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Abstract. A structure is automatic if its domain, functions, and relations are all regular languages.
Using the fact that every automatic structure is decidable, in the literature many decision problems

have been solved by giving an automatic presentation of a particular structure. Khoussainov and
Nerode asked whether there is some way to tell whether a structure has, or does not have, an automatic

presentation. We answer this question by showing that the set of Turing machines that represent

automata-presentable structures is Σ1
1-complete. We also use similar methods to show that there is

no reasonable characterisation of the structures with a polynomial-time presentation in the sense of

Nerode and Remmel.

1. Introduction

Effective mathematics is the study of algorithms (or the lack thereof) on standard mathematical
objects such as groups, fields, graphs, or linear orders. To perform computations on a structure,
one must have some kind of presentation of the structure that can be manipulated in some model
of computation. One of the first examples of such presentations are the “explicitly given” fields of
van der Waerden [vdW30] in the 1930’s. In the 1950’s and early 1960’s, in work of Fröhlich and
Shepherdson [FS56], Malcev [Mal61], and Rabin [Rab60], the following definition was solidified: a
(Turing) computable presentation of a structure A is an isomorphic copy of A whose domain is the
natural numbers and whose functions, relations, and constants are all Turing computable. For example,
a finitely presented group is computable exactly if the word problem is solvable in the group. The study
of computable structures has been very fruitful; see the books [AK00, EG00].

A computable presentation of a structure can be computationally highly inefficient. It is thus natural
to ask when a computable structure can be transformed into a structure in which the operations
can be computed within reasonable resource bounds. In the late 1980’s, Nerode and Remmel [NR90]
suggested the investigation of polynomial-time computable structures. These are computable structures
in which the operations and relations are polynomial-time computable in the length of their input; the
formal definition will be given later. For various results on polynomial-time structures see [CR92,
Ala16, CDRU09, CR99]. In many natural classes every (Turing) computable algebraic structure has a
polynomial-time copy. In the 1990s, Khoussainov and Nerode [KN95, KN94] gave a more restrictive
definition of an automatic structure. A structure is automatic if its domain and relations are regular
languages, i.e., recognised by a finite automaton. Having an automatic presentation is a very strong
condition on a structure; for instance, it implies that the structure is computable in linear time and
that the first-order theory of that structure is decidable [KN95, BG00]. One can use these techniques
to give decision algorithms for Presburger arithmetic, the real numbers under addition, and atomless
Boolean algebras, and there have even been applications to decision problems in chess [BHS12]. The
study of automatic structures, and especially of automatic groups, has been particularly fruitful; see,
e.g., [Tsa11, BS11, NS09, ECH+92, KKM14, JKS+17, JKS18].

Which algebraic structures admit an automatic presentation? Delhommé [Del04] showed that the
automatic ordinals are exactly those below ω<ω, and Oliver and Thomas [OT05] proved that a finitely
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generated group is automatic if and only if the group is virtually abelian; see [KM10] for more charac-
terisations of this sort. What about polynomial-time presentations? It is not hard to show that every
(Turing) computable linear ordering admits a polynomial-time presentation [Gri90], and the same can
be said about any torsion-free abelian group (essentially [KMN17b], after Downey) and many other
structures; see the survey [CR91]. Positive results of this sort suggest that perhaps there could be a gen-
eral necessary and sufficient condition on a structure to have an automatic or at least a polynomial-time
presentation.

In this paper, we use advanced tools of computability theory to show that there is no general
reasonable necessary and sufficient condition on a structure to be automata presentable. In a similar
vein, we also show that there is no reasonable necessary and sufficient condition on a structure to
have a polynomial-time presentation. More formally, we prove that the complexity of the index sets
of automatic structures is Σ1

1-complete, and that the same holds for polynomial-time structures. The
former answers Question 4.9 of Khoussainov and Nerode [KN08], and the latter answers Question 3.3
from the survey [Mel17].

Before we formally state and explain our theorems, we first clarify the terminology and discuss how
computability theory approaches classification problems in mathematics.

1.1. Index sets and classification problems. Suppose P is a certain property of an algebraic
structure. For example, P (A) could be stating that A is a free group, or that it is a well-founded partial
order. Using a universal Turing machine, we can interpret every number as a (partial) computable
structure and produce an effective listing of all (partial) computable structures. The complexity of the
property is reflected in the complexity of its index set

IP = {i ∈ ω | the ith computable structure has property P}.

The latter can be formally measured using various hierarchies such as the arithmetical and the analytical
hierarchies [Rog87, Soa87]. Such hierarchies consist of complexity classes which are the analogues in
computability theory to classes such as P and NP in complexity theory. The classes correspond to the
number and type of quantifiers required to solve the problem. We show some of the complexity classes
below.
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For instance, if a decision problem falls into the complexity class ∆1
1 then (essentially) it can be stated

using only first-order quantifiers, while those in the classes Π1
1 and Σ1

1 may require a second-order
quantification [Rog87, Soa87].

We give a few examples of index set results. The Σ1
1 decision problems are those which can be

decided with an existential second order quantifier. Just because a decision problem is in Σ1
1 does

not mean that it necessarily requires deciding an existential second order quantifier. For instance, it
follows from [CHK+12, MW12] that the index set of free groups Ifree is merely Σ0

5, while the brute-force
bound gives Σ1

1. This means that it takes only 5 first-order quantifiers over the natural numbers to
test whether the ith structure is a free group. This low syntactical complexity reflects the algorithmic
nature of freeness; recall that Nielson transformations [LS01] can be used to “calculate” a basis of a
group (if the basis exists). In contrast, Riggs [Rig] has shown that the index set IDirDecom of directly
decomposable abelian groups is Σ1

1-complete. Recall that a group is directly decomposable if it can
be split into the direct sum of its non-trivial subgroups; this brute-force definition is naturally Σ1

1.
From the computability-theoretic standpoint, the result of Riggs illustrates that there is no reasonable
characterisation of directly decomposable abelian groups because there is no simpler way of checking
that a group is decomposable than just testing the naive definition of decomposability. More formally,
we will show that if S ⊆ N is a Σ1

1 set, then there is a computable reduction f from S to IDirDecom;
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for some computable function f we have:

for all n: n ∈ S ⇐⇒ f(n) ∈ IDirDecom.

If such a reduction exists, then any decision procedure for IDirDecom would immediately yield one for S;
so IDirDecom is at least as hard as S. Once we show that IDirDecom is Σ1

1-complete, we know that there
is no simpler way to check whether a particular computable abelian group A has a non-trivial direct
decomposition rather than to ask the naive question: “Does there exist a pair of non-zero subgroups
that split the group?” We give more examples in the table below.

Decision Problem Complexity Reference
Well-foundedness of a linear order Π1

1 [Spe55]
Atomicity of a Boolean algebra Π1

1 [GN02]
Decomposability of a group Σ1

1 [Rig]
Complete decomposability of a group Σ0

7 [DM14]
Isomorphism between finitely generated abelian groups Σ0

3 Folklore
Isomorphism between free groups Π0

4 [CHK+12, MW12]
Isomorphism between vector spaces Π0

3 [DM08]
Isomorphism between torsion-free abelian groups Σ1

1 [DM08]

For instance, the classification by dimension leads to the decision whether two spaces over the same
field are isomorphic being merely Π0

3. Formally, if Ai is the ith computable structure, then the index
set for the isomorphism problem

{〈i, j〉 ∈ ω | Ai, Aj are vector spaces over F and Ai ∼= Aj}

is Π0
3-complete, where 〈i, j〉 = 2i3j . In contrast, it follows from [DM08] that there is no better way

to check that two torsion-free abelian groups are isomorphic than to search through the uncountably
many potential isomorphisms. From the perspective of computability theory, it follows that such
groups are unclassifiable up to isomorphism. The abundance of “monstrous” examples of such groups
in the literature [Fuc70, Fuc73, Hjo02, Tho03] strongly support this conclusion. Compare this to vector
spaces, free groups, or completely decomposable groups which do possess convenient invariants.

As a systematic framework, this strategy of looking at index sets of computable structures origi-
nated in [GN02] and has been used in many other applications, see [LS07, Fok07, CFG+07, FGK+15,
GBM15a, GBM15b].

1.2. Results. We return to the discussion of automatic and polynomial-time structures. As we noted
above, Khoussainov and Nerode ([KN08], Question 4.9) asked for the complexity of the index set of
automata-presentable structures

IAut = {i ∈ ω | the ith computable structure has an automatic presentation}.

It is clearly in Σ1
1: a computable structure A has an automatic presentation if and only if there exists

an automatic structure B and an isomorphism f between A and B.
In [KNRS07], it was shown that the isomorphism problem for automatic structures is Σ1

1-complete.
Khoussainov and Minnes [KM09] have also constructed automatic structures with arbitrarily complex
invariants in the sense of high Scott rank. These results illustrate that automatic structures possess very
complicated invariants, but these results do not give any insight into the the question of Khoussainov
and Nerode. Compare this to the situation with groups. We know that the isomorphism problem for
groups is Σ1

1-complete [GN02], but the index set of groups is merely Π0
2; all we need to check is the

three simple axioms. However, we show that IAut is not simpler than Σ1
1.

Theorem 1.1. The index set

IAut = {i ∈ ω | the ith computable structure has an automatic presentation}

of automata presentable structures is Σ1
1-complete.

Again, what this means is that being automata presentable is at least as hard as every other Σ1
1

problem. It follows that there is no hope of finding a convenient characterisation of automatic structures
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in general, but there could be nice characterisations within large natural classes. For instance, what is
the index set of automatic linear orders? What about groups? We leave these questions open.

Interestingly enough, initially the authors were not concerned with automatic structures. They
were looking at the index set of fully primitive recursive structures [KMN17b]. These are computable
structures in which the domain is ω and all operations and relations are primitive recursive. The latter
means that unbounded search operators – such as REPEAT . . . UNTIL . . . – must be forbidden in the
algorithm representing the structure. Although fully primitive recursive structures do not have to be
computationally feasible, the class serves as an abstraction to study polynomial-time presentations in
the following sense. Kalimullin, Melnikov and Ng [KMN17b] have observed that eliminating unbounded
search from a Turing computable presentation of a structure is often the key step is showing that the
structure has a polynomial-time presentation; see [KMN17b, KMN17a, Mel17] for various examples.
On the other hand, to show that a structure does not have a polynomial-time presentation it is often
easiest to prove it does not even have a fully primitive recursive presentation, as in [KMN17b, KMN17a,
CR91, CR95]. The paper at hand is yet another non-trivial illustration of this important intermediate
role of primitive recursion in computable algebra. The authors initially showed that the index set of
fully primitive recursive structures is Σ1

1-complete, and then they realised that the argument can be
extended to prove Theorem 1.1 as well as the second main result below:

Theorem 1.2. The index set

IPoly = {i ∈ ω | the ith computable structure has a polynomial-time presentation}
of polynomial-time presentable structures is Σ1

1-complete.

It follows that there is no convenient necessary and sufficient condition for a computable structure to
have a polynomial-time presentation. We note that both Theorem 1.2 and 1.1 will be witnessed by
structures in some finite language which consists of at most binary predicates and unary functions.

The main results – rather, their proofs – have several pleasant corollaries. In [HT17], the second
author proved that the index set of the decidably presentable structures is Σ1

1-complete; Recall that
a structure is decidable if its full first-order diagram (i.e., after naming all elements) is computable.
From the proof of Theorem 1.2, which incorporates techniques from [HT17], one gets the same result
but moreover that the Σ1

1-outcome is witnessed by an automatic (thus, decidable) structure. Also, as
we will discuss later, one technical lemma in the proof of Theorem 1.2 implies that Nurtazin’s neat
syntactical description of structures categorical with respect to decidable copies [Nur74] cannot be
extended to ∆0

2-categoricity with respect to decidable copies. This is a technical result which will be
of interest to experts in computable structure theory; see Corollary 5.6. Also, as a consequence of the
proof of Theorem 1.2, the index set of fully primitive recursive structures is Σ1

1-complete. The latter
answers Question 3.3 from [Mel17].

The reader should prepare for technically involved proofs. In Section 3 we will do our best trying
to explain the main ideas behind the proofs. However, a solid background in computability theory
will perhaps be necessary to understand the arguments in full depth. The proofs of both theorems
(1.1 and 1.2) are based on the same general technical fact (Lemma 4.1) which extends the strategy
that the second author used in [HT17] in the context of decidable structures. Another important
component is a jump inversion theorem (see Theorem 5.1) that improves the key technical result of
Khoussainov and Minnes [KM09] and gives a jump-inversion operator from the class of ∆0

2-structures
to automatic structures. On top of these technical tools, we will introduce a diagonalisation method
which (amazingly enough!) works for both Theorem 1.1 and 1.2. This general diagonalisation strategy
is described in Lemma 4.6. Instead of giving two separate but very similar proofs, we develop a
framework. Then both main results will be derived as easy applications of this general apparatus.

The plan of the paper is as follows. Section 2 contains formal definitions and other preliminary
material. In Section 3, we describe a labeling technique first used by Selivanov [Sel76] and Goncharov
[Gon77], and we informally describe the proof for the case of fully primitive recursive structures. Sec-
tion 4 contains two general technical facts, Lemma 4.1 and Lemma 4.6, that are used in the proofs
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of both main results. In Section 5, we give a jump-inversion operator from ∆0
2-structures to auto-

matic structures. Section 6 introduces another jump-inversion operator acting from ∆0
2-structures to

computable structures. This operator will be used by the diagonalisation strategy from Theorem 1.1.
Following this, in Section 7 we prove Theorem 1.1 on automatic structures. Section 8 contains the
proof of Theorem 1.2 on polynomial-time structures.

2. Different Kinds of Presentations of Structures

A computable structure (in a computable language L) is one whose domain is the set of natural
numbers that we denote ω, and whose basic relations are all uniformly Turing-computable sets of tuples
from ω. For other kinds of presentations, we tend to think of the domain of the structure as the set of
finite words Σ∗ in a finite language Σ. (Using a natural coding, we can identify ω and Σ∗.)

2.1. Polynomial-time computable structures. Let Σ be a finite alphabet. We say that a function
f : (Σ∗)n → Σ∗ is polynomial-time computable if there is a polynomial p and a multitape Turing
machine which computes f(x̄) in time p(`), where ` is the length of the input. For a set S ⊆ (Σ∗)n,
we say that S is polynomial-time computable if its characteristic function is. In this paper we are
mainly concerned with structures in a finite language. Let L = {{Ri}i∈S , {fi}i∈T , {ci}i∈U} be a finite
computable language.

Definition 2.1 ([NR90]). A structure

A = (A, {RAi }i∈S , {fAi }i∈T , {cAi }i∈U )

is polynomial-time computable if

• the domain A is equal to Σ∗,
• each Ri ⊆ (Σ∗)s(i) is a polynomial-time computable relation, and
• each fi : (Σ∗)t(i) → Σ∗ is a polynomial-time computable function.

However, the domain of the polynomial-time structure might be defined as a proper polynomial-time
subset of Σ∗, and this leads to a non-equivalent definition [CR91]. For this particular paper there will
be no difference which definition we pick, because our result on polynomial-time structures will remain
true for both. We chose the definition above only to be consistent with the definition below.

Definition 2.2. [KMN17b] A structure

A = (A, {RAi }i∈S , {fAi }i∈T , {cAi }i∈U )

is fully primitive recursive if

• the domain A is equal to ω,
• Ri ⊆ (Σ∗)s(i) are relations with primitive recursive characteristic functions, and
• fi : (Σ∗)t(i) → Σ∗ are primitive recursive functions.

2.2. Automatic Structures.

Definition 2.3. Let Σ be a finite alphabet. A word automaton is a tuple M = (S, ı,∆, F ) where S is
a finite set of states, ı is the initial state, ∆ ⊆ S × Σ× S is the transition table, and F ⊆ S is the set
of accepting states.

An automaton can be presented as a finite labeled graph whose nodes are the states S, and there
is an edge labeled σ between s and s′ if and only if (s, σ, s′) ∈ ∆. The input is a finite string w ∈ Σ∗.
Given w = σ0σ1 · · ·σn−1, a run of the automaton is a sequence q0, q1, · · · , qn where q0 is the initial
state, and (qi, σi, qi+1) ∈ ∆ for all i. The run is accepting if qn is in the set F of accepting states. The
automaton accepts w if there is at least one accepting run. A word w may have no runs, in which case
it is not accepted, or more than one run.

Definition 2.4. A subset L ⊆ Σ∗ is called a regular language if there is an automaton M such that L
is the set of finite strings accepted by M.
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The collection of regular languages is closed under union, intersection, and complements.
We want to define regular relations R ⊆ (Σ∗)n. To do this, we must define the operation of

convolution. Given x1, . . . , xn ∈ Σ∗, all of the same length, the ith element of their convolution is
〈x1(i), . . . , xn(i)〉. If x1, . . . , xn are of different lengths, first pad them by appending a new symbol 3
to make them have the same length. We denote the convolution by conv(x1, . . . , xn); it is a string over
the alphabet (Σ ∪ {3})n.

Definition 2.5. R ⊆ (Σ∗)n is called a regular relation if its convolution

conv(R) = {conv(x1, . . . , xn) | (x1, . . . , xn) ∈ R}
is regular.

We are now ready to define what it means for a structure to be automatic. An automatic structure
is always in a finite relational language.

Definition 2.6 ([KN95]). A structure A = (A,R1, . . . , Rn) is automatic if its domain A is a regular
language and its relations R1, . . . , Rn are regular relations. A is automatic presentable if it is isomorphic
to an automatic structure.

We note that Hodgson [Hod82] had defined the notions of an automata decidable theory and auto-
matic structure before Khoussainov and Nerode, but his work went largely unnoticed until the paper
of Khoussainov and Nerode [KN95] in 1995, when the systematic study of automatic structures took
off.

Example 2.7. Presburger arithmetic is automatic presentable. Its automatic presentation ({0, 1}∗ ·
1,+,≤) uses binary representation, with the least significant bit first. The standard method of adding
two numbers in binary uses a single carry bit and is thus automatic.

Recall from the introduction that one of the reasons for studying automatic presentations is that
there is a decision procedure for them.

Theorem 2.8 ([KN95], [BG00]). There is an algorithm that, given an automatic structure A, an ele-
mentary first-order formula ϕ(x1, . . . , xn), and a tuple a1, . . . , an, decides whether A |= ϕ(a1, . . . , an).

For more results on automatic structures, the reader is referred to, e.g., [KN95, BG00, KNRS07,
KR03, KM10, KLM09].

3. Intuition

3.1. The label technique. Perhaps the first implicit use of the technique can be found in Seliv-
anov [Sel76] and Goncharov [Gon77], both in the context of numbering theory. The technique has re-
cently found significant applications in computable structure theory, perhaps most notably in [DKL+15]
where it was used to prove Π1

1-completeness of computable categoricity. In this subsection we briefly
outline the main idea of the technique.

We will also use a game-theoretic approach to constructing our structures. In the construction, will
have to meet an infinite collection of requirements, which are just certain properties which, combined,
imply the desired Σ1

1-completeness of the index set. Each of the requirement will be associated with a set
of instructions. This set of instructions can be viewed as winning strategy for a Lachlan game [Lac70].
In a Lachlan game both the player and the opponent builds a sequence of c.e. sets, see [Lac70] for a
detailed explanation. In our proof sketch the player (us) builds parts of the structure and tries to meet
the requirements. The opponent (the adversary) builds the uniform total list of all primitive recursive
(or polynomial-time, or automatic) structures. The player also tries to guess on what the opponent
builds. Clearly, just guessing would not suffice. The player will implement the above mentioned label
technique to “press” the opponent (to be explained below). The formal proof will then boil down to
arguing that the player has a uniformly computable winning strategy.

Fix a uniformly computable list (Me)e∈ω of all (partial) computable structures, perhaps only of
those that possess some specific nice property (for example, primitive recursive or polynomial-time
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computable). Imagine that we have to build a computable structure M . Among other requirements,
we will attempt to meet:

M ∼= Me =⇒ M ∼=∆0
1
Me,

for every e, where ∼= stands for isomorphism and ∼=∆0
1

for computable isomorphism. Although we may
fail to satisfy this requirement, our strategy will typically allow us to push down the complexity of
guessing whether M ∼= Me from Σ1

1 to arithmetical. We usually aim to satisfy the requirement only at
some restricted part Pe of M specifically reserved for the index e (or for some other purpose). This Pe
will, for example, consist of elements that satisfy some unary predicate (that we may also denote Pe).
So we really attempt to meet

M �Pe
∼= Me �Pe

=⇒ M �Pe
∼=∆0

1
Me �Pe

,

for each e.
The main idea is as follows. Suppose at stage s we have built a finite segment M [s] �Pe of M �Pe

and a (partial) isomorphism fs : Me[s] �Pe→M [s] �Pe . At the next stage s+ 1 we would like to extend
the domain of M [s] �Pe

by (say) one extra element a and define the operations and relations on this
new element to obtain M [s + 1] �Pe

. We could have just adjoined a to M [s] �Pe
without any extra

care, but then Me �Pe
might respond by producing an isomorphic copy of M [s + 1] �Pe

with a new
isomorphism g : Me[s+1] �Pe→M [s+1] �Pe that does not extend the previously defined fs. To satisfy
the requirement, however, we must prevent Me from destroying our approximation fs. This is done as
follows. We make sure that our approximation of M �Pe

satisfies the peculiar local rigidity property :

There exists only one possible isomorphic embedding of M [s] �Pe
into M [s+ 1] �Pe

.

To enforce this property we use labels. A typical label in the literature would be some finite unique
configuration attached to (or somehow associated with) every element x of M [s] �Pe

(and M [s+1] �Pe
).

For example, we could use a binary relation L and create an L-cycle of some specific size k[a, s + 1],
and connect it to a. Using a single binary relation will later allow us to keep our language finite.
Another simple enough approach would involve using a fresh unary predicate Ua and set Ua(a) = 1
and Ua(x) = 0 for all x currently in M . Although later we may add more points to M which are
labeled by Ua, at this stage the finite part of our structure is rigid.

The opponent controlling Me must respond by giving us the unique possible extension of fs that we
use to define fs+1, otherwise Me �Pe 6∼= M �Pe . If Me responds by giving some other configuration (or
gives us too many elements) we will keep the configuration M [s + 1] �Pe untouched and will perhaps
restart the other requirements in some other location of M using another unary predicate Pj . (The
exact strategy will depend on what exactly we are trying to do with M .)

It is crucial that the uniqueness of M [s] �Pe
↪→ M [s + 1] �Pe

for every s does not necessarily imply
that M �Pe=

⋃
s∈ω(M [s] �Pe) is rigid, as we may end up with all elements of M �Pe labeled by the

same collection of labels in the limit. Although every element of M [s] �Pe
participates only in a finite

collection of labels unique to this element at stage s, this same element in M �Pe may carry infinitely
many labels after the construction is finished. It is perfectly possible that all elements can carry the
exact same infinite collection of labels in M �Pe

, and in fact we can arrange it so that this set of length
of loops is computable uniformly in e.

Example 3.1. For simplicity, suppose Pe contains only points with no extra relations on the points.
We identify a loop of size n+ 1 (or the n’th unary predicate) with label n . We will label each point
of Pe by n , for every n, assuming that Me � Pe is actually isomorphic to our M � Pe and always
faithfully responds to our actions. This is done as follows.

0. Start by introducing x0 with 0 on it. Wait for Me to respond by giving y0 labeled by 0 .

1. Introduce a new element x1 and put 1 on it. Wait for Me to respond.

Whenever Me responds by copying us we declare the respective stage e-expansionary. Our local goal

is to label x0 by 1 and x1 by 0 . However, we can’t do it now since Me might swap its y0 with y1 by
(secretly) declaring y1 to be the image of x0, while we want y0 to be the actual image of x0. We can
achieve our local goal as follows.
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2. Put 2 onto x0 and 3 onto x1. Wait for Me to respond by putting 2 onto y0 and 3 onto
y1.

3. Put 1 onto x0 and 0 onto x1. Wait for Me to respond by putting 1 onto y0 and 0 onto
y1.

Note that Me has to follow us; otherwise it is “dead”. We could continue in this manner and use

m and m+ 1 and put n (for every n) onto both x0 and x1. Call this procedure applied to x0 and
x1 the limit homogenisation.

At any later stage we can introduce a new element x2 (similarly, xk if we already have x0, . . . , xk−1)
as follows.

2. Put x2 labeled by m , where m is fresh and large. Wait for Me to copy us.
3. Resume the procedure of local homogenisation, but this time apply it to x0, x1 and x2 (not

only x0, x1).

Note that at every stage s there exist a unique embedding of M [s] �Pe
into M [s+ 1] �Pe

, as desired. In
particular, the opponent’s structure Me cannot reset its embedding at any intermediate stage. Note
that all the xi are automorphic in the limit structure M �Pe .

Depending on what exactly we are trying to prove, the label technique can be modified. For example,
the uniqueness of M [s] �Pe

↪→M [s+1] �Pe
can be sacrificed by homogenising some parts of the structure

at intermediate stages, for the sake of initialisation. But, regardless, the complexity of the guessing on
Me �Pe

∼= M �Pe can be significantly simplified.

3.2. A rough idea that will not work. We now turn to the discussion of Theorem 1.1 and 1.2.
In fact, it is easier to think about the proof of 1.2 but not worry about calculating the time bounds.
Thus, for simplicity, let us think about the index set of fully primitive recursive structures. The general
outline of the strategy described below comes from that used in [HT17].

Let (Le)e∈ω be a list of all partially computable linear orders. Fix a Σ1
1-complete set S, and fix a

total computable f such that Lf(x) is well-ordered iff x /∈ S. We can arrange it so that x ∈ S always
implies Lf(x) has a fixed isomorphism-type H, the Harrison linear order [Har68].

Even in the polynomial-time proof we will be diagonalising against all primitive recursive structures.
Recall that the primitive recursive structures can be uniformly computably listed, but this list (Ne)e∈ω
is itself not primitive recursive.

Remark 3.2. We could replace this list by the list of all polynomial-time structures, or some infinite
list of total structures; this would not affect the proof. It will be highly instructive to separate the
exact properties of the class that we diagonalise against from the apparatus of the label technique. For
the sake of this separation, we invite the reader to assume that (Ne)e∈ω is a list of all structures that
possess some “nice” property P that is not necessarily “polynomial time”; for example, it could stand
for 1-decidable, primitive recursive, or decidable. This approach will help the reader to understand
the more involved case of automatic structures. Many ideas below will still apply for such a “nice”
property, regardless what exactly it is.

We need to build an M and also satisfy:

Σ1
1 : if x ∈ S then M has a fully primitive recursive presentation,

and
Π1

1 : if x /∈ S then (∀e)M 6∼= Ne.

We will be working with Ne within a separate component of M , call it Me.
For now, fix some naive diagonalization strategy D that would be sufficient to diagonalise against a

single Ne, in isolation. We assume that we can list isomorphic copies of all the possible outcomes of D
in a “nice” way. Let (Dn)n∈ω be such a list.

Example 3.3. For example, it is easy to imagine a strategy that builds a computableM in the language
of one functional symbol and guarantees M 6∼= Ne for a single e, where Ne is primitive recursive. Simply
put a point and wait for Ne to either produce a very long chain or a loop, and we do something that
would be different; because Ne must be primitive recursive, and M must simply be computable, we
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can do this. Clearly, we can uniformly primitively recursively produce a list of all possible isomorphism
types of M that can be built by the strategy, even though the particular M we build is not primitive
recursive. This strategy will not be sufficient at the end, but it is good enough as an example.

We go back to the Σ1
1-diagonalization. The very naive, clearly incorrect, but still useful idea can be

described as follows.
In Me, we reserve a bunch of fully primitive recursive (in fact, polynomial-time) copies of the

Harrison order H ([Gri90]) that will be put into separate “boxes” (aka locations) in Me. Denote

such boxes by H . To each such “square” box H and for each n, attach another special “round”

box Dn with the outcome structure Dn. This way we can form infinitely many double-boxes H -

Dn , with infinitely many copies of such a double-box for every fixed n. This collection is uniformly

polynomial-time, which we denote by Je. (J of course, stands for “junk”.)

We will also build another, special component of the form Lf(x) - D , where Lf(x)
∼= H iff x ∈ S,

and where D will be implementing the naive diagonalization strategy D against a corresponding round

box of Ne. If x ∈ S then, no matter what we do, Je∪ Lf(x) - D = Je∪ H - Dn for some n, and

therefore Me = Je∪ H - Dn
∼= Je which is primitive recursive. Therefore, as Me ∼= Je, Me will have

a primitive recursive presentation Je (in fact, polynomial-time), with all possible uniformity.

Remark 3.4. Note that the special component itself does not have to be primitive recursive.

If x /∈ S then Lf(x)
∼= α for some computable ordinal α. In particular, Lf(x) - D = α - D , and

since H is not well-ordered, we have that the special component α - D is stable under automorphisms

of M . In other words, α uniquely determines the position of the diagonalization spot D in M when

x /∈ S (the Π1
1-outcome). Thus, if we knew the image of α in Ne we’d be able to diagonalise against

Ne using the naive strategy D applied to the respective round boxes.
Clearly, we don’t know which of the components of Ne is isomorphic to α (if there is any at all).

The naive diagonalization strategy D that builds D is a low-level arithmetical strategy and cannot
possibly handle such a great potential injury. Thus, the strategy is far from being successful in the Π1

1

case (when x /∈ S), but at least we can hopefully handle the Σ1
1-outcome (x ∈ S).

3.3. A partial fix. We now describe another idea that will allow us to partially fix the Π1
1-outcome.

The idea is to mix the rough strategy above with the label technique informally described in Subsec-
tion 3.1. We will adopt the idea from Example 3.1 and build the component Me of M monitoring Ne
and carefully placing arrays of labels onto elements of Me in the right order. It is important that we

can add the labels in a primitive-recursive way. For every double-subcomponent L - S (no matter

what the contents of the boxes are), only the elements within the square box will be labeled, and it
will be done along the lines of the procedure described in Example 3.1. The substructure S within any
such round box will never be labeled. We define the notion of an e-expansionary stage accordingly (see
Example 3.1).

Remark 3.5. In the definition of an e-expansionary stage, the behaviour of Ne within its various
round boxes will be ignored. It is crucial that the notion of an e-expansionary stage depends only on
whether Ne copies M within its square boxes.

Now, if there are infinitely many e-expansionary stages then all elements in all square boxes –

including the square box of the special component Lf(x) - D – end up labeled by all labels from an

infinite computable set of labels, just as in Example 3.1. In particular, all the analysis from the previous
subsection still applies to this new construction but only if there exist infinitely many e-expansionary
stages. In particular, the Σ1

1-outcome is still fine.
Also, provided that there exist infinitely many e-expansionary stages, the Π1

1-outcome looks far less
complicated. We can search for the least k such that the k’th double-box in Ne copies our special
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component. (Every double-box can be assigned with a number under some natural effective listing of
all double-boxes; the listing depends on the enumeration of Ne.)

Once Ne starts copying the square box of the special component, it can never switch to copying
some other square box. This is simply because our computable approximation of the square boxes in
M �Pe is locally rigid in the sense of Subsection 3.1, as ensured by the labels. Also, in the Π1

1 case
the square box of the special component contains a labeled copy of an ordinal α, and therefore the
respective box in Ne must also contain this same labeled copy of α, unless Ne is not isomorphic. (If
Ne 6∼= M then we win by luck). Note that the important point here is that because of the way we label
and grow the elements of the square box of the special component, if Ne copies our special component,
then the contents of the square box of Ne has to be actually isomorphic to the contents of our square
box of the special component. At the end we will put a labeled linear ordering in the square box; this
forces the contents of the square box of Ne to be also a copy of the same linear order, even though the
linear order itself could be very complicated.

The guessing on such least k is clearly a finitary process. Once this k is found and stable, we
can implement the naive diagonalization strategy in the round box of the special component in M by
comparing it with the round box of the k’th double-box of Ne (see Example 3.3).

Nonetheless, there is still a problem with the Σ1
1-outcome in the case when Ne eventually never

responds, i.e., if there are only finitely many e-expansionary stages. Then we may end up with a finite

(labeled) special component Lf(x)[s] - D[s] that is not isomorphic to any other double-box that we

have in Je. We clearly don’t know whether we are in the Π1
1 or Σ1

1-case, and in the latter case we
want to be able to throw the special component away and guarantee Me ∼= Je, where Je actually is
polynomial-time. This problem is easily fixed by introducing more junk components into Je.

3.4. A fix to the fix. At every stage s at which we wait for Ne to respond, we will also introduce

infinitely many fresh new copies of Lf(x)[s] - D[s] and put them into Je. This will destroy the local

rigidity of (Me[s])s∈ω, but it will fix the problem with the Σ1
1-outcome discussed above.

Whenever we further expand the special component at a later stage, we “kill” its previous isomorphic

copies (those isomorphic to Lf(x)[s] - D[s] ) in Je by labeling all their elements with a special label

k. This label will be reserved specifically for this purpose. No other elements of Me (including, in
particular, the elements of the special component) will ever be labeled by k.

After the fix, we will actually be searching for the least k such that, for some s, (the square box
of) the kth double-box in Ne copies the isomorphic type of (the square box of) our special component
at every stage t ≥ s. If Ne ∼= M then such a k must exist. However, this will potentially induce
finitely many injuries to the diagonalization strategy D. There also exists the possibility in which the
strategy D is initialised infinitely often. In this case Ne 6∼= M , but this outcome must also be taken into
consideration. Recall that in Example 3.3 we produced a uniform nice list of all potential outcomes
of D, for the sake of constructing the “nice” junk collector Je. As long as we can come up with an
appropriate diagonalization strategy that is sufficient to sustain finitely many injuries and has highly
predictable outcomes, we will construct a primitive recursive Je with all required uniformity.

The actual solution will require a more subtle local strategy whose infinitary outcome is hard to
predict. However, with some care, we will still be able to produce a primitive recursive (in fact,
polynomial-time) Je. We stop the informal discussion here.

The extended sketch above can be pushed to a formal proof, and it is quite remarkable that we get
Σ1

1-completeness of polynomial-time structures almost for free out of it. All we need to do is to decide
on our actions within a specified time bound, but this causes no grief. More care will be needed in the
automatic case. The problem is that it is not clear which of our actions are automatic and which are not.
To overcome this difficulty we will use two different “jump inversion” operators acting independently
on round and square boxes, which are operators turning ∆0

2 copies of a structure into computable
structures in a different language. The images of these operators will in fact be “uniformly” regular
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(automatic). Most of our guessing will be performed at the level of 0′ with almost no adjustment, this
includes the procedure of placing labels, etc.

Because of these similarities between the proofs, it will be most convenient to develop a certain
framework and then derive the theorems as applications of this technique. In our formal proof below
we isolate the main feature of the Σ1

1 guessing and the key idea of diagonalisation into two separate
lemmas. We now give the formal details.

4. The two key lemmas

In this section, we give two key lemmas that will be used in the proof of the main results. The first

one, Lemma 4.1, describes our strategy that deals with square boxes L . In the case of Π1
1 outcome, the

lemma helps us to choose a square box L inside the opponent’s structure. Then the corresponding

double box L - S will be used to defeat the opponent (i.e. to ensure that our structure and the

opponent’s structure are not isomorphic).

The second key lemma, Lemma 4.6, describes our work with the round boxes S : this is the

groundwork for defeating an opponent after choosing an appropriate double box.

Let {Ai}i∈ω and {Bj}j∈ω be sequences of L-structures. We say that the sequences {Ai}i∈ω and
{Bj}j∈ω are equal up to isomorphism if the following conditions hold:

a) For any i ∈ ω, there is some j ∈ ω such that Bj ∼= Ai.
b) For any j ∈ ω, there is i ∈ ω such that Ai ∼= Bj .

it is well-known that graphs are computably universal in the sense that every computable structure
can be imitated by a graph (folklore). Although the lemma below is stated for graphs, it will be
sufficient for our more general purposes.

Lemma 4.1. Given computable infinite linear orders L, H, and a computable sequence of (partial)
computable graphs {Bi}i∈ω, one can effectively construct a computable function f(x) and a computable
sequence of graphs {Ai}i∈ω with the following properties:

a) If L ∼= H, then there is a non-zero i such that Ai and A0 are isomorphic.
b) Suppose that L 6∼= H, and the sequences {Ai}i∈ω and {Bj}j∈ω are equal up to isomorphism.

Then for any i > 0, we have Ai 6∼= A0. Furthermore, there is a finite limit k := lims f(s), and
A0
∼= Bk.

Proof. Without loss of generality, we may assume that for any s, the structures L[s + 1] \ L[s] and
H[s+ 1] \ H[s] are one-element. We also assume that L[0] = H[0] = ∅.

For any i ∈ ω, the structure Ai will be a labeled linear order, i.e. a linear order such that each of its
elements is labeled by various labels n . We can implement the labels in various ways, for instance use
an infinite array of unary predicates. However, we intend o keep our language finite. Thus, let A be a
graph with a unary predicate, inside of which is a linear order, and to identify a loop of size (n+2) with
the label n . If we remove all the labels from Ai, leaving just the linear order, the resulting structure
will be denoted by R(Ai). Our structures A0 and A1 will have R(A0) ∼= L and R(A1) ∼= H.

At a stage s, an element a from A0[s] ∪ A1[s] will have two labels prim(a, s) (the primary label)

and sec(a, s) (the secondary label) which are unique to a. Furthermore, there will be a bag of labels:

all of the elements of A0[s] ∪ A1[s] will have all labels from the bag.

We fix a computable list of special killing labels ki , i ∈ ω. If an element of Aj [s] is labeled by a

killing label ki , then the structure Aj does not grow after stage s.

At a non-zero stage s, we build a sequence of finite structures A0[s], A1[s], . . . , As[s] such that
R(A0[s]) = L[s] and R(A1[s]) = H[s]. At each stage s, some of the finite structures Ai[s], i ≥ 2, will
be copying A0[s], and the others will be labeled by a killing label. We also define a finite non-empty
set scope(s). For i ∈ scope(s), we introduce an auxiliary parameter flag(i, s) ∈ {0, 1, k}. The intuition
for the parameter is the following:

(1) If flag(i, s) ∈ {0, 1}, then we think that Bi[s] is isomorphic to Aflag(i,s)[s].
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(2) If flag(i, s) = k, then Bi[s] has received a killing label.

We say that a finite function g is a correct partial isomorphism from Ai[s] into Bj [t] if g satisfies the
following conditions:

(1) dom(g) ⊆ R(Ai[s]).
(2) g 6= ∅ and g is an isomorphic embedding from dom(g) into R(Bj [t]).
(3) Suppose that a ∈ dom(g). Then a is labeled by a label n in Ai[s] iff g(a) is labeled by n in
Bj [t].

At a stage s, we define a sequence of finite functions gi[s], i ∈ scope(s), such that:

• If flag(i, s) ∈ {0, 1}, then gi[s] satisfies the first two conditions from the definition of a correct
partial isomorphism from Aflag(i,s)[s] into Bi[s].

• If flag(i, s) = k, then gi[s] = ∅.
The functions gi[s] witness our convictions about the isomorphism types of Bi[s].
Construction.

Stage 0. Set A0[0] = A1[0] = ∅ and scope(0) = ∅.

Stage s > 0. We will extend Ai[s − 1] to Ai[s] for i < s, and begin defining a new structure As[s].
First, we add a new element to the domains of A0 and A1 as follows:

(1) We add a fresh element a into R(A0) in order to make the orders R(A0[s]) and L[s] isomorphic.
(2) We choose two fresh non-killing labels m and n and label a with them. Set prim(a, s) := m

and sec(a, s) := n. Furthermore, we take every label from the bag and put it onto a.

For A1[s], do the same thing except that we use H[s] in place of L[s].

What we do next depends on whether we are in an expansionary stage or not. We say that stage s
is expansionary if it satisfies the following conditions:

(A) Suppose that i ∈ scope(s − 1) is such that flag(i, s − 1) ∈ {0, 1}, and no element from Bi[s]
has a killing label. Let a be the least element from Aflag(i,s−1)[s− 1] \ dom(gi[s− 1]) and b be
the least element from Bi[s] \ ran(gi[s− 1]). Then there exists a correct partial isomorphism h
from Aflag(i,s−1)[s− 1] into Bi[s] such that gi[s− 1] ⊆ h, a ∈ dom(h), and b ∈ ran(h). Denote
such a function h (with the least Gödel number) by hi[s].

(B) Let i be the least number not in scope(s − 1). If Bi[s] does not contain a killing label, then
there exists a correct partial isomorphism g from some Aj [s − 1], j ∈ {0, 1}, into Bi[s]. Note
that by definition dom(g) 6= ∅.

There is no condition on those Bi[s] which contain a killing label.

If the stage s is expansionary, then we proceed as follows:

(i) Renewing labels. For every i < s, i /∈ {0, 1}, if Ai[s− 1] does not yet have a killing label, then

choose a fresh killing label ki and put it onto every element of Ai[s − 1]. For every element

a ∈ A0[s − 1] ∪ A1[s − 1], put its primary label prim(a, s− 1) into the bag. Choose a fresh

non-killing label fr(a) and declare prim(a, s) := sec(a, s − 1) and sec(a, s) := fr(a). If an

element a ∈ A0[s]∪A1[s] is not yet labeled by some label m from the bag, then put m onto
a.

(ii) Redefining scope. Let i be the least number not in scope(s−1). Set scope(s) := scope(s−1)∪{i}.
(iii) Redefining flags. We define flag(i, s) and gi[s] for i ∈ scope(s) as follows.

• If some element a from Bi[s] has a killing label, set flag(i, s) = k and gi[s] = ∅.
• If flag(i, s − 1) ∈ {0, 1}, and Bi[s] does not contain killing labels, then set flag(i, s) :=
flag(i, s− 1) and gi[s] := hi[s].

• If i ∈ scope(s) \ scope(s− 1) (so that i is the least number not in scope(s− 1) as in (ii)),
and Bi[s] does not contain killing labels, then because s is an expansionary stage, there is
a unique j ∈ {0, 1} such that hi[s] was a correct partial isomorphism from Aj [s− 1] into
Bi[s]. Set flag(i, s) = j and gi[s] = hi[s].

If s is not expansionary, then do not renew labels and do the following: If i /∈ {0, 1} and Ai[s − 1]
does not have a killing label, then Ai[s− 1] is identically equal to A0[s− 1]. Extend Ai in such a way
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that Ai[s] ∼= A0[s]. Also set scope(s) := scope(s− 1). Define flag(i, s) and gi[s] for i ∈ scope(s− 1) as
follows.

• If some element a from Bi[s] has a killing label, set flag(i, s) = k and gi[s] = ∅.
• If flag(i, s − 1) ∈ {0, 1}, and Bi[s] does not contain killing labels, then set flag(i, s) :=
flag(i, s− 1) and gi[s] := gi[s− 1].

In all cases, we define As[s] as a fresh isomorphic copy of A0[s]. We have now built the structures
A0[s], A1[s], . . . , As[s].
Verification.

It is easy to verify the following:

Claim 4.2. R(A0) ∼= L and R(A1) ∼= H.

Claim 4.3. If L is isomorphic to H, then there is some i > 0 such that Ai ∼= A0.

Proof. First, assume that our construction has infinitely many expansionary stages. Since labels are
renewed infinitely often, for any a, b ∈ A0 ∪ A1, a and b possess the same labels. Since R(A0) ∼= L ∼=
H ∼= R(A1), the structures A1 and A0 are isomorphic.

Now assume that s∗ is the last expansionary stage of our construction. Notice that As∗ [s∗] and
A0[s∗] are isomorphic. Furthermore, since every s > s∗ is not expansionary, As∗ never obtains killing
labels, and As∗ [s] ∼= A0[s]. Therefore, As∗ is isomorphic to A0. �

Claim 4.4. Suppose that for any Bj, there is some Am isomorphic to Bj. Then there are infinitely
many expansionary stages.

Proof. Assume that s∗ is the last expansionary stage. After the stage s∗, the labels are never renewed.
Moreover, for any s ≥ s∗, we have scope(s) = scope(s∗). Note the following: The construction ensures
that almost every Ai is isomorphic to A0. Furthermore, if i 6∈ {0, 1}, then either Ai ∼= A0, or Ai
contains killing labels.

We claim that there is (a least) stage s0 > s∗ such that any i ∈ scope(s∗) satisfies the following:

(a) Suppose that flag(i, s∗) ∈ {0, 1} and Bi does not have killing labels. Let a be the least element
from Aflag(i,s∗) \ dom(gi[s

∗]) and b be the least element from Bi \ ran(gi[s
∗]). Then there

exists a correct partial isomorphism h from Aflag(i,s∗)[s0 − 1] into Bi[s0] such that gi[s
∗] ⊆ h,

a ∈ dom(h), and b ∈ ran(h).
(b) If i is the least number not in scope(s∗), and Bi does not contain killing labels, then there is a

correct partial isomorphism from some Aj [s0 − 1], j ∈ {0, 1}, into Bi[s0].

First, let i is the least number not in scope(s∗), and assume that Bi does not have killing labels.
Then Bi is either isomorphic to A0 or A1. Therefore, there exists a stage s1 such that for any s ≥ s1,
there is a correct partial isomorphism from one of the structures A0[s1 − 1] or A1[s1 − 1] into Bi[s1].
So (b) is satisfied for any s ≥ s1.

Now suppose that i ∈ scope(s∗) and flag(i, s∗) ∈ {0, 1}, and assume that Bi does not have killing
labels. Recall that at the expansionary stage s∗ we witnessed a correct partial isomorphism from
Aflag(i,s∗)[s

∗ − 1] into Bi[s∗]. Since any element a from A0[s∗ − 1] ∪ A1[s∗ − 1] has the unique label

sec(a, s∗ − 1) that is never put into the bag, this ensures that Bi is isomorphic to Aflag(i,s∗) and any

isomorphism f : Aflag(i,s∗)
∼= Bi extends gi[s

∗]. Thus, one can find a large enough s0 that satisfies the
condition (a) above. �

Claim 4.5. Suppose that for any Bj, there is some Am isomorphic to Bj. Then for any i ∈ ω,
there is a stage s∗ such that for all s ≥ s∗, i ∈ scope(s) and flag(i, s) = flag(i, s∗). Furthermore,
if flag(i, s∗) = k, then Bi has a killing label, and if flag(i, s∗) ∈ {0, 1}, then Bi is isomorphic to
Aflag(i,s∗).

Proof. Since there are infinitely many expansionary stages, for any i ∈ ω, there is a stage s0 such that
i ∈ scope(s) for all s ≥ s0.

First, assume that Bi contains a killing label k . Choose a stage s such that i ∈ scope(s) and Bi[s]
contains the label k . It is easy to see that for any s′ ≥ s, we have flag(i, s′) = k.



14 N. BAZHENOV, M. HARRISON-TRAINOR, I. KALIMULLIN, A. MELNIKOV, AND K. M. NG

Now suppose that Bi has no killing labels. Since there are infinitely many expansionary stages, for
any i ≥ 2, Ai contains a killing label. Thus, Bi is isomorphic either to A0 or A1. Furthermore, there
is a least stage s1 ≥ s0 such that for any s ≥ s1, we have flag(i, s) = flag(i, s1) =: pi ∈ {0, 1}. The
definition of an expansionary stage ensures that the map gi :=

⋃
s≥s1 gi[s] is an isomorphism from

R(Api) onto R(Bi). Furthermore, any two elements from Api ∪ Bi possess the same labels. Thus, g
extends to an isomorphism from Api onto Bi. �

The desired computable function f(x) is defined as follows:

f(s) := max
{

0, the least i ∈ scope(s) with flag(i, s) = 0
}
.

Now suppose that L 6∼= H, and the sequences {Ai}i∈ω and {Bj}j∈ω are equal up to isomorphism.
Recall that any Ai, i ≥ 2, obtains a killing label. Moreover, R(A1) ∼= H 6∼= L ∼= R(A0). Thus, we have
Ai 6∼= A0 for any non-zero i.

Let k0 be the least number such that Bk0 ∼= A0. By Claim 4.5, there is a stage s0 such that for
any stage s ≥ s0, we have {0, 1, . . . , k0} ⊆ scope(s), flag(k0, s) = 0, and flag(i, s) 6= 0 for all i < k0.
Therefore, f(s) = k0 for any s ≥ s0. Lemma 4.1 is proved. �

In the rest of this section, we work with unary algebras, i.e. structures in the language {g1}. A
unary algebra A is an injection structure if the function gA is 1-1.

We define auxiliary computable injection structures. For a non-zero n ≤ ω, the structure Xn contains
infinitely many loops of size m, for every m < 1 + n. The structure Yn is a disjoint union of Xn and
an ω-chain (i.e., a sequence {ai}i∈ω such that g(ai) = ai+1 for any i). We consider the class

K := {Xn,Yn : 1 ≤ n ≤ ω}.

Lemma 4.6. Given a (total) computable sequence of unary algebras {Di}i∈ω and a computable function
f(x), one can effectively construct a computable unary algebra C with the following properties:

(1) C is isomorphic to some structure from K, and
(2) if the limit k = lims f(s) exists, then C is not isomorphic to Dk.

Proof. We build C in stages. When we say that at a stage s, a component U is a chain of size (n+ 1),
this means the following: U consists of elements a0, . . . , an such that g(ai) = ai+1 for any i < n, and
g(an)[s] ↑.

A simple chain extension of a chain U of size (n + 1) works as follows: choose a fresh b and set
g(an)[s+ 1] := b, g(b)[s+ 1] ↑. A simple loop extension of a chain U just sets g(an)[s+ 1] := a0.

We keep a special component T [s] in our C: T [s] is either a chain of a finite size, or a loop. By c[s]
we denote the cardinality of T [s].

At stage 0, we choose C[0] = T [0] as a chain of size 1.
Let s be a non-zero stage. First, for each non-zero m ≤ c[s− 1], we add a fresh loop of size m into

C. Consider the following cases:
Case 1. Suppose that T [s− 1] is a chain. Then check whether there is an element a ∈ Df(s)[s] such

that gm(a) 6= gn(a) for all 0 ≤ m < n ≤ c[s − 1]. (Note that the elements gm(a) might not be in
Df(s)[s], but that since Df(s) is total, we can find these elements without waiting.) If such an a exists,
then define T [s] as a simple loop extension of T [s− 1]. Otherwise, let T [s] be a simple chain extension
of T [s− 1].

Case 2. If T [s−1] is a loop and f(s) 6= f(s−1), then choose T [s] as a fresh chain of size c[s−1] +1.
Case 3. If T [s− 1] is a loop and f(s) = f(s− 1), then proceed to the next stage.
This concludes the description of the construction. It is straightforward to check that the constructed

C is computable (uniformly in computable indices of a function f and a sequence {Di}i∈ω), and C
satisfies the following properties:

a) Suppose that T [s] stabilizes, i.e. there is a stage s∗ such that T [s] = T [s∗] for all s ≥ s∗. Then
T [s∗] is a loop of size c[s∗], and C is isomorphic to Xc[s∗].

b) Assume that for any s, there is a stage s1 > s such that T [s1]∩T [s] = ∅. Then C is isomorphic
to Xω.
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c) Suppose that T [s] does not stabilize and there is a stage s0 such that for any s ≥ s0, we have
T [s] ∩ T [s0] 6= ∅. Then C ∼= Yω.

Hence C is isomorphic to a structure from the class K.
Now suppose that there exists a limit k := lims f(s). Without loss of generality, one can assume

that Dk is either isomorphic to some Xm, 1 ≤ m ≤ ω, or isomorphic to Yω.
Let s0 be the least stage such that f(s) = k for any s ≥ s0. Consider the following two cases:

1) Assume that T [s] stabilizes. This implies that lims T [s] is a loop, and there is a stage s1 ≥ s0

and an element a ∈ Dk[s1] such that gm(a) 6= gn(a) for all 0 ≤ m < n ≤ c[s1 − 1] = c[s1].
Furthermore, T [s] = T [s1] for any s ≥ s1. Hence, C ∼= Xc[s1] and Dk contains a chain of size
c[s1] + 1. Therefore, C 6∼= Dk.

2) Assume that T [s] does not stabilize. Notice that for any s′ ≥ s ≥ s0, we have T [s] ⊆ T [s′].
Thus, C is isomorphic to Yω. If Dk is also isomorphic to Yω, then find the least stage s1 ≥ s0

such that Dk[s1] contains an element a from the ω-chain in Dk. The construction ensures that
T [s1] is a loop and T [s] = T [s1] for any s ≥ s1: this contradicts our assumption that T [s] does
not stabilize. Therefore, C ∼= Yω 6∼= Dk.

We have shown that C is not isomorphic to Dlims f(s). �

5. A transformation from ∆0
2-structures to automatic structures

In this section, we prove the following theorem. For notational convenience, identify structures with
their indices.

Theorem 5.1. There is a computable function Ψ that, given an index for a ∆0
2-presentation M of

a countably infinite graph, outputs an index (as an automatic structure) for an automatic structure
Ψ(M). The isomorphism type of Ψ(M) depends only on the isomorphism type of M .

Moreover, there is a 0′-computable function Ψinv that, given an index for a partial 1-decidable
structure N in the language of Ψ(M), produces an index for a partial ∆0

2 computable graph Ψinv(N).
The isomorphism type of Ψinv(N) depends only on the isomorphism type of N .

If N is a 1-decidable presentation of Ψ(M), then the corresponding Ψinv(N) is a ∆0
2-presentation

of M .

5.1. Proof idea. Khoussainov and Minnes [KM09] produced a similar operator, but it was transform-
ing computable structures into automatic structures, while the decoding was ∆0

2. We will be based on
their idea of using the configuration space of a Turing machine, but we will be a bit more careful with
the coding itself. The limit lemma is the key here.

We start by replacing the edge relation on points x, y by a pair of “boxes”. Each box will contain
a structure that we will define shortly, and whose isomorphism type will depend on whether E(x, y)
holds or not. The isomorphism type will be Σ0

2-recognisable, this is why we need a pair of boxes: one
box codes the edge relation, the other one its complement. We describe how to code the edge relation;
its negation is coded similarly.

Fix a Turing machine T that represents the ∆0
2 edge relation in the following sense. Fix a partial

computable function ψ such that

E(x, y) iff ∃tψ(x, y, t) ↑ iff ∀∞tψ(x, y, t) ↑ .
Here the quantifier ∀∞t means “for cofinitely many t”. Choose a machine T that realizes the function ψ.
It is well-known that the configuration space of any Turing machine is automatic. As noted in [KM09],
one can uniformly modify the Turing machine to a machine that records the history of computation;
this way we obtain a machine whose configuration space contains only non-intersecting paths (“chains”)
of finite or infinite length and of type ω (i.e. the transitive closure of this path is isomorphic to the
ordering of natural numbers). Details will be given in the formal proof.

Fix x and y, and consider the box coding the edge relation between x and y in a Σ0
2 way. In the

box, start with a special point c. For each i, we initiate a chain from the special point that starts
with a node whose initial conditions represent the configuration of the tape on input x, y, i, for every
i. We shall grow such a chain until the computation halts. Then there exists an infinite chain (in fact,
infinitely many of those) attached to the special point iff ∃tψ(x, y, t) ↑, i.e., the edge relation holds.
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There may be configurations which, when we trace the computation backwards (using the fact that
T is reversable), we find to have begun in an invalid initial configuration. We cannot, in an automatic
way, recognize whether a particular configuration in the configuration space of T represents a valid
computation which began with input x, y, i. So to make what we put in the box automatic, we must
include all of these configurations as well. So, in fact, we put the whole configuration space of T into
the box, and connect the special point c to each valid initial configuration with input x, y, i. This means
that we have added, to what we described in the previous paragraph, some “free-floating” chains, some
of which may be finite and others of order type ω.

Finally, we want the isomorphism type of what is in the box to be dependent only on whether or not
E(x, y), and in particular, to be independent of whether, for example, there is a computation which
halts after exactly three steps. So we will also attach to c infinitely many chains of each finite size,
and there also will be infinitely many chains of each finite size and of type ω which are not attached
to anything.

Let Ψ(M) be the structure obtained from the given edge relation E and its complement E. It is clear
that the isomorphism type of Ψ(M) does not depend from the choice of corresponding partial functions
ψ for E and E. Also the isomorphism type of Ψ(M) does not depend on the given presentation of M
though the choice of the edge relation E.

Now, given a 1-decidable presentation of the output structure Ψ(M), observe that extendability of
a node to a longer chain becomes a computable fact. It is clear how to use this observation to say that
there exists an infinite chain in a Σ0

2 fashion, since

a chain is infinite ⇐⇒ each of its nodes can be extended

which is a Π0
1 sentence. Since the negation of the edge relation is also uniformly Σ0

2, we can produce a
∆0

2-copy of M .
Below we give formal details.

5.2. Formal proof. We fix a special blank symbol ⊥. If we use some alphabet Σ, then we assume
that ⊥ 6∈ Σ (if not specified otherwise). Let Σ⊥ := Σ ∪ {⊥}. Suppose that w1, . . . , wn ∈ Σ∗. One
can identify a tuple w̄ = w1, . . . , wn with its convolution, i.e. the string conv(w1, . . . , wn) of the length
maxi |wi| over the alphabet Σn⊥ such that the k-th symbol of conv(w̄) is (σ1, . . . , σn), where

σi =

{
wi(k), if k < |wi|,
⊥, otherwise.

5.2.1. Configuration spaces. Suppose that T is an n-tape Turing machine. The configuration space of
T (denoted by Conf(T)) is a directed graph whose nodes represent configurations of T. A node of
Conf(T) is (the convolution of) an n-tuple w̄ such that for i < n, the ith coordinate of w̄ encodes the
contents of the ith tape as follows. If the head of the machine looks at a symbol a on the ith tape,
u and v are the strings on the tape before and after this particular occurrence of a, T is in a state
q, then the contents of the tape are encoded as uqav. An edge of the graph is a pair (c1, c2) such
that T proceeds from the configuration c1 to c2 via a one-step computation. Note that Conf(T) is an
automatic graph.

A deterministic Turing machine T is reversible if any of weakly connected components of the graph
Conf(T) is either a finite chain or an ω-chain. Bennett [Ben73] (see also [KM09]) showed that for
any one-tape deterministic Turing machine, one can effectively produce a reversible three-tape Turing
machine that accepts the same language.

Let bin(m) denote the binary presentation of a natural number m. For x1, . . . , xk ∈ ω,
cbin(x1, . . . , xk) denotes the string conv(bin(x1), . . . , bin(xk)) in the alphabet {0, 1,⊥}k. Let λ be
the empty string.

We introduce three special conventions:

• If a four-tape Turing machine T computes a partial computable function ψ(x1, . . . , xk), then
we assume that it works as follows:

– if ψ(x1, . . . , xk)↓ = y, then T starts from a valid initial configuration

(î cbin(x1, . . . , xk), cbin(x1, . . . , xk), λ, λ)
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and the halting configuration of this computation is

(cbin(x1, . . . , xk), cbin(x1, . . . , xk), λ, qf b̂in(y)),

where qf is a halting state of T;
– the machine T never changes anything on its second tape;
– if ψ(x1, . . . , xk) ↑, then the T-computation starting from the configuration

(î cbin(x1, . . . , xk), cbin(x1, . . . , xk), λ, λ) never halts.
• In place of a reversible three-tape Turing machine T, we will often use a reversible four-tape

machine T̃ which works as follows: Starting from a valid initial configuration (î w, w, λ, λ),

T̃ never changes anything on its second tape and uses all the other tapes to perform the
computation exactly as the machine T would have done.

• If a reversible four-tape machine T computes a partial function ψ(x1, . . . , xk) and a configura-
tion of T does not have the form (u1, cbin(y1, . . . , yk), u3, u4), then we omit this configuration
from the graph Conf(T). Notice that this does not injure the automatic presentability of
Conf(T).

The intuition of the conventions is as follows: We want a four-tape reversible Turing machine T to
not forget its input information (i.e. numbers x1, . . . , xk if T computes ψ(x1, . . . , xk)), and the second
tape is reserved to forever memorize the data.

Recall that each component of the configuration space is a chain of finite type or of type ω. There
are three different types of chains:

(1) Terminating computation chains: These are finite chains which begin with a valid initial con-
figuration and which represent a computation that terminates after finitely many steps.

(2) Non-terminating computation chains: These are chains of type ω which begin with a valid
initial configuration but which represent a computation which never terminates.

(3) Unproductive chains: these are chains which do not begin with a valid initial configuration.

Note that the set of valid initial configurations of T is automatic in the graph Conf(T). While
one might wish to exclude unproductive chains from the configuration space, it is unfortunately not
automatic to decide whether a configuration lies on a computation chain or on an unproductive chain.

5.2.2. The formal definition of Ψ(M). Suppose that M is a countable ∆0
2-computable graph. As usual,

we assume that the domain of M is equal to ω. Let ψ and ϕ be partial computable functions with the
following properties: For any x, y ∈ ω,

M |= E(x, y) ⇔ ∃tψ(x, y, t) ↑ ⇔ ∀∞tψ(x, y, t) ↑;
M |= ¬E(x, y) ⇔ ∃tϕ(x, y, t) ↑ ⇔ ∀∞tϕ(x, y, t) ↑ .

Notice that given a ∆0
2-index of M , one can uniformly compute computable indices of ψ and ϕ.

The language of our structure Ψ(M) consists of the following symbols:

(a) the unary relation Supp that is used to encode the domain of M ,
(b) binary relations R and Q which are used to encode the edge relation EM ,
(c) binary relations Rnon and Qnon that are used to encode the non-edge ¬EM .

Since our definitions for the edge case and the non-edge case are similar, here we give a detailed
description only for encoding the edge relation.

Choose an automatic graph A such that it consists of infinitely many chains of each finite length
and infinitely many ω-chains. Such a graph A can be constructed as follows:

• the domain of A is the set 0∗01∗ ∪ 22∗33∗;
• EA(x, y) holds iff x and y satisfy one of the following conditions:

a) x, y ∈ 0∗01∗, |x| = |y|, and y is the least lexicographic successor of x;
b) x, y ∈ 22∗33∗, x = 2k3m, and y = 2k3m+1 for some k,m.

Also fix an automatic graph Afin such that Afin consists of infinitely many chains of each finite length.
We produce a reversible four-tape deterministic Turing machine T which computes the function

ψ and satisfies the conventions formulated above. We build an automatic copy of the directed graph
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Conf(T). Without loss of generality, one can assume that the alphabets of the automata for Conf(T),
A, and Afin are pairwise disjoint. Let a, b, and c be new symbols.

For simplicity, assume that we do not want to encode the non-edge relation ¬EM into our structure
Ψ(M). A discussion about how to correct this assumption will be given later. Then the structure
Ψ(M) is defined as follows.

• The domain of Ψ(M) consists of five parts:
(1) the set A0 := {â bin(x) : x ∈ ω},
(2) A1 := {b̂ conv(cbin(x, y), w) : x, y, t ∈ ω, w = (u1, cbin(x, y, t), u3, u4) ∈ Conf(T)},
(3) A2 := {bb̂ conv(cbin(x, y), u) : x, y ∈ ω, u ∈ |A|},
(4) A3 := {ĉ cbin(x, y) : x, y ∈ ω},
(5) A4 := {cĉ conv(cbin(x, y), u) : x, y ∈ ω, u ∈ |Afin|}.

The first part is used to encode the domain of M , and the rest is the contents of the boxes (see
the proof idea). We introduce the following notation: If 1 ≤ i ≤ 4 and x, y ∈ ω, then Ai[x, y]
is a subset of Ai which contains elements of the form û conv(cbin(x, y), v), where |u| ≤ 2.

• SuppΨ(M) := A0.
• RΨ(M)(u, v) holds iff there are x, y ∈ ω and i ∈ {1, 2, 3, 4} such that u and v satisfy one of the

following conditions:
– u = â bin(x) and v ∈ Ai[x, y];
– u ∈ Ai[x, y] and v = â bin(y).
In other words,

⋃
1≤i≤4Ai[x, y] is the box associated with an ordered pair (x, y) ∈ ω2. This

association is realized via the predicate RΨ(M).
• QΨ(M)(u, v) holds iff there are x, y ∈ ω such that u and v satisfy one of the following:

– u = b̂ conv(cbin(x, y), u1), v = b̂ conv(cbin(x, y), v1), and there is an edge from u1 to v1

in Conf(T);
– u = bb̂ conv(cbin(x, y), u1), v = bb̂ conv(cbin(x, y), v1), and there is an edge from u1 to v1

in A;
– u = cĉ conv(cbin(x, y), u1), v = cĉ conv(cbin(x, y), v1), and there is an edge from u1 to v1

in Afin;
– u = ĉ cbin(x, y) and v = cĉ conv(cbin(x, y), v1), where v1 is a node from Afin such that

its in-degree is zero;
– u = ĉ cbin(x, y) and v = b̂ conv(cbin(x, y), (î cbin(x, y, t), cbin(x, y, t), λ, λ)) for some t ∈
ω.

The predicate QΨ(M) establishes the inner structure of our boxes.

It is straightforward to prove that the constructed structure Ψ(M) is automatic.
Now we reiterate our intuitive idea of the construction. The domain of the input graph M is encoded

by the nodes â bin(x), where x is an element from M . These nodes constitute the “external structure”
of Ψ(M). The “internal structure” of Ψ(M) contains all the other nodes from Ψ(M), and this structure
is intended to encode the edges from M . Consider a pair of points x, y from the input M . We want

to encode the edge E(x, y) like this: x→ the box B[x, y] → y. More formally, we do the following. In

Ψ(M), the points x and y correspond to the nodes â bin(x) and â bin(y), respectively. These nodes
are connected to the box B[x, y] :=

⋃
1≤i≤4Ai[x, y] via the relation R. This means that â bin(x) is

R-connected to any element from B[x, y], and any node from the box is R-connected to â bin(y). The
inner structure (i.e. the structure in the language {Q}) of the box B[x, y] essentially consists of two
parts:

(1) The first part contains a special point c[x, y] := ĉ cbin(x, y) and infinitely many chains of each
finite length emanating from c[x, y] (this is guaranteed by adding a copy of Afin with the help
of the set A4[x, y]). Furthermore, the following conditions are equivalent:
• M |= E(x, y),
• there is an ω-chain emanating from c[x, y];
• there is a natural number t such that ψ(x, y, t) ↑;
• (∀∞t)ψ(x, y, t) ↑;
• there are infinitely many ω-chains emanating from c[x, y].
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This equivalence is guaranteed by connecting c[x, y] with the nodes
b̂ conv(cbin(x, y), (î cbin(x, y, t), cbin(x, y, t), λ, λ)), t ∈ ω, which correspond to the valid
initial configuration for the T-computation of ψ(x, y, t). The T-computation itself is coded
via adding a copy of (a part of) Conf(T) with the help of A1[x, y].

(2) The second part consists of infinitely many chains of each finite length and infinitely many
ω-chains. This is ensured by adding a copy of A with the help of A2[x, y] and by the fact that
the machine T is reversible.

The non-edge relation ¬EM can be coded in a similar way: For any pair of points x, y ∈ M , we
introduce their own box Bnon(x, y). This box is connected to â bin(x) and â bin(y) by the Rnon-
relation. The inner structure of Bnon(x, y) is the structure in the language {Qnon} and it uses the
same encoding as B(x, y) to encode the non-edges.

We omit the technical details about coding non-edges, and from now on we assume that our Ψ(M)
is a structure in the language {Supp,R,Q,Rnon, Qnon}. The structure Ψ(M) contains the information
about both edge and non-edge relations.

5.2.3. Verification. Recall that we already showed that the resulting structure Ψ(M) is automatic. In
our proofs, we will use the following claim.

Claim 5.2. Suppose that M and N are infinite graphs. Then M ∼= N iff Ψ(M) ∼= Ψ(N).

Proof. Suppose that f is an isomorphism from M onto N . Then f induces a 1-1 map f̂ from SuppΨ(M)

onto SuppΨ(N). Our construction ensures that for any nodes x 6= y from M , the box B[x, y] inside
Ψ(M) satisfies the following:

• If there is an edge from x to y in M , then B[x, y] contains precisely the following components:
the special node c[x, y] with infinitely many ω-chains and infinitely many chains of each finite
length emanating from c[x, y], infinitely many “free-roaming” ω-chains, and infinitely many
“free-roaming” chains of each finite length.

• If there is no edge from x to y in M , then B[x, y] contains the same free-roaming chains, and
c[x, y] emanates infinitely many chains of each finite length and nothing else.

This observation implies that the map f̂ can be extended to an isomorphism from Ψ(M) onto Ψ(N).
Moreover, a similar argument shows that given any isomorphism g : Ψ(M) → Ψ(N), the map g �
SuppΨ(M) induces an isomorphism from M onto N . �

Lemma 5.3. There is a uniform 0′-procedure such that:

• given a partial 1-decidable structure N in the language of Ψ(M), the procedure outputs a partial
∆0

2 computable graph X;
• if N is a 1-decidable presentation of Ψ(M), then the corresponding X is a ∆0

2-presentation of
M .

Proof. We define an auxiliary Σc2 formula

FinChain(z) :=
∨∨
n∈ω
∃u0 . . . ∃un

[
(u0 = z)

∧
i<n

Q(ui, ui+1)&¬∃wQ(un, w)

]
.

The formula says that a node z is an element inside a finite Q-chain. Furthermore, in a 1-decidable
structure N , the set FinChainN is computably enumerable, uniformly in N .

Let the domain of X be equal to SuppN . Then the edge relation E(x, y) in X is defined by a Σc3
formula

(1) ∃c
[
R(x, c)&R(c, y)&∃z0∃z1((z0 6= z1)&Q(c, z0)&Q(c, z1))&∃z(Q(c, z)&¬FinChain(z))

]
.

If N is 1-decidable, then the relation defined by this formula (in N) is Σ0
1(∅′), uniformly in N . The non-

edge relation ¬E(x, y) in X can be given by a Σc3 formula similar to (1), where we replace predicates
R and Q with Rnon and Qnon, respectively.

It is not difficult to show that our construction guarantees the following: if N is isomorphic to Ψ(M),
then the structure X is isomorphic to M . If N is a 1-decidable structure, then X is ∆0

2-computable.
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Furthermore, since our definition of X uses only computable infinitary formulas, given a computable
index of the structure

(N ; {x : N |= ∃wQ(x,w)}),
one can compute a ∆0

2 index of X. �

This concludes the proof of Theorem 5.1.

5.2.4. Corollaries of Theorem 5.1. Here we give two useful consequences of the theorem.
First, we give the definition of a uniformly automatic sequence of structures, which will be heavily

used in the proof of Theorem 1.1. We note that a similar notion of a uniformly automatic class was
studied by Abu Zaid, Grädel, and Reinhardt [AGR17]. For a finite automaton A, let L(A) denote the
language accepted by A.

Definition 5.4. Let L = {Pn0
0 , . . . , Pnm

m } be a finite relational language. We say that a sequence of
L-structures {Mk}k∈ω is uniformly automatic if it satisfies the following. There is an alphabet Σ and
a sequence A,B0, . . . ,Bm of automata such that:

(1) The alphabet of A is {0, 1,⊥} × Σ⊥.
(2) For j ≤ m, the alphabet of Bj is {0, 1,⊥} × Σ

nj

⊥ .
(3) For any k ∈ ω, Mk has the following properties:

• the domain of Mk contains precisely the elements u ∈ Σ∗ such that conv(bin(k), u) ∈
L(A);

• for any j ≤ m, the relation PMk
j is equal to the set of all tuples (w1, . . . , wnj ) such that

w1, . . . , wnj
∈ Σ∗ and conv(bin(k), w1, . . . , wnj

) ∈ L(Bj).

The intuition behind the definition is as follows. If the sequence of graphs {Nk}k∈ω is uniformly
automatic, then one can use only two automata to represent the sequence {Nk}k∈ω. The “domain
automaton” A has two tapes: on the first one we write an index k of a structure, and on the second
one we write a string u ∈ Σ∗. If the automaton A works on this input, then it will tell us whether u
belongs to the domain of Nk. The “edge automaton” B has three tapes: Again, on the first one we
write k ∈ ω, the second and the third one are used for inputting strings u, v ∈ Σ∗, respectively. If B
works with this input, then it will inform us whether there is an edge from u to v in Nk.

Corollary 5.5. Suppose that {Mk}k∈ω is a uniformly ∆0
2-computable sequence of graphs. Then one

can effectively uniformly construct a uniformly automatic sequence of structures {Ck}k∈ω such that for
any k, Ck ∼= Ψ(Mk). Here uniform effectiveness means the following: Given a ∆0

2-computable index of
a sequence {Mk}k∈ω, one can effectively produce automata A, B0, . . . , B4 that witness the uniform
automaticity of the sequence {Ck}k∈ω.

Proof Sketch. This essentially repeats the proof of the theorem modulo some minor modifications.
First, we choose partial computable functions ψ and ϕ such that for any k, x, y ∈ ω,

Mk |= E(x, y) ⇔ ∃tψ(k, x, y, t) ↑ ⇔ ∀∞tψ(k, x, y, t) ↑;
Mk |= ¬E(x, y) ⇔ ∃tϕ(k, x, y, t) ↑ ⇔ ∀∞tϕ(k, x, y, t) ↑ .

For k ∈ ω, we define Ck as follows. We proceed with the construction of Ψ(Mk), but:

• we use ψ(k, x, y, t) in place of the “old” ψ(x, y, t);
• the set A0 contains the strings of the form conv(bin(k), â cbin(k, x)), x ∈ ω;
• the set A1 consists of the strings conv(bin(k), b̂ conv(cbin(k, x, y), w)), where x, y ∈ ω and
w = (u1, cbin(k, x, y, t), u3, u4) ∈ Conf(T) for some t ∈ ω;

• the definitions of A2, A3, and A4 are corrected in a similar way.

Since we use the configuration space Conf(T) for only one Turing machine T (this T computes
ψ(k, x, y, t)), it is not difficult to build automata witnessing the uniform automaticity of the constructed
sequence {Ck}k∈ω. Notice that Ck is computably isomorphic to Ψ(Mk). �

From now on, we always assume that we use the corollary above when we apply Ψ to a ∆0
2-computable

sequence of graphs.
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Corollary 5.6. The index set of decidable structures that are ∆0
2-categorical w.r.t. decidable presen-

tations is Π1
1 complete.

In particular, for any computable non-zero ordinal α, there exists a decidable structure Dα which
is ∆0

2-categorical w.r.t. decidable presentations, but not relatively ∆0
α-categorical w.r.t. decidable

presentations. Hence, the criterion of Nurtazin [Nur74] does not have a reasonable generalisation to
the case of ∆0

2-isomorphisms.

Proof Sketch. Fix a Π1
1 complete set X. A relativisation of the result of Downey, Kach, Lempp, Lewis-

Pie, Montalbán, and Turetsky [DKL+15] gives a uniformly ∆0
2-computable sequence of graphs {Mk}k∈ω

such that for any k, the structure Mk is ∆0
2-categorical w.r.t. ∆0

2-computable presentations if and only
if k ∈ X. We consider the sequence {Ψ(Mk)}k∈ω.

(1) Suppose that the structure Ψ(Mk) is ∆0
2-categorical w.r.t. decidable presentations. Let N0 and

N1 be ∆0
2-computable copies of Mk. Then Ψ(N0) and Ψ(N1) are automatic copies of Ψ(Mk) and

hence, there is a ∆0
2-computable isomorphism f from Ψ(N0) onto Ψ(N1). The map f � SuppΨ(N0)

induces a ∆0
2-isomorphism from N0 onto N1. Therefore, Mk is ∆0

2-categorical w.r.t. ∆0
2-computable

presentations.
(2) Suppose that the structure Mk is ∆0

2-categorical w.r.t. ∆0
2-computable presentations. Let C0

and C1 be decidable copies of Ψ(Mk). We apply Lemma 5.3 and produce ∆0
2-computable structures D0

and D1 using C0 and C1, respectively, as an input. Since D0
∼= D1

∼= Mk, there is a ∆0
2-isomorphism

g from D0 onto D1.
One can use the decidability of C0 and C1 to extend this g to a ∆0

2-isomorphism acting from C0

onto C1. We give a sketch of the construction. Suppose that we want to map a box B(x, y) from C0

onto the box B(g(x), g(y)) from C1. Given an element z from B(x, y), we use the oracle 0′ to learn
the answers to the following questions:

(1) Is z connected to the special node c[x, y]?
(2) What is the length of the unique QC0 -chain going through z?

If we know these answers for all z ∈ B(x, y), then we can recover the desired isomorphism between two
boxes. Thus, N0 and N1 are ∆0

2-isomorphic, and Ψ(Mk) is ∆0
2-categorical w.r.t. decidable presenta-

tions.

Therefore, for any k ∈ ω, the following conditions are equivalent:

(1) k ∈ X,
(2) Mk is ∆0

2-categorical w.r.t. ∆0
2-computable presentations,

(3) Ψ(Mk) is ∆0
2-categorical w.r.t. decidable presentations.

So the index set under consideration is Π1
1 complete. �

6. A transformation that uses equivalence structures

Theorem 6.1. There is a computable function Φ that, given an index for ∆0
2 presentation M of a

unary algebra, outputs an index for a computable structure Φ(M). The isomorphism type of Φ(M)
depends only on that of M . If M belongs to the class K defined before Lemma 4.6, then the structure
Φ(M) has an automatic copy.

Moreover, there is a 0′-computable function Φinv that, given an index for a partial 1-decidable
structure N , produces an index for a total ∆0

2-computable unary algebra Φinv(N). The isomorphism
type of Φinv(N) depends only on that of N .

If N is a copy of some Φ(M), then Φinv(N) is isomorphic to M .

6.1. Proof idea. Suppose that M is a unary algebra in the language {f1}, and x, y are elements from
M . Then Φ(M) is built as follows. We delete the function fM and add a box B[x, y] such that its
inner structure is an equivalence relation E[x, y] with infinitely many classes:

• if fM (x) 6= y, then every class of E[x, y] has size 2;
• if fM (x) = y, then E[x, y] consists of infinitely many classes of size 1 and infinitely many

classes of size 2.
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Notice that fM (x) = y iff the box B[x, y] contains an equivalence class of size 1. This condition is
definable by a finitary Σ2 formula.

6.2. Formal proof. Let E [2] denote a computable infinite equivalence structure such that each of its
classes has size 2. By E [1, 2] we denote a computable equivalence structure such that it consists of
infinitely many 1-classes and infinitely many 2-classes. It is easy to verify the following

Claim 6.2. Given a Σ0
2 set S, one can effectively uniformly produce a computable sequence of equiva-

lence structures {Ek}k∈ω such that for any k,

Ek ∼=
{
E [1, 2], if x ∈ S,
E [2], if x 6∈ S.

A more formal definition of Φ(M) can be stated as follows. Suppose that M is a ∆0
2-computable

unary algebra. Then Φ(M) is a structure in a finite relational language {Supp1, R2, Q2} such that:

• SuppΦ(M) is the domain of M . We may assume that SuppΦ(M) is the set of all even numbers,
and odd numbers are used to construct infinite boxes B[x, y].

• For any x, y ∈ SuppΦ(M), the relation RΦ(M) connects x with every element from B[x, y] and
RΦ(M) connects every element from B[x, y] with y.

• For any x, y ∈ SuppΦ(M), the box B[x, y] contains a computable equivalence structure (in the
language {Q}) isomorphic to {

E [1, 2], if fM (x) = y,
E [2], if fM (x) 6= y.

The claim above implies that given a ∆0
2-index of M , one can compute a computable index of Φ(M).

Using an argument similar to that of Claim 5.2, it is not hard to prove the following.

Claim 6.3. Suppose that A and B are infinite unary algebras. Then A ∼= B iff Φ(A) ∼= Φ(B).

Claim 6.4. Given a partial 1-decidable structure N , one can effectively in 0′ (uniformly) construct a
total ∆0

2-computable unary algebra X. Furthermore, if N is a copy of Φ(M) for some M , then X is
isomorphic to M .

Proof Sketch. The argument is similar to Lemma 5.3. The main difference is that we need to construct
a total unary algebra X. We use a finitary Σ2 formula

ξ(x, y) := ∃c[R(x, c)&R(c, y)&∀w(w 6= c→ ¬Q(c, w))].

First, we use the oracle 0′ to determine whether the set SuppN is empty. If SuppN = ∅, then let X
be a computable copy of X1 from the class K.

If SuppN 6= ∅, then the domain of our X is SuppN . If we want to define the value fX(x) for an
element x ∈ SuppN , then we use the oracle 0′ and ask whether N |= ∃yξ(x, y) (this can be done, since
for a partial 1-decidable structure, its 1-diagram is represented by a c.e. set of ∃- and ∀-formulas). If
such a y exists, then we choose some such y and set fX(x) := y. If there is no such y, then define
fX(x) := x.

Given a computable index of a structure

(N ; {u : N |= ∀w(w 6= u→ ¬Q(u,w))}),
one can compute a ∆0

2-computable index of X. �

Claim 6.5. If M is a unary algebra from the class K used in Lemma 4.6, then the structure Φ(M)
has an automatic copy.

This is not necessarily uniform.

Proof Sketch. We sketch a proof for the structure Y2 consisting of infinitely many 1-loops, infinitely
many 2-loops, and one ω-chain.

Let a, b, c, d, e be new symbols. An automatic copy A of Φ(Y2) is defined as follows.

• The domain of A consists of three parts:
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(1) A0 := {v̂ bin(x) : v ∈ {a, b, c, d}, x ∈ ω};
(2) A1 := {uv̂ cbin(x, y, z), uvê cbin(x, y, z) : u, v ∈ {a, b, c, d}, x, y, z ∈ ω};
(3) A2 := {a3 ĉbin(x, z), b2ĉ cbin(x, z), c2b̂ cbin(x, z), d3 ĉbin(x, x+ 1, z) : x, z ∈ ω}.

• SuppA := A0.
• For v, w ∈ A, RA(v, w) holds iff there are x, y, z ∈ ω with one of the following properties:

– v = p̂ bin(x) and w = pqr̂ cbin(x, y, z) for some p, q ∈ {a, b, c, d} and r ∈ {e, λ};
– v = pqr̂ cbin(x, y, z) and w = q̂ bin(y) for some p, q ∈ {a, b, c, d} and r ∈ {e, λ};
– {v, w} = {â bin(x), a3 ĉbin(x, z)};
– v = b̂ bin(x) and w = b2ĉ cbin(x, z);
– v = b2ĉ cbin(x, z) and w = ĉ bin(x);
– v = ĉ bin(x) and w = c2b̂ cbin(x, z);
– v = c2b̂ cbin(x, z) and w = b̂ bin(x);
– v = d̂ bin(x) and w = d3 ĉbin(x, x+ 1, z);
– v = d3 ĉbin(x, x+ 1, z) and w = d̂ bin(x+ 1).

• QA(v, w) holds iff either v = w and v ∈ A1 ∪ A2, or the set {v, w} is equal to
{pq̂ cbin(x, y, z), pqê cbin(x, y, z)} for some p, q ∈ {a, b, c, d} and x, y, z ∈ ω.

It is straightforward to verify that the structure A is automatic. The idea behind the construction
of A is the following:

• 1-loops in Y2 correspond to elements â bin(x), x ∈ ω;
• a 2-loop in Y2 is encoded by a pair (b̂ bin(x), ĉ bin(x));
• the ω-chain from Y2 is associated with the sequence {d̂ bin(k)}k∈ω.

Hence, A is an automatic copy of Φ(Y2). An automatic presentation for an arbitrary algebra Y ∈ K
can be constructed in a similar fashion. �

This concludes the proof of Theorem 6.1.

Corollary 6.6. There exists a uniformly automatic sequence of structures {Fk}k∈ω such that F0
∼=

Φ(Xω), F1
∼= Φ(Yω), F2k

∼= Φ(Xk) and F2k+1
∼= Φ(Yk) for any non-zero k.

Proof Sketch. The proof of Claim 6.5 can be easily modified in such a way that in place of special new
symbols a, b, c, . . . , one can use binary strings bin(1), bin(2), bin(3), . . . . This modification allows
us to construct a desired sequence {Ak}k∈ω and automata A, B0, B1, B2 witnessing the uniform
automaticity of the sequence. �

7. Proof of Theorem 1.1

7.1. Formal proof. Fix a Π1
1 complete set O and a computable sequence of linear orders {Ln}n∈ω

with the following properties ([Har68]):

• if n ∈ O, then Ln is well-ordered;
• if n 6∈ O, then Ln is isomorphic to Harrison linear order H = ωCK1 · (1 + η).

We will build a uniformly computable sequence of structures {Sn}n∈ω such that:

• if n ∈ O, then Sn has no 1-decidable presentations;
• if n 6∈ O, then Sn has an automatic copy.

We fix a number n and describe how to construct (uniformly in n) the structure S := Sn. We also
denote L := Ln.

First, we need to describe the language of our structure S. We assume that the operator Ψ outputs
structures in the language L� := {Supp�, R�, Q�, R

non
� , Qnon� }. Here the subscript � means that we

want Ψ to be applied only to square boxes M . The operator Φ is applied only to round boxes N
and it outputs structures in the language L◦ := {Supp◦, R◦, Q◦}.

A double box Ψ(M) - Φ(N ) is organized as follows. We use two binary relations Ebox and Rbox

such that:
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• Ebox is an equivalence relation, and every double box is an Ebox-class;

• Rbox(x, y) connects any x from a square box Ψ(M) to any y from the corresponding round

box Φ(N ) .

So, our working language L0 is equal to

{Supp�, R�, Q�, R
non
� , Qnon� } ∪ {Supp◦, R◦, Q◦} ∪ {Ebox, Rbox}.

We fix a computable list of all partial 1-decidable L0-structures {Me}e∈ω.

For a structure Me, we produce two lists of uniformly partial 1-decidable structures {Uk}k∈ω and
{Vk}k∈ω. Notice the following: Formally, it would be more correct to write Uek and Vek , since these
structures depend on an index e. Nevertheless, for convenience, we will omit the superscript e in this
and similar situations.

The idea behind the lists is the following: We want to treat our Me as a disjoint union of double

boxes Uk - Vk , k ∈ ω.

The construction of the structures proceeds as follows. For m ∈ ω, we define:

• The domain of Um is equal to the set {x : Ebox(m,x)&∃yRbox(x, y)}, and Um is an L�-
substructure of Me.

• The domain of Vm is the set {x : Ebox(m,x)&∃yRbox(y, x)}, and Vm is an L◦-substructure of
Me.

SinceMe is partial 1-decidable and the definitions of Um,Vm are given by ∃-formulas, the constructed
structures Uk and Vk, k ∈ ω, are uniformly partial 1-decidable. Note that there is some subtlety here:
Two different numbers, say, 0 and 1 can produce the same double boxes, e.g. U0 = U1 and V0 = V1.
Nevertheless, this will not be an obstacle in our construction. We will always ensure that either the
constructed S has an automatic presentation, or S is not isomorphic to Me.

7.1.1. Construction. Our structure S is built as a disjoint union of a sequence of L0-structures {Re}e∈ω.
For e ∈ ω, Re is used to diagonalize against Me:

If L 6∼= H, then Re witnesses that S 6∼=Me.

We describe the construction of Re. Given Me, we produce two sequences of uniformly partial
1-decidable structures {Ui}i∈ω and {Vi}i∈ω. Then, by Theorem 5.1 and Theorem 6.1, we obtain two

∆0
2-computable sequences of partial ∆0

2-computable structures {B̃i}i∈ω and {D̃i}i∈ω with the following
properties:

• B̃i is a graph. If Ui ∼= Ψ(M) for some M , then B̃i ∼= M .

• D̃i is a total unary algebra. If Vi ∼= Φ(N) for some N , then D̃i ∼= N .

Now we want to apply Lemma 4.1. In order to do this, we introduce the following conventions: We
simultaneously change the sequences {B̃i}i∈ω and {D̃i}i∈ω in order to produce new sequences {Bj}j∈ω
and {Dj}j∈ω such that:

• Suppose that some of B̃i contains a label 〈e, 0〉 . Then the sequence {Bj}j∈ω contains precisely

those B̃i (up to isomorphism) which have a label 〈e, 0〉 inside. Furthermore, Bj was B̃i in the

original sequence, then Dj is isomorphic to the disjoint union of D̃i and X1 (from the class K).

Notice that if D̃i also belongs to K, then Dj ∼= D̃i.
• Suppose that no B̃i contains a label 〈e, 0〉 . Then the sequence {Bj}j∈ω consists of empty

structures, and any Dj is isomorphic to X1.

We assume that the construction of Lemma 4.1 puts the label 〈e, 0〉 on all elements of any Ai. Our

conventions ensure that different Re do not interfere with each other.
By a relativisation of Lemma 4.1, we construct a ∆0

2-computable function f(x) and a ∆0
2-computable

sequence of (total) graphs {Ai}i∈ω satisfying the following:

a) If L ∼= H, then there is a non-zero i with Ai ∼= A0.
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b) Suppose that L 6∼= H, and the sequences {Ai}i∈ω and {Bj}j∈ω are equal up to isomorphism.
Then for any i > 0, Ai 6∼= A0. Moreover, there is a limit k := lims f(s) and A0

∼= Bk.

Notice that the construction of Lemma 4.1 can be easily modified in such a way that any Ai is infinite.
After that we apply a relativisation of Lemma 4.6 and obtain a ∆0

2-computable unary algebra C
such that:

i) C is isomorphic to a structure from the class K;
ii) If L 6∼= H and the sequences {Ai}i∈ω and {Bj}j∈ω are equal up to isomorphism, then C 6∼=
Dlims f(s).

Fix a uniformly automatic sequence {Fi}i∈ω from Corollary 6.6. Informally speaking, the sequence
lists all structures Φ(Y), Y ∈ K, without repetitions.

Then the desired structure Re is a disjoint union of a special double box Ψ(A0) - Φ(C) and infinitely

many copies of every double box Ψ(Ai+1) - Fj , where i, j ∈ ω.

7.1.2. Verification. It is not difficult to show that the structure S is computable.

Lemma 7.1. If n ∈ O (i.e. the outcome is Π1
1), then S has no 1-decidable copies.

Proof. Recall that L 6∼= H. Assume that S is isomorphic to some (total) 1-decidableMe. Consider the

special double box Ψ(A0) - Φ(C) from Re.

Our construction is organized in such a way that for any double box Ψ(A) - G from S, the following

conditions are equivalent:

• this double box belongs to Re;
• there is an element from A labeled by 〈e, 0〉 ;

• any element from A is labeled by 〈e, 0〉 .

Therefore, since S ∼= Me, the sequences {Ai}i∈ω and {Bj}j∈ω (from the construction of Re) are
equal up to isomorphism. So by Lemma 4.1 we get that Ai+1 6∼= A0 for any i, and A0

∼= Bk, where
k := lims f(s).

Consider a 1-decidable double box U - V from Me which corresponds to the ∆0
2-computable box

Bk - Dk . Then U - V is the unique double box from Me such that its square box is isomorphic to

Ψ(Bk) ∼= Ψ(A0). Again, since S ∼=Me, we deduce that the round boxes V and Φ(C) must be isomorphic.
On the other hand, we know that C 6∼= Dk. Thus, we have V ∼= Φ(Dk) 6∼= Φ(C); contradiction. Therefore,
the structure S has no 1-decidable copies. �

Now we want to deal with the Σ1
1 outcome. First, we prove two lemmas about automatic structures.

Lemma 7.2. Suppose that U is an automatic L�-structure and V is an automatic L◦-structure. Then

the double box U - V has an automatic presentation.

Proof. Without loss of generality, we assume that the alphabets of automata for U and V are disjoint.

Then an automatic copy A of U - V is defined as follows.

The domain of A is the union of domains of U and V. For any P ∈ L�, let PA := PU . For P ∈ L◦,
we set PA := PV . We define RAbox := {(u, v) : u ∈ U , v ∈ V} and EAbox := dom(A)2. �

Lemma 7.3. Suppose that {Uk}k∈ω is a uniformly automatic sequence of L�-structures and {Vm}m∈ω
is a uniformly automatic sequence of L◦-structures. Then the structure consisting of infinitely many

copies of
⊔
k,m∈ω Uk - Vm (where

⊔
denotes the disjoint union of double boxes) has an automatic pre-

sentation W. Furthermore, given automata witnessing the uniform automaticity of sequences {Uk}k∈ω
and {Vm}m∈ω, one can effectively produce an automaton witnessing the automaticity of W.
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Proof Sketch. The proof is based on the idea from the previous lemma. Suppose that automata A,
B0, . . . , B4 witness the uniform automaticity of the sequence {Uk}k∈ω, and automata C, D0, D1, D2

witness the uniform automaticity of the sequence {Vm}m∈ω.
We may assume that the alphabets of A and C are disjoint. We sketch how to construct a desired

automatic presentation W. The idea behind the construction is the following: Any double box I - J
from our presentation W is described by three parameters k,m, p ∈ ω. The parameter k says that the
square box I is isomorphic to Uk, m says that the round box J is isomorphic to Vm, and p says that

this double box is the pth copy of Uk - Vm .

The domain of W is equal to

{conv(bin(k), conv(bin(k), u), bin(m), bin(p)) : k,m, p ∈ ω, conv(bin(k), u) ∈ L(A) ∪ L(C)}.

If conv(bin(k), u) ∈ L(A), then the corresponding elements from the domain lie in square boxes iso-
morphic to Uk. Otherwise, these elements belong to round boxes isomorphic to Vk. Here the number
m describes the isomorphism type of the complementing box: e.g., if conv(bin(k), u) ∈ L(A), then an

element conv(bin(k), conv(bin(k), u), bin(m), bin(p)) belongs to a double box isomorphic to Uk - Vm .

Recall that the automaton B1 is responsible for defining the relation R� in all Uk, k ∈ ω. We set

RW� := {(conv(bin(k), conv(bin(k), u), bin(m), bin(p)), conv(bin(k), conv(bin(k), v), bin(m), bin(p))) :

k,m, p ∈ ω, conv(bin(k), u, v) ∈ L(B1)}.

Informally speaking, we essentially use the same automaton B1 to define the relation R� in our square
boxes. Other relations from L� ∪ L◦ are defined in a similar way.

We set

RWbox := {(conv(bin(k), conv(bin(k), u), bin(m), bin(p)), conv(bin(m), conv(bin(m), v), bin(k), bin(p))) :

k,m, p ∈ ω, conv(bin(k), u) ∈ L(A), conv(bin(m), v) ∈ L(C)}.

The equivalence relation EWbox is such that any its class has the form

{conv(bin(k), conv(bin(k), u), bin(m), bin(p)), conv(bin(m), conv(bin(m), v), bin(k), bin(p)) :

conv(bin(k), u) ∈ L(A), conv(bin(m), v) ∈ L(C)}

for some k,m, p ∈ ω. �

The next lemma describes the Σ1
1 outcome.

Lemma 7.4. If n 6∈ O, then S has an automatic presentation.

Proof. Recall that L is isomorphic to H. Consider any Re. By Lemma 4.1, (in this Re) there is an
index i such that the structures Ai+1 and A0 are isomorphic. Moreover, C is isomorphic to a structure

from K. Therefore, the special double box Ψ(A0) - Φ(C) is isomorphic to some non-special double

box Ψ(Ai+1) - Fj .

Note that any non-special double box has infinitely many copies inside S. Thus, our structure S
is isomorphic to a computable structure Somit which is obtained from S by deleting all special double
boxes. Now it is sufficient to show that Somit has an automatic presentation.

This time we need to distinguish the structures Ai arising from different Re, e ∈ ω. Hence, let
Aei denote the structure Ai which was built during the construction of Re. The proof of Lemma 4.1
shows that the sequence {Aei}e,i∈ω is uniformly ∆0

2-computable. By Corollary 5.5, there is a uniformly
automatic sequence of structures {Gk}k∈ω such that for any e, i ∈ ω, we have G〈e,i〉 ∼= Ψ(Aei+1).

Notice that the sequence {Fm}m∈ω, which was used in the construction, is uniformly automatic.
Moreover, F0

∼= Φ(Xω), F1
∼= Φ(Yω), F2m

∼= Φ(Xm), and F2m+1
∼= Φ(Ym) for any non-zero m ∈ ω.

By Lemma 7.3, there is an automatic presentation W of the structure consisting of infinitely many

copies of
⊔
k,m∈ω Gk - Fm . It is easy to see that W is isomorphic to Somit. Therefore, S has an

automatic presentation. �
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This concludes the proof of Theorem 1.1.

8. Proof of Theorem 1.2

8.1. Construction. For starters, we reintroduce our preliminary arrangements as in Theorem 1.1.
Let O be a Π1

1 complete set, and choose a computable sequence of linear orders {Ln}n∈ω such that:

• if n ∈ O, then Ln is an ordinal;
• if n 6∈ O, then Ln is a copy of the Harrison linear order.

We will build a computable sequence of structures {Sn}n∈ω such that:

• if n ∈ O, then Sn has no primitive recursive copies;
• if n 6∈ O, then Sn has a polynomial-time copy on the domain Bin(ω).

As in Theorem 1.1, we fix a number n and describe the construction of the structure S := Sn. Again,
L is an abbreviation for Ln.

The language L0 of the structure S contains one binary relation R and two unary functions f and

g. A double box U - V is arranged as follows:

• First, we add two additional elements c[U ,V] and d[U ,V]. The elements are used to “distin-
guish” a square box and a round box. For x ∈ {c[U ,V], d[U ,V]}, we set f(x) = g(x) = d[U ,V].

• Roughly speaking, the square box U is a graph in the language {R}:
– the condition R(x, y) implies that x and y lie in the same square box;

– for any x from U , f(x) := x and g(x) := c[U ,V].

• The round box V is a unary algebra in the language {f}: For any x ∈ V, we have f(x) ∈ V
and g(x) := d[U ,V]

We fix a computable list {Me}e∈ω of all primitive recursive structures in the language L0. Given
a primitive recursive structure Me, we produce two computable sequences {Uk}k∈ω and {Vk}k∈ω. As
in Theorem 1.1, we want to treat our Me as a disjoint union of infinitely many double boxes. The
sequences satisfy the following properties:

• Any Uk is a total graph, and any Vk is a total unary algebra.
• IfMe has no elements x and y such that x 6= y, f(x) = g(x) = f(y) = g(y) = y, then every Uk

is a singleton and every Vk is a copy of X1.
• If x and y are different elements from Me with f(x) = g(x) = f(y) = g(y) = y, then there are

infinitely many k such that:
– If the set U [x] := {z : g(z) = x} is empty, then Uk is a singleton. Otherwise, Uk is

isomorphic to the {R}-substructure of Mk on the domain U [x].
– If the set V [x] := {z : z 6= x, z 6= y, g(z) = y} is empty, then Vk ∼= X1. Otherwise, Vk is

isomorphic to the disjoint union of X1 and the {f}-subalgebra ofMk on the domain V [x].

Using arguments similar to those of Theorem 1.1, we may assume that for any k, either Uk is a singleton,

or Uk contains an element labeled with 〈e, 0〉 .

The desired structure S is built as a disjoint union of L0-structures Re, e ∈ ω. Again, if the orders
L and H are not isomorphic, then Re ensures that S 6∼=Me.

The construction of Re proceeds as follows. By Lemma 4.1, we construct a computable sequence of
graphs {Ai}i∈ω and a computable function f(x) such that:

• If L ∼= H, then there is a non-zero i with Ai ∼= A0.
• If L 6∼= H and the sequences {Ai}i∈ω and {Uj}j∈ω are equal up to isomorphism, then A0 is not

isomorphic to any Ai with i 6= 0. Moreover, there is a limit k := lims f(s) and A0
∼= Uk.

After that, we apply Lemma 4.6 and obtain a computable unary algebra C such that:

• C is isomorphic to a structure from the class K, and
• if the limit k = lims f(s) exists, then C 6∼= Vk.
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The structure Re is organized (in a natural way) as a disjoint union of a special double box A0 - C
and infinitely many copies of each of the following non-special double boxes: Ai+1 - Xj , Ai+1 - Yj ,

where i ∈ ω, 1 ≤ j ≤ ω.

8.2. Verification.

Lemma 8.1. If L 6∼= H, then S has no primitive recursive copies.

Proof. Assume that S is isomorphic to Me. Consider the special double box A0 - C from Re. By

Lemma 4.1, the box is a unique double box in S such that its square box is isomorphic to A0. Moreover,

there exists a limit k = lims f(s) such that A0
∼= Uk. The box Uk - Vk is a unique double box in Me

with Uk ∼= A0. This contradicts with C 6∼= Vk. �

Lemma 8.2. If L ∼= H, then S has a polynomial-time copy on the domain Bin(ω).

Proof. As in Lemma 7.4, it is easy to show that S is isomorphic to the structure Somit which is obtained
from S by omitting all special double boxes. For e, i ∈ ω, let Ae,i+1 denote the structure Ai+1 which
was built during the construction of Re.

Claim 8.3. The disjoint union of Ae,i+1, i ∈ ω, has a polynomial-time copy Pe on the domain Bin(ω).
Furthermore, there is a polynomial-time algorithm that given an element x ∈ Pe outputs a number j
such that x belongs to the copy of Ae,j inside Pe. This is uniform in e ∈ ω.

Proof Sketch. In order to build the desired Pe, we modify the construction of Lemma 4.1. First, we
will assume that the order H from the construction is a polynomial-time copy of Harrison linear order.
Notice that the structure Ae,1 is infinite: if we remove all its labels, we obtain a copy of H.

The informal idea of the proof is as follows. If we cannot execute some procedure in a polynomial
time, then we replace it with the following action: While waiting for the computation of the procedure
to halt, we just build Ae,1 as a copy of H.

We give a list of time-consuming procedures (at a non-zero stage s) from the original construction
and sketch how to make them polynomial-time:

a) Building A0[s; 0]. Here we want to ensure that the structures L[s] and R(A0[s; 0]) are iso-
morphic. Since a given order L may be not polynomial-time, this can be a hindrance to our
construction. Nevertheless, this can be resolved: In place of L, we will work with a polynomial
copy of ω + L.

b) Checking whether a stage s is expansionary. This may be very time-consuming: in particular,
we may need to look through all possible correct partial isomorphisms from, say, A1[s−1] into
B0[s], where B0 is not even polynomial-time. In order to deal with it, we proceed as follows.
We first go through s many stages of the checking. If the computation did not halt, then we
declare that the time is s-frozen and go to the next stage. At a stage t > s, if the time is
s-frozen, then the construction goes like this:

– Add a fresh element to (our copy of) R(Ae,1). This can be done in a polynomial time,
since H is polynomial-time.

– Do the first t stages of computation for checking whether s is an expansionary stage.
– If the computation halts, then proceed as in stage s of the original construction of

Lemma 4.1. After that, declare the time (s+ 1)-frozen.
– If the computation does not halt, then the time is again s-frozen. Do not change anything

in our structure and proceed to the next stage.
• Redefining flag(i, s) and gi[s]. Again, here we need to search for correct partial isomorphisms.

This search can be modified similar to the previous procedure.

Furthermore, we may assume that at any stage s, we always put the binary string bin(s) into our
Pe. Also, at a stage 〈i, t〉, one puts a fresh element only into either a copy of Ae,1 or a copy of Ae,i+1.
Hence, the domain of the constructed Pe is equal to Bin(ω), and for x ∈ Bin(ω), one can compute in
a polynomial time the index j such that x belongs to the copy of Ae,j . �
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Recall that any structure from the class K has an automatic presentation. Hence, any structure
from K has a polynomial-time copy. Furthermore, this is uniform.

Let {Pe,q,r : e, q, r ∈ ω} be a sequence of polynomial-time graphs such that for any e, q, r ∈ ω, Pe,q,r is
a polynomial-time copy of the disjoint union of Ae,i+1, i ∈ ω, on the domain {bin(4〈e, q, r, x〉) : x ∈ ω}.
We also choose a sequence of polynomial-time unary algebras {Fe,k,q,r : e, k, q, r ∈ ω} such that Fe,k,q,r
has domain {bin(4〈e, k, q, r, x〉 + 1) : x ∈ ω}, and for any e, k, q, the sequence {Fe,k,q,r}r∈ω lists all
structures from K without repetition.

Then the polynomial-time copy of Somit on the domain Bin(ω) is organized as follows. Let e, k, q, r ∈
ω. We form a double box U - V : U is a copy of Ae,k+1 from Pe,q,r; V is the structure Fe,k,q,r; and

we set c[U ,V] := bin(4〈e, k, q, r〉+ 2) and d[U ,V] := bin(4〈e, k, q, r〉+ 3). �

This concludes the proof of Theorem 1.2.
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