ τ2.

Let Σ be the collection of finite sets of sentences σ containing only finitely many new
constants that can be written as σ = σ1 ∪ σ2, where σ1 is a finite set of ⩕-τ1-sentences and
σ2 is a finite set of τ2-sentences, and such that for all τ -sentences ψ1 and ψ2, with ψ1 a

⩕-sentence, if σ1 ⊧ ψ1 and σ2 ⊧ ψ2 then ψ1 ∧ ψ2 is satisfiable.
In the rest of the proof, we make the convention that if σ ∈ Σ and we write σ = σ1 ∪ σ2,

then σ1 and σ2 are the witnesses that σ ∈ Σ, i.e., σ1 consists of ⩕-τ1-sentences, σ2 consists
of τ2-sentences, and they satisfy the satisfiability condition above.

We claim that Σ is a consistency property. The following claim will verify many of the
conditions.

Claim. Fix σ ∈ Σ and write σ = σ1 ∪ σ2. If φ is a τi-sentence (and a ⩕-sentence if i = 1)
with σi ⊧ φ, then σ ∪ {φ} ∈ Σ.

Proof. We will show the case i = 1. We can write σ∪{φ} = (σ1∪{φ})∪σ2. If σ1∪{φ} ⊧ ψ1 and
σ2 ⊧ ψ2, with ψ1 a ⩕-sentence, then since σ1 ⊧ φ, σ1 ⊧ ψ1. Hence ψ1 ∧ ψ2 is satisfiable.

We now check the conditions of a consistency property.

(C1) Suppose for a contradiction that φ,¬φ ∈ σ = σ1 ∪ σ2. If φ ∈ σi while ¬φ ∈ σj for i /= j,
then φ is a τ -sentence such that σi ⊧ φ and σj ⊧ ¬φ, so since φ ∧ ¬φ is not satisfiable,
this witnesses that σ ∉ Σ. If both φ,¬φ ∈ σi, then σi ⊧ φ ∧ ¬φ. Now since φ ∧ ¬φ
is unsatisfiable, letting ψ1 be any unsatisfiable τ -sentence, we also have that σi ⊧ ψ1.
Letting ψ2 be any τ -sentence such that σj ⊧ ψ2, we see that ψ1∧ψ2 is unsatisfiable and
provides a witness to the fact that σ ∉ Σ.

(C2) This follows from the claim.

(C3) This follows from the claim.

(C4) Write σ = σ1 ∪ σ2. We have two cases which are different, depending on whether

⩔φ∈X φ ∈ σ1 or ⩔φ∈X φ ∈ σ2.

First suppose that ⩔φ∈X φ ∈ σ2. Let σ2,φ = σ2 ∪ {φ}. We claim that for some φ ∈ X,
σ2,φ ∪ σ1 ∈ Σ. If not, then for each φ ∈ X there are τ -sentences ψ2,φ and ψ1,φ, with
ψ1,φ a ⩕-sentence, such that σ2,φ ⊧ ψ2,φ and σ1 ⊧ ψ1,φ, and such that ψ2,φ ∧ ψ1,φ is
unsatisfiable. So ψ2,φ ⊧ ¬ψ1,φ. Since

σ2 ⊧ ⩔
φ∈X

φ
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we have that
σ2 ⊧ ⩔

φ∈X
ψ2,φ.

On the other hand,
σ1 ⊧ ⩕

φ∈X
ψ1,φ.

This formula is a ⩕-sentence as each ψ1,φ is. Finally,

⩔
φ∈X

ψ2,φ ⊧ ¬⩕
φ∈X

ψ1,φ

which contradicts that σ ∈ Σ.

Now suppose that ⩔φ∈X φ ∈ σ1; then X is finite. We begin in a similar way as before.
Let σ1,φ = σ1 ∪ {φ}. We claim that for some φ ∈ X, σ1,φ ∪ σ2 ∈ Σ. If not, then for each
φ ∈X there are τ -sentences ψ1,φ and ψ2,φ, with ψ1,φ a ⩕-sentence, such that σ1,φ ⊧ ψ1,φ

and σ2 ⊧ ψ2,φ, and such that ψ1,φ ∧ ψ2,φ is unsatisfiable. So ψ1,φ ⊧ ¬ψ2,φ. Since

σ1 ⊧ ⩔
φ∈X

φ

we have that
σ1 ⊧ ⩔

φ∈X
ψ1,φ.

As X is finite this a ⩕-sentence. On the other hand,

σ2 ⊧ ⩕
φ∈X

ψ2,φ

and

⩔
φ∈X

ψ1,φ ⊧ ¬⩕
φ∈X

ψ2,φ

which contradicts that σ ∈ Σ.

(C5) This follows from the claim as (∀x)φ(x) ⊧ φ(c) for all c ∈ C.

(C6) If (∃x)φ(x) ∈ σ, then choose c ∈ C which does not appear in σ. Suppose that (∃x)φ(x) ∈
σ1; the case where (∃x)φ(x) ∈ σ2 is similar. We claim that σ ∪ {φ(c)} ∈ Σ. Since
(∃x)φ(x) ∈ σ1, φ(x) is a ⩕-formula, and thus so is φ(c).

Suppose that σ1 ∪{φ(c)} ⊧ ψ1 and σ2 ⊧ ψ2, where ψ1 is a ⩕-sentence. Write ψ1 = θ1(c)
and ψ2 = θ2(c). We have σ1 ⊧ φ(c) → θ1(c), and so since c does not appear in σ1,
σ1 ⊧ (∀x)[φ(x) → θ1(x)]. Similarly, σ2 ⊧ (∀x)θ2(x). Also, σ1 ⊧ (∃x)φ(x) and so
σ1 ⊧ (∃x)θ1(x). So (∃x)θ1(x) ∧ (∀x)θ2(x) is satisfiable, say in a model M. Note that
the constant c does not appear in the formula (∃x)θ1(x)∧(∀x)θ2(x), so we may choose
the interpretation of c inM such thatM ⊧ θ1(c). ThenM ⊧ θ1(c)∧ θ2(c). So ψ1 ∧ψ2

is satisfiable, and σ ∪ {φ(c)} ∈ Σ.

(C7) let t be a term with no variables and let c, d ∈ C,
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(a) This follows from the claim.

(b) Suppose c = t ∈ σ and φ(t) ∈ σ. Write σ = σ1 ∪ σ2. Consider µ = σ ∪ {φ(c)} =

σ1 ∪ σ2 ∪ {φ(c)}. Suppose c = t ∈ σi and φ(t) ∈ σj. The case i = j follows from the
claim, so we consider the case i ≠ j. Suppose that σi ⊧ ψi and σj ∪ {φ(c)} ⊧ ψj.
Then σi ⊧ c = t ∧ ψi and σj ⊧ c = t → ψj, so c = t ∧ ψi ∧ (c = t → ψi) is satisfiable.
So ψi ∧ ψj is satisfiable.

(c) Pick e ∈ C which does not appear in σ = σ1 ∪ σ2. Then if σ1 ∪ {e = t} ⊧ ψ1 and
σ2∪{e = t} ⊧ ψ2, write ψ1 = θ1(e) and ψ2 = θ2(e). Then since e does not appear in
σ1 or σ2, σ1 ⊧ θ1(t) and σ2 ⊧ θ2(t). Thus θ1(t)∧θ2(t) is satisfiable. Given a model
of θ1(t) ∧ θ2(t), setting the interpretation of c to t, we get a model of ψ1 ∧ψ2. So
ψ1 ∧ ψ2 is satisfiable.

Since φ1 ⊧ φ2, {φ1,¬φ2} ∉ Σ as otherwise by the Model Existence Theorem there would
be a model of φ1 ∧ ¬φ2. By definition of Σ, there are τ -sentences ψ1 and ψ2, with ψ1 a

⩕-sentence, such that φ1 ⊧ ψ1, ¬φ2 ⊧ ψ2, and ψ1 ∧ ψ2 is not satisfiable. So we have that
φ1 ⊧ ψ1, ψ1 ⊧ ¬ψ2, and ¬ψ2 ⊧ φ2. Hence φ1 ⊧ ψ1 and ψ1 ⊧ φ2.

Thus ψ1 is the desired interpolant, except that it may contain constants from C. Write
ψ1 = θ(c̄), where θ is an τ -formula with no constants from c̄. Neither φ1 nor φ2 contains
constants from C, and so φ1 ⊧ (∀x̄)θ(x̄) and (∃x̄)θ(x̄) ⊧ φ2. Since (∀x̄)θ(x̄) ⊧ (∃x̄)θ(x̄), we
can take (∀x̄)θ(x̄) as the interpolant.

We get the following corollary, which is (1) implies (2) of Theorem 1.1. Interestingly,
when we apply the interpolation theorem in the proof, one of the languages contains the
other (i.e., we have τ1 ⊇ τ2 so that τ = τ1 ∩ τ2 = τ2). If it were not for our added assumptions
on the form of the formulas involved, finding an interpolant would be trivial as we could just
take the sentence in the smaller language.

Corollary 3.5. Let K be a class of τ -structures closed under isomorphism. If K is both a
PC∆-class and Lω1,ω-elementary, then it is defined by a ⩕-sentence.

Proof. Let τ∗ ⊇ τ be an expanded language and let X be a set of first-order sentences such
that K is the class of reducts to τ of models of ψ1 =⩕φ∈X φ. Note that ψ1 is a ⩕-sentence.

Let ψ2 be an Lω1,ω(τ)-sentence defining K. We have that ψ1 ⊧ ψ2, so by the Interpolation
Theorem, there is a ⩕-τ -sentence θ such that ψ1 ⊧ θ and θ ⊧ ψ2.

Every M ∈ K has an expansion which is a model of ψ1 and hence is itself a model of θ;
and every model of θ is a model of ψ2, and hence in the class K. So θ defines K.

4 The Skolem Argument

For the direction (2)⇒(1) of Theorem 1.1, we must prove the following theorem. The proof
works for sentences from Lκ,ω for any κ, though the reader should feel free to take κ = ω1.
(The logic Lκ,ω is defined in the same way as Lω1,ω except that we allow conjunctions and
disjunctions of size < κ.)

Theorem 4.1. Let K be a class of structures closed under isomorphism. If K is defined by
a ⩕-sentence of Lκ,ω, then it is a pseudo-elementary (PC∆) class.
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We have extended the notion of a ⩕-formula from Lω1,ω to Lκ,ω using the same definition
(see Definition 2.4).

Remark 4.2. One can extend this theorem to ⩕-theories (sets of ⩕-sentences) because every

⩕-theory can be turned into a ⩕-sentence by taking the conjunction, but this might change
the logic. For instance, any uncountable first-order theory T is a ⩕-theory in Lω1,ω, but
not a ⩕-sentence in Lω1,ω (this can be proved by noting the lack of countable models). Of
course, T is a ⩕-sentence in L∣T ∣+,ω.

Morally, the idea of the proof is to Skolemize the language to be left with a universal

⩕-theory in an expanded language, and then the infinitary conjunctions can be dropped.
The main construction is the following lemma.

Lemma 4.3. Let ϕ(x̄) be a ⩕-formula in Lκ,ω(τ). There is an expanded language τϕ ⊃ τ
and a set Φ(ϕ) of first-order τϕ-formulas with the same free variables that verifies ϕ in the
following sense:

1. Given any τϕ-structure A+ and ā ∈ A+,

∀θ ∈ Φ(ϕ),A+ ⊧ θ(ā)Ô⇒ A+ ⊧ ϕ(ā).

2. Given any τ -structure A, there is an expansion A+ϕ such that for all ā ∈ A,

A ⊧ ϕ(ā) ⇐⇒ ∀θ ∈ Φ(ϕ),A+ϕ ⊧ θ(ā).

Proof. Construction: We work by induction on the formula ϕ(x̄). Although there is no
prenex normal form for formulas of Lκ,ω, formulas are defined inductively. In particular, we
follow the definition given for ⩕-formulas from Definition 2.4, using Remark 2.5 to assume
that any finite disjunctions occur only as part of finitary, quantifier-free formulas.

1. ϕ(x̄) is a finitary, quantifier-free formula.

Set τϕ = τ and Φ(ϕ) = {ϕ(x̄)} (in fact, this works for any finitary formula).

2. ϕ(x̄) is (∃y)ψ(x̄, y).

Set τϕ = τψ ∪ {fθ(x̄) ∣ θ ∈ Φ(ψ)} where each fθ is a new function symbol, and set

Φ(ϕ) = {θ (x̄, fθ(x̄)) ∣ θ(x̄, y) ∈ Φ(ψ)} .

3. ϕ(x̄) is (∀y)ψ(x̄, y).

Set τϕ = τψ and
Φ(ϕ) = {(∀y)θ (x̄, y) ∣ θ(x̄, y) ∈ Φ(ψ)} .

4. ϕ(x̄) is ⩕i∈I ψi(x̄).

Set τϕ = ∪i∈Iτψi where the union is disjoint over τ ; that is, new functions in τψi and τψj
are distinct in τϕ. Then set

Φ(ϕ) =⋃
i∈I

Φ(ψi).
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This works: We verify the construction inductively using the same cases. Is is easy to
argue inductively that given any τϕ-structure A+ and ā ∈ A+,

∀θ ∈ Φ(ϕ),A+ ⊧ θ(ā)Ô⇒ A+ ⊧ ϕ(ā).

1. Immediate.

2. Suppose that for all θ ∈ Φ(ϕ), A+ ⊧ θ(ā). Then, for each θ(x̄, y) ∈ Φ(ψ), A+ ⊧
θ(ā, fθ(ā)). By the induction hypothesis, A+ ⊧ ψ(ā, fθ(ā)). So A+ ⊧ (∃y)ψ(ā, y), i.e.,
A+ ⊧ ϕ(ā).

3. Suppose that for all θ ∈ Φ(ϕ), A+ ⊧ θ(ā). Then, for each θ(x̄, y) ∈ Φ(ψ), A+ ⊧
(∀y)θ(ā, y), and so for each b ∈ A+, A+ ⊧ θ(ā, b). By the induction hypothesis, A+ ⊧
ψ(ā, b) for each b ∈ A+. So A+ ⊧ (∀y)ψ(āy), i.e., A+ ⊧ ϕ(ā).

4. Suppose that for all θ ∈ Φ(ϕ), A+ ⊧ θ(ā). Then, for each ψi and each θ(x̄) ∈ Φ(ψi),
A+ ⊧ θ(ā). By the induction hypothesis, A+ ⊧ ψi(ā) for each i, and so A+ ⊧ ϕ(ā).

Now we will show inductively how to define A+ϕ and verify that

A ⊧ ϕ(ā) ⇐⇒ ∀θ ∈ Φ(ϕ),A+ϕ ⊧ θ(ā).

1. Immediate.

2. Fix A. By induction, we have an expansion A+ψ. Expand further to form A+ϕ by picking
each fθ to be a Skolem function for θ; that is, ensure

A+ϕ ⊧ ∀x̄ ((∃y)θ(x̄, y)↔ θ(x̄, fθ(x̄))) .

Then fix ā ∈ A.

A ⊧ ϕ(ā) ⇐⇒ ∃b ∈ A, A ⊧ ψ(ā, b)

⇐⇒ ∃b ∈ A, ∀θ ∈ Φ(ψ), A+ψ ⊧ θ(ā, b)

⇐⇒ ∃b ∈ A, ∀θ ∈ Φ(ψ), A+ϕ ⊧ θ(ā, b)

⇐⇒ ∀θ ∈ Φ(ψ), A+ϕ ⊧ θ(ā, fθ(ā)).

3. Fix A and set A+ϕ = A
+
ψ. Fix ā ∈ A.

A ⊧ ϕ(ā) ⇐⇒ ∀b ∈ A, A ⊧ ψ(ā, b)

⇐⇒ ∀b ∈ A, ∀θ ∈ Φ(ψ), A+ψ ⊧ θ(ā, b)

⇐⇒ ∀θ ∈ Φ(ψ), A+ϕ ⊧ (∀y)θ(ā, y).

4. Fix A and set A+ϕ to be the joint expansion of all of the A+ψi ’s; here we crucially use
that the new functions in the different languages are distinct. Fix ā ∈ A.

A ⊧ ϕ(ā) ⇐⇒ ∀i ∈ I, A ⊧ ψi(ā)

⇐⇒ ∀i ∈ I, ∀θ ∈ Φ(ψi), A
+
ψi
⊧ θ(ā)

⇐⇒ ∀i ∈ I, ∀θ ∈ Φ(ψi), A
+
ϕ ⊧ θ(ā)

⇐⇒ ∀θ ∈⋃
i∈I

Φ(ψi), A
+
ϕ ⊧ θ(ā).
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This completes the proof.

From this lemma, the proof of the theorem is immediate.

Proof of Theorem 4.1. Let ϕ be a ⩕-sentence of Lκ,ω. Apply Lemma 4.3 to ϕ. Since ϕ is a
sentence (has no free variables), Φ(ϕ) is a collection of sentences. Then

Mod ϕ = {A ∣ there is A+ expanding A with A+ ⊧ Φ(ϕ)}.

5 Game Formulas

In this section, we show how the direction (2)⇒(1) of Theorem 1.1 follows from known results
on game formulas.

Definition 5.1. A closed game formula1 is an expression of the form

∀y1∃z1∀y2∃z2⋯⩕
n
ϕn(x̄, y1, z1, y2, z2, . . .)

where each ϕn is an elementary first-order formula. Such a formula is computable if the
sequence ϕn is computable.

Satisfaction for such formulas is defined by a game played between two players, with player
I playing the ∀ quantifiers and player II playing the ∃ quantifiers; player II wins, and the
formulas is satisfied, if he can make ϕn(x̄, y1, z1, . . .) true for every n. Alternatively, satisfac-
tion can be defined by the existence of Skolem functions (which turn out to be the winning
strategies for player II).

Note that each ϕn has finitely many free variables. Also, the ‘closed’ adjective refers to
use of conjunctions in the formula.

Every (computable) ⩕-formula is equivalent to a (computable) closed game formula by
moving all of the quantifiers to the front. In doing this, one must take care to rename bound
variables so that each variable is quantified over a single time. This may seem at first to be
false by a reader familiar with the fact that one cannot do this and obtain an Lω1,ω formula,
but one can do this and obtain a closed game formula. For example,

⩕
n
∃x̄nφn(x̄n)⇐⇒ ∃x̄1∃x̄2⋯⩕

n
φn(x̄n).

We can define the game formula inductively; for the inductive step, we have:

⩕
i

∀y1
i ∃z

1
i ∀y

2
i ∃z

2
i⋯⩕

n
ϕin(x̄i, y

1
i , z

1
i , y

1
i , z

2
i , . . .)

⇐⇒ ∀y1
1∃z

1
1∀y

2
1∃z

2
1∀y

1
2∃z

1
2∀y

3
1∃z

3
1∀y

2
2∃z

2
2∀y

1
3∃z

1
3⋯⩕

i,n

ϕin(x̄i, y
1
i , z

1
i , y

1
i , z

2
i , . . .).

1An important note is that in general a closed game formula is not an element of Lω1,ω or even Lω1,ω1 .
It is not in the first logic because there are infinitely many quantifiers in front of infinite conjunction, and it
is not in the second logic because the quantifiers are not added in a well-founded way.
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Essentially we need to merge ω-many sequences (or quantifiers) of order type ω into a single
sequence of order type ω, maintaining the order of each of the individual sequences inside
the amalgamated sequence.

So we can get we get the direction (2)⇒(1) of Theorem 1.1 as well as Theorem 1.3 as a
corollaries of the following theorem:

Theorem 5.2 (Theorem 2.1.4 of [Kol85], Corollary 6.7 of [Bar75]).

1. Any class of τ -structures defined by a closed game formula is PC∆.

2. Any class of τ -structures defined by a computable closed game formula is PC′.

The proof given in the previous section is, however, much simpler. Indeed, the proof in
Section 4 gives a proof of the first item above because the Skolem functions for closed game
formulas are still finitary functions because each stage of the game has only finitely many
plays before it (and because each of the formulas ϕn has finitely many free variables). This
proof could be further generalized to consider longer games, showing that any class defined
by a higher analogue of closed game formulas is PC in some infinitary logic Lκ,λ.
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