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SUMMARY

Trace impurities often collect on the upstream side of obstacles in the sur-
face of flowing water. The transition from apparently free surface to heavily
polluted surface can be quite sharp, and changes in the surface level have been
observed there. We treat theoretically the coupled problems of the viscous
boundary layer and the convective mass transfer of surface-active material, and
show how the experimentally measurable surface slope depends on the speed of the

flow underneath.
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'1. INTRODUCTION

Some years ago, Sellin (1) observed a small dip at the upstream edge of a region where the
surface of flowing water was contaminated. Mockros and Krone (2) observed a ripple elevated
slightly at the leading edge. In the hope of resolving the apparent conflict, and also of pro-
viding a method for measuring surface contamination dynamically, we analyze theoretically amodel
of the flow which is idealized enough for simple calculation but realistic enough to be interes-
ting. Our theory is developed from that in Dixon's thesis (3).
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Figure 1. The flow configuration (vertically exaggerated). The degree of surface contamination is
indicated by schematic "adsorbed molecules™. Flow is from left to right. d = displacement thick-
ness measured from the fluid surface, h = elevation of the surface above a horizontal reference
plane.

Assuming that the flow indicated in Figure 1 is two-dimensional and steady, and consists of an
unbounded uniform stream of speed U under a laminar viscous boundary layer at the surface, we may
write its equations of motion and continuity as

du du _ 3%y

UtV T V5T | (1.1)
Ju v .
x oy o , (1.2)

where u, v are the velocity components in the direction of x along the surface and y perpendicu- !
larly into the fluid, v is the kinematic viscosity, and we have ignored second-order effects due

to surface curvature. Because vorticity diffuses much faster than surface contaminants, we may
neglect diffusive mass transfer in a first approximation to the theory describing the transition
region between (i) the upstream '"free'" surface (where u - U, the displacement thickness d - 0, and
the surface pressure I of the contaminant -+ IIg), and (ii) the downstream "clogged" surface where

u = o(U). If also the surfactant is thermodynamically ideal, so fthat its surface pressure is pro-
portional to surface excess (4), the continuity equation for the surfactant is

Ilu = constant = IgU (1.3
on the surface. Finally, the surface tension gradient must balance the surface shear stress in the
liquid, and because the surface tension is op-H where op is the surface tension of uncontaminated

liquid, we have

M _  Bu
Ix - ¢ 3y ¢ - (1.4

to first order on y = 0, u being the dynamic viscosity.

2. THE BOUNDARY LAYER

The problem described by equations (1.1) to (1.4) is made dimensionless by the use of variables .
u*, v*, x*, y* and a Reynolds number R, defined by

u = Uu*, v = UR-Mv*, x = ax*, y = oR~M5y~, (2.1)
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where a = VR/U and R = (Hf/uU)2 . (2.2).
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We also let the dimensionless displacement thickness d* be dR%/a. Our boundary-layer analysis is°
valid if R >> 1,

The field equations become

Ju* av* Y
3% T ay* S [ e (2.3)
au* du* gy
* O * =
ax* + V ay* 3y*2 » (2'4)

with boundary conditions u* - 1, v* =+ 0 at y* - o, while v* = 0 and

du* _ .2 du*

IxX*F u ay*

(2.5)

on y* = 0. Equation 2.5 is found by eliminating I between (1.3) and (1.4).

Far upstream, u* is close to umity for all ¥Y*, and so we may linearize to an Oseen flow, in
which we find

u* ~ 1 - € exp(x*-y*) , (2.6)

V¥ ~ € exp(x*-y*) , ’ 2.7

d*,~ € exp x* , (2.8)
and, from (1.3),

I~ Mg(1+€ exp x*) ' (2.9)

where € is an arbitrary constant and € exp x* must be small for the linearization to be valid. Far
~downstream, u* - 0, equation (2.5) becomes nugatory, and the flow tends to Blasius's well-known
flow past a flat plate, for which

d* ~ 1.7208 (x*+k)% , (2.10)
where k is another arbitrary constant:

To obtain some idea of the transition region, one can use a type of von Kdrmdn-Pohlhausen
approximation

) u* = 1-A(x*)exp{-y*/6(x*)} , (2.11)

f determining A and 6 from (2.5) which gives

dA_ _ 2 A
o - -7, (2.12)

and from von Kdrmin's equation (5)

_3_{1:_3 F*Y y*
3y* - 3% lo (1-u*)ju* ay* ,
which gives

7= T (A8-1A%6) | (2.13)

It can now be shown from (2.12) and (2.13) that x* and d* (=AS) are the following functions of
B =1-A:

x* = (1/B%) + 1n {(1/B%) - 1} , (2.14)
d* = 2(1-B)/{B(1+B)} . (2.15)

In the upstream free region, B - 1 and d* ~ Hexp(x*-1) from these equations, in agreement with (2.8}
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that stationary waves be possible on the surface, if p = 1 Mg m-3, ¢
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in the downstream clogged region B = 0 and d* ~ 2x*%, in rough agreement with (2.10). The transi-
tion occurs over a dimensionless distance of order unity, i.e. a physical distance of order o (see
equation 2.1).

3. THE SURFACE ELEVATION

On our hypothesis of a high Reynolds number R and small surface slopes, we ‘may assume that the
pressure is constant across the surface boundary layer (apart from the hydrostatic term), and use
Bernoulli's equation and thin-aerofoil theory to find its variation along the layer. Then the
pressure p; just under the fluid surface obeys

p;/p + %% + gh = constant , (3.1)

where g is the acceleration due to gravity, p is the fluid density, and q is the speed of the ir-
rotational flow past the displacement surface shown dotted in Figure 1. Hence (6)

Sl LR G2

. where the symbol { denotes the Cauchy principal value of the integral. To the first order, the

Young-Laplace equation for the pressure difference across the surface is

P;(x) = p, - oh"(x) , (385

where p, is the atmospheric pressure and ¢ the surface tension (variations in which are insignifi-
cant in the neighbourhood of the surface transition). With the boundary conditions that P; = DPys

qQ » U, h > 0 far upstream, we obtain from (3.1}, (3.2), and (3.3) a dimensionless linear integro-
differential equation for h in the form"

d?H m H'(MdT _m D' (T)dT
HZ'H*:}: X-T "~ 7% X (3:3)

where h = YH, x =YX, t = YT, d = yD, Y being the capillary length scale (o/pg)%, and the paranm-
eter m is given by ’

m= (pU%og)% . (3.5)

Thus m is proportional to the square of the speed, and m > 2, or U=z20.23m s‘% is the condition
=72oNml, g =9.81m s-2,

It transpires that the capillary length scale Y nust have been much greater than the viscous
length scale a in Sellin's experiments, and so we need only use the asymptotic forms (2.8) and
(2.10) for the displacement thickness, instead of better approximations such as the implicit

equations (2.14) and (2.15). The right-hand side of (3.4) then takes the simple form of -B(-X)'li
for X < 0, 0 for X > 0, where .

B = 0.8604 m(v/Uy)% . ' (3.6)

¢
Equation (3.4) is readily solved by Fourier integration. If we put

H(X) = (2—;),1- J: V(w)exp(iwX)dw (3.7)

and use-Titchmarsh's (7) results for the Fourier transform of a Hilbert transform, we find that

4{1 + 7 sgn(w)}

Vi = iwlZ{I-mw sgn(w)+w?} °* ) (3.8)
and hence
2 2% + %
o = 2 r cos X g (3.9)
“0

provided that there are no eigensolutions of (3.4) bounded both as X = o and as X - ~o, If

O0<m < 2 there are none, and if m > 2 there are just two eigensolutions, which correspond to the
two surface waves of velocity U on still water, i.e. the waves at rest on our stream of velocity U.
Sellin (1) ensured that m < 2 in his experiments. In that case the integral {3.9) can be com-
puted numerically; graphs of H(X)/8 are shown in Figure 2 for several values of m. 1In every case
the surface rises gradually to a maximum height a short distance upstream from the transition at



X = 0, and then falls more steeply. Presumably Sellin (who measured surface slopes) did not de-
tect the rise preceding the more obvious dip. He did find, in agreement with Figure 2, that the
curvature was sharper at the upper end of the dip than at the lower. As m - 2 the amplitude be-
comes large and the surface shape tends towards sinusoidal, because of the apprpach to resonance
with a standing surface wave. It is easy to see from (3.9) that at X = 0, H = 81%/(4-2m)"%.

4. ESTIMATION OF U AND If

In the above theory, the surface elevation depends only on fluid properties (p,g,v,0) and U.
Sellin used tap water (v = 10-6 m2s-1 presumably), and obtained a mean dip in surface level of
0.175 mm and a mean maximum slope of 0.041. He did not report values of U, but the best fit with
our theory is obtained if U = 0.157 m s-1, so that m = 0.93, B = 0.388, the theoretical dip (from
the highest point on the fluid surface to the lowest) is 0.157 mm, and the maximum slope is 0.046.

To estimate Ilf we recall that the flux of surfactant into the clogged surface is TfU, and in a
steady state this must balance the flux out. The available data do not allow us to calculate 7§
with any precision, but one can make an order-of-magnitude estimate if turbulence is negligible and
if the surfactant solution is ideal everywhere, so that 1 =R, T " = Rg T A ¢, where Rg is the gas
constant, T the absolute temperature, [' the surface excess, ¢ the surfactant concentration in the
adjacent solution, and A a constant length, the adsorption depth (3, 4, 8).

If we define IIg to be RgTA times the concentration in the bulk solution, if the surface pres-
sure on the clogged part of the surface is of order I, and if the clogged and free parts have
lengths &c, %s and diffusion boundary-layer thicknesses 6., &5 respectively, then

82 ~ 25 /U , 83 ~ 22 /U , (4.1
where x is the diffusivity of the surfactant (8, 9), and the flux condition is
AU~/ (4.2)
Similérly we find that
MU~ e /6 (4.3)

if 25 is too short (or A too large) for the free part of the surface to have approached thermody-
namic equilibrium,while I = IIg if equilibrium has been reached. Also, equation (1.4) and flat-
plate boundary-layer theory show that

Hc L p(vU‘jEc)% . (4'4)

In Sellin's experiments 25 and % were both of order 0.45 m. Let us also takex = 4X10'10m25€
a typical value for organic surfactants. Then IIc ~ 40 mN m~!{which strains the assumption of y
ideality, but is a feasible surface pressure), llgA ~ 6ORN from (4.2), and g = Mg if A << 34 um,
whereas (4.3) holds and Ig ~ 2nN m-1 if X >> 34 um. A necessary condition for validity of (4.1) is
that A >> 3 um : otherwise Nig is too large for there to be a sharp transition betwecen free and
clogged surface. Many surfactants exist, of course, with A >> 3 um, and the more insoluble ones
have A >> 34 um.

5. CONCLUSIONS
Sellin's observations of the surface slope at the upstream end of a contaminated Tegion seem
to have been accounted for, but they do not give much information about surface contamination.

More useful for that purpose would be measurements of the lengths &g and £ of the free and clogged
parts of the surface over a range of speeds of flow.
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