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Abstract

Universality has been an important concept in computable structure theory. A
class C of structures is universal if, informally, for any structure, of any kind, there is a
structure in C with the same computability-theoretic properties as the given structure.
Many classes such as graphs, groups, and fields are known to be universal.

This paper is about the class of finitely generated groups. Because finitely generated
structures are relatively simple, the class of finitely generated groups has no hope of
being universal. We show that finitely generated groups are as universal as possible,
given that they are finitely generated: for every finitely generated structure, there is a
finitely generated group which has the same computability-theoretic properties. The
same is not true for finitely generated fields. We apply the results of this investigation
to quasi Scott sentences.

1 Introduction

Whenever we have a structure with interesting computability-theoretic properties, it is
natural to ask whether such examples can be found within particular classes. While one
could try to adapt the proof within the new class, it is often simpler to try and code the
original structure into a structure in the given class. It has long been known that for
certain classes, such as graphs, this is always possible. Hirschfeldt, Khoussainov, Shore,
and Slinko [HKSS02] proved that classes of graphs, partial orderings, lattices, integral
domains, and 2-step nilpotent groups are “complete with respect to degree spectra of
nontrivial structures, effective dimensions, expansion by constants, and degree spectra
of relations”. What this means is that for every structure A, there is a structure in
each of these classes which has the same degree spectrum, effective dimension, etc. as
A.

This list of properties is not a complete list of all possible computability-theoretic
properties, but the method of proof is sufficiently general that any reasonable com-
putability theoretic property can be added to the list. These classes of structures have
been informally called universal.

Recently, Miller, Poonen, Schoutens, and Shlapentokh [MPSS] added fields to the
list of universal classes. In that paper, a category-theoretic language was used: it
was shown that, for any structure A, there is a F and a faithful functor from copies
of F to copies of A. It was shown that this implies that F and A share various
computability-theoretic properties. Such a functor can be found for each of the classes
from [HKSS02].
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Around the same time, Montalbán [Mon13] introduced effective interpretations,
which are interpretations as in model theory but using computable Σc

1 formulas, and
with the domain of the interpreted structure allowing tuples of any finite size. Mon-
talbán showed that two structures which are bi-interpretable share many of the same
computability-theoretic properties. The results from [HKSS02] can also be phrased in
terms of bi-interpretations.

Thus we have two different possible definitions of universality, one coming from the
category-theoretic language, and one coming from the language of effective interpreta-
tions. In [HTMMM17], the first author together with Melnikov, Miller, and Montalbán
showed that the two notions of universality are actually equivalent.

This paper follows up on some observations made during the authors’ previous work
in [HTH]. There, the authors answered the question of whether every finitely generated
group has d-Σ0

2 Scott sentence by constructing a finitely generated group with no d-Σ0
2

Scott sentence. The strategy was to first figure out how to build a finitely generated
structure with no d-Σ0

2 Scott sentence, and then to code that structure into a finitely
generated group. We next wanted to work on several questions about quasi Scott
sentences of finitely generated groups, and found ourselves using the same approach.
While the class of finitely generated groups has no hope of being universal, we thought
that we should try to use the ideas of universality. Our main result is:

Theorem 1.1. The class of finitely generated groups is universal among finitely gen-
erated structures, after naming finitely many constants.

What this means is that each finitely generated structure can be coded into a finitely
generated group in a way that maintains its computability-theoretic properties. (Many,
but not all, computability-theoretic properties are invariant under naming finitely many
constants.) The statement of this theorem will be formally defined in Section 2 and
proved in Section 3. See Section 3.1 for an explanation of why we must name finitely
many constants In Section 4 we show that certain classes of structures, such as finitely
generated fields, are not universal among finitely generated structures.

A quasi Scott sentence for a finitely generated structure A is an Lω1ω sentence
which describes A uniquely among finitely generated structures; thus there may be
other structures, which are not finitely generated, which also satisfy ϕ. In Section 5,
we begin by proving some general results about quasi Scott sentences. We use the
universality of finitely generated groups to transfer these results to that class.

2 Background on Functors, Interpretations, and

Universality

2.1 Infinitary Sentences

The infinitary logic Lω1ω is the logic which allows countably infinite conjunctions and
disjunctions but only finite quantification. Each formula has only finitely many free
variables. If the conjunctions and disjunctions of a formula ϕ are all over computable
sets of indices for formulas, then we say that ϕ is computable.

We use the following recursive definition to define the hierarchy of complexity of
Lω1ω formulas:
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� An Lω1ω formula is both Σ0
0 and Π0

0 if it is quantifier free and does not contain
any infinite disjunction or conjunction.

� An Lω1ω formula is Σ0
α if it is a countable disjunction of formulas of the form ∃x̄φ

where each φ is Π0
β for some β < α, and there are only finitely many free variables

among all the formulas ∃x̄φ.

� An Lω1ω formula is Π0
α if it is a countable conjunction of formulas of the form

∀x̄φ where each φ is Σ0
β for some β < α, and there are only finitely many free

variables among all the formulas ∀x̄φ.

We say a formula is d-Σ0
α if it is a conjunction of a Σ0

α formula and a Π0
α formula. The

following diagram illustrates this hierarchy, from the simplest formulas on the left to
the more complicated formulas on the right:

Σ0
1
""

Σ0
2

""

Σ0
3

""

Σ0
1 ∩Π0

1

::

$$

d-Σ0
1
// Σ0

2 ∩Π0
2

::

$$

d-Σ0
2
// Σ0

3 ∩Π0
3

::

$$

d-Σ0
3
// ⋯

Π0
1

<<

Π0
2

<<

Π0
3

<<

2.2 Effective Interpretations

An interpretation is a way of defining one structure inside of another structure. In the
interpretations which are traditional in model theory, the domain consists of tuples
all of the same arity, and the definitions are in elementary first-order logic. See, for
example, [Mar02, Definition 1.3.9]. Here, we want to use a different notion, introduced
in [Mon13, Definition 1.7], where we use tuples of arbitrary lengths, and our definitions
are computable sentences in the infinitary logic Lω1ω.

Definition 2.1. We say that a structure A = (A;PA0 , P
A

1 , ...) (where PAi ⊆ Aa(i)) is
effectively interpretable in B if there exist a ∆c

1-definable (in the language of B, without
parameters) sequence of relations (DomB

A
,∼,R0,R1, ...) such that

(1) DomB
A
⊆ B<ω,

(2) ∼ is an equivalence relation on DomB
A

,

(3) Ri ⊆ (B<ω)a(i) is closed under ∼ within DomB
A

,

and there exists a function fB
A
∶DomB

A
→ A which induces an isomorphism:

(DomB
A
/ ∼;R0/ ∼,R1/ ∼, ...) ≅ (A;PA0 , P

A

1 , ...),

where Ri/ ∼ stands for the ∼-collapse of Ri.

There is also a notion of bi-interpretation, where not only is one structure inter-
pretable in the other, and vice versa, but the two interpretations compose in a nice
way.

Definition 2.2. Two structures A and B are effectively bi-interpretable if there are
effective interpretations of each structure in the other as in Definition 2.1 such that
the compositions

fA
B
○ f̃B
A
∶Dom

(DomB
A
)

B
→ B and fB

A
○ f̃A
B
∶Dom

(DomA
B
)

A
→ A
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are ∆c
1-definable in B andA respectively. (Here Dom

(DomB
A
)

B
⊆ (DomB

A
)<ω, and f̃B

A
∶ (DomB

A
)<ω →

A<ω is the obvious extension of fB
A
∶DomB

A
→ A mapping Dom

(DomB
A
)

B
to DomA

B
.)

Two structures which are bi-interpretable are essentially the same from the point
of view of computability theory. In [Mon, Lemma 5.3] it is shown that if A and B
are effectively bi-interpretable then: they have the same degree spectrum; they have
the same computable dimension; they have the same Scott rank; their index sets are
Turing equivalent (assuming the structures are infinite); A is computably categorical
if and only if B is; A is rigid if and only if B is; A has the c.e. extendability condition
if and only if B does; for every R ⊆ A<ω, there is a Q ⊆ B<ω which has the same
relational degree spectrum, and vice-versa; and the jumps of A and B are effectively
bi-interpretable too.

To talk about universality, we want a notion of interpretability between classes of
structures.

Definition 2.3 ([Mon]). Say that a class C is reducible via effective bi-interpretability
to a class D if for every C ∈ C there is a D ∈ D such that C and D are effectively
bi-interpretable and furthermore the formulas defining the bi-interpretation do not
depend on the choice of C and D.

2.3 Computable Functors

We write Iso(A) for the isomorphism class of a countably infinite structure A:

Iso(A) = {Â ∶ Â ≅ A and dom(Â) = ω}.

We will regard Iso(A) as a category, with the copies of the structures as its objects
and the isomorphisms among them as its morphisms.

Definition 2.4. By a functor from A to B we mean a functor from Iso(A) to Iso(B),
that is, a map F that assigns to each copy Â in Iso(A) a structure F (Â) in Iso(B),
and assigns to each morphism f ∶ Â→ Ã in Iso(A) a morphism F (f)∶F (Â)→ F (Ã) in
Iso(B) so that the two properties below hold:

� F (id
Â
) = idF (Â) for every Â ∈ Iso(A), and

� F (f ○ g) = F (f) ○ F (g) for all morphisms f, g in Iso(A).

A functor F ∶ Iso(A)→ Iso(B) is computable if there exist two computable operators
Φ and Φ∗ such that

� for every Â ∈ Iso(A), ΦD(Â) is the atomic diagram of F (Â) ∈ Iso(B);

� for every morphism f ∶ Â→ Ã in Iso(A), Φ
D(Â)⊕f⊕D(Ã)
∗ = F (f).

Here, D(Â) denotes the atomic diagram of Â.

Given an effective interpretation of a structure A inside of a structure B, we get an
induced computable functor from Iso(B) to Iso(A) by mapping a copy of B to the copy
of A which is interpreted inside of it. One of the main results of [HTMMM17] is that
this reverses, i.e. each computable functor is induced by an effective interpretation in
this way.

The next definition is the notion of computable isomorphism between computable
functors.
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Definition 2.5. A functor F ∶ Iso(B) → Iso(A) is effectively naturally isomorphic (or
just effectively isomorphic) to a functor G∶ Iso(B) → Iso(A) if there is a computable

Turing functional Λ such that for every B̃ ∈ Iso(B), ΛB̃ is an isomorphism from F (B̃) to
G(B̃), and the following diagram commutes for every B̃, B̂ ∈ Iso(B) and every morphism
h∶ B̃ → B̂:

F (B̃)

F (h)
��

ΛB̃ // G(B̃)

G(h)
��

F (B̂)
ΛB̂
// G(B̂)

Given a class C of countable structures, we can view C as a category. The objects
are the presentations, with domain ω, of the structures in C and the morphisms are
the isomorphisms between these presentations. We can extend the definition of a com-
putable functor to arbitrary classes by allowing the oracles of Φ and Φ∗ to range over
the objects and morphisms of C. We can then define a functorial notion of reducibility
between two classes of structures.

Definition 2.6 ([HTMMM17]). Say that a class C is reducible via effective adjoint
equivalence to a class D if there exist a subclass D′ of D and computable functors
F ∶C→D′, G∶D′ → C such that F ○G and G ○F are effectively naturally isomorphic to
the identity.

Once again, this is is equivalent to the notion of reducibility by bi-interpretation.

Theorem 2.7 (Theorem 1.12 of [HTMMM17]). A class C is reducible via effective bi-
interpretability to a class D if and only if C is reducible via effective adjoint equivalence
to the class D.

Moreover, if C is reducible via effective adjoint equivalence to a class D, the reduc-
tion via effective bi-interpretability that one obtains induces a reduction via effective
adjoint equivalence that is effectively naturally isomorphic to the original one.

2.4 Universality

Definition 2.8. A class C of structures is universal if for each language L, the class
of L-structures is reducible to C via effective bi-interpretability.

Equivalently, by Theorem 2.7, a class C is universal if and only if for each language
L, the class of L-structures is reducible to F via effective adjoint equivalence.

It follows from [HKSS02, MPSS] that each of the following classes is universal: undi-
rected graphs, partial orderings, lattices, and fields, and, after naming finitely many
constants, integral domains, commutative semigroups, and 2-step nilpotent groups.

Each of the following classes is not universal: algebraically closed fields, real closed
fields, abelian groups, linear orderings, and Boolean algebras. In each case, the com-
putable dimension can only be 1 or ω.

To define universality among finitely generated structures, we want to restrict to
the class of finitely generated L-structures.

Definition 2.9. Let C be a class of finitely-generated structures. C is universal among
finitely generated structures if for each language L, the class of finitely generated L-
structures is reducible to C via effective bi-interpretability.
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3 Groups are Universal for Finitely Generated

Structures

In this section we will prove Theorem 1.1 in the following strengthened form:

Theorem 3.1. Fix a language L. For each L-structure A, we can effectively build a
group G(A) with elements b, c, d, f1, f2 ∈ G(A) such that A is effectively bi-interpretable
with G̃(A) = (G(A), b, c, d, f1, f2). Moreover:

(1) The formulas of the bi-interpretation do not depend on A.

(2) The orbit of the tuple bcdf1f2 ∈ G(A) is definable by a finitary quantifier-free
formula.

(3) A is finitely generated if and only if G(A) is.

3.1 Naming Constants

We will give a brief argument that the class of finitely generated groups is not universal
among finitely generated structures, and hence we must name constants.

We will use the fact (see [HTMM]) that two structures which are bi-interpretable
have the same automorphism group. Every group G, ∣G∣ > 2 has a non-trivial auto-
morphism. On the other hand, there are finitely generated structures which have no
non-trivial automorphisms but are not computable. Fix one such structure A. Since
every finitely generated group with no non-trivial automorphisms is computable, no
such group can be effectively bi-interpretable with A. Thus the class of finitely gener-
ated groups is not universal. On the other hand, a finitely generated group can become
rigid after fixing finitely many constants, for example, its generators.

3.2 Small Cancellation

We give a short summary of the definitions and facts we need from small cancellation
theory. We refer the interested readers to [LS01].

Definition 3.2. We say a presentation ⟨S ∣ R⟩ is symmetrized if every relation is
cyclically reduced and the relation set R is closed under inverse and cyclic permutation.

Let ⟨S ∣ R⟩ be a symmetrized presentation. We say a word u ∈ F (S) is a piece
if there are two r1 ≠ r2 ∈ R such that u is an initial subword of both r1 and r2. We
also say the presentation satisfies the C ′(λ) small cancellation hypothesis if for every
relation r and every piece u with r = uv, we have ∣u∣ < λ∣r∣.

Furthermore, we shall say a non-symmetrized presentation satisfies the small can-
cellation hypothesis if it does once we replace the relation set with its symmetrized
closure. We shall also say a group is a small cancellation group when it is clear which
presentation we are using.

One key lemma we will need for small cancellation groups is the following, which
says that every presentation of the trivial word must contain a long common subword
with a relator.

Lemma 3.3 (Greendlinger’s Lemma). Let G = ⟨S ∣ R⟩ be a C ′(λ) small cancellation
group with 0 ≤ λ ≤ 1

6 . Let w be a non-trivial freely reduced word representing the trivial
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element of G. Then either w ∈ R, or there are two disjoint subwords u1 and u2 of w,
such that each of them are a subword of some cyclic permutation ri of a relation in R
or its inverse with ri = uivi and ∣ui∣ > (1 − 3λ)∣ri∣.

Another lemma we will need is the Torsion Lemma, which says any torsion has to
come from a relator.

Lemma 3.4 (Torsion Lemma). Let G = ⟨S ∣ R⟩ be a C ′(λ) small cancellation group
with 0 ≤ λ ≤ 1

6 . Let g ∈ G be an element with finite order. Then there is a r ∈ R such
that r = vn and g is conjugate to a power of v in G.

We say that a word w is Dehn-minimal if it does not contain any subword v that
is also a subword of a relator r = vu such that ∣v∣ > ∣r∣/2. Greendlinger’s lemma implies
that, given a C ′(1/6) presentation of a group, we can solve the word problem using the
following observation: a Dehn-minimal word is equivalent to the identity if and only
if it is the trivial word. Given a word w, we replace w by equivalent words of shorter
length until we have replaced w by a Dehn-minimal word w′. Then w is equivalent to
the identity if and only if w′ is the trivial word. This is Dehn’s algorithm.

3.3 Construction

Fix a computable language L. View constants and 0-ary functions as unary relations,
so that we may assume that L consists entirely of function and relation symbols with
arity ≥ 1. Given an L-structure A, let G = G(A) be the group with generators {a}a∈A∪
{b, c, d, f1, f2}. For elements g ∈ G, we will abuse notation and say g ∈ A to mean g is
one of the generators in the set {a}a∈A. We also put the following relations on G(A):

� fpii = e, where p1, p2 are distinct primes greater than 1010,

� v(f1, f2) = v(f2, f1) = e,

� ub(b, f1) = ub(b, f2) = e, uc(c, f1) = uc(c, f2) = e, ud(d, f1) = ud(d, f2) = e,

� uA(a, c) = uA(a, d) = e for a ∈ A,

� wm(ā, b) =

⎧⎪⎪
⎨
⎪⎪⎩

a′, if the mth symbol in L is a function symbol f and A ⊧ f(ā) = a′

e, if the mth symbol in L is a relation symbol R and A ⊧ R(ā),

where

� uA(x, y) = xyxy
4⋯xy9992xy10002 ,

� ub(x, y) = xy
10012xy10022⋯xy19992xy20002 ,

� uc(x, y) = xy
20012xy20022⋯xy29992xy30002 ,

� ud(x, y) = xy
30012xy30022⋯xy39992xy40002 ,

� v(x, y) = xy40012xy40022⋯xy49992xy50002 ,

� with n the arity of the mth symbol in L, m ≥ 1,

wm(x1, . . . , xn, y) = x1⋯xny
100m+1x1⋯xny

100m+2⋯x1⋯xny
100m+100.
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Then G is a C ′(1/20) small cancellation group. To see this, recall that

n

∑
i=1

i2 =
(n)(n + 1)(2n + 1)

6
.

So, for example, ∣uA(x, y)∣ = 333,834,500, so

∣xy9992xy10002x∣

∣v(x, y)∣
≤

6

1000
.

The idea of the construction is that set A ⊆ G(A) is definable from c and d, and
that the relations and functions on A are definable from b (Lemmas 3.5 and 3.6). This
uses the relators defined using uA and wm.

We also need to show that the orbits of the elements b, c, d, f1, f2 are definable by
a finitary quantifier-free formula. If we know f1 and f2, we can pick out the set A and
the elements b, c, d using Lemma 3.5. To find f1 and f2 (up to a conjugate), we use
Lemmas 3.7 and 3.8.

We will also need to show that the diagram (i.e., the word problem) of G(A) is
computable from the diagram of A. This is Lemma 3.10.

For the rest of this section, we often abuse notation and identify an element in
G(A) with a spelling of it in the generating set. We will use usual equality = to denote
equality in G(A), and ≡ to denote equality as words, i.e. in the free group generated
by the generators.

Lemma 3.5. Fix an L-structure A. Then, in G(A):

(1) If uA(x, c) = uA(x, d) = e then x ∈ A.

(2) If ub(x, f1) = ub(x, f2) = e, but xp1 ≠ e and xp2 ≠ e, then x = b.

(3) If uc(x, f1) = uc(x, f2) = e, but xp1 ≠ e and xp2 ≠ e, then x = c.

(4) If ud(x, f1) = ud(x, f2) = e, but xp1 ≠ e and xp2 ≠ e, then x = d.

Proof. We begin by showing (1). (2), (3), and (4) are similar, but the difference is that
(2), (3), and (4) involve f1 and f2, which are elements of finite order. After proving
(1), we will describe how to prove (2), highlighting the differences. (3) and (4) are
proved in the same way as (2).

Let x ∈ G be such that uA(x, c) = e. Fix a shortest spelling of x in the generating
set {a}a∈A ∪ {b, c, d, f1, f2}. By abusing notation, we will write x to mean this fixed
spelling of x. Write x ≡ ckx′c` where k, ` ∈ Z and x′ begins and ends with a letter that
is not c. Note that x′ does not reduce to the trivial word (if it did, we would have
cn = e for some n, which cannot happen by the Torsion lemma).

Then we have

e = uA(x, c) = xcxc
4xc9xc16⋯xc10002 = ckx′c1+k+`x′c4+k+`x′⋯c9992+k+`x′c10002+`.

So
x′c1+k+`x′c4+k+`x′⋯c9992+k+`x′c10002+`+k = e. (∗)

Note that n2 + k + ` is −1, 0, or 1 for at most one value of n. There is no cancellation
in (∗) except that x′x′ might appear in one place, and x′x′ cannot be freely reduced to
the trivial word unless x′ is already the trivial word. Writing a reduced word in place
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of x′x′, by Greendlinger’s Lemma, either the left hand side of (∗) is in R or there are
two subwords satisfying the conclusion of Greendlinger’s lemma. If the left hand side
of (∗) is in R, then it must be one of the relators uA(a, c) or its inverse. Thus x′ ≡ a
and x ≡ ckac`.

We will argue that x ≡ ckac` in the other case as well. There are two subwords v1

and v2 of the left hand side of (∗) satisfying the conclusion of Greendlinger’s Lemma.
Since there is at most one n with n2 + k + ` equal to −1, 0, or 1, there is at most one
instance of x′x′, x′cx′, or x′c−1x′ as a subword of

x′c1+k+`x′c4+k+`x′⋯c9992+k+`x′c10002+`+k.

We may choose whichever of v1 or v2 (say, without loss of generality, v ≡ v1) which
does not intersect the middle of any of these subwords (i.e., it does not involve the
free cancellation in x′x′, or contain the c in x′cx′, or the c−1 in x′c−1x′). Let r be the
relator associated with v. We have a number of possibilities:

(a) v is contained in cix′cj , where i and j are each 0, 1, or −1. Then x′ is not a
shortest spelling, a contradiction.

(b) v fully contains at least two copies of x′. Then v also contains c2 or c−2, and x′

contains a letter which is not c, so r must be a cyclic permutation of uA(a, c) or its
inverse for some a ∈ A. Since x′ appears twice in r, and each cyclic permutation
of r is distinct from each other cyclic permutation of r, x′ is a piece. But each
piece appearing in uA(a, c) contains at most one letter which is not c. So x′ ≡ a,
and x ≡ ckac`.

(c) v fully contains exactly one copy of x′. So v is a subword of x′cj
2
+`+kx′c(j+1)2+`+kx′

for some j. Note that x′ cannot contain more than half of r, or we would have
a shorter spelling of x, and so v must contain c2 or c−2. As x′ contains a letter
which is not c, r must be a cyclic permutation of uA(a, c) or its inverse for some
a ∈ A. Also, if v contains the initial or terminal segment of another copy of x′,
then that segment is a piece and hence has length at most 1

20 ∣r∣. Also, if cn is a
subword of r, then n ≤ 1

20 ∣r∣. Lastly, x cannot be longer than half of the length of
r, otherwise it is not a shortest spelling. So ∣v∣ ≤ 1

2 ∣r∣+
4
20 ∣r∣ <

17
20 ∣r∣, a contradiction.

So this case cannot happen.

(d) None of the above. v is a subword of x′cnx′ for some n ≠ −1,0,1. v must contain
c2 or c−2 as a subword and thus r is a cyclic permutation of uA(a, c) or its inverse
for some a ∈ A. Since x′ cannot contain more than half of r, we can write
v ≡ x1c

nx2 where x1 is a final segment of x′ and x2 is an initial segment of x′. We
have ∣cn∣ ≤ 1

20 ∣r∣ and ∣x1∣, ∣x2∣ <
1
2 ∣r∣, so ∣x1∣, ∣x2∣ ≥

6
20 ∣r∣. Note that in the relator

uA(a, c) = e, for any two subwords y1 and y2, there is no cancellation in y1y2.
Since x1 and x2 are subwords of r, there cannot be any cancellation in x1x2, and
thus also no cancellation in x′x′.

Recall that there was another subword v2 of a relator r2 which we obtained from
Greendlinger’s lemma. Since x′x′ is freely reduced, we may run the above analysis
on v2. If v2 is in case (a), then the same arguments work. If v2 is in case (b)
or (c), then it contains a copy of x′, thus a copy of x1, making it a piece with
length > 6

20 ∣r∣, a contradiction. If v2 is in case (d), then it is a subword of x′cmx′

for some m ≠ n. As before, we can write v2 ≡ x3c
mx4 with ∣x3∣, ∣x4∣ ≥

6
20 ∣r2∣. Then
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either x2 is an initial segment of x4 or vice versa; whichever is an initial segment
is a piece, yielding a contradiction.

So we have shown that x is of the form x ≡ ckac` for some a ∈ A. Now applying
the same argument to uA(x, d) = e, we get that x is also of the form x ≡ dk

′

ad`
′

. So
k = ` = k′ = `′ = 0 and x ≡ a for some a ∈ A.

Now we must talk about how to prove (2). Let x ∈ G be such that ub(x, f1) = e
and xp1 ≠ e. Fix a shortest spelling of x in the generating set {a}a∈A ∪ {b, c, d, f1, f2}.
By abusing notation, we will write x to mean this fixed spelling of x. Write x ≡ fk1 x

′f `1
where k, ` ∈ Z and x′ begins and ends with a letter that is not f1. Note that since
xp1 ≠ e, x′ is not the trivial word.

Then we have

e = ub(x, f1) = xf
1001
1 xf10022

1 xf10032

1 xf10042

1 ⋯xf20002

1

= fk1 x
′f10012+k+`

1 x′f10022+k+`
1 x′⋯f19992+k+`

1 x′f20002+`
1 .

Let ni be such that ni ≡ (1000 + i)2 + k + ` (mod p1), ∣ni∣ < p1/2. Then

x′fn1
1 x′fn2

1 x′⋯fn999
1 x′fn1000

1 = e. (∗)

Note that ni is equal to −1, 0, or 1 for at most one value of i. Since each ni satisfies
∣ni∣ < p1/2, no large subword of a relator fp11 = e is a subword of the left hand side of (∗).
Using this fact, we may run the same argument as in (1). In cases (a), (c), and (d) we
obtain a contradiction as before. However, in case (b), the relator may be of the form
v(f2, f1) = e, ub(b, f1) = e, uc(c, f1) = e, or ud(d, f1) = e, and so we obtain x ≡ fk1 yf

`
1

where y is one of f2, b, c, or d. After running similar argument on ub(x, f2) = e, we get
x ≡ fk

′

2 y
′f `

′

2 where y is one of f1, b, c, or d. So the only possibilities are that x ≡ f2f1,
x ≡ f1f2, x ≡ b, x ≡ c, or x ≡ d. Now by applying Greendlinger’s lemma on ub(x, f1) = e,
we get that x ≡ b.

Lemma 3.6. Fix an L-structure A. Then, in G(A):

(1) If the nth symbol in L is a function symbol f and wn(x̄, b) = y with x̄, y ∈ A, then
A ⊧ f(x̄) = y.

(2) If the nth symbol in L is a relation symbol R and wn(x̄, b) = e with x̄ ∈ A, then
A ⊧ R(x̄).

Proof. We show this only for (1). The proof of (2) is similar.
Suppose wn(x̄, b)y

−1 = 1 for some x̄, y ∈ A. Then by Greendlinger’s lemma, there
is a subword u of wn(x̄, b)y

−1 such that r ≡ uv for some relator r with ∣u∣ > 17
20 ∣r∣.

However, as u does not include any of the generators c, d, f1, or f2, r must be of the
form wm(ā, b) = a′ or wm(ā, b) = e.

As a large subword of r, u contains segment of the form a1⋯akb
100m+ia1⋯akb

100m+i+1.
But u is also a subword of wn(x̄, b)y

−1, which forces m = n, and ā ≡ x̄. This means
y = wm(ā, b) = a, and so A ⊧ f(x̄) = y.

Lemma 3.7. Fix i = 1 or i = 2. If xpi = e in G(A) but x ≠ e, then x is a conjugate of
fni for some n with pi ∤ n.
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Proof. By the Torsion Lemma, x is a conjugate of fnj for some j, n. Then fnpij = e,
and so pj ∣ npi. So either i = j, or pj ∣ n. The latter cannot happen, as x is not the
identity. So x = fni , and since x is not the identity, pi ∤ n.

Lemma 3.8. Fix an L-structure A. Then, in G(A), if v(x, y) = v(y, x) = e, where x
and y are conjugates of fm1 and fn2 respectively (p1 ∤m, p2 ∤ n), then x and y are both
conjugates of f1 and f2 by the same element.

Proof. Without loss, we may assume that ∣m∣ < p1/2. By conjugating both x and y, we
may also assume that y ≡ fn2 . Assume that x = zfm1 z

−1, and fix a shortest spelling of z
in the generating set {a}a∈A ∪ {b, c, d, f1, f2}, so x ≡ zfm1 z

−1. By abusing notation, we
will write z to mean this fixed spelling of z. By conjugating with f2 and/or reducing
with fm1 , we may also assume that z does not start with f2 or end with f1. Then we
have

zfm1 z
−1f40012n

2 zfm1 z
−1f40022n

2 ⋯zfm1 z
−1f50002n

2 = e

We may rewrite this to be

zfm1 z
−1fn1

2 zfm1 z
−1fn2

2 ⋯zfm1 z
−1fn1000

2 = e

where ni is congruent to (4000 + i)2n modulo p2 and −p2/2 < ni < p2/2 for all i, and
there is no reduction.

By Greendlinger’s lemma, we get a subword u of the left hand side such that u is
also a subword of a relator r with ∣u∣ > 17

20 ∣r∣. Suppose z is nontrivial, then u cannot
intersect with both some copy of z and some copy of z−1, as the letters in each relator
are all positive or all negative. However, because ∣m∣ < p1/2 and ∣ni∣ < p2/2, r cannot
be fp11 = e or fp22 = e. Hence u must intersect with z or z−1. Assume that u intersects
with z, then u must be contained in some fk2 zf

`
1. But any consecutive fi’s in r cannot

have length more than 1
20 ∣r∣, so the intersection of u with z must have length > 1

2 ∣r∣,
so we may get a shorter spelling of z, a contradiction. Thus, z must be trivial, and we
have

fm1 f
n1
2 fm1 f

n2
2 ⋯fm1 f

n1000
2 = e

Finally arguing by Greendlinger’s lemma and noting that the only possibility of r
is v(f1, f2) = e, we get x ≡ f1. By symmetry we also get that y ≡ f2.

Lemma 3.9. The orbit of (b, c, d, f1, f2) is definable in G(A) by a finitary quantifier-
free formula.

Proof. Let ϕ(x, y, z, t1, t2) be the formula which says that:

� tp11 = e but t1 ≠ e,

� tp22 = e but t2 ≠ e,

� v(t1, t2) = v(t2, t1) = e,

� ub(x, t1) = ub(x, t2) = e but xp1 ≠ e and xp2 ≠ e,

� uc(y, t1) = uc(y, t2) = e but yp1 ≠ e and yp2 ≠ e,

� ud(z, t1) = ud(z, t2) = e but zp1 ≠ e and zp2 ≠ e.

11



Let (x, y, z, t1, t2) satisfy ϕ. We claim that, up to conjugation, (x, y, z, t1, t2) = (b, c, d, f1, f2).
First we claim that (t1, t2) is conjugate to (f1, f2). By Lemma 3.7, t1 = gfm1 g

−1

with p1 ∤ m and t2 = hf
n
2 h

−1 with p2 ∤ n. Then by Lemma 3.8, we get that (t1, t2) is
conjugate to (f1, f2).

We may now assume that t1 = f1 and t2 = f2. By Lemma 3.5, we then have
(x, y, z) = (b, c, d), which completes the proof.

Lemma 3.10. From a presentation of A, we can compute the word problem of G(A).

Proof. To determine if a word in the generating set {a}a∈A ∪ {b, c, d, f1, f2} represents
the identity, we will run Dehn’s algorithm, but in the group presentation defined in
the construction of G(A). Note that this group presentation is computable from a
presentation of A. As the group presentation is C ′(1/20) small cancellation, Dehn’s
algorithm, as an infinite abstract procedure, yields correct output.

To use Dehn’s algorithm effectively, we have to be able to decide whether, for a
given word w, w is Dehn-minimal, that is, to decide whether w contains a subword u
which is also a subword of a relator r = uv with ∣u∣ > ∣r∣/2. We claim that we need
only check finitely many relators r, and that we can effectively compute a list of these
relators. First, as m gets larger, the relations having wm(a, b) on the left hand side
get longer, so there is a finite bound on the values of m we need to check. Second, any
subword containing at least half of one of the relations has to contain all the letters
used on the left hand side of the relation. So the only relators r which might have
a large common subword with w are those whose left hand side contains only letters
appearing in w. For any given finite set of letters, and bound on m, there are only
finitely many relators which use those letters, and we can use the diagram of A to
compute a list of these. Thus Dehn’s algorithm is effective.

Lemma 3.11. A is finitely generated if and only if G(A) is finitely generated.

Proof. If A can be finitely generated by a1, . . . , an, then G(A) can be finitely generated
by a1, . . . , an, b, c, d, f1, f2.

Now assume A is not finitely generated. Suppose, towards a contradiction, that
G(A) is finitely generated by g1, . . . , gk. Write each of g1, . . . , gk as a word in A and
b, c, d, f1, and f2. Only finitely many letters a1, . . . , an from A appear in these words,
along with possibly b, c, d, f1, and f2. As A is not finitely-generated, there must be
an a′ ∈ A that cannot be written as a term (in the language of A) in a1, . . . , an. On
the other hand, G(A) is generated by a1, . . . , an, b, c, d, f1, f2.

Let A∗ ⊆ A be the set generated (in A) by a1, . . . , an ∈ A. Note that a′ ∈ A ∖A∗.
In G(A), fix a shortest spelling x of a′ using the letters A∗ ∪ {b, c, d, f1, f2}. Now
(a′)−1x = e in G(A). By Greendlinger’s lemma, there must be a large subword u of
some cyclic permutation r of a relator such that u is also a subword of (a′)−1x.

Because A∗ is closed under the application of functions in A, when we look at the
relators of G(A) we see that if r′ is any relator with a large subword u′ which uses
only the letters A∗ ∪ {b, c, d, f1, f2}, then r′ uses only the letters A∗ ∪ {b, c, d, f1, f2}.
Since x is a shortest spelling using the letters A∗ ∪ {b, c, d, f1, f2}, it cannot be that u
is a subword of x. Thus u must contain (a′)−1.

But u contains only one occurrence of (a′)−1, so it must be that r is an inverse of a
cyclic permutation of a relator the form wm(ȳ, b) = a′, with ȳ ∈ A∗. But then a′ can be
written as a term in ȳ using the mth function symbol, a contradiction. We conclude
that if A is not finitely generated, then G(A) is not finitely generated.

12



We are now ready to put all of our lemmas together to prove Theorem 3.1.

Proof of Theorem 3.1. Define G̃ by G̃(A) = (G(A), b, c, d, f1, f2). By Lemma 3.10, G̃
is an effective functor. Given G = G̃(A), we can construct a copy F (G) of A by taking
as its domain the set

Dom(F (G)) = {x ∈ G ∣ uA(x, c) = uA(x, d) = e},

and interpreting the mth symbol in L as either, if it is a relation symbol R, the set

RF (G) = {x̄ ∈ A ∣ wm(x̄, b) = e},

or, if the mth symbol is a function f , as the set

fF (G)(x̄) = the unique y such that wm(x̄, b) = y.

By Lemma 3.5 and Lemma 3.6, F (G) is isomorphic to A. It is not hard to see that
this is an effective functor. Indeed, it is induced by an interpretation of A in G̃(A).

We want to show that F and G̃ form a reduction by effective adjoint equivalence
between the class of L-structures and groups with five constants named. To do this,
we must show that F ○ G̃ and G̃ ○F are effectively naturally isomorphic to the identity
functors of their respective categories.

Given A, F (G̃(A)) is isomorphic to A in an obvious way (A injects into G̃(A)

in a computable way, and F (G̃(A)) picks out this subset). If G ≅ G̃(A), then F (G)

picks out an isomorphic copy of A which embeds into G; thus we can consider G to
be generated by F (G) together with bG, cG, dG, fG1 , f

G
2 ∈ G. G̃(F (G)) is generated

by the same set F (G), together with bG̃(F (G)), cG̃(F (G)), dG̃(F (G)), f
G̃(F (G))
1 , f

G̃(F (G))
2 ∈

G̃(F (G)). This induces an obvious isomorphism between G and G̃(F (G)).
Theorem 3.1 then follows from Lemma 3.9 which implies that the orbit of the tuple

(b, c, d, f1, f2) ∈ G(A) is definable by a finitary quantifier-free formula and Lemma 3.11
which implies that A is finitely generated if and only if G(A) is.

Remark 3.12. G(A), as a group without the constants named, has an automorphism
group that is the semi-direct product of the inner automorphism group and the group
of autormophisms K that contains the autormophisms which fix b, c, d, f1, and f2.
Furthermore, K is naturally isomorphic to the outer automorphism group of G(A), as
well as the automorphism group of the L-structure A, and the automorphism group of
(G(A), b, c, d, f1, f2).

4 Classes of Structures That Are Not Universal

In this section we give some examples of classes of finitely generated structures that
are not universal among finitely generated structures. We first observe that there
are uncountably many non-isomorphic finitely generated structures, but the class of
finitely generated fields, the class of finitely generated commutative rings, and the
class of finitely presented groups are all countable. Thus, these classes cannot be
universal among finitely generated structures. However, this implies nothing about
the computability strength of these structures. Below we give a “stronger” argument
for the non-universality of finitely generated fields, which should work even for other

13



weaker notions of “universality”, by showing they always have low complexity Scott
sentences. For instance, finitely generated fields are not universal even if one drops the
uniformity from Definition 2.9.

Recall that a Scott sentence for a structure A is an Lω1ω-formula ϕ such that A
is the only countable model of ϕ up to isomorphism. In [HTH], the authors showed
that every finitely generated field has a d-Σ0

2 Scott sentence. We will use this to argue
that finitely generated fields are not universal among finitely generated structures.
Recall that Montalbán [Mon, Lemma 5.3] showed that two structures which are bi-
interpretable have Scott sentences of the same complexity, and that we know from
[HTH] that there are finitely generated groups with no d-Σ0

2 Scott sentence. Thus there
is a finitely generated group which is not bi-interpretable with any finitely generated
field.

However, we know from the previous section that while finitely generated groups
are not universal, they are after naming constants. We will extend the argument above
show that finitely generated fields are not universal even after naming constants.

Proposition 4.1. Let A be a countable structure and c̄ ∈ A. If A has a Σ0
α (respectively

Π0
α, d-Σ0

α) Scott sentence, then so does (A, c̄).

Proof. If A has a Σ0
α (respectively d-Σ0

α) Scott sentence ϕ, then it has a Π0
α+1 Scott

sentence, and so the orbit of each tuple is definable by a Σ0
α formula (see Theorem of

1.1 [Mon15]); let ψ(x̄) define the orbit of c̄. Then ϕ∧ψ(c̄) is a Σ0
α (respectively d-Σ0

α)
Scott sentence for (A, c̄).

If A has a Π0
α Scott sentence ϕ, then the orbit of c̄ is defined by a Σ0

β formula ψ(x̄)

for some β < α. Then ϕ ∧ ψ(c̄) is a Π0
α Scott sentence for (A, c̄).

Theorem 4.2. There is a finitely generated structure which is not bi-interpretable with
any finitely generated field, even after naming finitely many constants from the field.

This implies that finitely generated fields are not universal among finitely generated
structures, even after naming finitely many constants.

Proof. LetA be a finitely generated structure with no d-Σ0
2 Scott sentence, and suppose

towards a contradiction that it is effectively bi-interpretable with a finitely generated
field F possible with finitely many constants c̄ named. Now F has a d-Σ0

2 Scott
sentence, and so by the previous lemma, so does (F, c̄). But then A also has a d-Σ0

2

Scott sentence as A is effectively bi-interpretable with (F, c̄). This contradiction proves
the theorem.

In some instances, we can also remove constants.

Proposition 4.3. Let A be a countable structure and c̄ ∈ A.

� If (A, c̄) has a Σ0
α Scott sentence, then so does A.

� Suppose that the orbit of c̄ is defined by a Σ0
β formula for some β < α. If (A, c̄)

has a Π0
α (respectively d-Σ0

α) Scott sentence, then so does A.

Proof. Suppose that ϕ(c̄) is a Σ0
α Scott sentence for (A, c̄). Then (∃x̄)ϕ(x̄) is a Σ0

α

Scott sentence for A.
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Suppose that ϕ(c̄) is a Π0
α Scott sentence for (A, c̄) and let ψ be a Σ0

β definition of
the orbit of c̄ for some β < α. Then

(∃x̄)ψ(x̄) ∧ (∀x̄)(ψ(x̄)Ð→ ϕ(x̄))

is a Π0
α Scott sentence for A.

Suppose that ϕ(c̄) ∧ γ(c̄) is a d-Σ0
α Scott sentence for (A, c̄), with ϕ being Σ0

α and
γ being Π0

α. Let ψ be a Σ0
β definition of the orbit of c̄ for some β < α. Then

(∃x̄)[ψ(x̄) ∧ ϕ(x̄)] ∧ (∀x̄)(ψ(x̄)Ð→ γ(x̄))

is a d-Σ0
α Scott sentence for A.

5 Quasi Scott Sentences

5.1 General Results

In [HTH], the authors proved:

Theorem 5.1. A finitely generated structure A has a d-Σ0
2 Scott sentence if and only

if it does not contain a copy of itself as a proper Σ0
1-elementary substructure.

If A did contain a copy of itself as a Σ0
1-elementary substructure, we produced a

structure A∗ ≡2 A which is not finitely generated, and hence not isomorphic to A.
From this it follows that A has no d-Σ0

2 Scott sentence, as any d-Σ0
2 sentence true of

A is also true of A∗.
A Scott sentence is a description of a structure among countable structures; when

dealing with finitely generated structures, it is natural to ask whether a structure has
a description among finitely generated structures. This is analogous to quasi finite
axiomatizations as defined in [Nie03] (not to be confused with the different defini-
tion of quasi finite axiomatization in [AZ86] which is unrelated to finitely generated
structures.)

Definition 5.2. Let A be a finitely-generated structure. A quasi Scott sentence for A
is an Lω1ω sentence ϕ such that A is the unique finitely-generated model of ϕ.

Any Scott sentence is automatically a quasi Scott sentence. As every finitely gener-
ated structure has a Σ0

3 Scott sentence, they all have a Σ0
3 quasi Scott sentence. Every

finitely generated structure also has a Π0
3 quasi Scott sentence (but there are finitely

generated structures with no Π0
3 Scott sentence):

Proposition 5.3. Every finitely generated structure has a Π0
3 quasi Scott sentence.

Proof. Let A be a finitely generated structure generated by a tuple ā. Let p(x̄) be the
atomic type of ā. Then the sentence

⋀
n
(∀y1, . . . , yn)(∃x̄)[y1, . . . , yn ∈ ⟨x̄⟩ ∧ p(x̄)]

is a Π0
3 quasi Scott sentence for A. It is clear that this sentence is true of A. If B a

finitely generated structure satisfying this sentence, then B is generated by a tuple b̄;
thus there must be some tuple b̄′ such that b̄ ∈ ⟨b̄′⟩ and p(b̄′). Thus b̄′ generates B, and
since b̄′ satisfies the atomic type p, B must be isomorphic to A.
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Unlike with Scott sentences, we do not have a classification of the structures with a
d-Σ0

2 quasi Scott sentence. Instead, it seems to be more natural to look at the 2-theory
of a structure.

Definition 5.4. Let A be a countable structure. The 2-theory of A, Th2(A), is the
set of Σ0

2 and Π0
2 sentences true of A.

� If A is the only countable model of Th2(A), then we say that Th2(A) is countably
categorical.

� If A is finitely generated and the only finitely generated model of Th2(A), then
we say that Th2(A) is quasi-categorical.

Note that if A is finitely generated, every Σ0
2 formula in Th2(A) is entailed by a

single Σ0
2 formula—the one which says that there is a substructure isomorphic to A.

We have a complete classification of when a structure’s 2-theory is quasi-categorical.

Theorem 5.5. Let A be a finitely generated structure. The following are equivalent:

(1) A has a Σ0
1-elementary finitely generated substructure B ≇ A which contains a

Σ0
1-elementary substructure isomorphic to A.

(2) Th2(A) is not quasi-categorical.

Proof. Given (1), each structure isomorphic to A is contained as a Σ0
1-elementary

substructure of a structure isomorphic to B, and vice versa. So we can build a chain

A1 ≺Σ0
1
B1 ≺Σ0

1
A2 ≺Σ0

1
B2 ≺Σ0

1
⋯

where each Ai is isomorphic to A, and each Bi is isomorphic to B. Let C be the
union of this chain. Then A ≡2 C and B ≡2 C, so that A ≡2 B. Thus Th2(A) is not
quasi-categorical.

Suppose that Th2(A) is not quasi-categorical, and let B be a non-isomorphic finitely
generated structure such that B ≡2 A. Let p be the Π0

1 type of a generating tuple for
A. Then A ⊧ (∃x̄)p(x̄), so B ⊧ (∃x̄)p(x̄). Let ḡ ∈ B realize p. Then ḡ generates a copy
of A which is a Σ0

1-elementary substructure of B. The same argument shows that A
contains a copy of B as a Σ0

1-elementary substructure.

We can use a similar argument to give sufficient, but not necessary, conditions for
a structure to have a d-Σ0

2 quasi Scott sentence.

Theorem 5.6. Let A be a finitely generated structure. Suppose that A is contained as
a Σ0

1-elementary substructure within only countably many (up to isomorphism) finitely
generated structures, none of which (other than A itself) is a Σ0

1-elementary substruc-
ture of A. Then A has a d-Σ0

2 quasi Scott sentence.

Proof. Let p be the Π0
1 type of a generating tuple for A. Let C be the collection of

finitely generated structures, not isomorphic to A, which contain A as a Σ0
1-elementary

substructure. For each B ∈ C, let qB be the Π0
1 type of a generating tuple from B. Then

(∃x̄)p(x̄) ∧⩕B∈C ¬(∃x̄)qB(x̄) is a quasi Scott sentence for A.

Question 5.7. Give a complete classification of the finitely generated structure which
have a d-Σ0

2 quasi Scott sentence.
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5.2 Quasi Scott Sentences and Bi-Interpretations

In the next section, we will give some examples of finitely generated structures with
various types of quasi Scott sentences. In this section, we prove the results required
to use the universality of finitely generated groups to turn these examples into finitely
generated groups.

To begin, we need a couple of lemmas about interpretations. The following lemma is
well-known, even in the weaker setting of Turing computable embeddings (see [KMVB07]).
We give a sketch of the proof in the setting of interpretations.

Lemma 5.8. Let F be a computable functor from a class C to a class D. Let ϕ be a
sentence in the language of D. Then there is a sentence ψ such that for A ∈ C, A ⊧ ψ
if and only if F (A) ⊧ ϕ. Moreover, ψ is the same complexity (Σ0

α, Π0
α, or d-Σ0

α) as ϕ.

Proof sketch. Each structure F (A) is interpretable in A, and the formulas in the in-
terpretations are independent of A. The formula ψ is obtained by modifying ϕ by
relativizing each quantifier to the domain of the interpretation, which is ∆c

1-definable,
and by replacing each symbol in the language of F (A) by its ∆c

1 definition in the lan-
guage of A. Thus the complexity of the sentence is maintained. See [Hod93, Theorem
5.3.2] for a more detailed proof in the context of interpretations in (finitary) elementary
first-order logic.

This next lemma says that if we have a reduction of the class of L-structures to
the class of L∗-structures, then we can write down a sentence saying, of a particular
L∗-structure, whether or not it is in the image of this reduction.

Lemma 5.9. Suppose that the class of L-structures is reducible via effective bi-inter-
pretability to the class of L∗-structures. There is a Π0

2 L
∗-sentence which defines the

image of this reduction.

Proof. Fix ∆c
1 formulas for the bi-interpretations. We want to write down a Π0

2 L
∗-

sentence which says, of a particular L∗-structure A, that these ∆c
1 formulas define:

(1) an L-structure B interpreted in A,

(2) an L∗-structure C interpreted in B,

(3) an L-structure D interpreted in C,

(4) an isomorphism between A and C, and

(5) an isomorphism between B and D.

For (1), to say that these ∆c
1 formulas define an L-structure B interpreted in A, we just

need to say that the formula defining an equivalence relation is in fact an equivalence
relation, that the relation symbols and function symbols are well-defined on equivalence
classes, that the function symbols are interpreted as functions, and that the domain is
closed under the functions. This can all be expressed as a Π0

2 L
∗-sentence.

For (2), to say that the formulas of the bi-interpretation define an L∗-structure C
interpreted in B, we first write down a Π0

2 L-sentence χ such that B ⊧ χ if and only if
the ∆c

1 formulas of the bi-interpretation define an L∗ structure inside of B. Then using
Lemma 5.8 we get an L∗ sentence χ∗ such that A ⊧ χ∗ if and only if B ⊧ χ.
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We can write down sentences expressing (3), (4), and (5) similarly. Let ϕ be the
resulting sentence. Then, for an L∗-structure A, A ⊧ ϕ if and only if there is an L-
structure B (obtained by (2)) such that A and B are bi-interpretable using the given
∆c

1 formulas.

Next, we will show that given a finitely generated structure A, A has a d-Σ0
2 quasi

Scott sentence if and only if G(A) has a d-Σ0
2 Scott sentence, where G is the func-

tor from Section 3. We will use more than just the fact that A and G(A) are bi-
interpretable. The issue is that the definition of quasi Scott sentences involve finite
generation, and a structure which is bi-interpretable with a finitely generated struc-
ture is not necessarily finitely generated; all that we can conclude is that it is finitely
generated by ∆c

1-definable functions, but these functions may not be in the language.
However, for the particular functor G, we proved in Theorem 3.1 that A is finitely
generated if and only if G(A) is finitely generated.

Proposition 5.10. Suppose that A is finitely generated. Then A has a d-Σ0
2 quasi

Scott sentence if and only if G(A) has a d-Σ0
2 quasi Scott sentence.

Proof. Suppose that A has a d-Σ0
2 quasi Scott sentence ϕ. By Lemma 5.9 we can

write down a Π0
2 sentence χ which defines the groups G which are isomorphic to G(B)

for some L-structure B. By Lemma 5.8 we can then write down a d-Σ0
2 sentence ψ

in the language of groups such that if G is a group with G ⊧ χ ∧ ψ, then G = G(B)

for some L-structure B ⊧ ϕ. We claim that χ ∧ ψ is a d-Σ0
2 quasi Scott sentence for

G(A). Suppose that G is finitely generated and G ⊧ χ ∧ ψ. Then G = G(B) for some
L-structure B ⊧ ϕ. By Theorem 3.1 (3), B is finitely generated, and so B is isomorphic
to A. Thus G = G(B) is isomorphic to G(A).

Suppose that G = G(A) has a d-Σ0
2 quasi Scott sentence ϕ. By Lemma 5.8 we can

write down a d-Σ0
2 sentence ψ which holds of those L-structures B with G(B) ⊧ ϕ. We

claim that ψ is a quasi Scott sentence for A. Suppose that B ⊧ ψ is a finitely generated
L-structure. Then by Theorem 3.1 (3), G(B) is a finitely generated model of ϕ, and
hence isomorphic to G(A). Since G(A) and G(B) are isomorphic, A is isomorphic to
B.

As with Scott sentences in Section 4, when we showed that finitely generated fields
are not universal, we need to prove that we can add or remove constants from the
signature of a structure without changing the complexity of its quasi Scott sentence.
Note that Theorem 3.1 (2) says that the constants in the signature of G(A) satisfy the
hypotheses of this proposition.

Proposition 5.11. Let A be a countable structure and c̄ ∈ A. Suppose that the orbit
of c̄ is defined by a Σ0

1 formula ψ(x̄). Then A has a Σ0
2 (respectively Π0

2, d-Σ0
2) quasi

Scott sentence if and only if (A, c̄) does.

Proof. If A has a Σ0
2 (respectively Π0

2, d-Σ0
2) quasi Scott sentence ϕ, then ϕ ∧ ψ(c̄) is

a Σ0
2 (respectively Π0

2, d-Σ0
2) Scott sentence for (A, c̄).

If (A, c̄) has a Σ0
2 quasi Scott sentence ϕ(c̄) then (∃x̄)ϕ(x̄) is a quasi Scott sentence

for A.
If (A, c̄) has a Π0

2 quasi Scott sentence ϕ(c̄),

(∃x̄)ψ(x̄) ∧ (∀x̄)(ψ(x̄)Ð→ ϕ(x̄))
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is a quasi Scott sentence for A.
If (A, c̄) has a d-Σ0

2 quasi Scott sentence ϕ(c̄). Then

(∃x̄)[ψ(x̄) ∧ ϕ(x̄)] ∧ (∀x̄)(ψ(x̄)Ð→ γ(x̄))

is a quasi Scott sentence for A.

We also have analogues of Proposition 5.10 and 5.11 for Th2(A).

Proposition 5.12. Suppose that A is finitely generated. Then Th2(A) is quasi cate-
gorical if and only if Th(G(A)) is quasi categorical.

Proof. Suppose that Th2(A) is quasi categorical. By Lemma 5.9 we can write down
a Π0

2 sentence χ which defines the groups G which are isomorphic to G(B) for some
L-structure B. Then χ ∈ Th2(G(A)). Moreover, for each Σ0

2 or Π0
2 sentence ϕ, by

Lemma 5.8 there is a Σ0
2 or Π0

2 sentence ϕ∗ in the language of groups such that if G
is a group G = G(B), then G ⊧ ϕ∗ if and only if B ⊧ ϕ. Thus Th2(G(A)) is quasi
categorical.

Suppose that G = G(A) and Th2(G) is quasi categorical. By Lemma 5.8, for each
Σ0

2 or Π0
2 sentence ϕ in the language of groups, there is a Σ0

2 or Π0
2 sentence ϕ∗ which

holds exactly of those L-structures B with G(B) ⊧ ϕ. Then Th2(A) contains the
sentences ϕ∗ for each ϕ ∈ Th2(G), and so Th2(A) is quasi categorical.

Proposition 5.13. Let A be a finitely generated countable structure and c̄ ∈ A. Suppose
that the orbit of c̄ is defined by a Σ0

1 formula ψ(x̄). Then Th2(A) is quasi categorical
if and only if Th2(A, c̄) is.

Proof. If Th2(A) is quasi categorical, then Th2(A, c̄) ⊇ Th2(A) ∪ {ψ(c̄)} is as well.
Suppose that Th2(A, c̄) is quasi categorical. As A is finitely generated, there is a

single Σ0
2 formula ϕ(c̄) which entails each other Σ0

2 formula in Th2(A, c̄). Then Th2(A)

is quasi categorical as it contains the Σ0
2 formula (∃x̄)[ψ(x̄)∧ϕ(x̄)] and also contains,

for each Π0
2 formula θ(c̄) ∈ Th2(A, c̄), the formula (∀x̄)[ψ(x̄)Ð→ θ(x̄)].

5.3 Examples

We know that every finitely generated structure has a Σ0
3 Scott sentence, as well as

a Σ0
3 and a Π0

3 quasi Scott sentence. The various possible combinations of Scott sen-
tences and quasi Scott sentences for a structure A are as follows, in order from most
complicated to describe to simplest to describe:

(1) Th2(A) is not quasi categorical; then A does not have a d-Σ0
2 Scott sentence or

quasi Scott sentence.

(2) Th2(A) is quasi categorical, A does not have a d-Σ0
2 quasi Scott sentence (and

hence no d-Σ0
2 Scott sentence).

(3) A has a d-Σ0
2 quasi Scott sentence, but no d-Σ0

2 Scott sentence.

(4) A d-Σ0
2 Scott sentence (which is also a d-Σ0

2 Scott sentence).
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We know that there are examples of (4), say finitely generated fields, and we know
from [HTH] that there is a finitely generated group which falls into one of (1), (2),
or (3), but without proving which. In the remainder of this paper, we will show that
there are finitely generated groups falling into (1) and (3). We leave the question of
whether there are any structures falling into (2) as an open question.

The fact that there is a finitely generated group with no d-Σ0
2 quasi Scott sentence

is particularly interesting, as such a group has both a Σ0
3 and Π0

3 quasi Scott sentence.
D. Miller [Mil78] showed that a structure with both a Σ0

3 and a Π0
3 Scott sentence must

have a d-Σ0
2 Scott sentence, but our examples shows that the analogous result is not

true for quasi Scott sentences.
The strategy for both will be to construct an example in some language, and then

to use the universality of finitely generated groups, together with results from the
previous section, to obtain a group.

Theorem 5.14. There is a finitely generated structure which has no d-Σ0
2 Scott sen-

tence, but which does have a d-Σ0
2 quasi Scott sentence.

Proof. The language of A will consist of unary operators p and (ci)i∈Z. A will be an
unrooted tree with p as the parent operator. (It will be unrooted because there will be
an infinite sequence of parents.) The domain A of A consist of elements {(n, τ) ∣ n ∈

ω and τ ∈ Z<ω}. Given τ ∈ Z<ω, τ ≠ ⟨⟩, define τ− to be τ with the last entry removed.
The parent p(n, τ) of (n, τ) is (n, τ−) if τ ≠ ⟨⟩, and (n + 1, ⟨⟩) otherwise. See Figure
1. For each (n, τ), we have the ith child operator ci(n, τ) = (n, τˆi). Note that A is
generated by (0, ⟨⟩). Indeed, (n, ⟨i1, . . . , i`⟩) = ci` ○ ⋯ ○ ci1 ○ p

n(0, ⟨⟩).
To see that A has no d-Σ0

2 Scott sentence, we will use Theorem 5.1, showing that
A contains a copy of itself as a proper Σ1-elementary substructure. Let B be the
substructure generated by (1, ⟨⟩). It is easy to see that (0, ⟨⟩) ∉ B, so that B is a
proper substructure of A. To see that B ≺Σ1 A, let b̄ be a tuple of elements from B
and let ϕ(x̄, ȳ) be a quantifier-free formula with A ⊧ (∃x̄)ϕ(x̄, b̄). We must show that
B ⊧ (∃x̄)ϕ(x̄, b̄). Let ā ∈ A be such that A ⊧ ϕ(ā, b̄). Let k be sufficiently large that
ϕ involves only the symbols p and (ci)∣i∣<k, and each element of ā and b̄ is of the form
(n, τ) with each entry of τ smaller than k. Let ā′ ∈ B be obtained from ā by replacing
each element of ā′ of the form (0, τ) by (1, kˆτ). Then the same relations from p and
(ci)∣i∣<k hold between ā, b̄ and ā′, b̄. So B ⊧ ϕ(ā′, b̄) as desired.

Let ϕ be the d-Σ0
2 sentence which is the conjunct of the sentences which say:

� there is a Σ0
1-elementary substructure isomorphic to A,

� for every two elements, one generates the other,

� (∀x)[⟨x⟩ ≅ A ∨⩔i∈Z(∃y)[ci(y) = x]],

These are Σ0
2, Π0

2, and Π0
2 respectively. The third sentence says that each element

which is not the image of an element under some ci generates a copy of A. It is not
hard to see that A ⊧ ϕ.

Let B be a finitely generated model of this sentence ϕ; using the second conjunct,
B is in fact generated by a single element b. We claim that we may assume that the
generator b is not the image of any element under ci; then by the third conjunct, b
generates a copy of A and we are done. If b = ci(x), then replace b by x = p(b), which
is still a generator of B. We claim that this process will end at some point. Using the
first conjunct, we may assume that A ⪯Σ1 B. Let a = (0, ⟨⟩) ∈ A. Then a is generated
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by b, say by a term t. In A, a ≠ ci(x) for any x; thus the same is true in B. So t = p○⋯.
Moreover, for any element x ∈ A, p(ci(x)) = x, and so the same is true in B. Thus t is
equivalent to pn for some n, and a = pn(b). So the process described above can go at
most n steps.

Corollary 5.15. There is a finitely generated group which has no d-Σ0
2 Scott sentence,

but which does have a d-Σ0
2 quasi Scott sentence.

Proof. Let A be the structure from the previous theorem. Let G be the finitely gener-
ated group and c̄ ∈ G the 5-tuple of elements with (G, c̄) = G̃(A). Since A and (G, c̄)
are effectively bi-interpretable, (G, c̄) has no d-Σ0

2 Scott sentence. By Propositions 4.1,
G has no d-Σ0

2 Scott sentence.
By Proposition 5.10, (G, c̄) has a d-Σ0

2 quasi Scott sentence. By Theorem 3.1
(2), the orbit of c̄ is Σ0

1-definable. By Proposition 5.11, G has a d-Σ0
2 quasi Scott

sentence.

Theorem 5.16. There is a finitely generated structure A such that Th2(A) is not
quasi categorical.

Proof. The structure A will be the same as the structure of Theorem 5.14—consisting
of unary operators p and (ci)i∈Z—but with the addition of a new unary relation P .
The domain A of A again consist of elements {(n, τ) ∣ n ∈ ω and τ ∈ Z<ω}. As before,
the parent p(n, τ) of (n, τ) is (n, τ−) if τ ≠ ⟨⟩, and (n + 1, ⟨⟩) otherwise, and ci(n, τ) =
(n, τˆi). We set P (n, τ) if n+ ∣τ ∣ is even. Then P holds of the elements at every second
level of the tree.

Let B be the structure generated by (1, ⟨⟩). Then A and B are not isomorphic.
Indeed, A has a generator (0, ⟨⟩) on which P holds and is not an image of any of the
ci’s, but B does not have such a generator.

We will show that A ⪯Σ1 B and B ⪯Σ1 A, from which it will follow by Theorem 5.5
that Th2(A) is not quasi categorical. To see that A ⪯Σ1 B, we use the same argument
as in Theorem 5.14, noting that P (0, τ) ⇐⇒ P (1, kˆτ). The argument that B ⪯Σ1 A

is similar.

Corollary 5.17. There is a finitely generated group G such that Th2(G) is not quasi-
categorical.

Proof. Let A be the structure from the previous theorem. Let G be the finitely gener-
ated group and c̄ ∈ G the 5-tuple of elements with (G, c̄) = G̃(A). By Proposition 5.12,
Th2(G, c̄) is not quasi categorical. By Theorem 3.1 (2), the orbit of c̄ is Σ0

1-definable.
By Proposition 5.13, Th2(G) is not quasi categorical.

Question 5.18. Is there a finitely generated structure A such that Th2(A) is quasi-
categorical, but A has no d-Σ0

2 quasi Scott sentence?
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