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Abstract

The rate of randomness (or dimension) of a string σ is the ratio C(σ)/|σ| where
C(σ) is the Kolmogorov complexity of σ. While it is known that a single computable
transformation cannot increase the rate of randomness of all sequences, Fortnow, Hitch-
cock, Pavan, Vinodchandran, and Wang showed that for any 0 < α < β < 1, there are
a finite number of computable transformations such that any string of rate at least α is
turned into a string of rate at least β by one of these transformations. However, their
proof only gives very loose bounds on the correspondence between the number of trans-
formations and the increase of rate of randomness one can achieve. By translating this
problem to combinatorics on (hyper)graphs, we provide a tight bound, namely: Using k
transformations, one can get an increase from rate α to any rate β < kα/(1+(k−1)α),
and this is optimal.

1 Introduction

For a finite binary string σ, the (plain) Kolmogorov complexity C(σ) is the length of the
shortest program, written in binary and for a fixed universal interpreter, which outputs σ.
The quantity C(σ) can range from 0 to |σ| + d for a fixed constant d, and the closer it is
to |σ|, the more random the string σ will look (in the sense that it will look like the typical
sequence of random bits where bits are chosen independently and with probability 1/2 to
be equal to 0).

One can normalize by the length of σ and consider the quantity C(σ)/|σ|, which mea-
sures the rate of randomness. This corresponds fairly well to our intuition of partial
randomness: consider for example a binary string of length 3n where every third bit is
chosen at random and then doubled, like 000111000000111000 . . .. One would expect this
sequence to have a rate of randomness of ≈ 1/3, and this is indeed what will happen with
high probability.

This idea can be extended to infinite binary sequences X, by considering the asymptotic
behaviour of C(X � n)/n, where X � n is the n-bit prefix of n. As this quantity may not
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converge, it is natural to consider both

dim(X) = lim inf
n→∞

C(X � n)

n

and

Dim(X) = lim sup
n→∞

C(X � n)

n

respectively called effective Hausdorff dimension and effective packing dimension of X (the
reason for these names are the close connections between randomness rates and fractal
dimensions, see for example [DH10, Chapter 13] for an extensive presentation of the topic;
by extension, for a finite string σ, the rate of randomness C(σ)/|σ| is sometimes referred
to as the dimension of σ).

Since one can think of a sequence of dimension strictly between 0 and 1 to be partially
but imperfectly random, one natural question is whether one can ‘extract randomness’
from it. More specifically, can every such sequence X Turing-compute a sequence Y of
dimension 1, or close to 1, or at least of dimension greater than that of X? This natural
question was first formulated in 2004 by Reimann [Rei04] and sparked an intense line of
research in the following years. It turns out that the answer depends on which of the two
above notions of dimension one considers. For effective Hausdorff dimension, a full negative
answer was given by Miller [Mil11].

Theorem 1.1 (Miller). For any rational q ∈ [0, 1], there exists an infinite binary se-
quence X such that dim(X) = q and any infinite binary sequence Y Turing-computed by X
has dim(Y ) ≤ q.

On the other hand, effective packing dimension is amenable to extraction. Indeed, using
deep results from pseudo-randomness in computational complexity [BIW06], Fortnow et
al. proved the following.

Theorem 1.2 (Fortnow et al. [FHP+06]). If Dim(X) > 0, for any ε > 0, X computes a Y
such that Dim(Y ) > 1 − ε. Moreover, the reduction from X to Y is an exponential-time
reduction, hence a tt-reduction.

(Bienvenu et al. [BDS09] independently obtained the first part of the theorem with a
more direct proof, but with a reduction from X to Y that is not even guaranteed to be
wtt). Conidis [Con12] showed that Fortnow et al.’s theorem cannot be strengthened to
Dim(Y ) = 1, even for Turing reductions.

As an intermediate step towards the proof of Theorem 1.2, which concerns infinite
binary sequences, Fortnow et al. obtained a result of independent interest in the case of
finite strings.

Theorem 1.3 (Fortnow et al. [FHP+06]). Let 0 < α < β < 1. There exists a polynomial-
time function E(., .), a linear function f and a constant h such that for every, n, for every
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σ of length f(n) such that C(σ) ≥ α|σ|, there exists a string aσ of length h such that
τ = E(σ, aσ) has length n and C(τ) ≥ β|τ |.

This is interesting because for any α < β, there is no computable function F with only
one argument and computable function f such that for every σ of length f(n) such that
C(σ) ≥ α|σ|, τ = F (σ) has length n and C(τ) ≥ β|τ |. (This result seems to be well-known
but a full proof is hard to find in the literature. In any case it follows from our results).
Therefore, just a few extra bits of extra information (or ‘advice’) makes all the difference
if we wish to effectively increase the rate of randomness of individual strings.

More generally, a procedure whose goal is to turn a string or tuple of strings of a
given rate of randomness to a string of higher rate of randomness is called a Kolmogorov
extractor, a term coined by Zimand, who made important contributions to the study of this
concept, in particular Kolmogorov extractors with two sources (i.e., two input strings x
and y); see the survey [Zim10]. Zimand also studied in [Zim11] single-source Kolmogorov
extractors (like the function E of Theorem 1.3), for which the most natural question is
how the amount of advice relates to the increase of rate of randomness one can obtain. He
showed in particular that earlier results of Vereshchagin and Vyugin [VV02] already give
an upper bound:

Theorem 1.4 (Zimand [Zim11], based on [VV02]). Let 0 < α < 1, ε > 0, and suppose
there is a function E(., .), a linear function f , and a constant m with the property that
for every, n, for every σ of length f(n) such that C(σ) ≥ α|σ|, there exists a string aσ of
length h such that τ = E(σ, aσ) has length n and C(τ) ≥ β|τ |. Then β ≤ 1− (1− α)/2h.

The goal of this paper is to refine this theorem and get an exact correspondence between
the amount of advice h and the rate increase α → β one can get. We note that allowing
an advice of size h is like having a family of 2h functions {E(., a) | |a| = h}. In order to
have a more fine-grained analysis, we consider the case where we have k functions, where
k is not necessarily a power of 2. We thus propose the following definition.

Definition 1.5. For k ≥ 1, let EXT(k) be the set of pairs of reals (α, β) such that α, β ∈
[0, 1] and for which there exist a total one-to-one computable function f : N → N, k
total computable functions Γ1, . . . ,Γk : {0, 1}∗ → {0, 1}∗, and a constant d ∈ N with the
following property: For all n, and every string σ, if |σ| = f(n), then |Γi(σ)| = n for all
i ≤ k, and if furthermore C(σ) ≥ α|σ|+ d, then for some i, C(Γi(σ)) ≥ β|Γi(σ)| − d.

(Kolmogorov complexity being defined up to an additive constant, which depends on
the choice of universal machine, the use of the constant d in our definition ensures that
EXT(k) does not depend on the particular choice of universal machine).
Essentially, (α, β) ∈ EXT(k) if, for each n, one can computably transform each string σ of
length f(n) into k strings τ1, . . . , τk of length n such that if σ had dimension at least α,
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then at least one of the τi has dimension at least β. That is, one can extract dimension β
from strings of dimension α using k functions.

An easy argument using information conservation gives us a lower bound for f(n).

Remark 1.6. If d, f , and (Γi) witness that (α, β) ∈ EXT(k), then the function f must
be such that f(n) ≥ (β/α)n − O(1) for all n. Indeed, for a given n, take a σ such that
|σ| = f(n) and C(σ) = αf(n) + O(1) (there is always such a σ). On the one hand we
have C(Γi(σ)) ≥ βn − O(1) for some i by the assumption on the Γi. On the other hand,
by information conservation, C(Γi(σ)) ≤ C(σ) + O(1) ≤ αf(n) + O(1). Putting the two
together gives us f(n) ≥ (β/α)n−O(1).

As announced above, we will obtain a precise characterization of EXT(k), namely we
will prove the following.

Theorem 1.7. (α, β) ∈ EXT(k) if and only if one of the following holds:

• k = 1 and β ≤ α, or

• k ≥ 2 and either α = β = 0, α = β = 1, or

β <
kα

1 + (k − 1)α
.

Note that (α, β) ∈ EXT(k) when α = β is trivial: it suffices to take f(n) = n, d = 0, and
the identity function Γ(σ) = σ. Note also that when k = 1, then the expression kα

1+(k−1)α
is equal to α; so the difference between the cases k = 1 and k ≥ 2 is that in the former
we get β ≤ kα

1+(k−1)α and in the latter we get β < kα
1+(k−1)α . The following plot shows the

graph of β = kα
1+(k−1)α for k = 2.
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As k gets larger, we can extract more and more dimension. In line with Theorem 1.2
above, as k →∞, kα

1+(k−1)α → 1, and so with a large number of extractors one can extract
almost-random strings.
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In Remark 1.6 above we said that the function f which witnesses that (α, β) ∈ EXT(k)
must satisfy f(n) ≥ (β/α)n−O(1). In fact, this is optimal; one can witness that (α, β) ∈
EXT(k) using a function f(n) = (β/α)n − O(1). Moreover, from Proposition 3.9, the
following inequality holds:

(β/α)n−O(1) ≤ f(n) ≤ 1− β
1− α

kn+O(1).

As β → kα
1+(k−1)α , we have that 1−β

1−αk →
β
α , and so in some sense f(n) = (β/α)n−O(1) is

optimal.
We do not know if the functions Γ1, . . . ,Γk which witness that (α, β) ∈ EXT(k) can

be polynomial-time. In Theorem 1.3, the extractors were polynomial time, so we know
that one can extract at least some dimension with polynomial-time extractors, but what
we do not know is whether polynomial time extractors can be optimal. This may be a
difficult question, as our construction of optimal extractors passes through a probabilistic
construction of hypergraphs. Indeed, Theorem 3.5 shows that (α, β) ∈ EXT(k) is equivalent
to the existence of a sequence of k-hypergraphs whose edges are well spread out in a
particular sense which is related to (but not the same as) the jumbled graphs introduced
by Thomason [Tho87a, Tho87b]. So whether one can find polynomial-time extractors
which are optimal is equivalent to finding an efficient construction of these hypergraphs.
There are long-standing open problems which ask similar questions. For example, one such
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open problem is finding an efficient construction of a graph of size n with no cliques or
independent sets of size c log n. Such graphs give bounds on the Ramsey numbers and their
existence can be proved using the probabilistic methods. See [Chu91].

The dimension extractors which we have been considering have all been total functions.
One could potentially improve the extractors by allowing them to be partial. One way that
this might help is that, say with k = 2, on input σ, Γ1 could search for a short description
of σ and then compute an output based on that, while Γ2 could assume that σ has no short
description and so has relatively high Kolmogorov complexity. In this case, Γ1 would be
undefined if σ has no short description. Thus we define EXTp(k), the set of pairs (α, β)
such that we can extract dimension β from strings of length α using k partial functions.

Definition 1.8. For k ≥ 1, let EXTp(k) be the set of pairs of reals (α, β) such that
α, β ∈ [0, 1] and for which there exist a total one-to-one computable function f : N → N,
k partial computable functions Γ1, . . . ,Γk : {0, 1}∗ → {0, 1}∗, and a constant d ∈ N with
the following property: For all n, and every string σ, if |σ| = f(n), then |Γi(σ)| = n for
all i ≤ k for which Γi(σ) is defined, and if furthermore C(σ) ≥ α|σ| + d, then for some i,
Γi(σ) is defined and C(Γi(σ)) ≥ β|Γi(σ)| − d.

With the same argument as before, we get a lower bound on the function f which can
witness that (α, β) ∈ EXTp(k).

Remark 1.9. If d, f , and (Γi) witness that (α, β) ∈ EXTp(k), then the function f must
be such that f(n) ≥ (β/α)n−O(1) for all n.

We also get a precise characterization of EXTp(k) wherein it turns out that using partial
function gets us only a very slight improvement.

Theorem 1.10. (α, β) ∈ EXTp(k) if and only if one of the following holds:

• k = 1 and α ≤ β,

• k ≥ 2 and β < kα
1+(k−1)α , or

• k ≥ 2, β = kα
1+(k−1)α , and α and β are computable.

If β = kα
1+(k−1)α , then α = β

(k−(k−1)β) and so α and β are either both computable or both
non-computable.

2 Kolmogorov Complexity

Let us briefly recall some basics about Kolmogorov complexity (three good references
on algorithmic complexity theory are [LV08], [Nie09], and [DH10]). We call a partial
computable function from {0, 1}∗ to {0, 1}∗ a machine . For a machine M , the Kolmogorov
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complexity relative to M is the function CM defined by CM (σ) = min{|p| : M(p) = σ}.
There exist optimal machines which are machines U such that for any machine M , CU ≤
CM + d for some constant d (which depends on M).

One can then fix a universal machine U and define the Kolmogorov complexity of a
string σ to be CU(σ). By definition of optimality, C(σ) is independent of the choice of the
optimal machine U up to an additive constant.

In the same vein, we can define conditional Kolmogorov complexity: the conditional
Kolmogorov complexity of σ given τ , written C(σ | τ), is the length of the shortest
program (or description) that produces σ when given τ as input. Formally, given a
partial computable function M : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, we define CM (σ | τ) =
min{|p| : M(p, τ) = σ}. Again, it is easy to show that there exists a partial computable
V : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that for every other M , CV(σ | τ) ≤ CM (σ | τ) + d for
some d. Fixing such a V, we define C(σ | τ) = CV(σ | τ).

Given a set A of strings we can often make conclusions about the complexities of some
or all of the members of A based on the size of A. For example, if A is large, then it must
have a member of high complexity. The following fact is well-known and easy to see.

Fact 2.1. If A ⊂ 2<ω is a set of strings σ which each have C(σ) ≤ r, then |A| < 2r+1.

Proof. Let U be the universal machine. There are at most 20 +21 +22 + · · ·+2r = 2r+1−1
strings of length at most r in the domain of U, so |A| < 2r+1.

If U is a small c.e. set, then the members of U have low complexity. Moreover, the
same is true for sequences of uniformly c.e. sets.

Proposition 2.2. Let (Un)n≥1 be a sequence of uniformly c.e. finite sets. Suppose that
|Un| ≤ 2kn. Then there is a constant c such that for all n and σ ∈ Un, C(σ) ≤ kn + 2C(n |
kn) + c. In particular, there is a c′ such that C(σ) ≤ kn + 2 log n+ c′.

Proof. Let M be the machine which on an input 0i1p starts by splitting p as p = qr with
|q| = i. Then, it computes n = V(q, |r| − 1). Finally, interpreting r as a natural number
written in binary, it enumerates Un and returns the r-th enumerated element (if such an
element is found). Now, if σ is a member of Un, since |Un| ≤ 2kn , one can write the index
r of σ (in the order of the enumeration) in binary using kn+ 1 bits (padding with zeroes in
front of this number if necessary). Then |r| − 1 = kn, and if q is the shortest V-description
of n given kn, we have CM (0|q|1qr) = σ by construction, thus CM (σ) ≤ kn+2C(n | kn)+2.
The result follows by optimality of V.

Corollary 2.3. Fix a computable α ∈ (0, 1). Let (Un)n≥1 be a sequence of uniformly c.e.
sets. Suppose that |Un| ≤ 2αn. Then there is a constant c such that for all n and σ ∈ Un,
C(σ) ≤ αn+ c.

Proof. Since α is computable, n can be computed from dαne, which in particular implies
C(n | dαne) = O(1). The result then follows from Proposition 2.2 with kn = dαne.
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3 Characterization of EXT

In this section we will characterize the (α, β) ∈ EXT(k). We begin in Section 3.1 by showing
that when α, β are computable, (α, β) ∈ EXT(k) is equivalent to the existence of a sequence
of k-hypergraphs whose hyperedges are not too concentrated (in a sense determined by α
and β) within any small set of vertices, thus translating our original problem into a purely
combinatorial one. In Section 3.2, we use the probabilistic method to construct such a
sequence of hypergraphs for β < kα

1+(k−1)α . Thus if β < kα
1+(k−1)α then (α, β) ∈ EXT(k).

In Section 3.3, we show that if such a sequence of graphs exists then β ≤ kα
1+(k−1)α , and

moreover if k ≥ 2 and α, β ∈ (0, 1), then β < kα
1+(k−1)α . This completes the proof of

Theorem 1.10 together with the simple observation that if β ≤ α, then (α, β) ∈ EXT(k)
for any k ≥ 1.

3.1 Translating the problem: hypergraphs

There are a number of different choices one may make when fixing the definition of a
hypergraph, so in this section we will fix our definition for this paper. Our hypergraphs are
k-uniform, undirected, and allow repeated hyperedges (so that two edges may be incident
on the same set of vertices). All hyperedges are incident on exactly k vertices. In this case
k = 2, our 2-hypergraphs are just undirected multigraphs which do not allow loops. More
formally:

Definition 3.1. A k-hypergraphG = (V,E) is a set of vertices V and a set of hyperedges E,
with each edge e ∈ E associated to a set i(e) of k vertices from V .

In a graph, the edge density is the ratio of edges to potential edges. We make a similar
definition here:

Definition 3.2. Let G = (V,E) be a k-hypergraph. The edge pseudo-density p of G is

p =
|E|
|V |k

.

The reason that we call this the edge pseudo-density rather than simply the edge density
is that |V |k is slightly larger than

(|V |
k

)
, the number of potential hyperedges, as hyperedges

cannot have repeated vertices. Using |V |k rather than
(|V |
k

)
will make calculations easier.

Finally, given a set U ⊆ V of vertices, we will want to consider the set of edges which
are contained within U .

Definition 3.3. Let G = (V,E) be a k-hypergraph, and let U ⊆ V . Then E(U) is the set
of edges which are incident only on vertices in U , and e(U) is the cardinality of E(U).
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This is the same as the set of edges in the sub-hypergraph induced by U .
The next lemma says that every hypergraph has a small sub-hypergraph with a similar

(though possibly slightly smaller) edge pseudo-density. (If we used edge density instead,
then we could get that the edge density does not decrease.)

Lemma 3.4. Fix k ≥ 2. There is a constant ck such that for all n, if G = (V,E) is a
k-hypergraph with |V | = n and edge pseudo-density p, then for any ck ≤ u ≤ n there exists
a subset U of V of size u such that e(U) ≥ 0.99puk (or equivalently, (U,E(U)) has edge
pseudo-density at least 0.99p).

Proof. If we select the subset U at random uniformly among subsets of V of size u, the
probability that a fixed k-hyperedge e ∈ E belongs to E(U) is

(
n−k
u−k
)
/
(
n
u

)
= u(u−1)...(u−k+1)

n(n−1)...(n−k+1) .

The numerator of this last expression is ≥ uk(1 − k/u)k, and the denominator is ≤ nk.
Thus, the probability that a fixed edge e belongs to e(U) is ≥ (u/n)k · (1 − k/u)k ≥
(u/n)k · (1− k/ck)k.

Since there are pnk edges in G, this shows that

E(e(U)) ≥ (u/n)k(1− k/ck)kpnk ≥ puk(1− k/ck)k

Thus, there must be some U of size u such that e(U) ≥ puk(1 − k/ck)k. It remains to
choose ck large enough to have (1− k/ck)k ≥ 0.99 to get the desired result.

The next theorem allows us to convert the initial problem into a purely graph-theoretic
one. The intuition is as follows. Suppose that we have functions Γ1, . . . ,Γk from {0, 1}f(n)

to {0, 1}n which we want to have witness that (α, β) ∈ EXT(k). We can think of our oppo-
nent as providing short descriptions for strings in {0, 1}∗, trying to lower their Kolmogorov
complexity. If, for some string σ ∈ {0, 1}f(n), our opponent has provided short descriptions
for Γ1(σ), . . . ,Γk(σ) (making them of dimension < β), we must provide a short description
for σ (making it of dimension < α). Both our opponent and ourselves have some quantity
of short descriptions that we can use, based on the values of α and β. We can think of
a corresponding hypergraph, where the vertices are strings in {0, 1}n, and the hyperedges
correspond to strings σ ∈ {0, 1}f(n) which are incident on Γ1(σ), . . . ,Γk(σ). Our opponent
is giving short descriptions to a set of vertices U while we must give a short description
to a hyperedge whenever our opponent gives a short description to every vertex on that
hyperedge (i.e., we have to give short descriptions to each hyperedge in E(U)). Whether
we or our opponent can win this game depends on the sizes of U and E(U) relative to the
number of short descriptions we and our opponent have available.

Theorem 3.5. Fix k ≥ 2 and let (α, β) be a pair of computable reals in [0, 1]. The following
are equivalent

(a) (α, β) ∈ EXT(k)
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(b) There is a constant d and computable function f with f(n) ≥ (β/α)n − O(1) and
such that for all n there is a k-hypergraph Gn with 2n vertices and 2f(n) hyperedges,
with the property that for every U ⊆ Gn with |U | ≤ 2βn−d, e(U) < 2αf(n)+d.

(c) There is a constant d and computable function f with f(n) ≥ (β/α)n − O(1) and
such that for all n there is a k-hypergraph Gn with 2n vertices and 2f(n) hyperedges,
with the property that for every U ⊆ Gn with |U | ≤ 2βn, e(U) < 2αf(n)+d.

Proof. (a) ⇒ (b). Suppose (b) does not hold, and let us show that (a) does not hold.
Consider k total computable functions Γ1, . . . ,Γk with |Γi(σ)| = n when |σ| = f(n). We
can assume without loss of generality that for every σ, the Γi(σ) are all different. Indeed,
if this is not the case, we can replace the Γi by the family Γ′i defined as follows: for all σ,
compute the set Aσ = {Γi(σ) | 1 ≤ i ≤ k}. Since it has ≤ k elements, computably find
a finite set Bσ ⊃ Aσ containing exactly k elements, all of length n if |σ| = f(n), and
define Γ′i(σ) to be the i-th element of Bσ. The Γ′i are total, Γ′i(σ) 6= Γ′j(σ) if i 6= j and by
construction for every σ of length f(n), {Γi(σ) | 1 ≤ i ≤ k} ⊆ {Γ′i(σ) | 1 ≤ i ≤ k} ⊆ {0, 1}n,
From which it is easy to see that the Γ′i also witness that (α, β) ∈ EXT(k).

Now, under this assumption that the Γi(σ) are all different, for all n, let Gn be the
k-hypergraph whose set of vertices is the set of strings of length n, and the hyperedges eσ
are incident on Γ1(σ), . . . ,Γk(σ) where σ ranges over strings of length f(n). Note that the
sequence (Gn) is computable.

By Remark 1.6, if f(n) 6≥ (β/α)n − O(1) then (a) does not hold, so we may assume
f(n) ≥ (β/α)n − O(1). By failure of (b), for any given d, there exists some n such
that Gn has a subset U of size 2βn−d with e(U) ≥ 2αf(n)+d. Since this is a decidable
property (because α, β are computable), such a Gn and subset U can be found effectively
given d. Thus, by Proposition 2.2, for every τ ∈ U , C(τ) ≤ log |U | + 2 log d + O(1), i.e.,
C(τ) ≤ βn− d+ 2 log d+O(1). On the other hand, since there are at least 2αf(n)+d many
σ with eσ in E(U), by Fact 2.1 there must be one that satisfies C(σ) ≥ αf(n) + d. By
definition of eσ, we have that Γi(σ) ∈ U for all i, and so C(Γi(σ)) ≤ βn−d+ 2 log d+O(1)
for all i. Since d can be taken arbitrarily large, this shows that (a) fails.

(b) ⇒ (a). Fix a constant d and sequence (Gn) of graphs witnessing that (b) holds.
The sequence (Gn) can be taken to be computable as the property of having small e(U)
for all U of size 2βn−d is decidable, so one can find the Gn by exhaustive search. Then,
for all n, effectively create a bijection σ 7→ eσ between strings of length f(n) and the
hyperedges of Gn. Finally, for each σ, define Γi(σ) for i = 1, . . . , k so that eσ is incident
on Γ1(σ), . . . ,Γk(σ). The Γi are total computable functions from strings of length f(n)
to strings of length n. Now, for each n, consider the set U ⊆ Gn of strings τ such
that C(τ) < βn − d. Using Fact 2.1 we see that |U | ≤ 2βn−d, and so by property (b),
e(U) < 2αf(n)+d. The sets U , and hence also the sets E(U), are c.e. sets uniformly in n.
So by Corollary 2.3 (and using the fact that the function f is one-to-one) we have that
C(σ) ≤ αf(n) + d+O(1) for every eσ ∈ E(U). Taking the contrapositive, this means that

10



when C(σ) > αf(n) + d+O(1), we have that eσ /∈ E(U), which in turns means that some
coordinate of eσ is not in U , i.e., C(Γi(σ)) ≥ βn− d for some i. This proves property (a).

(c)⇒ (b). This is immediate.

(b)⇒ (c). Let (Gn) and d be witnesses that (b) holds. Let ck be the constant guaranteed
by Lemma 3.4. We may assume without loss of generality that n is sufficiently large that
ck ≤ 2βn−d. Let U be a subset of Gn of with |U | ≤ 2βn. If |U | ≤ 2βn−d then we are done.
Otherwise, by Lemma 3.4, there exists a subset U ′ of U such that |U ′| =

⌊
2βn−d

⌋
and

e(U ′) ≥ 0.99
e(U)

|U |2
|U ′|2 ≥ 0.99

e(U)

22βn
22βn−2d−2 = 0.99 · 2−2d−2e(U).

By (b), we have e(U ′) ≤ 2αf(n)+d. Putting the two together, we get e(U) ≤ 2αf(n)+3d+O(1).
Thus (c) holds as witnessed by the sequence (Gn) and constant 3d+O(1).

3.2 The positive case: random hypergraphs

Given β < kα
1+(k−1)α , we want to show that (α, β) ∈ EXT(k). By Theorem 3.5, we can

do this by constructing an appropriate sequence of hypergraphs. We will show that such
a sequence exists using a probabilistic construction, i.e., by showing that if we choose a
hypergraph at random, it has a positive probability of having the properties we want, and
so, in particular, such a graph exists. In computing the associated probabilities, we will
use the Chernoff bound. The Chernoff bound has many forms, and we state the two that
we will use.

Theorem 3.6 (Chernoff bound; see [MU17]). Let X1, . . . , Xn be independent random vari-
ables taking values in {0, 1} and let X be their sum. Let µ = E[X].

(1) For any δ ≥ 6,
Pr(X ≥ δµ) ≤ 2−δµ.

(2) For any 0 ≤ δ ≤ 1,

Pr(X ≤ (1− δ)µ) ≤ e−
δ2µ
2 .

We are now ready for the construction of the sequence of hypergraphs. One should think
of taking f(n) = [k − (k − 1)β]n+O(1).

Theorem 3.7. Fix k. Let α, β ∈ (0, 1) be such that β < kα
1+(k−1)α . There is a constant

d such that for each n there is a k-hypergraph with 2n vertices and at least 2[k−(k−1)β]n

hyperedges such that for every U with |U | ≤ 2βn, e(U) < 2α[k−(k−1)β]n+d.

11



Proof. We will show the existence of the graph G by showing that a random graph is likely
to satisfy the properties we desire. Consider picking a k-hypergraph G with 2n vertices
at random, where each k-hyperedge has probability p = 2−(k−1)βn+D to belong to G,
independently of other hyperedges, where D is a large constant (to be specified as we go).
The expected number of hyperedges in G is(

2n

k

)
· p ≥

(
2n−o(1)

)k
/k! · 2−(k−1)βn+D ≥ 2[k−(k−1)β]n+D−o(1)/k!

Thus, by the Chernoff bound (2) using δ = 1
2 , if D is chosen large enough, G will have at

least 2[k−(k−1)β]n hyperedges (which is the desired amount), with probability > 1/2.
Fix a set U of at most 2βn vertices. The expected number of hyperedges in E(U) is

thus p times the number of sets of k vertices in U , which gives

E[e(U)] ≤ p
(

2βn

k

)
≤ 2−(k−1)βn+D · (2βn)k = 2βn+D.

This is the case for all sets U of vertices with |U | ≤ 2βn.
By the Chernoff bound (1),

Pr
[
e(U) > 2n2βn

]
< 2−2n2βn .

To use the Chernoff bound, we require 2n2βn ≥ 6E[e(U)] which it is easy to see is true for

n ≥ 2D+2. The number of sets U of size at most 2βn is less than (2n)2βn = 2n2βn . So the
probability that there is a set U of size at most 2βn with e(U) > 2n2βn is∑

|U |≤2βn

Pr
[
e(U) > 2n2βn

]
<

∑
|U |≤2βn

2−2n2βn ≤ 2n2βn2−2n2βn = 2−n2βn .

For sufficiently large n, this is strictly less than one half (which was the probability that G
had at least the desired number of edges). So for sufficiently large n there exists a graph
G with enough edges and such that for all U with |U | ≤ 2βn, e(U) ≤ 2n2βn. It remains to
show that for sufficiently large n,

2n2βn < 2α[k−(k−1)β]n.

We have that

β <
kα

1 + (k − 1)α

and so
β + (k − 1)βα < kα =⇒ β < kα− (k − 1)βα = α(k − (k − 1)β).

It follows that, for sufficiently large n, for all sets U of vertices from G with |U | ≤ 2βn,

e(U) ≤ 2n2βn < 2α[k−(k−1)β]n.

This completes the proof.
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Corollary 3.8. When β < kα
1+(k−1)α , the pair (α, β) belongs to EXT(k).

Proof. We may assume that α, β are rational by replacing α by a rational α′ < α sufficiently
close to α to have β < kα′

1+(k−1)α′ and then a rational β′ between β and kα′

1+(k−1)α′ . If we

can show that (α′, β′) ∈ EXT(k), then it follows that (α, β) ∈ EXT(k). So from now on,
assume that α, β are rational.

Let f(n) = b(k − (k − 1)β)nc; since β is rational, this is computable. By Theorem 3.7
there is d and a sequence (Gn) of k-hypergraphs such that:

• Gn has 2n vertices and at least 2[k−(k−1)β]n ≥ 2f(n) hyperedges, and

• every set U of vertices ofGn with |U | ≤ 2βn has e(U) < 2α[k−(k−1)β]n+d < 2αf(n)+(d+1).

Note that we may remove edges from Gn so that it has exactly 2f(n) edges while maintaining
the other properties. By Theorem 3.5 we have that (α, β) belongs to EXT(k).

3.3 The negative case: β ≥ kα/(1 + (k − 1)α)

In this section we will show that if β > kα/(1 + (k − 1)α) then (α, β) /∈ EXT(k), and
moreover, if k ≥ 2, α, β ∈ (0, 1), and β = kα/(1 + (k − 1)α) then (α, β) /∈ EXT(k).

It is not hard to see what happens when β > kα
1+(k−1)α . Essentially, what happens is

that the following proposition gives a lower and upper bound on f(n) when (α, β) ∈ EXT(k)
(with the lower bound being that in Remark 1.6), and then in the following corollary we
see that the upper and lower bounds are incompatible when β > kα/(1 + (k − 1)α).

Proposition 3.9. Suppose α, β are computable and (α, β) belongs to EXT(k). By Theo-
rem 3.5, let d be a constant and computable function f such that f(n) ≥ (β/α)n − O(1)
and (Gn) a sequence of hypergraphs where Gn has 2n vertices, 2f(n) hyperedges and the
property that for every U ⊆ Gn with |U | ≤ 2βn, e(U) < 2αf(n)+d. Then the following
inequality holds:

(β/α)n−O(1) ≤ f(n) ≤ 1− β
1− α

kn+O(1),

where the O(1) on the right hand side is dependent on α and d as well as k.

Proof. (β/α)n − O(1) ≤ f(n) is part of the assumption on f , so we only need to prove
f(n) ≤ kn(1− β)/(1− α) +O(1).

For all n, the edge pseudo-density of Gn is equal to p = 2f(n)/2kn = 2f(n)−kn. Let
n be sufficiently large. By Lemma 3.4, there is a subset U of vertices of Gn such that
2βn−1 ≤ |U | = 2βn and e(U) ≥ 0.99p(2βn−1)k = 0.99 · 2f(n)−kn2kβn−k ≥ 2f(n)−kn+kβn−k−1.
By assumption on Gn, we also have e(U) < 2αf(n)+d. Thus:

f(n)− kn+ kβn− k − 1 < αf(n) + d

13



This can be rewritten as

f(n) <
kn(1− β)

1− α
+
d+ k + 1

1− α
as desired.

As a direct corollary, we get:

Corollary 3.10. If β > kα/(1 + (k − 1)α), then (α, β) 6∈ EXT(k).

Proof. Let β′ < β and α′ > α be rationals such that β′ > kα′/(1+(k−1)α′). The inequality
β′ > kα′/(1 + (k − 1)α′) is equivalent, mutatis mutandis, to (β′/α′) > k(1− β′)/(1− α′).
Therefore, there cannot be a function f such that (β′/α′)n − O(1) ≤ f(n) ≤ kn(1 −
β′)/(1− α′) + O(1), which by Proposition 3.9 shows that (α′, β′) /∈ EXT(k). Since α > α′

and β < β′, this shows a fortiori that (α, β) /∈ EXT(k).

The last case we need to treat, which turns out to be more difficult, is when β =
kα/(1 + (k − 1)α). In this case, for k = 1, we get α = β in which case (α, β) ∈ EXT(1) as
witnessed by Γ being the identity. For k ≥ 2, if α = 1 or if β = 0 then taking Γ1 to be
the identity also works. So we are left with the case k ≥ 2 and α, β ∈ (0, 1). In this case,
we will show that (α, β) 6∈ EXT(k). We first prove this result for α, β computable, and –
using a different method – will deal with the case α, β uncomputable in the next section
(Theorem 4.5).

Theorem 3.11. Let k ≥ 2 and suppose that α, β ∈ (0, 1) are computable. If β = kα/(1 +
(k − 1)α), then (α, β) 6∈ EXT(k).

Proof. For the sake of contradiction, assume that (α, β) ∈ EXT(k), and let d be a con-
stant, f a computable function such that f(n) ≥ (β/α)n − O(1), and (Gn) a sequence
of hypergraphs where Gn has 2n vertices, 2f(n) hyperedges and the property that for
every U ⊆ Gn with |U | ≤ 2βn, e(U) < 2αf(n)+d. By Proposition 3.9, we must have
(β/α)n − O(1) ≤ f(n) ≤ kn(1 − β)/(1 − α) + O(1), but β = kα/(1 + (k − 1)α) implies
β/α = k(1− β)/(1− α), so we get a precise expression for the function f , namely

f(n) = (β/α)n+O(1) = (k − (k − 1)β)n+O(1) = (k/(1 + (k − 1)α))n+O(1). (1)

The O(1) depends on α and d as well as k. From this, we can rewrite the property of Gn
as follows, for a possibly different value of d:

for every U ⊆ Gn with |U | ≤ 2βn, e(U) < 2βn+d. (2)

Note that if k = 1, then such a sequence of graphs Gn does exist. The key to finish the
proof is the following combinatorial lemma which says that such a sequence does not exist
for k ≥ 2.
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Lemma 3.12. Let k ≥ 2 and β ∈ (0, 1). Let (Gn) be a sequence of k-hypergraphs such that
Gn has 2n vertices and 2[k−(k−1)β]n−O(1) hyperedges. For any constant D, there is an n
and a subset U of vertices of Gn with |U | ≤ 2βn and e(U) ≥ 2βn+D.

Proof. We prove this result by induction over k.

Base case: k = 2. In this case the Gn are just binary multigraphs, but remember that
there can be multiple edges between two vertices. Fix a constant D. We begin by removing
some edges from the Gn to give them a simpler structure while preserving the hypotheses
of the theorem. For each pair {x, y} of vertices of Gn, recall that e({x, y}) is the number of
edges between x and y. Let P be the set of pairs {x, y} that have the

⌊
2βn−1

⌋
biggest values

of e({x, y}), and Umax =
⋃
{x,y}∈P {x, y}. Note that |Umax| ≤ 2|P | ≤ 2βn. If e(Umax) =∑

{x,y}∈P e({x, y}) is greater or equal to 2βn+D, we are done, so we may assume this

quantity to be < 2βn+D. Observe that this means that
∑
{x,y}∈P e({x, y}) < 2βn+D, so by

the pigeonhole principle, there is some {x, y} ∈ P such that e({x, y}) < 2βn+D/
⌊
2βn−1

⌋
≤

2D+2. By definition of P , this shows that e({x, y}) < 2D+2 for any {x, y} /∈ P .
Now we remove from Gn the edges in E(Umax), and the resulting multigraph will still

have at least 2(2−β)n−O(1)− 2βn+D edges, which is still 2(2−β)n−O(1) since β < 1. The O(1)
constant depends on D, but this will not cause any problems.

Moreover, as we saw, between any two vertices in the resulting graph there are at most
2D+2 edges. So we may collapse all edges between any pair of vertices into one edge, which
will divide the number of edges by at most 2D+2, and thus we will still have 2(2−β)n−O(1)

edges in the resulting graph, which will now have at most one edge between any two
vertices. Thus we have obtained a graph rather than a multigraph.

Next, we make the graph bipartite with two sides of equal size, while keeping at least
1/5 of the edges. This can be done because if we choose a partition of the vertices into
two sets of size 2n−1 at random among all partitions, the probability for a given edge to
have one coordinate on each side is 1/4− o(1). Thus, there must exist some fixed partition
which splits the graph into two parts and has the property that a fraction 1/4 − o(1) of
the edges go from one side to the other. We remove from our graph the edges which do
not have a coordinate on each side. The graph is now bipartite and still has 2(2−β)n−O(1)

edges.
We have thus obtained a new sequence of subgraphs G′n of Gn where G′n has the same

vertices as Gn, 2(2−β)n−O(1) edges, has at most one edge between any two vertices, and
is bipartite with two sides Ln and Rn (for ‘left’ and ‘right’) of size 2n−1 each. We will
now try to find some n and some subset U of vertices of G′n of size at most 2βn and such
e(U) ≥ 2βn+D (inside G′n, and thus inside Gn as well). From now on, we work inside
the G′n.

For all n, we need to distinguish two cases, corresponding to whether or not a lot of
edges are concentrated on a small amount of vertices. For all n, let An be the set of

⌊
2βn−1

⌋
vertices x in Ln that have the largest values e(x,Rn). Our two cases are as follows.
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Case 1:
∑

x∈An e(x,Rn) ≥ 2n+D+1. In this case, we claim that there is Bn ⊆ Rn of

size at most 2βn−1 such that e(An, Bn) ≥ 2βn+D. Indeed, let Bn ⊆ Rn be the
⌊
2βn−1

⌋
nodes y from Rn with the largest values of e(An, y). We have that

∑
y∈Rn e(An, y) =∑

x∈An e(x,Rn) ≥ 2n+D+1, and so

e(An, Bn) ≥
⌊
2βn−1

⌋ 2n+D+1

2n−1
≥ 2βn+D.

This is what we wanted.

Case 2:
∑

x∈An e(x,Rn) < 2n+D+1. Our first step is to find a large subset Qn of Ln
such that for each x ∈ Qn, e(x,Rn) is reasonably large. To begin, note that there must be
some x ∈ An such that e(x,Rn) < 2n+D−βn+3. By definition of An, this implies

e(x,Rn) < 2(1−β)n+D+3 for all x ∈ Ln \An. (3)

Note that |Ln \ An| = 2n−1 −
⌊
2βn−1

⌋
≤ 2n−1, and

∑
x∈Ln\An e(x,Rn) ≥ 2(2−β)n−O(1) −

2n+D+1, so calling δ(n) the average value of e(x,Rn) over x ∈ Ln \ An, we have δ(n) =
2(1−β)n−O(1). Here, and for the remainder of this base case, O(1) will depend on D.

Let Qn = {x ∈ Ln \An | e(x,Rn) ≥ δ(n)/2}. We claim that

|Qn| ≥ 2n−O(1) (4)

Indeed, ∑
x∈Ln\An

e(x,Rn) ≤
(
|Ln \An| − |Qn|

)
δ(n)/2 + |Qn| · 2(1−β)n+O(1)

≤ |Ln \An| · δ(n)/2 + |Qn| · 2(1−β)n+O(1)

(the first inequality is a consequence of (3)), and since
∑

x∈Ln\An e(x,Rn) = |Ln \An| ·δ(n)
(by definition of δ(n)), this yields

|Qn| ≥ 2(β−1)n−O(1) · 1

2

∑
x∈Ln\An

e(x,Rn)

≥ 2(β−1)n−O(1) · 2(2−β)n−O(1)

≥ 2n−O(1)

as desired.
Suppose now that we were to choose a subset B ⊆ Rn at random by putting each

y ∈ Rn into B with probability 2(β−1)n−3 independently of the other vertices of Rn. The
expected value of |B| is 2n−1 · 2(β−1)n−3 = 2βn−4. The Chernoff bound shows that

P
(
|B| ≥ 2βn−1

)
< 2−2βn−1
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for sufficiently large n. In particular, P
(
|B| < 2βn−1

)
= 1− o(1). Furthermore, consider a

fixed x ∈ Qn. Recall that this means e(x,Rn) = 2(1−β)n−O(1) (the O(1) constant depending
on D). The key point is to evaluate the distribution of e(x,B) when B is chosen randomly.
For this, we use the Poisson limit theorem (a.k.a. law of rare events):

Theorem 3.13 (Law of rare events). If we have N {0, 1}-valued independent random
variables X1, . . . , XN where Xi is equal to 1 with probability λ/N , then the distribution
of
∑

iXi converges, as N → ∞, to the Poisson distribution of parameter λ (which is the
distribution over N where K has probability (λKe−λ)/K!).

This is exactly the situation of e(x,B), which is the sum of 2(1−β)n−O(1) binary random
variables (whether or not each of the edges emanating from x will have their other vertex
included in B), each of which has probability 2(β−1)n−O(1) to be equal to 1. So we have
N = 2(1−β)n−O(1) and λ = 2Ω(1) > 0. Therefore, for sufficiently large n, there is an ε > 0
such that

P
(
e(x,B) ≥ 2D+1

)
≥ P

(
e(x,B) = 2D+1

)
= (Ω(1)e−Ω(1))/2D+1 > ε

Thus, when B is chosen randomly as above, the expected value of |{x ∈ Qn | e(x,B) ≥
2D+1}| is ≥ ε|Qn| ≥ ε · 2n−O(1). For n large enough, this is greater than 2βn−1 as β < 1,
and so for n large enough, there exists a set Bn ⊆ Rn of size

⌊
2βn−1

⌋
such that

|{x ∈ Qn | e(x,Bn) ≥ 2D+1}| ≥ 2βn−1

Thus, we can take a subset Q′n of Qn of size
⌊
2βn−1

⌋
such that e(x,Bn) ≥ 2D+1 for

all x ∈ Q′n, and set U = Q′n ∪ Bn. We have |U | ≤ 2βn−1 + 2βn−1 = 2βn and e(U) ≥
2D+1|Q′n| ≥ 2βn+D. This is what we wanted.

This concludes the base case k = 2.

Induction step. Suppose now k > 2 and that the theorem holds for k − 1. We have a
sequence of k-hypergraphs (Gn) where Gn has 2n vertices and 2[k−(k−1)β]n−O(1) hyperedges,
and we fix a large constant D.

To reduce the problem to (k − 1)-hypergraphs, we once again use the probabilistic
method. For each n, if we select at random a set A of size

⌊
2βn
⌋
, and let F be the set of

hyperedges that have at least one component in A, the probability that a given hyperedge
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of Gn belongs to F is, for n much larger than k,

1−

( 2n−k
b2βnc

)
( 2n

b2βnc
) = 1−

(2n − k)!(2n −
⌊
2βn
⌋
)!

(2n)!(2n − k − b2βnc)!

= 1− 2n − k
2n

· · ·
2n − k −

⌊
2βn
⌋

+ 1

2n − b2βnc+ 1

= 1−
(2n −

⌊
2βn
⌋
) · · · (2n − k −

⌊
2βn
⌋

+ 1)

(2n) · · · (2n − k + 1)

≥ 1−
(

2n − 2βn−1

2n

)k
= 1− (1− 2(β−1)n−1)k

≥ k

2
2(β−1)n −O

(
22(β−1)n

)
≥ k

4
2(β−1)n.

We use the fact that n is much larger than k in the first line and in the last two lines. Thus

E(|F |) ≥ k

4
· 2(β−1)n · 2[k−(k−1)β]n−O(1) = 2[(k−1)−(k−2)β]n−O(1)

We can therefore choose for each n a subset An of size
⌊
2βn
⌋

such that the corresponding

sequence of Fn is such that |Fn| = 2[(k−1)−(k−2)β]n−O(1).
Now, for each n, for each k-hyperedge e ∈ Fn, consider the (k−1)-hyperedge e′ obtained

by removing from e the coordinate that belongs to An, or one of those coordinates if
there are several. Let F ′n be the set of (k − 1)-hyperedges obtained in this fashion. This
operation does not change the cardinality so |F ′n| = 2[(k−1)−(k−2)β]n−O(1). Let Hn be the
(k−1)-hypergraph whose vertices are the same as those of Gn and whose set of hyperedges
is F ′n.

We can now apply our induction hypothesis at level (k − 1) to the sequence (Hn) and
constant (D + k + 1), to get some n and some subset Bn of vertices of Hn such that
|Bn| ≤ 2βn and eHn(Bn) ≥ 2βn+D+k+1.

Observe that eGn(An ∪ Bn) ≥ eHn(Bn). Indeed, if a (k − 1)-hyperedge e′ ∈ F ′n has all
its coordinates in Bn, the k-hyperedge e of Gn it came from has (k− 1) coordinates in Bn,
and one coordinate in An, hence all its coordinates are in An ∪Bn. Thus eGn(An ∪Bn) ≥
2βn+D+k+1. And since |An∪Bn| ≤ |An|+ |Bn| ≤ 2βn+1, by Lemma 3.4, there is a subset U
of An∪Bn of size |An∪Bn|/2 ≤ 2βn such that eGn(U) ≥ 0.99 ·2−k ·eGn(An∪Bn) ≥ 2βn+D.
The set U is as wanted, and this concludes the induction step.

This completes the proof of Lemma 3.12 and thus of the theorem.
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4 Characterization of EXTp

For the partial case, we immediately inherit all of the positive results from the total case
as EXT(k) ⊆ EXTp(k). It is not hard to see that EXT(1) and EXTp(1) are the same. To see
this, it suffices to show that EXTp(1) ⊆ EXT(1) as we already know that EXT(1) ⊆ EXTp(1).
If (α, β) ∈ EXTp(1) as witnessed by Γ, f , and d, with Γ partial, then define Φ(σ) to be either
Γ(σ) or the all zeros string, depending on whether we find out first that Γ(σ) converges or
that C(σ) < α|σ|+d. Note that Φ is total as Γ is defined on all σ with C(σ) ≥ α|σ|+d and
so witnesses that (α, β) ∈ EXT(1). So for the remainder of this section, we can consider
only the case k ≥ 2.

In the previous section, we showed that if (α, β) ∈ EXT(k) as witnessed by f , then

(β/α)n−O(1) ≤ f(n) ≤ 1− β
1− α

kn+O(1)

and moreover, that β/α ≤ 1−β
1−αk was equivalent to β ≤ kα

1+(k−1)α . As EXT(k) ⊂ EXTp(k),

we know that (α, β) ∈ EXTp(k) when β < kα
1+(k−1)α , when β = 0, or when α = 1. In this

section we consider the case when β ≥ kα
1+(k−1)α to see if any such pairs (α, β) belong to

EXTp(k). We will show (Theorem 4.2) that for such (α, β), if (α, β) ∈ EXTp(k), then

(β/α)n−O(1) ≤ f(n) ≤ k

1 + (k − 1)α
n+
√
n+O(1).

From this we get that β ≤ kα
1+(k−1)α , and so (Corollary 4.3) if β > kα

1+(k−1)α then (α, β) /∈
EXTp(k).

This leaves the case β = kα
1+(k−1)α . This case will depend on whether or not α and β

are computable.
To prove Theorem 4.2, we will use the following lemma.

Lemma 4.1. Let (Dn) be a computable sequence of finite sets of strings, and Γ1, . . . ,Γk
be partial computable functions from {0, 1}∗ to {0, 1}∗, such that Γi(Dn) ⊆ {0, 1}n for all
i, n. Let ϕ : N → N be a function such that ϕ(n) ≤ n for all n (we do not assume that ϕ
is computable). There is a constant d such that for all n, there is some x ∈ Dn such that:

• C(x) > log |Dn| − (n− ϕ(n) + 1)k − d, and

• for every i ≤ k, either Γi(x) is undefined, or C(Γi(x)) < ϕ(n) + 2C(ϕ(n), n) + d.

Proof. We will show that there is a subset En of Dn such that

• |En| ≥ |Dn| · 2−(n−ϕ(n)+1)k

• for every x ∈ En, for every i ≤ k, either Γi(x) is undefined, or C(Γi(x)) < ϕ(n) +
2C(ϕ(n), n) + d.
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Then, since any set of string of cardinality ≥ 2s contains an element of Kolmogorov com-
plexity at least s (Fact 2.1), there is x ∈ En with C(x) > log |Dn| − (n− ϕ(n) + 1)k − d.

The functionals Γ1, . . . ,Γk play symmetric roles, so we can assume that for all x and
i < j, Γj(x) can only converge if Γi(x) does. Indeed, let Γ′i(x) be the i-th element that
appears in the uniform enumeration of the c.e. set {Γi(x) | i ≤ k}, if such an element
appears. The Γ′i are as desired and replacing each Γi by Γ′i does not change the truth value
of the statement of the proposition.

Let us now fix an n. Consider the following algorithm, which is uniform in n and ϕ(n),
but not necessarily in n alone. Set A0 = Dn. For every i from 1 to k, do the following:

1. Enumerate dom(Γi)∩Ai−1 until we see at least |Ai−1|/2 elements being enumerated.
If this happens, move on to Step 2 (otherwise we wait forever at this stage).

2. Let Φi be the (total) restriction of Γi to these ≥ |Ai−1|/2 elements of Ai−1.

3. Let Bi be the set consisting of the 2ϕ(n) strings y ∈ {0, 1}n that have the largest 2ϕ(n)

values of |Φ−1
i (y)| among strings of length n.

4. Set Ai = Φ−1
i (Bi).

5. If i < k, increase i by 1 and start the loop again.

Let j be the index of the last loop that is completed, and let B =
⋃j
i=1Bi. B is c.e.

uniformly given n and ϕ(n) as parameters. Let us make several easy observations about
the sets Ai and Bi.

• By construction, A0 ⊇ A1 ⊇ . . . ⊇ Aj .

• Again by construction, Γi(Ai) ⊆ Bi for all i, so Γi(Aj) ⊆ Bi for all i, which in turn
implies Γi(Aj) ⊆ B for all i.

• Each set Bi has cardinality 2ϕ(n), so B has cardinality at most k · 2ϕ(n).

• For all i > 0, we have |Ai| ≥ 2ϕ(n)−n−1 · |Ai−1| when Ai is defined. Indeed, Φi is a
function from a set of size at least |Ai−1|/2 to a set of size 2n, so the average value
of |Φ−1

i (y)| is at least 2−n · |Ai−1|/2. If we take the 2ϕ(n) greatest such values, their
sum, which is the cardinality of Ai by definition, is at least 2ϕ(n) · 2−n · |Ai−1|/2, as
desired. By induction, this tells us that |Ai| ≥ 2(ϕ(n)−n−1)i|A0| when Ai is defined.

Let us now build the advertised set En. There are two cases. If j = k (all loops of the
algorithm are performed), simply let En = Aj . If j < k, let En = Aj \ dom(Γj+1). Note
that the set En is not computable or even c.e. in n, but this will not matter.

In the first case, we have |En| = |Ak| ≥ 2(ϕ(n)−n−1)k|A0| by the above calculation,
and since A0 = Dn this is what we want. In the second case (j < k), by definition
of j, the algorithm must get stuck at Step 1 of the j + 1-th loop, that is, we must have
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|dom(Γj+1) ∩ Aj | ≤ |Aj |/2, so |En| ≥ |Aj |/2 ≥ 2(ϕ(n)−n−1)j−1|A0| ≥ 2(ϕ(n)−n−1)k|A0| (for
the last inequality, we use the fact that j < k and ϕ(n) ≤ n).

So in either case, we have

|En| ≥ 2(ϕ(n)−n−1)k|Dn|

Moreover, the definition of En ensures that for any x ∈ En, Γi(x) is defined and belongs
to B if i ≤ j, and Γj+1(x) is undefined (thus, by our initial assumption of the Γi, Γi(x)
is undefined for every i ≥ j + 1). These two facts together imply Γi(En) ⊆ B for all i.
To complete the proof, observe that the construction is effective (given n and ϕ(n) as
parameters), so the set B can be uniformly enumerated if n and ϕ(n) are known. Since
|B| ≤ k · 2ϕ(n), C(y|ϕ(n), n) < ϕ(n) + log k + O(1) for all y ∈ B. Using the fact that
C(y|u) > C(y) − 2C(u) − O(1) for all y, u, we get that for every y ∈ B, C(y) < ϕ(n) +
2C(ϕ(n), n) +O(1).

We are now ready to prove our bound on the functions f which can witness that
(α, β) ∈ EXTp(k).

Theorem 4.2. Let k ≥ 1, β ≥ kα
1+(k−1)α , and suppose (α, β) belongs to EXTp(k). Let f be

a computable function witnessing this. Then the following inequality holds:

(β/α)n−O(1) ≤ f(n) ≤ k

1 + (k − 1)α
n+
√
n+O(1),

where the O(1) on the right hand side is dependent on α and d as well as k.

The choice of
√
n is somewhat arbitrary; all we need for the proof is a computable

function h such that log n = o(h(n)), but fixing h(n) =
√
n is sufficient for our purposes.

Proof. The inequality (β/α)n − O(1) ≤ f(n) is from Remark 1.9. To prove the second
inequality, we will show the contrapositive. Suppose that (β/α)n−O(1) ≤ f(n) but that

f(n) �
k

1 + (k − 1)α
n+
√
n+O(1).

Then for infinitely many n,

f(n) ≥ k

1 + (k − 1)α
n+
√
n.

Let α̂ = kα
1+(k−1)α . Note that given our assumptions, it must be that α̂ ≤ β.

Let ϕ be the function defined by ϕ(n) = dα̂n−5 log ne. Note that since α̂ < 1, we have
ϕ(n) ≤ n. Let n be such that

f(n) ≥ (α̂/α)n+
√
n. (5)
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By Lemma 4.1 (where Dn is the set of strings of length f(n)), there is some x of length
f(n) such that

C(x) > f(n)− (n− ϕ(n) + 1)k −O(1)

> f(n)− (n− α̂n+ 6 log n)k −O(1) (6)

and

for every i ≤ k, either Γi(x) is undefined, or C(Γi(x)) < ϕ(n) + 2C(ϕ(n), n) +O(1)

Since ϕ(n) ≤ n, we have C(ϕ(n)) ≤ log n + O(1), and thus C(ϕ(n), n) ≤ 2 log n + O(1).
Thus this last equation implies:

for every i ≤ k, either Γi(x) is undefined, or C(Γi(x)) < α̂n− log n+O(1) (7)

Let us use our assumption (5) about f(n) to evaluate the right-hand side of (6):

f(n)− (n− α̂n+ 6 log n)k −O(1) = f(n)

[
1− (1− α̂)nk

f(n)

]
− 5k log n−O(1)

≥ f(n)

[
1− (1− α̂)nk

(α̂/α)n+
√
n

]
− 6k log n−O(1)

≥ f(n)

[
1− (1− α̂)k

(α̂/α) + n−1/2

]
− 6k log n−O(1)

≥ f(n)

[
1− (1− α̂)k

(α̂/α)
+ (1− α̂)kn−1/2 − o(n−1/2)

]
−6k log n−O(1)

(the last inequality comes from the asymptotic estimate 1/(a+ ε) = 1/a− ε+ o(ε)). One
can easily verify that

1− (1− α̂)k

(α̂/α)
= α

so the last inequality can be rewritten as

f(n)− (n− α̂n+6 log n)k −O(1) ≥
αf(n) + (1− α̂)kn−1/2f(n)− o(n−1/2f(n))− 6k log n−O(1)

The term (1− α̂)kn−1/2f(n) dominates the terms o(n−1/2f(n)) and O(1) and, since f(n) =
Ω(n), it also dominates the term 6k log n. So for any d, if n was chosen large enough, we
would have

f(n)− (n− α̂n+ 5 log n)k −O(1) > αf(n) + d

Together with (6) and (7), this shows that for any d we can find some n and x of length f(n)
such that C(x) > αf(n)+d and C(Γi(x)) < α̂n−d ≤ βn−d should Γi(x) be defined. This
contradicts our original assumption that (α, β) ∈ EXTp(k) with witness f , and so finishes
the proof.
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Corollary 4.3. Let α, β be in (0, 1) and k ≥ 2. If β > kα/(1 + (k − 1)α), then (α, β) /∈
EXTp(k).

Proof. Assume towards a contradiction that (α, β) ∈ EXTp(k), witnessed by function f ,
constant d and functionals Γ1, . . . ,Γk. By Proposition 4.2 we have

(β/α)n−O(1) ≤ f(n) ≤ k

1 + (k − 1)α
n+
√
n+O(1)

and so β/α ≤ k
1+(k−1)α . This implies that β ≤ kα/(1 + (k − 1)α), a contradiction.

For k ≥ 2, at the threshold value β = kα/(1 + (k − 1)α), we get a positive result, but
only when α and β are computable.

Theorem 4.4. Let k ≥ 1 and α, β ∈ (0, 1) be computable and such that β = kα/(1 + (k −
1)α), or, equivalently, α = β/(k − (k − 1)β). There are k partial computable functionals
Γ1, . . . ,Γk such that Γi({0, 1}b(β/α)nc) ⊆ {0, 1}n for all i, n, and a constant d, such that
when |x| = b(β/α)nc and C(x) ≥ α|x|+ d, C(Γi(x)) ≥ βn− d for some i.

Proof. We will ensure that there is a constant e such that if C(x) ≥ βn+e, then C(Γi(x)) ≥
βn− e for some i. The result will then follow by taking d = e+ α.

Note that as α and β are computable, the map n 7→ b(β/α)nc is also computable
(though it is not computable uniformly in a code for β/α). It is computable if β/α is
rational, and if this is not rational, then (β/α)n is never an integer and so we can compute
the floor function of (β/α)n.

We prove this by induction. For k = 1, we have β = α so it suffices to take Γ1 = id
and we are done.

Suppose the proposition holds for level k, and let us prove it for k + 1. Consider α, β
with β = (k + 1)α/(1 + kα). Let d be a large constant, which we will implicitly define
throughout the proof by listing the properties it must have. We let Γk+1 be the functional
which on an input x of size b(β/α)nc looks for a U-description p for x whose length belongs
to [n + d, n + 2d]. If d is large enough, such a p will be found if C(x) ≤ n + d (here we
use a classical ‘padding’ result for Kolmogorov complexity: there exists a constant a such
that for any x, if C(x) = k, then for any k′ ≥ k, there exists an U-description q of x whose
length belongs to [k′, k′ + a]). If such a p is found, Γk+1(x) returns the prefix p′ of p of
length n. Note that in that case, if C(x) ≥ βn + d, then C(p′) ≥ βn − O(1): indeed, to
recover p from p′ we only need 2d bits of information (at most), and from p we can recover
x. Thus, in this case, Γk+1 ‘succeeds’ on x.

However, Γk+1(x) could be undefined, which as we saw would mean that C(x) > n+d.
In this case, we use the induction hypothesis at level k: Setting γ = β/(k− (k−1)β), there
are k partial functionals Φ1, . . . ,Φk such that Φi({0, 1}b(β/γ)nc) ⊆ {0, 1}n for all i, n, and a
constant e such that when |y| = b(β/γ)nc and C(y) ≥ βn+ e, then C(Φi(y)) ≥ βn− e for
some i.
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For i ≤ k, let Γi be the functional which does the following. On an input x of
length b(β/α)nc, it computes the prefix x− of x of length b(β/γ)nc, and returns Φi(x

−).
We claim than when Γk+1(x) is undefined, i.e., when C(x) ≥ n + d, one of the Γi, i ≤ k
must succeed.

Indeed, when C(x) ≥ n+d, because x− is obtained from x by removing only b(β/α)nc−
b(β/γ)nc bits (which is computable knowing n), we must have

C(x−) ≥ n+ d−
(
b(β/α)nc − b(β/γ)nc

)
−O(1)

≥ n+
β

γ
n− β

α
n−O(1)

≥ n
(
1 + (k − (k − 1)β)− ((k + 1)− kβ)

)
+ d−O(1)

≥ βn+ d−O(1)

where the O(1) term is independent of all other terms (it only depends on the choice of
universal machine U). Thus, if d is chosen large enough, we have C(x−) ≥ βn + e and
the induction hypothesis proves that in this case, one of the Φi(x

−) returns a string y of
length n with C(y) ≥ βn−O(1).

Theorem 4.5. Let k ≥ 2. If α, β ∈ (0, 1) are such that β = kα/(1 + (k − 1)α), but are
not computable (note that the relation between α and β implies that they are either both
computable or both incomputable), then (α, β) /∈ EXTp(k) and a fortiori, (α, β) /∈ EXT(k).

Proof. Suppose for the sake of contradiction that Γ1, . . . ,Γk and f witness that (α, β) ∈
EXTp(k). By Proposition 4.2 we have

(β/α)n−O(1) ≤ f(n) ≤ k

1 + (k − 1)α
n+
√
n+O(1).

But (β/α) = k
1+(k−1)α , and so the computable function f(n)/n would converge to β/α

at computable speed (namely |f(n)/n − (β/α)| < n−1/2), making β/α computable. But
β/α = k/(1 + (k− 1)α), so this would make α computable, a contradiction. (This is where
we use that k ≥ 2).

5 Going beyond constant-size advice

The tight inequality β < kα/(1+(k−1)α) we have obtained allows us to get a more precise
version of Theorem 1.4:

Theorem 5.1. Fix 0 < α < 1 and suppose there is a partial computable function E(., .), a
linear function f , and a constant m, with the property that for every n, for every σ of length
f(n) such that C(σ) ≥ α|σ|, there exists a string aσ of length h such that τ = E(σ, aσ)
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has length n and C(τ) ≥ β|τ |. Then β ≤ 1−
(

1−α
α

)
2−h + o(2−h). Moreover, this bound is

tight.

Proof. As we discussed in the introduction, having h bits of advice is equivalent to having
k = 2h functionals. The result then follows from the tight bound β ≤ kα/(1 + (k −
1)α) = 2h/(1 + (2h − 1)α) that arises from the results in the last two sections, and the
straightforward asymptotic estimate 2h/(1 + (2h − 1)α) = (1− α)/α · 2−h + o(2−h).

Zimand also studied the case where the amount of advice h is no longer constant but
is a (computable) function of n. He showed the following theorem (which we slightly
reformulate to fit our framework), essentially showing that if we allow any unbounded
amount of advice, then we can asymptotically achieve dimension 1:

Theorem 5.2 (Zimand [Zim11]). Let f, h be computable functions such that f(n) ≥ n and
log(f(n)/n) = o(h(n)). Then there exist a computable function E(., .) and a constant d
such that for every n, if |x| = f(n) and |a| = h(n), then |E(x, a)| = n and if moreover x has

length f(n) and C(x) ≥ n+ d, then for some a of length h(n), C(E(x, a)) ≥ n− f(n)

2h(n)/2
≥

n− o(n).

This says for example, when f(n) = 2n, and h(n)→∞, that using h(n) bits of advice
one can turn a string of length 2n and dimension 1/2 into a string of dimension 1− ε(n),
where ε(n)→ 0.

By using a variant of our random graph argument from Section 3.2, we can get a slight
improvement of this result, namely, we can prove the following.

Theorem 5.3. Let f, h be computable functions such that f(n) ≥ n. Then there exist
a computable function E(., .) and a constant d such that for every n, if |x| = f(n) and
|a| = h(n), then |E(x, a)| = n and if moreover C(x) ≥ n+d, then for some a of length h(n),

C(E(x, a)) ≥ n− f(n)−n
2h(n)

− d.

(Note in particular that we no longer need to assume log(f(n)/n) = o(h(n))).

Proof. Let k(n) = 2h(n) and set ψ(n) = n− f(n)−n
k(n) . Let us again reformulate the problem

into a combinatorial one.
The existence of such an E will follow from the following fact which is a natural analogue

of Theorem 3.5: there exist d and a computable sequence (Gn), where for all n, Gn is a
k(n)-hypergraph with 2n vertices and 2f(n) edges, such that for every set U of vertices of
Gn of size < 2ψ(n), e(U) ≤ 2n+d. However, in order to simplify our calculations, for this
proof only we shall define a k-hyperedge over a set of vertices V to be a k-tuple of elements
of V 1. For a subset U of V , e(U) is the number of hyperedges all of whose coordinates
belong to U .

1The reason we defined hyperedges to be unordered and without repetitions up to this point is that
Lemma 3.12 seems easier to prove in this setting.
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Let us briefly check that this fact implies our theorem. The idea is almost the same
as for Theorem 3.5. Suppose there exists such a sequence of k(n)-hypergraphs (Gn). One
computably labels the vertices of Gn with strings of length n and the edges with strings of
length f(n). Define E(x, a) to be the a-th coordinate of the edge labeled x, where a is a
string of length h(n), identified with an integer in [1, 2h(n)] = [1, k(n)].

Now take Un to be the set of (labels of) vertices y of Gn such that C(y) < ψ(n) (which
implies |Un| < 2ψ(n)); if indeed e(Un) < 2n+d we can ensure as before that all edges in E(Un)
have complexity < n+d+O(1). The contrapositive says that if C(x) > n+d+O(1), then
one of the coordinates of the edge (labeled by) x has complexity > ψ(n), that is, some
E(x, a) has complexity > ψ(n).

So now it remains to prove the combinatorial fact. For each n, consider the ran-
dom k(n)-hypergraph Gn with 2n vertices and where each k(n)-hyperedge has probabil-
ity 2f(n)−nk(n)+3 to be put in the hypergraph, with D a large constant. Now there are
(2n)k(n) = 2nk(n) potential edges, so the expectation of the number of edges in Gn is
2f(n)+3. By the Chernoff bound (2) with δ = 7

8 , Gn has at least 2f(n) hyperedges with

probability > 1/2. For any fixed set U of vertices of size < 2ψ(n), there are at most 2ψ(n)k(n)

hyperedges all of whose coordinates are in U , thus we have

E(e(U)) = 2ψ(n)k(n) · 2f(n)−nk(n)+3 ≤ 2n+3

(for the last inequality we use the definition of ψ(n)). Thus, by the Chernoff bound (1),
the probability that e(U) > 2n+6 is less than 2−2n+6

. Thus, the probability that some U
of size < 2ψ(n) has e(U) > 2n+6 is bounded by(

2n

b2ψ(n)c

)
· 2−2n+6

Using the fact that
(
a
b

)
= o(2a) (this is because

(
a
b

)
is maximized for b = ba/2c, and

Stirling’s formula implies that
(

a
ba/2c

)
∼ 2a√

πa/2
= o(2a)), we see that the above expression

tends to 0 as n tends to infinity. In particular, for n large enough, this probability is smaller
than 1/2, thus there exists a graph Gn as wanted.
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