
THE GAMMA QUESTION FOR MANY-ONE DEGREES

MATTHEW HARRISON-TRAINOR

Abstract. A set A is coarsely computable with density r ∈ [0,1] if there is

an algorithm for deciding membership in A which always gives a (possibly

incorrect) answer, and which gives a correct answer with density at least r.
To any Turing degree a we can assign a value ΓT (a): the minimum, over all

sets A in a, of the highest density at which A is coarsely computable. The

closer ΓT (a) is to 1, the closer a is to being computable. Andrews, Cai,
Diamondstone, Jockusch, and Lempp noted that ΓT can take on the values

0, 1/2, and 1, but not any values in strictly between 1/2 and 1. They asked

whether the value of ΓT can be strictly between 0 and 1/2. This is the Gamma
question.

Replacing Turing degrees by many-one degrees, we get an analogous ques-
tion, and the same arguments show that Γm can take on the values 0, 1/2, and

1, but not any values strictly between 1/2 and 1. We will show that for any

r ∈ [0,1/2], there is an m-degree a with Γm(a) = r. Thus the range of Γm is
[0,1/2] ∪ {1}.

Benoit Monin has recently announced a solution to the Gamma question

for Turing degrees. Interestingly, his solution gives the opposite answer: the
only possible values of ΓT are 0, 1/2, and 1.

1. Introduction

We give a solution to the Gamma question for many-one degrees by showing
that for each r ∈ [0,1/2], there is a many-one degree a such that Γm(a) = r.

A set A ⊆ ω is coarsely computable if, roughly speaking, we have an algorithm for
deciding membership in A which always gives an answer, and the answer is correct
except on a set of density zero. By density, we mean asymptotic lower density.

Definition 1. The lower density of a set Z ⊆ ω is

ρ(Z) ∶= lim inf
n→∞

∣Z ∩ [0, n)∣
n

.

More generally, we can talk about algorithms which are correct half the time, or a
third of the time, or almost never. To a set A ⊆ ω, we can assign a real number which
measures the highest density to which it can be approximated by a computable set.

Definition 2 ([HJMS16]). A set A ⊆ ω is coarsely computable at density r ∈ [0,1]
if there is a computable set R such that ρ(A↔ R) = r. Here, A↔ R is the set on
which A and R agree:

A↔ R ∶= {x ∣ x ∈ A⇐⇒ x ∈ R}.
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Definition 3 ([HJMS16]). The coarse computability bound of a set A ⊆ ω is

γ(A) ∶= sup{r ∣ A is coarsely computable at density r}.
That is, γ(A) is the supremum, over all computable sets R, of ρ(A↔ R).

It is known that for each r ∈ (0,1], there are sets with coarse computability bound r
such that the supremum is obtained, and sets where the supremum is not obtained
[HJMS16].

Jockusch and Schupp [JS12] have shown that every non-zero Turing degree con-
tains a set which is not coarsely computable. (This follows from the proof of
Proposition 6 below.) Thus, if ΓT (a) = 1, then a = 0. Andrews, Cai, Diamond-
stone, Jockusch, and Lempp suggested assigning to each Turing degree a real num-
ber which measures the extent to which all sets computable in that degree can be
coarsely computed.

Definition 4 ([ACD+16]). The coarse computability bound of a Turing degree a is

ΓT (a) ∶= inf{γ(A) ∣ A is a-computable}.
It suffices to take the infimum only over sets in a.

Andrews, Cai, Diamondstone, Jockusch, and Lempp showed that ΓT (a) can take
on the values 0, 1/2, and 1.1

Theorem 5 ([ACD+16]). For a Turing degree a:

(1) If a is computable, ΓT (a) = 1.
(2) If a is computably traceable and non-computable, ΓT (a) = 1/2.
(3) If a is 1-random and hyperimmune-free, ΓT (a) = 1/2.
(4) If a is hyperimmune, ΓT (a) = 0.
(5) If a is PA, ΓT (a) = 0.

Hirschfeldt, Jockusch, McNicholl, and Schupp showed that ΓT (a) cannot take
on any values in the open interval (1/2,1). We will repeat the proof here because
we will reference it later.

Proposition 6 ([HJMS16]). Let a be a nonzero Turing degree. Then ΓT (a) ≤ 1
2
.

Proof. Fix A ∈ a. We will show that there is B ≤m A such that γ(B) ≤ 1
2
. The

idea is that each bit of A will be copied many times by B, so that if we have a
computable approximation to B which is correct more than half the time, we can
correctly guess at the bits of A with only finitely many errors.

For each n ∈ ω, define In = [n!, (n + 1)!). Let

B = ⋃
n∈A

In.

It is easy to see that B ≤m A. Suppose towards a contradiction that γ(B) > 1
2
. Let

R be a computable approximation to B, with ρ(B ↔ R) > 1
2
. Fix N and p such

that for all n ≥ N ,
∣(B ↔ R) ∩ [0, n)∣

n
≥ p > 1

2
.

Increasing N , we may assume that 1
2
+ 1
N
< p.

1See also [MN15] for a unifying approach to some of these examples.
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Given n ≥ N , we will show how to decide computably whether n ∈ A. We claim
that n ∈ A if and only if more than half of the elements of In are in R. Indeed,
suppose that n ∈ A, but at most half of the elements of In are in R. Then

∣(B ↔ R) ∩ [0, (n + 1)!)∣
(n + 1)! ≤

n! + (n+1)!−n!
2

(n + 1)! = 1

2
+ 1

2(n + 1) < p.

This is a contradiction. So if n ∈ A, more than half of the elements of In are in R.
A similar argument works when n ∉ A. �

The Gamma question, from [ACD+16], asks whether the value of ΓT can be
strictly between 0 and 1/2. Monin [Mon] has recently given a solution to the
Gamma question: The only possible values of ΓT are 0, 1/2, and 1.

Our work grew out of an independent attempt to answer the Gamma question. If
we replace Turing reducibility by many-one reducibility, we get a Gamma function
on many-one degrees:

Definition 7. The coarse computability bound of an m-degree a is

Γm(a) ∶= inf{γ(A) ∣ A ≤m a}.
It suffices to take the infimum only over sets in a.

The proof of Proposition 6 used a many-one reduction, so it still holds for m-
degrees. Moreover, the examples in Theorem 5 yield examples of m-degrees with
Γm being 0, 1/2, and 1. Thus, we can ask the Gamma question for m-degrees: Can
the value of Γm be strictly between 0 and 1/2? Interestingly, we get the opposite
answer from Monin’s: Every p ∈ [0,1/2] is a possible value of Γm.

Theorem 8. Fix 0 ≤ p ≤ 1
2
. There is an m-degree a with Γm(a) = p.

Versions of the Gamma question for weaker reducibilities have already been asked
in the literature: In [Hir], Hirschfeldt asked the Gamma question for truth table
degrees. (Monin’s answer to the Gamma question for Turing degrees also yields the
same answer for truth table degrees: The value of Γtt cannot be strictly between
0 and 1/2.) An interesting question is what happens for intermediate reductions,
such as bounded truth table reductions. Do such reductions have enough compu-
tational power to apply the theorems from coding theory used by Monin, or are
they sufficiently simple to allow a construction such as the one we use for many-one
degrees?

2. Background on the Hypergeometric Distribution

The proof of Theorem 8 will make use of a probabilistic argument about ran-
dom variables following a hypergeometric distribution. We will quickly review this
distribution here. (See [HPS71, p. 52].)

The hypergeometric distribution is the discrete probability distribution of the
number of successes in K draws, without replacement, from a population of size N
which contains n successes. For example, one might think of red and blue marbles in
a box; if there are N marbles, n of which are red, and we randomly select K marbles,
the number of red marbles we pick will follow a hypergeometric distribution. We
denote the hypergeometric distribution by H(K,N,n) and, if X ∼ H(K,N,n), we
have

Pr(X = x) =
(n
x
)(N−n
K−x)

(N
K
)

.
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Our particular application will be to have a set U of size N , with a subset V of
size n. If p > q are real numbers in [0,1], we will randomly pick from U a set S
consisting of about pN elements. We want to choose, in S, at least qn elements
which are also in V . Since p > q, it is reasonable to think that we should often get
enough elements of V . Intuitively, the larger N and n are, the more likely we are
to get want we want. Precise bounds are given by the following theorem:

Theorem 9 ([Hoe63], see also [Chv79]). Let X ∼ H(K,N,n) where p = K/N > q.
Let t = p − q. Then

Pr(X ≤ qn) ≤ exp(−2t2n).

It will be important that this bound does not depend on N (though of course, as
n becomes bigger, N will as well).

3. Proof of the Main Theorem

We will now prove Theorem 8.

Proof of Theorem 8. Fix 0 < p < 1
2
. We will find a set A whose m-degree a has

Γm(a) = p. Fix (C`)`∈ω a non-effective list of the computable sets, in which each
set is repeated infinitely many times.

We will ensure that γ(A) ≤ p having, for each computable set C`,

lim inf
n→0

∣(A↔ C`) ∩ [0, n)∣
n

≤ p.

We will accomplish this by making sure that for each `, there are infinitely many
values of n for which we force A to differ from C` on a large portion of [0, n). This
will force Γm(a) ≤ p. In fact, since each computable set appears infinitely many
times in the list (C`)`∈ω, it suffices to find, for each `, a single n ≥ ` with

∣(A↔ C`) ∩ [0, n)∣
n

≤ p + ε`

where ε` → 0.
To have Γm(a) ≥ p, we must make sure that for each set B which is m-reducible

to A via f , γ(B) ≥ p. (One such B will be A itself via the identity reduction.) We
will think of A as being approximated by A∗ = ∅. (So we want the bits of A to
be 0’s with density at least p.) Thus we might initially try to approximate B by
B∗ = ∅, which is what we get by applying the reduction f to A∗. This will not
work, for the reason that f could be highly non-injective. For example, if f maps
every element to the same element y, then we could have A = {y}, which is very
well approximated by A∗, but applying the reduction f we get B = ω which is very
badly approximated by B∗. This is where we will exploit the fact that p ≤ 1/2. Say
z = f(x) = f(y). Then if we put x ∈ B∗ but y ∉ B∗, we are guaranteed to be right
about at least one of the two; for if z ∈ A, then x, y ∈ B in which case we were right
about x, and if z ∉ A, then x, y ∉ B, in which case we were right about y. If we
manage this in the right way, we will be correct with density 1/2. (The proof of
Proposition 6 shows that we must do something like this.)

More formally, let (fe∶ω → ω)e∈ω be a (non-effective) list of the total many-one
reductions. For each e, let

Be = f−1
e (A) ∶= {x ∣ fe(x) ∈ A}.
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We define a computable approximation B∗
e to Be as follows. First, let I1, I2, I3, . . .

be the consecutive intervals of length one, two, three, and so on. (So I1 = {0},
I2 = {1,2}, I3 = {3,4,5}, etc.) For each interval In, let Jn,e = fe(In) be the
multiset image2 of In under fe, and write Jn,e = J∗n,e ⊎ 2J∗∗n,e where each element
has multiplicity one in J∗n,e. So, for example, if fe(3) = 0, fe(4) = 0, and fe(5) = 1,
then fe(I3) = {0,0,1} = {1} ⊎ 2{0}; if J8,e = fe(I8) = {0,0,0,0,0,1,1,2}, then
J8,e = {0,2} ⊎ 2{0,0,1}. We can write In as a disjoint union I∗n,e ∪ I∗∗,1n,e ∪ I∗∗,2n,e ,

where fe(I∗∗,1n,e ) = fe(I∗∗,2n,e ) = J∗∗n,e and fe(I∗n,e) = J∗n,e. Then let B∗ = ⋃n I∗∗,1n,e . The
simplicity with which we can describe B∗ is where we take advantage of the fact
that we are considering many-one reductions rather than Turing reductions. We
will have that, for some decreasing positive sequence γn → 0, and for all n,

(�)
∣(Be ↔ B∗

e ) ∩ In∣
n

≥ p − γn.

Since the length of the intervals In are increasing slowly, this will suffice to get
γ(Be) ≥ p.

Claim 10. Assuming (�), γ(Be) ≥ p.

Proof. Since

∣(Be ↔ B∗
e ) ∩ Im∣

m
≥ p − γm,

for each m, there is Km such that for all K ≥Km,

∣(Be ↔ B∗
e ) ∩ (⋃n≤K In)∣
∑n≤K n

≥ p − γm.

(Assume that the sequence Km is strictly increasing in m.) Given m, let x ∈ IN+1

for some N ≥Km, with N sufficiently large that N−1
N+1

(p − γm) ≥ p − 2γm. Then

∣(Be ↔ B∗
e ) ∩ ( ⋃

n<N
In)∣ ≤ ∣(Be ↔ B∗

e ) ∩ [0, x]∣.

So

∣(Be ↔ B∗
e ) ∩ [0, x]∣

x + 1
≥ (∑n<N n)

x + 1

∣(Be ↔ B∗
e ) ∩ (⋃n<N In)∣

(∑n<N n)
≥ (∑n<N n)

x + 1
(p − γm).

Now
(∑n<N n)
x + 1

≥ (∑n<N n)
(∑n≤N n)

= N − 1

N + 1
.

By choice of N , N−1
N+1

(p − γm) ≥ p − 2γm, and so

∣(Be ↔ B∗
e ) ∩ [0, x]∣

x + 1
≥ p − 2γm.

Thus

γ(Be) = lim inf
x→∞

∣(Be ↔ B∗
e ) ∩ [0, x)∣
x

≥ p. �

2Recall that multisets are a generalization of sets to allow multiple instances of the same
element. By the multiset image, we mean that we want to count the number of pre-images of an

element in the range.
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Note that one of the reductions fe is the identity reduction, so for that e, Be = A.
Thus γ(A) = p. Hence Γm(A) = p.

We now construct A as the concatenation of infinitely many finite binary strings:
A = α⌢1β⌢1α⌢2β⌢2α⌢3 . . . . Each αi will consist entirely of 0’s.3 Note that we have already
defined each of the approximations B∗

e computably; our construction of A can be
non-effective. Fix (ε`)`∈ω a decreasing sequence of positive reals converging to zero
(and assume that the ε` are small relative to p, so that for example p − ε` > 0 and
p + ε` < 1/2). Given α⌢1β

⌢
1α

⌢
2β

⌢
2⋯⌢β`, we must define α`+1 and β`+1. Let L be the

length of α⌢1β
⌢
1α

⌢
2β

⌢
2⋯⌢β`.

At stage `, we consider only the reductions fe for e ≤ `. We have two competing
desires. First, we want to define β`+1 so that A has very little agreement with C` on
this part of their domain. Second, we want β`+1 to have many 0’s, particularly on
elements in the ranges of the fe, so that the sets Be have many 0’s. Our probabilistic
argument using the hypergeometric distribution will show that we can satisfy both
of these desires at the same time.

At stage `, we will divide the intervals In which make up the domain of Be into
three types, depending on their size: small, medium, and large. An interval will
be of medium size for exactly one stage `; at earlier stages, it will be large, and at
later stages, it will be small. Small intervals are too small to use the bounds for the
hypergeometric distribution while keeping any errors under ε`; we will ensure that
their images, under the fe, look only at the values in α`+1 and earlier. The medium
and large intervals are large enough to use the bounds for the hypergeometric
distribution. The difference between the medium and large intervals will not show
up until the verification. Essentially, large intervals are so big that the values of
β`+1 do not affect the agreement of Be with B∗

e .
Choose M sufficiently large (and bigger than the value of M at the previous

stage) so that:

(1) `∑n≥M exp(−ε3`n) < 1 and

(2) if M ′ ≥M and M ′ = 2m1 +m2, then m1+pm2−L
M ′ ≥ p − ε`.

Since p ≤ 1/2, (2) holds for M ≥ L/ε`. We can get (1) to hold for sufficiently large
M because the infinite series `∑n≥1 exp(−ε3`n) converges. M is the cutoff between
the small and medium intervals. (1) says that M is big enough to apply the tail
bounds for the hypergeometric distribution, and (2) says that M is large enough
compared to L that we do not have to worry about what we have already chosen
for α⌢1β

⌢
1α

⌢
2β

⌢
2⋯⌢β`.

Choose K sufficiently large so that each element of Ji,e, for i < M and e ≤ `,
is less than L +K. Set α`+1 = 0K . Thus every small interval Ii,e will see, under
the reduction fe, only α⌢1β

⌢
1α

⌢
2β

⌢
2⋯⌢β⌢` α`+1. Our choice of β`+1 will not affect the

reduction on these intervals.
Then choose N sufficiently large that so that L+K+pN+ε`N

L+K+N ≤ p+2ε` and ⌊(p+ε`)N⌋
N

−
p ≥ ε`/2. We will have ∣β`+1∣ = N . N is large enough that, by making β`+1 agree
with C` at density at most p, we can make A agree with C` at density at most p+ε`.
This N will be the N in our applications of the tail bounds for the hypergeometric
distribution. Because K was chosen dependent on M , and N was chosen dependent

3We should expect to have long sequences of zeros. Since γ(A) = p ≤ 1/2, A↔ ω should have
density at most p. But that means that the upper destiny of A↔ ∅ should be at least 1−p ≥ 1/2,

so there should be initial segments of A with many 0’s.
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on K, it is important here that these tail bounds depend only on n (which will be
bounded below by a fixed multiple of M).

As before, write Jn,e = fe(In) as J∗n,e⊎2J∗∗n,e where each element has multiplicity
one in J∗n,e. Recall that, by choice of B∗

e , we are guaranteed to have Be agree with
B∗
e on half of the elements in In,e which map to J∗∗n,e. If the size of J∗∗n,e is very

close to the size of Jn,e, then we are guaranteed to get agreement of close to 1/2 on
In,e, and we do not have to worry about In,e. The other option is that J∗n,e is very
large, in which case we get small tail bounds for the hypergeometric distribution.

More formally, if n ≥M , then either
∣J∗∗n,e∣
∣Jn,e∣ ≥

1
2
− ε` or ∣J∗n,e∣ > 2ε`∣Jn,e∣. Indeed, if we

are not in the former case, then

2∣J∗∗n,e∣ < ∣Jn,e∣ − 2ε`∣Jn,e∣.

Rearranging, and using the fact that ∣Jn,e∣ = ∣J∗n,e∣ + 2∣J∗∗n,e∣, we get

∣J∗n,e∣ > 2ε`∣Jn,e∣.

Let Ω index the pairs n ≥M and e ≤ ` for which ∣J∗n,e∣ > 2ε`∣Jn,e∣.

Claim 11. There is a set S ⊆ [L+K,L+K +N) with ∣S∣
N

≤ p+ ε` such that for each
(n, e) ∈ Ω,

∣S ∩ J∗n,e∣ + ∣J∗n,e ∖ [L +K,L +K +N)∣
∣J∗n,e∣

≥ p.

The set S is a set on which A will be forced to have 0’s. On the other elements
of [L + K,L + K + N), A will have the freedom to be different from C`. This
claim says that we can choose S to simultaneously have S small enough that A
can be sufficiently different from C` and large enough that the reductions fe find
sufficiently many 0’s in their ranges.

Proof. First, note that if we modify J∗n,e by removing an element which is outside
of the interval [L+K,L+K +N) and adding a new element which is inside of this
interval, for any fixed set S ⊆ [L +K,L +K +N) the quantity

∣S ∩ J∗n,e∣ + ∣J∗n,e ∖ [L +K,L +K +N)∣
∣J∗n,e∣

can only decrease. Also, if J∗n,e ⊇ [L+K,L+K +N), then for any choice of S with
∣S∣
N

≥ p we will have

∣S ∩ J∗n,e∣ + ∣J∗n,e ∖ [L +K,L +K +N)∣
∣J∗n,e∣

≥ p

as desired. So we may assume that, for each (n, e), J∗n,e ⊆ [L +K,L +K +N).
We give a probabilistic argument that the desired set S exists. Imagine that we

randomly pick a set S of size r = ⌊(p + ε`)N⌋. For each (n, e) ∈ Ω, let Xn,e be the
random variable ∣S ∩ J∗n,e∣; we have Xn,e ∼H(r,N, ∣J∗n,e∣). Let t = r

N
− p. By choice

of N , we have t ≥ ε`/2. So by the tail bounds for the hypergeometric distribution,
the probability that for some fixed (e, n) ∈ Ω, ∣S ∩ J∗n,e∣ ≤ p∣J∗n,e∣ is bounded above
by

Pr(Xe,n ≤ p∣J∗n,e∣) ≤ exp(−2t2∣J∗n,e∣) ≤ exp(−ε3` ∣Jn,e∣) = exp(−ε3`n).
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(Note that this holds even if p∣J∗n,e∣ is not an integer.) So the probability that for
all (e, n) ∈ Ω, ∣S ∩ J∗n,e∣ ≤ p∣J∗n,e∣, is bounded above by

∑
(e,n)∈Ω

exp(−ε3`n) ≤ ` ∑
n≥M

exp(−ε3`n) < 1.

So there is a non-zero probability that we pick a set S as desired; some such set
must exist. �

For i < N , when L + K + i ∈ S, set β`+1(i) = 0, and otherwise set β`+1(i) ≠
C`(L +K + i). So for x ∈ [L +K,L +K +N), if x ∈ S then A(x) = 0 and if x ∉ S
then A(x) ≠ C`(x).

First, we will show that we made A sufficiently different from C`.

Claim 12. γ(A) ≤ p.

Proof. We have, for each `, that

∣(A↔ C`) ∩ [0, L +K +N)∣
L +K +N ≤L +K + ∣{x ∈ S ∣ A(i) = C`(i)}∣

L +K +N

≤L +K + ∣S∣
L +K +N

≤L +K + pN + ε`N
L +K +N .

Here, L, K, and N are the values of those variables at stage ` of the construction.
By choice of N ,

L +K + pN + ε`N
L +K +N ≤ p + 2ε`.

So
∣(A↔ C`) ∩ [0, L +K +N)∣

L +K +N ≤ p + 2ε`.

Then, noting that for each ` there are infinitely many `′ with C` = C`′ ,

γ(A) = lim inf
n→∞

∣(A↔ C`) ∩ [0, n)∣
n

≤ p. �

Second, we will show that Be is sufficiently well approximated by B∗
e . The

following claim verifies the hypotheses of Claim 10.

Claim 13. Fix e. Given n, let ` ≥ e be such that M`+1 > n ≥M`, where M` is the
value of M at stage `. Then

∣(Be ↔ B∗
e ) ∩ In∣

n
≥ p − ε`.

The n satisfying M`+1 > n ≥ M` are the sizes of intervals of medium size for
`, that is, those where β` is exactly the right length to determine the amount of
agreement between Be and B∗

e on the interval In.

Proof. Write Ie = I∗,1n,e ∪ I∗,2n,e ∪ I∗,3n,e ∪ I∗∗,1n,e ∪ I∗∗,2n,e where I∗∗,1n,e and I∗∗,2n,e are as before,

and fe(I∗,1n,e) ⊆ [0, L), fe(I∗,2n,e) ⊆ [L+K,L+K +N), and fe(I∗,3n,e) ⊆ [L,L+K)∪ [L+
K +N,∞). (Again, L, K, and N are the values at stage `.)

For x ∈ I∗,3n,e , fe(x) ∈ [L,L + K) ∪ (L + K + N,∞], and so, since n < M`+1,
B∗
e (x) = 0 = A(fe(x)) = Be(x). Thus

∣(Be ↔ B∗
e ) ∩ I∗,3n,e ∣ = ∣I∗,3n,e ∣.
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For I∗,2n,e , if f(x) ∈ S, then Be(x) = B∗
e (x) since x ∉ B∗

e and fe(x) ∉ A, so that x ∉ Be.
Thus (recalling that J∗,2n,e = fe(I∗,2n,e), and that fe is injective on this set):

∣(Be ↔ B∗
e ) ∩ I∗,2n,e ∣ ≥ ∣S ∩ J∗,2n,e ∣.

By choice of S, we have

∣S ∩ J∗n,e∣ + ∣J∗n,e ∖ [L +K,L +K +N)∣
∣J∗n,e∣

≥ p.

Thus, noting that ∣J∗n,e ∖ [L +K,L +K +N)∣ = ∣I∗,1n,e ∣ + ∣I∗,3n,e ∣,
(∗) ∣(Be ↔ B∗

e ) ∩ I∗n,e∣ +L ≥ p∣I∗n,e∣.
By definition of B∗

e ,

(∗∗) ∣(Be ↔ B∗
e ) ∩ I∗∗n,e∣ = ∣I∗∗,1n,e ∣ = ∣I∗∗,2n,e ∣.

This is because each x ∈ I∗∗,1n,e can be paired with a y ∈ I∗∗,2n,e with fe(x) = fe(y);
we have x ∈ B∗

e and y ∉ B∗
e . Either fe(x) = fe(y) ∈ A, in which case x, y ∈ Be, or

fe(x) = fe(y) ∉ A, in which case x, y ∉ Be.
So combining equations (∗) and (∗∗), we get

∣(Be ↔ B∗
e ) ∩ In,e∣ ≥ ∣I∗∗,1n,e ∣ + p∣I∗n,e∣ −L.

By choice of M`,
∣I∗∗,1n,e ∣ + p∣I∗n,e∣ −L

∣In,e∣
≥ p − ε`. �

This completes the proof of the theorem, as Claim 10 now gives that γ(Be) ≥ p
for each e. �
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