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work is interesting mathematically, and also throws light on the physical
chemistry of interfaces between moving fluids.

Because interfacial phenomena affect the motion in a number of different
ways, there are many cases to consider. We begin in Section II with the
simplest. This is a bubble rising in a Newtonian liquid, far enough from
boundaries (including other bubbles) to be treated as if isolated. We assume
that the viscosity and density of the internal gas are negligible, and that the
surface rheology reduces to the single parameter of a constant uniform
surface tension. Section I1I is concerned with drops whose interior viscosity
and density are taken into account, but which satisfy the other conditions
of Section II.

The most restrictive condition is constancy of the surface tension, for it
requires exceptionally pure fluids. Experiments seldom agree with the
predictions of Sections IT and ITI for small bubbles or drops unless great
care is taken to remove impurities. These adsorb at the surface and lower the
surface tension, The flow of the fluid then carries the impurities around
the surface, setting up inequalities of concentration and hence of surface
tension, which oppose the motion. So much surface-active material may
be adsorbed that it forms a layer with a measurable surface elasticity or
surface viscosity of its own. If a soluble surfactant diffuses across the inter-
face, it can induce instability of the motion (interfacial turbulence). Only
for surfactants so dilute that the motion is stable, and the surface tension
and 1ts gradient are the only significant mechanical properties of the
interface, do quantitative theories exist. We take the surface tension to
depend linearly on the concentrations in the bulk fluids which are propor-
tional to each other, and we assume that the viscosities and the bulk and
surface diffusion coefficients are constant. Section IV contains an account
of the motion of drops and bubbles in these ideal solutions of surfactants.
This is a first step towards a complete theory in rather the same way that
the theory of ideal gases is 1 useful first approximation to the behavior of
real gases.

The rheology of nonideal solutions and nonNewtonian liquids lies out-
side the scope of this review, as do interfacial turbulence, the mutual
influences of two or more bubbles or drops, wall effects, and chemical
reactions. Information on these topics can be obtained from Brodkey (1967)
and Lane and Green (1956) for fluid dynamics, from Adam (1968) and
Defay et al. (1966) for physical chemistry and thermodynamics of surfaces,
and J. 'T\. Davies and Rideal (1963) and Levich (1962) for both physical
chemistry and fluid dynamics.

Because moving drops and bubbles are studied by such a wide variety
of scientists and engineers, it is useful to indicate where bibliographical
information can be found. Chemical Abstracts and Physics Abstracts are
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the best general sources of information about current literature, .ﬁ:n moﬂ.smw
in particular having a very broad coverage. Applied Mechanics bmﬁm.éa
often has short critical articles on work in the field. Several of :.5 biblio-~
graphical reviews published in Industrial and Engineering QSS&.NQ were
helpful in the preparation of this work (Gal-Or et al., 1969; Gill et al,
1969, 1970; Gomezplata and Regan, 1968; Regan E.E Gomezplata, Hoqow
Shedlovsky, 1968; Stahel and Ferrell, 1968; Tavlarides et al., 1970); ﬂ._.:m
journal has now ceased publication and been Hmm.ﬂmnna by Chemical
Technology. Finally, Gouse (1966) has published an index to over 5000
papers on two-phase gas-liquid flow, up to 1965.

II. A Bubble with Constant Surface Tension Rising Under Gravity

A. DIMENSIONAL ANALYSIS

Consider a bubble of gas in an unbounded pure liquid whose surface
tension against the gas is 0. We shall assume that o &owm not vary around
the surface. The bubble will rise steadily if its motion is stable to random
small disturbances, and if the time taken to approach very close ﬁ_o ﬁ.rn
terminal velocity is much less than the time 3@&8&. mo_.. the bubble’s size
to change by a significant fraction of itself. mesmmm in size may be due to
evaporation or condensation, to changes in ambient pressure, or ,mo gases
moving in or out of solution (as in a glass of beer). This mo_n_. of _uc_.u_u_n
dynamics” has been reviewed by Plesset (1964), one of the m?nm contribu-
tors to it. Its name is unfortunate, because the theory of rising bubbles of
constant size is hardly “ bubble statics !

Suppose that the motion is steady, with a bubble of the same constant
volume as a sphere of diameter d (the *“ equivalent sphere ™), rising at speed
U in a liquid of density p and dynamic viscosity n = pv. Let p and % be
much greater than the density and viscosity of the gas. Then U must be
determined by d = 24, p, nor v, o, and g, the acceleration due to gravity. To
make our calculations independent of particular units of measurement and
particular fluids, we seek dimensionless products of the above parameters.
A number are in common use, but Schmidt (1933) showed that only one
can be formed from the given physical properties of the liquid, namely

M =gn#|po". @

In different liquids M takes values over a very wide range: in highly
viscous oils it can exceed 10%, and in liquid metals it can be less than 10715,
Other dimensionless parameters must depend on U or d or both, and they
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include the Reynolds number R, drag coefficient Cp, Weber number W,
Froude number F, Eétvés number E, and Bond number B, defined by the
equations _

R = Udfv = Udp/x, (2.2)
_ Jorce on bubble 4w pga® _ 4gd
Co = 3pU% - ma®  impU2%2 302 (2:3)
W= pU%dJo = (4MR*3C)*3, (2.4)
F =U?gd =4{3Cy, (2.5)
E=B*=gd%[c=3WC,. (2.6)

The reader is warned that some authors use a in the above definitions in
place of d, and others use the bubble’s equatorial or polar diameter,

Any independent pair of these dimensionless numbers must determine
all the rest in steady flow. It is convenient to choose M, which specifies the
fluid, and R which determines the mechanics. Qur basic problem is then
to calculate the flow pattern and hence Cy, as functions of R and M from
the equations of motion,

B. SummaryY oF EXPERIMENTAL RESULTS

Haberman and Morton (1953, 1956) and Peebles and Garber {1953)
carried out experiments and collected those of previous workers to give
graphs of C'p, against R for bubbles in a variety of pure liquids. Selected
results are shown as solid curves in Fig. 1. (The curve N9 with
M =117 x 10-° is for Bryn's (1933) ethyl alcohol solution in water—-
Haberman and Morton miscalculated M as 1.17 x 10-8.) Also in Fig. 1

Fic. 1. Drag coeflicient ) plotted against Reynolds number R for rising bubbles,
Experimental curves are drawn solid, theoretical curves dotted. Each curve bears an
identifying letter, as in the list following, and also (where relevant) the nearest integer
to —logip M. A. Rigid spheres (Perry et al., 1963). B. Tangentially free spheres, R <€ 1
{(Rybeczynski, 1911; Hadamard, 1911). C. Tangentially free spheres, R <1, second
approximation (Taylor and Acrivos, 1964). D. Tangentially free spheres, R > 1 (Moore,
1963). E, F, G, H. Tangentially free spheroids (Moore, 1965), M respectively 10-9, 10~8,
1071, 10-22, 1. Spherical caps (Parlange, 1969). J. M = 1.45 x 10-2 {Haberman and
Morton, 1953). K, M =1.87 x 10-2 (Kojime et al, 1968). L. M =25 x 10-1
{(Haberman and Morton, 1953), N, M = 1,17 x 10-? (Haberman and Morton, 1953).
P. M =6.55 x 107° (Pecbles. and Garber, 1953). Q. M = 2.08 x 10-5 (Peebles and
Garber, 1953). R. M =2.93 x 102 (Angelino, 1966). S. M = 3.22 x 10-7 {Peebles and
Garber, 1953). T. M =2.41 x 10~ (Haberman and Morton, 1953). U. M = 8.9 x 10-1!
{Haberman and Morton, 1953),
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are the experimental results of Angelirio (1966) for M =2.93 x 10-2 and
Kojima et al. (1968) for M = 1.87 x 10~2 The dotted curves show Cp(R)
for rigid spheres (Perry et al., 1963; Pruppacher e al, 1970) and the
theories due to Rybezynski (1911}, Hadamard (1911), Taylor and Acrivos
(1964), Moore (1963, 1965), and Parlange (1969), which are discussed
below. For low values of M (of order 10~° or less) many more results are
available but those in Fig. 1 suffice to indicate the general character of
all of them. We have used parts only of two of Peebles and Garber’s
graphs, in a range of M where Haberman and Morton had no liquids,
because all their experiments were done in a tube only one inch in diameter.
The velocity of the bubbles is appreciably less than that in an “infinite”
liquid wherever the equivalent spherical diameter d is greater than about
one-fifth of the diameter of the tube. It will be seen that Haberman and
Morton’s (and Angelino’s and Kojima’s) graphs tend, at their right-hand
ends, towards a fairly constant value of Cp= 2.6, while Peebles and
Garber’s values of Cj, tend to become proportional to R, because I
becomes constant. Many other workers have experimented with bubbles,
but the present author has been unable to find any more results with
M>107F, over the range of Reynolds number between 10 and 100, in
tubes of sufficiently large diameter.

It is clear that the main features of the experimental graphs are as
follows:

1. For each liquid with M < 10-2, Cp, has a minimum value Cpn which
decreases, at a value R, of R which increases, as M decreases,

2. For values of R less than R,,, Cp, rises steadily as R falls, being close
to Levich’s {1962) asymptotic value of 48/R if R 1, or to Rybezynski’s
(1911) and Hadamard’s (1911) 16/R if R < 1. Water is a conspicuous
exception (curve L11 in Fig. 1) for which Cp is much closer to the value
for rigid spheres, as it is in liquids known to be impure. The reason for the
anomalous behavior of water is thought (Levich, 1962) to be the presence
of trace impurities; see Section IV. In this range of R (< R,,) the drag
cocfficient is not much affected by the value of M.

3. If R>R,,, Cp first increases rapidly with R and then levels off at a
value of about 2.6, provided that the minimum (Cp,,) was lower than that
value.

4. If M >10-2 approximately, the minimum of C,, is very shallow or
absent. The Cp(R} curves then tend to the Hadamard-Rybczynski asymp-
tote for small R, but level off in the region 2.6 < Cp < 3. More experi-
mental results are desirable for R > 10 and M > 10-8; there seems to be
a change in the character of the curves between M = 10-5 and M — 10-2,
but no transitional cases are available,
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The bubbles rise steadily, and their motion is stable, provided that they
are not too large. Hartunian and Sears (1957) collated previous _.nm::m. and
also experimented on a number of fluids. Their results are shown in Fig. 2,
in which the Weber number W (as defined in Eq. 2.4} is plotted against
R for marginally unstable bubbles. The relevant values of M X 1012 are
also plotted, as are curves of the dependence of W on R as _uc_qu size
varies, for some typical values of M. (As Hartunian and Sears did not
tabulate M, values have been found from their references or from the
other data in their Table 1. In the process it was discovered that the Bond
numbers in that table are all the reciprocals of the values defined by the
authors, except for their liquids 13 and 15, for which the table gives ten
times the true values.)

For pure liquids, marginal instability occurs at a value of W near 3,
provided that M is low enough (less than 10~%) for this to occur when

27 %

x2400
X
1600

0 mn_vo h*._oo mmuo mﬁ_uo 1000
R
Fig, 2. Critical stability plot, in the (R, W) plane: the curves {based on Fig. 1) show
W (R) for four hypothetical liquids with M =10"8, 102, 10-9, 10~ The plotted

points indicate marginally unstable bubbles according to Hartunian and Sears (1957), x for
pure liquids, 4 for contaminated liquids. The associated numbers are values of 101234,
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R>200. If M < 10-® and the liquid is impure, instability occurs at
R = 200, which requires that F/ <C3. Bubbles are therefore less stable in
an impure liquid than in the same liquid pure. No experiments were
reported with M4 > 10-® in which the motion became unstable; in Haber-
man and Morton’s (1953) oil with M =1.45 x 10-2 bubbles were still
stable at R=175, W =180, and Angelino (1966) found no sign of
instability up to R=300, W =494 in a mixture of glycols with
M =293 x10-2, When steady vertical motion is unstable, the bubbles
rise either in a helical path or in a plane zigzag (see Section 11, D).

The other chief property of rising bubbles besides drag and stability is -

their shape. Sufficiently small bubbles are always spherical, but as W
increases towards order unity the bubbles distort, first to oblate spheroids
(flattened ellipsoids of revolution) with their short axes of symmetry
vertical and their longer equatorial axes horizontal, and ultimately to a
spherical cap shape, convex upwards, as Cp, becomes constant. Prolate
spheroids (rugby football-shaped) are not observed in Newtonian liquids
except momentarily during some types of oscillation. We must now turn to
the theories which have been advanced to explain this diverse collection
of phenomena, taking them in order from left to right across Fig. 1, and
then considering Fig. 2. .

C. THEORY FOR A SPHERICAL BUBBLE

1. Low Reynolds Number

If the Reynolds number R is very small, viscous stresses which are of
order nU/fd in the neighborhood of the bubble must dominate inertial ones
of order RyUJd, and so the total force exerted by the liquid on the bubble
is of order (stress X area) or yUd. In steady flow this balances the gravi-
tational upthrust of order pgd® and so U is of order gd?%v, and
Cp=4gd|/(3U?) ocd~* «c R 1. The constant of proportionality depends
on the shape of the bubble and the surface conditions. We discuss only
shapes close to a sphere; highly distorted bubbles can exist at low Reynolds
numbers if A is large enough, but no theory appears to have been pub-
lished to describe them. The only experiments seem to be those of Pan
and Acrivos (1968) and Jones (1965); the undersides of their bubbles
became flattened and eventually concave as R increased.

Let us define ¢ to be the Stokes (axisymmetric) stream function given in
spherical polar coordinates by
S 1y = L % (2.7}

Flemwm:m.mlm_ rsin @ or’

W‘D..Er Tonctim ar

@i?h.”\ Rreaner tﬁaﬁr& = .—,H P IHARV dx = . ANHO\M
"z
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where v measures distance from the center of mass of the bubble, making
r = a on the surface if it is a sphere, @ is the polar angle measured from
the upstream direction, and (x,, #,) are the corresponding velocity com-
ponents. Then i ~ 3Ur? sin? § at large distances from the bubble, and we
may write the well-known dynamical equation governing Stokes flow as

D4 =0, (2.8)
where, with cos # denoted by g,
a2 1—p? &

=T e

D? (2.9)
This equation is known to give a good approximation to the real flow for
small R provided that r € a/R (see, for example, Happel and Brenner,

1965).
The general solution of (2.8) with the correct limiting form for » > a

1s given by

&:Im Q:IH

,%am - Aml oy m +Ba mvb@ |MGT= e R xlvqﬁ@_ (2.10}

&m

where #,(p) is defined in terms of the Legendre polynomial P,_,(u) for
n=234,... by

1— 2 dP, (1) I

u _ nrn—1) dp
S EPG-3 A D
For sufficiently high surface tension (or low Af) the bubble may be

assumed with very little error to be a sphere, on the surface of which we
may put ¢ =0, so that B, =, — 1 and B, =, for # >3 in (2.10). Then
the drag coeflicient may be calculated by integrating the streamwise com-
ponent of stress over the surface of the sphere, or by finding the momentum
flux at a distance (Happel and Brenner, 1965), as

Cp = 16a/R. (2.12)

To render the solution unique and find «, we need another surface
condition. If, for example, the sphere were rigid, making u, =0 at r =gq,
the use of (2.7) and (2.8) would immediately give Stokes’s results «, =
B ==0 forn >3, ay =3/2, and Cy, = 24/R. In our case of constant surface
tension the surface shear stress component p,; vanishes (see Levich, 1962;
Landau and Lifshitz, 1959), and because .

_ma @ A_ m&v
?almmbm% »Mmm.
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on the surface, where 1, =0, we have for all pin —1 < <1,

U
asin §

Pro= [6(ccg — 1) 5(ps) +=Mm$= — 2)ety S ()], (2.13)
which leads to the Rybczynski-Hadamard results o, = Br=0 for n>3,
oy =1, Cp,=16/R, and 4, = U sin 0 at r = a.

The method used above is exactly similar for free and rigid surfaces,
only the boundary conditions and therefore the numerical values being
different. The same is true for higher approximations in R: one uses
matched Stokes and Oseen asymptotic expansions in r € Ra, 7> a
respectively, in the manner pioneered by Lagerstrom and Cole (1955) and
Proudman and Pearson (1957). Taylor and Acrivos ( 1964) carried the work
through, for drops as well as bubbles, with tangentially stress-free surfaces.
"They found higher approximations to the drag, the next for a bubble being
Cp =(16/R) + 2, and showed how to determine the first-order perturba-
tions of shape from a sphere. If the surface of the bubble is at

re=a[l + (), max|{| <1, (2.14)

the conditions that a be the radius of the equivalent sphere and that the
origin be the center of mass are, to first order,

[t du=[" pife) du=0. @2.15)

We also require that the difference between the normal components of stress
Just inside and just outside the surface be the surface tension times the
sum of the principal curvatures. Using this condition, Taylor and Acrivos
found for a gas bubble that

{=— & WPy(p) == W (1 — 3 cos? 0, (2.16)

to the first order (we recall that W = pJ 2d/a). The bubble is thus an oblate
spheroid with its short axis vertical, the ratio x of longest to shortest dia-
meter being given by

x==1+45W. (2.17)

We shall not here pursue higher approximations to the shape or the drag:
Taylor and Acrivos give some, which predict flattened undersides of rising
bubbles, but their neglected terms are less important only if W< 1,
R <1, and py*fac < 1, i.e. R € M. The last inequality is frequently too
restrictive: it would be helpful to have also the next approximation for
W<«1, R<1and R> M. Pan and Acrivos (1968) have, however, pub-
lished some experimental results in an oil with M == 171 which agreed with
the theory for R < M.
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The surprising point about Eq. (2.17) is that y — 1 is proportional to ¥,
a ratio of inertial to surface tension stress. One would have expected
nUfo instead, because viscous stresses dominate inertial ones in determin-
ing the motion, but it happens that terms of order »U/o cancel in the
derivation of (2.16). They must, of course, for a shape symmetrical about
the equatorial plane, like the spheroid of Eq. (2.16): reversing I/ would
not alter the shape, and so the distortion must be an even function of U.
As a result, a spherical bubble is an exact solution in Stokes flow with
inertial terms neglected. We observe finally that y — 1 is 2 rapidly increasing
function of R: if Cp=16/R, W=(32/5)(x—1)=(MR/12)!2, by
Eq. (2.4).

2. High Reynolds Numbers

For R > 1, the theories of motion past solid spheres and tangentially
stress-free bubbles are quite different. Tt is easy to sce why this must be so.
In either case vorticity must be generated at the surface because irrotational
flow does not satisfy all the boundary conditions. The vorticity remains
within a boundary layer of thickness § = O(aR~112), for it is convected
around the surface in a time ¢ of order a/U, during which viscosity can
diffuse it away to a distance 8 if 82 = O(vt) = O(a?/R). But for a solid
sphere the fluid velocity must change by O(U) across the layer, because it
vanishes on the surface, whereas for a gas bubble the normal derivative
of velocity must change by O(Uja) in order that the shear stress be zero.
That implies that the velocity itself changes by O(USfa) = O(UR-1/2) =
o(U), as was first pointed out by Levich (1949).

In the boundary layer on the bubble, therefore, the fluid velocity is
only slightly perturbed from that of the irrotational flow, and velocity
derivatives are of the same order as in the irrotational flow. Then the
viscous dissipation integral has the same value as in the irrotational flow,
to the first order, because the total volume of the boundary layer, of order
a®8, is much less than the volume, of order 2, of the region in.which the
velocity derivatives are of order U/a. The volume of the wake is not small,
but the velocity derivatives in it are, and it contributes to the dissipation
only in higher order terms (Moore, 1963). By evaluating the dissipation in
irrotational flow past a sphere, Levich (1949) obtained

Cp=48/R, (2.18)

as a first approximation to the drag coefficient of a bubhle at high R, as
did Ackeret (1952) and Chan and Prince (1965) later but independently. The
bubble must be spherical if the surface tension pressure, of order ofa, is
much greater than the dynamic pressure of order plU?, i.e. if W < 1.
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Further developments have been remarkable for the number of errors
perpetrated: most writers on this subject seem to have made at least one in
published work. Let us _umm5 by considering the velocity distribution in
the boundary layer, assuming the bubble to be spherical and using the
same spherical polar coordinate system as at low Reynolds numbers. Let
the & velocity component #, =1, + #,/, where 4, denotes the velocity of
the irrotational flow past the sphere and #,” the perturbation due to
viscosity. Then

ity = U sin m? + Nwmv (2.19)

as is well known. To find #,’ it is convenient to start by defining a “ circula-
tion density” Q in terms of the azimuthal vorticity component w

0 @ . DY 1 ﬁﬁuTmEaNAH @z AN.NE.

rsin®  r%sin? 8  #?sin? 8| o2 rZ  8f\sin @ 86

The reason for the name “ circulation density” (for which I am indebted
to Prof. J. E. Ffowcs Williams) is that O is 2« times the circulation round
an infinitesimal vortex tube, divided by the volume of the tube.

The form of the vorticity equation in terms of Q, for time-dependent
axially symmetric flow in general orthogonal curvilinear coordinates
(e, B, v) is frequently useful, and does not appear in the usual reference
books. If (%, §, y) are a right-handed set of coordinates in which v is the

azimuthal angle, and the element of distance ds is given by

(ds)® = hy*(de)® + I%(dB)? + m®(dy)?, (2.21)

where m is distance from the axis of symmetry, and the velocity components-

U, Uy are given by

1w 1o
ﬁallgmlm. mahluﬂl\mulm.m. ANNNV

then the vorticity equation can be written as

Q1 Ay, Q)

7 mhyhy 8(a, B)

— oV + 2 V- VO, (2.23)
m

after a simple transformation from the form given by Goldstein (1938),
where the circulation density Q is given by

1 1 hy o hy OY
—_— 2 —
Q= m? D4 mhy TR AE\: mﬂv T % a8 Aai__u mm: (2:24)
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In our thin small-perturbation boundary layer in steady flow, with «, 8
respectively the stream function i and velocity potential & of the irrota-
tional first approximation, and & the speed of the fluid in that approxima-
tion, &, = 1/(m?), b, = 1/6. To a sufficient approximation (2.23) is then

10Q mmb
As variations of m across the boundary layer may be neglected, m may be
taken to be the function of @ alone with which it coincides on the bubble
surface ¢ = 0. Equation (2.25) then reduces to

8Q/6X = v 2002, (2.26)

if X= .—w [m{p)]? dp. To a _uocsamn% layer approximation the perturbation
tangential velocity u," = u;’ is given by

sﬁ;\kvw % QEE a.ﬁ
because #," and Q both tend to zero at the outer limit of the boundary
layer, to a first approximation in which we neglect the secondary flow due
to displacement thickness (Lighthill, 1958). Hence %, also obeys the same
one-dimensional diffusion equation (2.26) as Q. Note that if ¢ on the
bubble surface is proportional to distance s measured parallel to the axis
of symmetry (and it is for spheres and spheroids), then X is proportional
to the volume of the bubble upstream from a plane of constant s.

The subsequent working is simplified if we choose dimensionless
variables x oc X, & oc4f, and f(x, 2) oc T, such that 0 <x <1 on the
surface of the bubble, f(x, 2) is of order unity in the boundary layer, and
Eq. (2.26) becomes

4 9f [ox = 0°f 022, (2.28)
These requirements are met for a spherical bubble by putting
2 =H2~3p +p%) = H1 — p)2 +p), (2.29)
where g = cos 8 as before,
. % =3RY%(r -~ a)sin? 0/8a
=yR'2/4Uaq2, (230)

and

Slx, 2) =RV, sin 8{U. (2.31)

m:r?
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The boundary conditions on f are, firstly, the initial condition that the
fluid entering the boundary layer near the front stagnation point has no
velocity perturbations, i.e.

f(0,2)=0 for =>0, (2.32)
and secondly, the surface shear stress condition which reduces to
.Num (x, ) =8 for O<w<l. (2.33)

The solution of Eq. (2.28) with these conditions is immediately found to be
dffoz = 8 erfc(z/x''%), or, on integrating,

f(x, 2) = —8x'/2 jerfe(z[x'/?) = —8x/2 .*. erfe(t) dt.  (2.34)
27z1/2
This result was first found correctly by Moore (1963) in a different nota-
tion from that used here; Levich (1962) and Chao (1962) used erroneous
forms of the continuity and stress equations, respectively.

The perturbation pressure is extraordinarily difficult to find. Chao took
the difference between the actual pressure in the fluid and the pressure in
the irrotational flow to be o(pU/2R~); Moore (1963) showed that it was
O(pU%R~1), but he has since pointed out (personal communication) that

. he neglected the secondary flow due to displacement thickness, which

contributes additional terms to his paper’s Egs. (2.22), (2.36), and (2.37)
of the same order as the ones which he did take into account. Moore’s
drag calculation does not depend on those equations and is correct to the
order given by him, but Chao’s is vitiated by his error in determining the
pressure. Before describing Moore’s method for the drag, we must look
into the behavior of #," = 1, near the rear stagnation point, as it has been
widely misunderstood. It is clear from our Eq. (2.34) that on the surface
z =0, near the rear stagnation point x =1, f(x, 2) = —8»~2, or u,’ =
—8UR~Y2 7112 cosec 8, and i, =(3/2)U sin 8. It would therefore seem
that the resultant 0-velocity 1, = i, 4 #," must reverse and the boundary
layer must separate, where sin® § = 16/(3='/2 RY%), i.e. # — 0 = O(R"*),
But Moore (1963) showed that if # — & == O(R~*/%) the above theory %ﬂﬂr‘m
uy' is not valid and must be replaced by a different one, which predicts
uy’ <€ 1, and hence no boundary layer separation.

Moore’s theory for the rear stagnation region proceeds as follows. One
writes down the full equations of motion, and evaluates the order of
magnitude of each term with the aid of the boundary layer solution (2.34).
The result is that if ¢ == — fis in the range R~ */® € @ < 1 then the terms
retained in the approximation (2.28) do dominate those neglected, making
the approximation still consistent, and the inertial terms also dominate the
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viscous ones, (Some of the retained terms are therefore negligible, but that
is merely harmless additional complication in the theory: for consistency
one requires only that all neglected terms be negligible.) In other words, if
R-18 £ p € 1 the assumption of a thin boundary layer still holds and the
perturbation velocity is still much smaller than the irrotational velocity at
each point, but viscous diffusion of circulation density may be ignored, as
if the fluid were inviscid. The physical explanation for this inviscid
behavior is simply that streamlines must be further apart near stagnation
points than in the flow generally, and so space derivatives of circulation
density are reduced, which impedes its diffusion and leaves what is already
there to be carried along the streamlines.

This reason for the flow to be effectively inviscid where R~ € ¢ <€ 1
still holds where ¢ = O(R~'/%) and the fluid which was formerly in the
boundary layer around the surface turns the corner and passes down the
wake. Streamlines whose distances from most of the bubble surface are of
order aR~%2 pass the stagnation points at distances of order aR~/® and
lie at distances of order aR~*'* 3 aR~/® from the center-line of the wake,
and so diffusion of circulation density across them is a much slower
process in the rear stagnation region and wake than in the viscous part of
the boundary layer around the surface. This arpument could fail if the
“inviscid " flow did not obey the viscous boundary condition of zero shear
stress on the surface, but (unusually for an inviscid flow) that condition
turns out to be satisfied near the rear stagnation point, to leading order. It
is not satisfied necar the front stagnation point, which explains why the
viscous layer begins there, rather than at some small distance downstream.

Because the “inviscid” region has ¢ < 1, we may use cylindrical polar
coordinates (m, 5) to describe it, where m is the perpendicular distance from
the axis of symmetry, s is the distance downstream from the rear stagnation
point measured parallel to the axis, and the bubble surface approximates
to the plane s =0 if p is small. Then, if ¢ and ¢’ are the stream functions
of the irrotational flow and the perturbation to it, the circulation density
Q =w/fm obeys

H mm ’ H y 2,47
o= (ih— 2 L+ 2 =ng ) (235)

in the inviscid region, where B is a function to be determined from the
requirement of matching to the upstream flow at @ > m » aR~1/8, There,

> ¢ and

o1 ey  3U
b = % r..Wl».l. = |§. nﬂmo 2 AN.m@v
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and hence, in the stagnation region,

u.wQ &m:u.mq mxtmﬁm.q
.wc_sﬂ M E.mo A *Q%v lo&o Adﬂﬁlv Hw?ﬁm&_ﬁm.wd
say. One can now find a self-consistent approximation to the solution of
{2.35) and (2.37). Let us define dimensionless stagnation region variables
my, §1, to be mRY%/a, sRY%/g, respectively, and assume that ' < in the
region where , and s, are of finite order. Then

7T S n %y

om 2 my Omy o 0s,?

ﬁnw

= 3UaR~213 erfe(§m, %), (2.38)

and ' =0 on s, =0,m, =0. The chief quantity of interest is u," =
—u,' = (1/m)(&}|8s) evaluated on the bubble surface s =0. From (2.38)
that is given in terms of m,; by

ug' =—3UR0 [ [ 7 ke ], (hs) ] (hompJerfe(§s?z) da ds .
i] L] [+]
(2.39)

In the limit R — oo this equation holds for all m,. For large m,, u," can be
shown (Harper and Moore, 1968) to be

) 1 = §UR-1® QUR-12
o IMb oe) dt ~ — ,q:nax VT a:we“ (2:40)

where b(t) is the function defined in (2.37). This form agrees with the
boundary layer solution for small g, so that the present theory, derived for
finite m, = R, is also valid in the region of overlap with the boundary
layer, R-1/% € @ € 1 or RY/%* € m; € RYS. However, |u,’| does not go on
increasing at the rate indicated by (2.40) as m, decreases to order unity, but
remains Q(UR~1/?) in the stagnation region where %, = O(UR~1/¢). Near
the rear stagnation point where m, is small, f,(km,) ~ }km, in (2.39),
and so

ug' ~ —0.5749m [~ H(1%) dt ~ —1.83UR~*m, ~
4]

—1.83UR~ 8 ~ —1. 22R-1187,, (2.41)

from Harper and Moore’s {1968) equations (7.4), (7.9) with the sign error
corrected, and (7.10).

We now see that 4, <€ 1, everywhere around the bubble if the Reynolds
number is high. The ratio |u,'/u,| is of order R-1/2 over most of the
surface {p > of1)), of order R=*2/p? if ¢ > RS, and of order R~/6 if
¢ = O(R~/6), Therefore the boundary layer does not separate, ¢ > ¢ even
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in the stagnation region, and so our approximations are consistent. The
point has been made here at some length, because several authors (Levich,
1962; Chao, 1962; Winnikow and Chao, 1966; Taunton and Lightfoot,
1969) have used the simple viscous boundary layer analysis well beyond its
domain of validity and deduced incorrect results about separation.

None of this theory says, of course, that separation and the associated
back-eddies in the wake do not occur in contaminated fluids or at Reynolds
numbers of order 10: we have given only an asymptotic analysis for
spherical bubbles in pure fluids at high Reynolds numbers. The theory
predicts, for example, that there is a neighborhood of the rear stagnation
point where |u,'| >, if R <3.3 and one where |u,’| > ¥, if R < 210.
Even $u,’ is not a very small perturbation, but the region in which the
perturbations are this large is of limited size; this presumably explains the
good agreement sometimes obtained between theoretical and experimental
values of Cy, (see below).

Having determined the nature of the velocity perturbations, we can now
evaluate the viscous drag on the bubble. One makes most efficient use of
the available information by choosing a method which gives the drag
correctly to first order without any knowledge of the details of the boundary
layers. It is then possible to find a second approximation to the drag from
the first-order perturbations to the irrotational flow. We therefore reject
the obvious methods of integrating the momentum defeat in the wake
[but see Moore’s (1963) proof that it gives the first-order drag correctly],
or the normal stress on the surface, in favor of an energy argument. In
steady flow, the rate of working of gravity on the bubble, which is the drag
force times the velocity U, is equal to the rate of working against the
surface stress plus the rate of viscous dissipation of energy throughout the
fluid. Moore’s (1963) final result from this method is

48 2211
Co=—+ —HH T Ruz

R
where the leading term represents the irrotational dissipation, the next is
due to the boundary layer and wake, and the error term comes principally
from neglecting viscous dissipation and surface stress in the rear stagnation
region. It is of interest to observe that a necessary condition for the analysis
to hold is therefore R=5/¢ € R~1/2 or R~ £ 1, but the best sufficient
condition we have is R-1% < 1.

Equation (2.42) is plotted in Fig. 1 as curve D. It gives a good description
of the experimental facts for bubbles which satisfy its conditions of
validity, i.e. high R (over 50 appears to suffice), low enough M for the
bubble to be almost spherical for some range of R over 50 (M < 10-° will
do), and fluids pure enough for ¢ to be effectively constant. But Fig. 1 also

+ O(R- mi : (2.42).
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shows that Cp does not continue to decrease in the way indicated by
(2.42) for any fluid, but begins after a certain value of R to rise steeply,
especially if M is very small. We now turn to the theory of that effect.

D. Sererorpar BussLes aT HicH RevynorDs NUMBERS

So far, the theory for high Reynolds numbers has described only
spherical bubbles, but in practice the bubbles are frequently of very
different shapes. It is not hard to see why: let the equation of the surface be,
as in Section II, C, 1,

r =a[l + {(u)] == a[1 + L(cos B)], (2.14)
and suppose that max| ] < 1, so that
[t de=" ptie)du=o. (2.15)

Suppose also that the flow has the general nature of an irrotational motion
slightly perturbed by boundary layers, as above, and then the pressure is
nearly (minus) the normal stress component at the surface. The error is of
order plU 2[R (Moore, 1959), and so the surface condition is

Pr=po+o(x: +x3) + O(pU?R), (2.43)

where p,, p, are the pressures just inside and outside the surface and
Ky, Ky are its principal curvatures. Bernoulli’s theorem and elementary
differential geometry then give

—a(iy +1z) = —2 -+ (1 — " = 2p8’ + 2L+ O(L?)
= — W -+ O(L?) - O(WCp) + O(W/[R) + constant, (2.44)

where W is the Weber number 2o/ 2afo, the term in WCp comes from
hydrostatic pressure differences around the bubble, and the constant term
appears because the pressure p, inside the bubble is, so far, unspecified.
The solution to (2.44) with the conditions (2.15) is

{ = — s WP(p) + O(W %) + O(WC') - O(W/R)
= —¢tW(3u? — 1) + O(W?) -+ O(WCy) - O(W]R), (2.45)

which is a useful approximation if W< 1, R> 1 and Cp <€ 1. It gives an
axis ratio y of the bubble equal to 14 9W/64, to leading order. The
bubble’s distortion is initially to the same oblate spheroidal shape at high
or low Reynolds numbers, and the coefficients of W differ only by 109,
x being 1 4-5W/[32 for R < 1.
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In spite of the limitations imposed in the above theory, oblate spheroids
are found to be fair approximations to the true shapes of bubbles for quite
large values of W. Accordingly Moore (1965) developed the theory for
spheroids analogous to his previous one {(Moore, 1963) for spheres. As in
Section I1.3 above, one calculates the viscous boundary-layer corrections
to the irrotational axially symmetric flow, and obtains the first two terms
for the drag as

Ca= 600(1+5) (246)

where G(x) and H(y) are functions given in Table 1. G(x) represents the

TABLE 1

Moore’s FuncTioNs For DisTorTED BUBBLES®

X Wix) Gl Hiy) X Wio o Gy Hiy)
1.0 0000 1000  —2.211 26 3278 4278  41.499
1.1 0.624 1137 2129 27 3325 4.565 1.884
1.2 1.108 1.283 —2.025 2.8 3.368 4.862 2,286
1.3 1.492 1.437 —1.899 2.9 3.406 5.169 2.684
1.4 1.802 1.600 —1.751 3.0 3.441 5.487 3112
1.5 2.056 1.772 —1.583 31 3.473 5.816 3.555
1.6 2.268 1.952 —1.394 3.2 1.501 6.155 4.013
1.7 2.446 2.142 —1.186 3.3 3.527 6.505 4.484
1.8 2.597 2.341 —0.959 3.4 3.550 6.866 4971
1.9 2.727 2,549 —0.714 3.5 31.572 7.237 3.472
20 2839 2767  —0.450 3.6 3591 7.620 5.987
21 2.937 2,994 —0.168 3.7 3.608 8.013 6.517
2.2 3.022 3.231 +0.131 318 3.624 8.418 7.061
2.3 3.098 1.478 +0.448 3.9 3.369 8.834 7.618
2.4 3.165 3.735 +0.781 4.0 3.652 9.261 --8.189

2.5 3.224 4.001 +1.131

¢ The values of W(x) and G(y) have been calculated from Moore's (1965) formulas;
the values of H(y) have been copied from his paper, by permission of the Cambridge
University Press.

irrotational dissipation rate E, which can for a general three-dimensional
body (Harper, 1970, 1971) be put in either of the forms
ov? oh oh
=—q|[[—dS§= 2 2p Y
E= d@ o dS =12 h:sw Tyt 10,7y mav B dy. (2.47)
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Here («, 8, +) are orthogonal curvilinear coordinates in which the bubble
S has the equation « = constant, 8/dn =(1/h,)(8/0«) denotes differentia-
tion in the direction normal te § and into the fluid, the element of length
ds is given by (d5)? = h,2(dec)? 4 hp*(dB)? -+ h,*(dy)?, v is the speed of the
fluid, and #,, «, the components of velocity in the f and y directions. The
first form for E in (2.47) is classical (see Lamb, 1932) but has the drawback
of requiring velocity gradients. The second requires gradients of metric
components instead, which are usually easier to find.

A spheroid will not satisfy the pressure condition (2.43) everywhere
around the surface, and so some approximation has to be made. Two
methods spring to mind: either equating as many terms as possible of
a series expansion near the front stagnation point (R. M. Davies and
Taylor, 1950; Saffman, 1956), or satisfying the condition only at the
equator and poles (Hartunian and Sears, 1957; Moore, 1959, 1965). The
latter method gives results which agree better with experiments, and the
values of W (y) predicted by it are shown in Table 1. The data in that table,
together with the identity :

Cp=4MRW -3, (2.48)

allow one to calculate Cp(R, M). Curves for M =10-8, 10-8, 10-1°, and

10-12 will be found in Fig. 1. Each curve extends from y =1, where
Cp is close to the value for spherical bubbles (Moore, 1963), to y =4.0,
where W has become nearly constant, making Cp, oc R* approximately.
The limiting value of W from Moore’s theory is 3.745. Although the theory
is then beyond its range of validity (see the next paragraph), experiments
indicate that JWis not far from that value when it becomes a slowly varying
function of y. The shape of the bubble is then very sensitive to small
changes in ¥, which might be caused by small currents in the surrounding
fluid. Tt is therefore not surprising that bubbles in pure low-M liquids
become unstable for values of I¥ greater than about 3.

The type of motion which appears when a steady rise of bubbles in a
straight line becomes unstable is either steady motion relative to the bubble
up a helix with a vertical axis, or else zigzagging in a vertical plane on either
side of a vertical line. In spite of many careful experiments, reviewed by
Saffman (1956) and Hartunian and Sears (1957), who also performed their
own, there is no agreement as to the conditions which decide between the
two wodes of instability. The above-named authors also gave approximate
theories to account for the motion. Saffrnan used a series expansion of the
irrotational-flow pressure condition near the top stagnation point, and
showed that steady motion became unstable to zigzags for axis ratios
x> 1.2, and that spiraling was possible for 1.2 <y < 2.2, although it
would only occur for motions suitably started. Experimentally, these
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values of x are too low. Hartunian and Sears obtained a more realistic result
for the onset of zigzagging by satisfying the pressure condition at the poles
and equator, namely x> 2.2, but they did not find any criterion for
spiraling. Both methods gave exponentially increasing sideways displace-
ments instead of the oscillatory behavior actually seen in zigzagging
bubbles. Saffman suggested that the oscillations might be akin to those seen
in the wakes of solid bodies at Reynolds numbers of a few hundred.

A glance at Fig. 1 will show that the rising theoretical curves for C, (R, M)
are fairly close to the experimental ones provided that Cp < 1. This
limitation shows the importance of the hydrostatic error term in Eq. (2.45),
but it is less clear why Moore’s (1965) theory works as well as it does for
distorted bubbles. The predicted perturbations are not small. To see this,
let us assume that the bubble is a very flattened spheroid and keep only the
leading terms for large y in Moore’s analysis. His equation analogous to
(2.32) can be written

. —24/2U(1 |- ¥® cos® Y112

Uy =

._.k S(7) ex A.i
V3mSR e sin @ do (X— 72 P\ T H X —7)

(2.49)

where 8 is the eccentric angle of a meridian section of the spheroid, 8 =0
at the top stagnation point, #," is the tangential component of perturbation
velocity,

X =%§(2— 3 cos # - cos® §),
% — A.W.u._.vu_.b.wﬁ%\qamwxu;wmw\wq

and
S(X} =3x%/(1 4 x? cos? 8)2.

The irrotational tangential velocity is 1, = 2Uy sin 8f[=(1 -+ »2 cos? §)1/2),
If x is large, S{X') can be approximated by a delta function in the form
7x8(X — 3), because S(X) is. of order x2 if |cos 8] =O(lfx), a small
region near = {m or X =4, and .S(X) is of order 1/y* < y*if |cos 0| is
of order unity. Physically, this amounts to saying that the surface shear
stress in the irrotational flow is concentrated at the equator, where 7, and
its gradient are highest. It is a good approximation for positions down-
stream from there where —cos 6 % 1fy. The rear stagnation vorticity is
calculated as before, the equation analogous to (2.37) being

BG) = b(m)
= (3V/ORV2U[4my ?a®ym?s exp(—3Rm!s*/8wy"%a®),  (2.50)
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We therefore find the ratio of perturbation to irrotational velocity at the
surface as
1y . . ayl® cos? § “ (2.51)
RY%sin%f(—cos § 4 4 cos® §)1/12
in the main part of the boundary layer on the rear half of the bubble,
where m— 0 3 R~116y~1/118 and

o' [Ty = — 1.48y35118/RLIS, (2.52)

in the immediate neighborhood of the rear stagnation point where
7 — 0 <€ R0~ 1118 Equation (2.52) gives |u,'[it| > 1 for all values of R
likely to occur in practice even at quite modest values of y. With y =3,
R =600, for example, we obtain u,'fil, =-—4.3 at the rear stagnation
point, and #," <X —, whenever #>>131°, where sin § =0.76. T'o put it
another way, the perturbations are small only if

R> 1045 > 10511, (2.53)

It is tempting to identify the prediction of reversed flow at the rear of
the bubble with separation of the boundary layer. But the numerical
estimates above suffer from three important errors: we neglected higher
terms in y, higher boundary layer approximations, and deviations from
spheroidal shape, and so the results can at best indicate general trends.
Even if an exact theory predicted a region of reversed flow (, < 0) on the
surface, that alone would not show whether the back-eddy remained
within the boundary layer or grew to a size comparable with the bubble. To
answer that question would probably be as difficult and subtle as for flow
past a rigid body, and no one has attempted it theoreticaily.

The question remains of why Moore’s values of Cp(R, M) are so
insensitive to the breakdown in his model of the flow for large y. If separa-
tion does not occur, but only a back-eddy insid= a thin boundary layer, then
his leading term (see Eq. 2.46) is unaffected although his second term
involving H{y) is wrong, and so one would not expect serious errors in Cp.
If, on the other hand, separation does take place, then the back-eddy will
contain slowly circulating fluid. In the irrotational flow for large y the
region behind the bubble where the back-eddy is situated would have
contained small velocity gradients in any case; most of the viscous dissi-
pation occurs near the equator where velocity gradients take their maximum
values. In this case the error affects Moore’s leading term, but not very
much.

Recently, El Sawi (1970) has developed a new method of finding the
function W(x). He integrated the first moment of the inviscid equation of
motion for a spheroid throughout the space occupied by fluid and showed

tly
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that it yielded the required function. His maximum value of W was 3.271
instead of Moore’s 3.745. El Sawi also considered bubble shapes slightly
perturbed from either his or Moore’s spheroids, and found the perturbed
shapes closer to each other than the unperturbed, as one would hope. His
best final result was that ¥ tends to a limit near 3.2 as y — co, instead of
having a finite maximum at a finite y as in the theories for spheroids. But
an inviscid theory carried to this degree of precision is likely to be unrealistic
in practice when viscous effects must be considered too.

E. SpurricAL-Car BuBsLEs AT HicH REYyNOLDS NUMBERS

We have seen in the preceding section that two complications arise for
large bubbles. Their boundary layers may separate and the hydrostatic
termmust be taken into account when evaluating the pressure in the fluid.
As a result, a theoretical understanding of the motion is less complete than
in the preceding cases. The first real advance was due to R. M. Davies and
Taylor (1950), who related the speed of rise U to the radius of curvature
7, at the top stagnation point by the simple formula

U2 =4igr,. (2.54)

This equation is semiempirical, being based on some experimental results
which were not themselves explained theoretically. They are that the upper
surface of the bubble is very nearly a cap of a sphere, and the pressure
over that surface is very nearly the pressure calculated from Bernoulli’s
theorem for flow of an ideal fluid past the completed sphere of radius 7,,
even though the wakes might be quite different. Then constancy of pressure
inside the bubble requires constancy of

—3p(FU sin 8)* —pgr, cos 0 4 (2a/r,) (2.55)

around its surface, where ¢ is the polar angle measured from the top
stagnation point around the completed sphere. Equation (2.54) follows on
expanding the expression (2.55) in powers of § and equating the first non-

trivial coefficient, of #2, to zero.

This simple theory agrees well with experiments, but it is not self-
consistent (higher terms in # do not vanish) and it does not predict other
properties of the bubble and its wake. It is, nevertheless, better than the
theory for large bubbles given by Levich (1962, Section 84). He ignored the
hydrostatic pressure and made approximations which yielded a velocity
independent of bubble size. That result oceurs in practice only for bubbles
in narrow tubes (Haberman and Morton, 1953, 1956; Peebles and Garber,
1953) but even then hydrostatic pressure determines the flow (R. M. Davies
and Taylor, 1950).
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1. Theory for Low M

Moore (1959) ignored surface tension for bubbles with large Reynolds
and Weber numbers, and suggested a model for the flow analogous to
Helmholtz’s well-known free-streamline flow past a flat plate set across a
stream (see Lamb, 1932). In Fig. 3, ABC is a cross section of the bubble,

irrotational

flow

stagnant

wake

Fi16. 3, The inviscid free-streamline model for spherical cap bubbles.

below which a wake containing fluid at rest extends to infinity. OQutside the
bubble and wake the flow is irrotational, with velocity. I downwards at
infinity. By Bernouilli’s theorem, U is also the speed of the fluid at B and
all points on the dividing streamline below B. Moore took the upper
surface to be a spherical cap extending to 8 =#,,, and with Davies and
Taylor’s results (2.54) obtained the condition for equality of pressure at
A and B in the form

gre(l—cos 8,y =402 =3gr,. {2.56)

Hence cos 0, =79, or 8, = 39°. The condition of R. M. Davies and
Taylor (1950} that the flow be like that over the complete sphere then gives
the velocity at B as § U sin 8,, = 0.943U, not the U required for consis-
tency. This error of some 6%, is a measure of the roughness of Moore’s
approximation to the shape and the flow field. If one proceeds with it, one
finds the volume ¥/ to be

V = Jor3(1 — cos 0,)(2 + cos 0,,) = b &, (2.57)

and so the drag coefficient C, = 8gd/(3U2) = 1.95.

Of course, a spherical cap is not the exact solution to the inviscid prob-
lem. We need instead that surface the irrotational flow past which satisfies
v? =2gy on AB and has v == U on the dividing streamline below B, where
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© is the speed of the fluid and y the vertical distance below A. Rippin and
Davidson (1967) calculated it numerically. They found that the shape is
indeed close to a spherical cap, with 8, =50° that Cp=1.83, and
U?=0.62gr,. Moore’s simple theory is thus a fair guide to the general
form of Rippin and Davidson’s more precise solution.

Unfortunately they both misrepresent the wake. Davies and Taylor’s
experiments were performed in nitrobenzene, which has an optical
anisotropy allowing one to see where the fluid is strongly sheared. They
found a turbulent region under the bubble, filling the remainder of the
sphere defined by its upper surface. Maxworthy (1967) used more direct
flow-visualization techniques and showed that there is also a turbulent
wake, of the same order of width as the bubble, extending a considerable
distance below it. The turbulence is not surprising: steady flow past
bubbles of the size used by Davies and Taylor or by Maxworthy would
have been highly unstable.

Before Maxworthy had shown that the wake was not closed if turbulent,
Collins (1966) had tried a model for the flow in which the bubble and its
recirculating wake formed a closed surface whose spherical polar equation
was assumed to be r=a,(l —esin* 6). He obtained &=0.0785 by
requiring the flow past the surface to be irrotational and making it satisfy
the pressure condition near # =0 to order 8* instead of Davies and
Taylor's 62 only. The upper part (# <<36°) of Collins’s assumed surface
closely resembles a spherical cap with radius @ = 0.953a. Collins’s result is
U? =0.425gd instead of Davies and Taylor's 0.444¢d, and it fits the
experiments somewhat better. It is interesting to test the way in which the
results depend on the function of 8 assumed for 7. If one repeats Collins’s
calculation with the well-known irrotational flow past a spheroid (see
Lamb, 1932), one finds that the spheroid must be oblate, with eccentricity
4, so that the ratio of equatorial to polar diameter is 2/4/3 =1.155

(cf. Collins’s 0.9215), and U2 = 0.414g4 (which fits the experiments about -

as well as Collins’s 0.425).

One can therefore obtain fairly good estimates of U ?/ga from theories
of this sort, but they do not readily yield information about the true shape
of the wake, not even whether it is clongated or flattened from a sphere. In
addition, closed-wake models which ignore viscosity and surface tension
cannot possibly give the size of the bubble correctly. Figure 4 shows why.
If ABCD represents a cross section of the bubble and BCDE its wake, the
inviscid flow must be more or less as shown. A, C, and E are all stagnation
points and so Bernoulli’s theorem gives the pressure difference HC)—p(A)
as pg X CA. But if surface tension and the density of the gas can be
neglected, p(C) =p(A) and so the bubble must have zero height.

This objection does not apply to Moore’s model as improved by Rippin
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and Davidson. which is self-consistent for zero surface tension and
viscosity, But to make the solution unique one must impose the somewhat
artificial condition that U have the largest possible value for a given bubble

F16. 4. The closed-wake model for spherical cap bubbles.

volume, as was shown by Garabedian (1957). The other artificial feature of
Rippin and Davidson’s model is its stagnant wake with a vortex sheet
dividing it from the flow outside. Such sheets are well known to be highly
unstable, and the wake is really turbulent (Maxworthy, 1967). A com-
parison of stagnant-wake theories and experiments for a variety of bodies
reveals, however, that they give useful approximations to the flow field
over the front part of the bodies, and underestimate the drag consistently.
For axisymmetric bodics (sphere, disk, bubble) the stagnant-wake theory
gives some 709, of the true drag, and for two-dimensional ones (flat plate
at 90° incidence, circular cylinder) about 509, as shown in Table 2. This
table was compiled from data given by Birkhoff and Zarantonello (1957),
Rippin and Davidson (1967}, R. M. Davies and Taylor (1950), Perry et al.
(1963), and Prandt! and Tietjens (1957).

Recently, Davenport et al. (19673) have confirmed Davies and Taylor’s
value of Cp, (2.65) in liquids of lower M than in any previous experiments:
mercury (M ==7.3 x107'") and molten silver (3.5 x 10-%). Shapes of

Al
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bubbles were determined only in mercury, where bubbles of a given volume
had the same height as in water but smaller equatorial radii, As Davenport
et al. concluded, surface tension must have rounded off the sharp *“ corner”

TABLE 2

Drac CoEFFICIENTS FOR VARIOUS BODIES®

OU = Qum OH_ = QUH
Body (stagnant wake) {experiment) Cpe/Cog
Spherical cap bubble 1.83 2.65 0.69
Sphere .3 0.45 0.7
Disk across stream 0.8 11 0.7

Flat plate across stream

(two-dimensional

flow) 0.88 2.0 0.44
Circular cylinder

(two-dimensional

flow) 0.61 11 0.55

¢ Experiments for subcritical flow, i.e. laminar boundary layer upstream of separation,
but turbulent wake. The numerical valuea are from R, M. Davies and Taylor {1950),
Prandtl and Tietjens (1957), Birkhoff and Zarantonello (1957}, Perry et al. (1963), and
Rippin and Davidson (1967).

at B in Iig. 3 or 4 to a greater radius. T'he bubbles were therefore really in
the transitional range from spheroids to spherical caps, and if the mercury
had been pure one would have expected lower values of C',. Haberman
and Morton’s (1953) figure 29 shows that drag coefficients closer to those
of spherical caps are to be expected in impure liquids.

2. Theory for High M

For bubbles in liquids with high values of M one cannot appeal to
turbulence in the wake to account for the drag. Most experimenters have
found the motion to be steady and stable (see Hartunian and Sears, 1957),
though not Davenport et al. (1967b). If Hartunian and Sears are right in
suggesting that the motion in a pure liquid is always stable if W > 3.18
for the bubble with R =200, we can deduce a critical value of M from
Moore’s (1965) theory of the drag. T'he criterion is that any bubble should
be stable in any liquid with M > 1.4 x 10-®. It is a pity that so few experi-
ments have been done with M of order 10-7 to test this theory. Davenport
et al. (1967b) found slight instability with M values up to 1.6 x 10-2 in
polyvinyl alcohol solutions. One wonders whether some property of this
surface-active macromolecular solute could have caused it.
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Wakes in high-M liquids are quite unlike the turbulent chaotic eddies
seen by Maxworthy (1967). Slaughter and Wraith (1968) gave a good
photograph of a spherical-cap bubble rising in a glycerol solution with M
probably between 10-2 and 102 (not stated by the authors). The wake
was a toroidal vortex resembling Hill’s (1894) spherical vortex, but some-
what elongated in the direction of flow, and followed by a wake of the usual
type in laminar flow far behind an axially symmetric body (Rosenhead,
1963) in which the velocity perturbation gradually decays to zero but the
momentum defect remains finite. The only theory so far available for such
flows is due to Parlange (1969), who exploited the analogy between the
circulating wake and the circulating interior of a drop of one fluid moving
in another (see Section ITT). He assumed that the bubble has little effect on
the dynamics of the flow in the wake (except causing it to exist!), so that the
vortex was near enough to a sphere for Harper and Moore's (1968) drag
theory to apply. If so,

4mpa’y = 30myUr[1 — (6.6 — 0.14 In R'[R"2)], (2.58)

where a is the equivalent spherical radius as before, » the radius of the
wake sphere, and R =2Ur/v. Parlange also assumed R. M. Davies and
Taylor’s (1950) relation, U/? = §gr (see Eq. 2.54). From these equations
and the definition of Cp, (Eq. 2.3) one deduces that

R=1}R'Cy, (2.59)

and

2 6—0. N
Quﬁ&oﬁ_lg Si:mz “ (2.60)

R R'12

and finds Cp, and R in terms of R'. The resulting graph of C(R) is shown
in Fig. T as curve I, down to R" =100, below which value Harper and
Moore’s theory must be seriously in error. It is evidently in the right part
of the (R, Cp) plane at this point (R =44.6, Cp = 2.56), and the trend
for Cyp to decrease slowly as R increases is experimentally plausible. No
experimental test of the asymptotic form for large R has yet been pub-
lished; the prediction is that Cp, ~ 26.8R-%/2 as R — c0. Angelino’s (1966}
results do not inspire much confidence in it, but they cease at R = 300.

Parlange’s theory is at best a first approximation for high R, when the
bubble occupies a very small fraction of the wake sphere. It is debatable
whether the logarithmic term is worth including in Eqs. (2.58) and (2.60),
because Harper and Moore’s arguments for including it in the theory of
drops (see Section I11, B, 2} do not apply when a bubble occupies the top
stagnation region.
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Parlange’s assumption that the closed-wake region should be nearly
spherical seems easier to justify; Hill’s spherical vortex is the only known
simply connected shape for which the irrotational flow outside and the flow
with constant circulation density  inside can have the same surface
speeds. O must be constant inside the ‘“wake sphere,” by the Prandtl-
Batchelor circulation theorem (Prandtl, 1905; Batchelor, 1956). It seems
reasonable to suppose that in Parlange’s case, where the bubble occupies
only a small part of the “wake sphere,” the shape of the latter s_o_.p_m be
slightly perturbed from Hill’s vortex. T'o find these perturbations will not
be easy. The shape will depend on the differences between internal and
external velocities which give rise to dynamic pressure differences of order
pU2R~1? (Harper and Moore, 1968). In many experiments these are of
the same order as surface-tension pressures, ofr, and neither may be
neglected. Furthermore, much of the bubble lies within the mﬂmm:mmas
regions, whose theory we have already seen to be very complicated in

Section 11,C.

3. Shirts

In some liquids with very high values of M (0.2 or more), spherical-cap
bubbles develop thin ““ skirts ”’ trailing downwards (Jones, 1965 ; Davenport
et al., 1967b; Guthrie and Bradshaw, 1969), as shown schematically in
Fig. 5. The thickness of the skirt was calculated by Guthrie and w-..um.mrma.a.
(1969) by equating the pressure rises down the skirt in the gasinside it

Fi:. 5. Cross section of a spherical cap bubble with trailing skirt, after Guthric and

Bradshaw (1969).

and the liquid outside. The gas was treated as a two-dimensional Poiseuille
flow and the hydrostatic pressure was assumed to dominate in .the liquid.
Guthrie and Bradshaw’s experimental bubbles of volume 53 em? had skirts
41 um thick. Their theory gave thicknesses of 54 pm for stagnant liquid
inside the skirt or 76 um for the same liquid velocity inside and out.
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It is not clear what determines whether a skirt is-present. Davenport
et al. (1967D) found them on sufficiently large bubbles in polyvinyl alcohol
solutions with A/ = 0.185, but Jones (1965), who observed them in glycerol
with M = 6720 did not observe them in mineral oil with M = 318. Nor
are the lengths of the skirts well understood. Davenport et al. observed a
steady length and shape resembling Fig. 5, Jones found them to be shorter

and variable, and Astarita (1970) has had them extend right down the path
of the bubble.

F. TH: Wave ANALOGY

Mendelson (1967), Cole (1967), and Malenkov (1968) have recently tried
to draw an analogy between spherical-cap bubbles rising in low-M liquids
and waves traveling along a plane free surface. The motion of both waves
and bubbles depends mainly on g, p, and o, viscosity being unimportant
to first order (but, see, Walbridge and Woodward, 1970), and in both cases
the problem is to predict a velocity as a function of a length scale (bubble
size in one case, wavelength in the other). But the theory of surface waves
is very much easier.

If one identifies the speed of rise of the bubble with the phase velocity
of the wave given by Kelvin (see Lamb, 1932) as

Uz=22 4.2 (2.61)

wherc A is the wavelength, it remains to ascertain which parameter of the
bubble is best to call A. R. M. Davies and Taylor (1950) give U? = Lgd as
a good approximation for large bubbles, and so Mendelson (1967) sug-
gested that A should be put equal to the equatorial circumference of the
equivalent sphere, #d. This substitution yields graphs of U against 4
which agree reasonably well with the rather scattered data, but it does not
give a smooth transition between the limit of large spheroidal bubbles
(W constant near 3) and spherical caps (Cp constant near 8/3). This is
because Eq. (2.61) with Mendelson’s substitution A = 7rd gives

w M
Qu =3 T | lew‘v . Am.owv
after a little algebra using Egs. (2.3) and (2.6). Clearly (2.62) is inconsistent
with Cp, varying while ¥ has any constant value, The wave theory there-

fore does not offer a short cut to the very difficult theory of the spheroid—
spherical cap transition.
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III. A Drop with Constant Surface Tension Moving Under Gravity

A. InTRODUCTION

The theory of moving liquid drops is in most respects very like that of
gas bubbles, but more complicated. That is why bubbles were described
separately in Section II. Instead of one (M), there are now three indepen-
dent dimensionless parameters which characterize the liquids, inside and
outside the drop. These are pg/p;, of71, and

Mo =gn0*| po— p1| [po*e®, (3.1)

the reciprocal of Hu and Kintner’s (1955) parameter P. Here o is the inter-
facial tension and g the acceleration due to gravity as before, and p, and
7, are the density and viscosity, for { =0 outside the drop (the continuous
phase) and for { =1 inside it (the dispersed phase). Guided by Section IT,A
we define the Reynolds number R,, drag coefficient Cp,, and Weber
number W, by the equations

Ro = Udfvo = Udpofye, (3.2)
po = force on drop/ipe U?ma® =4gd|po— p1)/3p0 U?, (3.3)
Wo=poU2djo = (4Mo Ro:[3C0) %, (3.4)

As before, d = 2a is the diameter of the sphere with the same volume as the
drop (the equivalent sphere). The modulus of p,— p, appears in the
formulas because it is convenient to have positive drag coefficients whether
the drop moves up or down. One can define M,, R;, Cp, and W, by inter-
changing subscripts G and 1 in Egs. (3.1)~(3.4), but the parameters M, R,,
Cpy,and W, are more often useful.

Figure 1 illustrates the behavior of bubbles, but would serve also for
drops with very large values of both pofp, and 5ofy,. We shall not attermnpt
to draw the corresponding graphs for general values of po/p; and 54/9,, but
instead indicate how the theories of bubble motion must be modified for
drops. As we shall see, information is even less complete than for bubbles.

B. THEORY FOR A SPHERICAL DRroOP

1. Low Reynolds Number

The analysis of Section 11,C,1 for bubbles follows the original work first
of Hadamard (1911) and Rybezynski (1911) and then of Taylor and
Acrivos (1964). It presents the special case %, =p, =0 of the same
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authors’ theories of drops, which use the same methods. The boundary
conditions at the surface are now continuity of tangential velocity and shear
stress, and zero values of normal velocity both inside and out. Uniqueness
of the solution for sufficiently small R, is ensured by the additional condi-
tions that the velocity be 2 finite continuous function of position at the
center =0, and that it tend to a constant vertical vector of magnitude U
as ¥ — 00, downwards if p, < py, upwards if p; > p,.

Equations (2.7)~(2.9) still describe the flow both inside and out, in the
limits R, —0, ¥Ry —0, and Eq. (2.10) is still the general solution outside
the drop. Inside it, the stream function ¢ is given by

B ..1:.+n u.a
H\M”u ”:.Mm. A " Q=+M I|. m: Mn.v tﬁ.:ﬁ_\.&“ ﬁm.mV
if it is (without loss of generality) required to vanish at the origin. As
before, #,(u) is the integrated Legendre polynomial of Eq. (2.11). The
coefficients y,, 8, must be evaluated from the boundary conditions. For a
spherical bubble y,, =8, for all #, and continuity of tangential velocity and
shear stress at r = a gives, on substitution from (2.10) and (3.5),

upsin® 1 &f

U Ua or

=(3 = 22)74(0) — 3 200 5, (1)

=23y, £, a.g,

n=fy

%«aammﬂ m]d; d AA m_\‘v

2 or

U Uor

= 7of6(ea— D)ol + 3, (41— 20y ()}

=, 3 (41— o 5,0, (37)

?Mm% m”oom fin —1 <pu<1. We may now equate coefficients of Fu(p),
and find «, =1y, = 0 for # > 3 as before, while « =(2n,+3 290+ 2
v =70/(2n0 -I- 21,). Hence #= o ImiEno + 2m)

Coo= 8(2nq + wdb.\wmogo 4= 1) Aw.mv
and

1ty = Uny sin 0/2(n +n,) = v, sin 0, (3.9)
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on r=a. As mofn,—> 0 we recover the previous results for bubbles:
Cpo->16/R, and v, — $U. As 5ofn, — 0 we recover Stokes’s results for
rigid spheres: Cpq—24/R, and vo— 0. For intermediate values of 5o/,
Cpo and v, take intermediate values.

Inside the drop the stream function and hence the velocity components
are simple fixed functions of position, multiplied by v,. One streamline
pattern will therefore serve for any value of v, and it is shown in Fig. 6. It
is given by

i = Joo[(rt/a®) —r*Jsin® 6 <0 (3.10)

Fic. 6. Streamline pattern inside Hill’s spherical vortex.

inside the drop. The flow goes round the surface and back up the middle.
The maximum speed is v, at the equator and the center, and there is a

stagnation ring at ¥ = afv/2, 6 = {=. This flow pattern was discovered by.

Hill (1894) as a solution of the equations of inviscid motion; it satisfies the
Navier—Stokes equations exactly for any value of the Reynolds number if
the boundary conditions are suitable. So does Hill's (1894) spheroidal
vortex whose stream function is

i = Ar? sin? O(Br® cos? 0 - Cr2?sin? 0 — 1),

where 4, B, C are constants. Both vortices appear below in the theory for
high Reynolds numbers. The internal motion has been elegantly observed
by Tyroler et al. (1971) and its general features confirmed, although their
Reynolds numbers were not small enough to make the theory strictly
applicable. .

The theory above holds only in the Stokes flow limit Ry,— 0. Higher

»A._.\H( c ﬁ_wwu
At
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terms in the expansion for small R, were given by Taylor and Acrivos

(1964). We quote here their result for R, Cp,, but only to order R,:

Ry Cyy = S0 +§HVT 1. RolZn0 + 37,)
Mo +m 16(76 +-91)

+O(Re? In Ro) + oaev.

(3.11)

Taylor and Acrivos also gave the coefficients of Ry?In Ry and W, but
not that of R, which often contributes to R, Cp, to the same caﬂ..,%?w
practical value of these higher terms is in any case disputable for solid
spheres (see Chester and Breach, 1969; Pruppacher et al., 1970) and we
have no reason to believe the situation is better for fluid spheres. To take
many terms of a divergent asymptotic series only pives 2 close approxima-
tion to its sum very near the point where a small number of terms would
be adequate.

,H_.:m shape of the drop was also investigated by Taylor and Acrivos. To
leading order, the axis ratio y is given by

3W, [(81 . 57T . 103 3\ p—
_ H — el <72 -~ P1 _D
X aojr:u:wo et fﬁ.@l Esool;&
+ O(Wo Rg) -- O(W,2R; 1), (3.12)

s.&nwm x =m/ne. The drop is, to first order, a spheroid, but it may be
m:rw_. prolate or oblate, unlike a bubble. Prolate (elongated) shapes require
the inner fluid to be the denser, and either less viscous than the outer fuid
or else very little more. Liquid drops in gases, for example, are :9.3»:%
o._u_mﬂo. as are mercury drops in water. In the limit «— co (drop behaving
like a solid sphere), Ry Cpo—24(1 4 R,) and x— 1= (243/1280) W, =
o.Ho.oﬂ\o. As x —1==0.1561, for a gas bubble, the shape is not very
sensitive to the interior viscosity if the drop rises and so p; < Po-

2. High Reynolds Number

:. ﬂwn.wg:o_% number is large, the analogy between drop and bubble
motion is less close than for small R,. Internal circulation cannot be
:nm_mo.ﬂ& for n__.o?r. and it brings fluid particles repeatedly around closed
Eomm in steady motion. We must therefore impose the condition that the
o_anms.o: density Q of each fluid particle returns to its original value on
Muc_....b_mﬁw:m the path. Inside the drop and away from the thin boundary
ayers, that requires £ to be constant if R, is large, by Prandtl’s (1
Batchelor’s (1956) theoremd o7 Taree, By Frandtls (1905) and

Butif Q is constant inside a sphere the flow must be Hill’s spherical
vortex (Eq. 3.10), with surface velocity, v, sin § = (2Qa? sin 0)/5. We
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therefore envisage the motion of the drop as follows, as it starts from rest.
Initially there is no motion inside the drop (¢ = =0), and irrotational
flow with surface velocity v, sin 8 = U sin @ outside. A boundary layer
must develop around the surface because of this velocity discontinuity, and
the circulation density Q within it will be carried along with the fluid and
diffused across streamlines. The beginning of this process is described by
Sumner and Moore (1969), who gave the first two terms of an expansion in
powers of the time. But the boundary layer cannot remain a transition
region between irrotational flow and none. The circulation density in the
layer must be of order Uj(8a) initially both inside and outside the surface
if 7o and 7, are of the same order and the surface tension is constant, and
§ is the boundary layer thickness. Q will then diffuse both inwards and
outwards until in a steady state reached after a time O(a®/v) it has the same
order of magnitude throughout the interior, the boundary layer, and the
wake. In the interior it is then of order »,/a® and in the boundary layer
(vo— v1)/(8a), and so

vo— vy = O(v,8afa?) = O (v,]a) € vy, (3.13)

if the Reynolds number is high.

To a first, inviscid approximation we may take v, = 9, if R, is high, the
flow steady, the drop spherical, the surface tension constant, and the
interior viscosity of the same order as the exterior. Sumner and Moore
(1969) argue against this conclusion, but prove only that denying any of
the assumptions invalidates it. A separate question is whether the assump-
tions can all be true for real drops in real fluids. We investigate this more
fully below; the answer is that they can, to a good approximation, but
only for a restricted class of drops.

The importance of spherical shape to the argument is interesting. It
enables the tangential velocity to be continuous across the surface (as Hill
realized in 1894), unlike any other known simply-connected closed surface.
No proof has ever been given that other such surfaces do not exist, however.
Recently Fraenkel (1970) suggested that doubly-connected ones do. He
found a one-parameter family of toroidal vortices with Q constant inside,
irrotational flow outside, and velocity continuous everywhere.

Having arrived at a velocity distribution which is continuous across the
surface of the drop for the limiting case o — 0, Ry -> co (in that order), we
can now use the methods described for spherical bubbles in Section I1,C,2
to analyze the boundary layers. As in the case of bubbles, these layers must
exist because the inviscid velocity field does not satisfy the tangential stress
condition, and the velocity perturbation is of order 8/a = O(R~*"*) of the
inviscid velocity. But there is a major complication. The boundary layers
merge into the rear stagnation regions inside and outside the drop, and the
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fluid in them turns through 90° to travel up and down the vertical axis of
symmetry. Qutside the drop, this fluid forms the upstream end of the
wake, but inside it, it travels with very little diffusion of circulation density
(see Harper and Moore, 1968) until it rejoins the boundary layer at the
front stagnation point (see IFig. 7). The distribution of Q therefore cannot
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F1c. 7. The form of the boundary layers and wakes of a spherical drop at high Reynolds
numbers. Diagonally shaded: the stress-induced viscous boundary layer. Dotted: the
essentially inviseid stagnation regions and wakes. Cross-hatched: the inner viscous
boundary layer near the rear stagnation point. [From Harper and Moore (1968), by
permission of the Cambridge University Press.]

be specified at the front stagnation point without solving the problem of its
diffusion in the boundary layer. One has to let Q be some arbitrary function
of ¢ inside the drop at the front stagnation point, follow its variation around

the surface and back up the middle, and use the condition that the starting

and finishing values be the same,

Similar considerations apply (Brignell, 1970} to convective diffusion
of a solute. Boundary layer analyses which ignore the coupling between
rear and front stagnation regions of a drop must be in error, whether they
purport to describe the distribution of circulation density or of solute, unless
the effects of internal diffusion are negligible or the motion has been going
for such a short time that fluid from the rear stagnation region has not yet
reached the front. This fact was realized, though not corrected for in the
theory, by Ruckenstein (1967) and Taunton and Lightfoot (1969). It
was unfortunately ignored by Winnikow and Chao (1966).

The closed-loop condition on Q was studied by Harper and Moore
(1968). It can be written as an integral equation to be solved for a function
g2(2) in 0 < 2 << 00, namely

| ” (" Yexp[—(z — 2)7] + A, exp[—(z + 2)2]} d&’ = g(2) -+ h{z),
(3.14)
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where A, is a parameter between —1 and 1, and 2(2) is a known function.
Special cases of this equation, which also appears in magnetohydrodynamics
and the theory of evolution of comet orbits, have been studied by
Hammersley (1961), Kendall (1961), and Stewartson (1968) for A, =0,
and by Kochina (1969) for A, = —1.

In Harper and Moore’s paper, # is defined to be 3R}%(a — 7)sin? 8/8a.
This differs from Eq. (2.31) above by the substitution of R, for R, and by
its sign. Both changes make it more convenient for use inside the drop.
The values of A, g(2), and 2(z) are

A== V1+ V), (3.15)
£(x)= % ") e, (3.16)
I(z) — %V Ny ierfe(z)
37 2z
st &A: +%nsgv i
: = Dot Aa) -+ Cool, Ao, (3.17)

say, where Q'() is the perturbation circulation density in a stagnation
region, V' =nofn1, V' = (no pofnp1)!'?, and A, = 2V + 3)/(2V* +-3). The
expression for g.(2, A,) is simpler than that of Harper and Moore but is
equivalent to it. C'in Eq. (3.17) is related to the strength of the Hill’s vortex,
which is 1 - (2/R,)*/2C times its unperturbed value. One finds C from the
condition that the tangential velocity perturbation in a boundary layer
must tend to zero as the layer merges into effectively inviscid flow at its
outer limit, i.e. g(2)—0 as 2> 00. Only one value of C will give that
result in Egs. (3.14) and (3.17), and it is negative. This corresponds to the
internal vortex being slowed down by viscosity, which seems reasonable.
The values of C/A, are within 2%, of —2.5(2 + V"*){V'4/2. With that
approximation the internal circulation is less than that of Hill’s classical
vortex by a factor of

| L COV2 252V ) +2)

Ri® RY?V 2V +3)

(3.18)

More precise values of C/A, will be found in Table 3, with data on the
drag. .

With that major complication of allowing for recirculation out of the way,
there is now a minor one to be considered. The theory of the stagnation
regions predicts velocity discontinuities of order UR; ' developing at
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distances of order aR; ¢ from the stagnation points. Such discontinuities
in an inviscid model imply viscous boundary layers in the real flow. Near
the rear stagnation point this layer develops after the main viscous layer
has died out, but it turns out to be of little dynamical significance. Near the

TABLE 3

Drac FuncTioNs ror SPHERICAL BunpLis?

v’ 0.2 0.5 1.0 2.0 5.0 ©
34, 2 1 0 —1 -2 -3

o 0.0275 0.0935 0.177 0.262 0.335  ° 0.390
2 8.89 7.56 6.15 5.15 4.22 3.56
ca —9,72 —9.00 -~ 8,22 —7.41 —6.59 —5.77
Clh —19.86 —8.900 —5.282 —3.500 —2.452 —1.772

® The second-order terms ¢, ¢z, ¢3 in Eq, (3.18) for the drag coefficient, and the internal
flow perturbation parameter CJA,, as functions of A, or of ¥ *, copied from Harper and
Moocre (1968) by permission of the Cambricdge University Press.

front it merges into the main layer. It does not appreciably affect Eq. (3.14)
but it does contain viscous dissipation of energy at a rate sufficient to add
a term O(R5 % In R,) to the drag coefficient. The other terms in the drag
are calculated from the viscous dissipation in the irrotational flow, the

internal vortex, the boundary layers, and the wake as for bubbles, and the
final result is

48 3
QUO = ...leO*H — %
RGeS T__ aaln Ry | ML+ Jeols)
RV V V

+ T +%\T?v:,
(3.19)

where ¢y, ¢;, and ¢ are functions of A, given in Table 3. The approxima-
tions made near stagnation points have the effect on Cp, of producing
errors of the same order as the logarithmic term (which is, fortunately,
small). It is therefore worthwhile when comparing the theory with experi-
ments, or predicting drop velocities, to do the calculation both with and
without that term.

Such an elaborate theory would not be worth using if it did not agree
better with experiments than the available alternatives. It does in carefully
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purified liquids, provided that M, is low enough for drops to remain
nearly spherical up to Reynolds numbers of several hundred and provided
that the calculated perturbations are reasonably small. The values of Cp,
then come within 209%, of the experimental data, whereas Cp, for a rigid
sphere is a factor of 2 too high and Winnikow and Chao’s (1966) over-
simple theory is a factor of 2 or 3 too low. The experiments in question
were done by Licht and Narasimhamurty (1955), Elzinga and Banchero
(1961), Winnikow and Chao (1966), and Thorsen et al. (1968). Graphs of
Cpo against R plotted logarithmically on both axes are presented in Fig. 8.
The curves are generally similar to those for bubbles in low-M, liquids,
except for two liquids in which there was a sharp break in the curves at
about R, =400, due probably to surface contamination.

Agreement between experiment and theory is worse than for bubbles
in general, although it is better than for bubbles in water. All the drop
experiments had water as continuous phase, except one which had it as
dispersed phase. Perturbations predicted in the theory are often larger
fractions of the first-order terms than for bubbles, especially if the dispersed
phase is the more viscous; if 9; > 2%, the theory is unlikely to be applicable.
But Sumner and Moore (1969) exaggerate when they suggest that it is
useless whenever %, is of the same order as 7,.

The theory is also inapplicable if the first-order drag coefficient
48(1 +3/2V')[R, is larger than that of a rigid sphere at the same R,, or if
the predicted internal circulation is less than about half of its value in the

inviscid theory (see Eq. 3.18). One then gets a better result by assuming
the drop to behave as if rigid.

C. DISTORTIONS FROM SPHERICITY

If R, is high enough, drops, like bubbles, will not be spherical. Experi-
mentally, the effects on drops and bubbles are rather similar; see Winnikow
and Chao (1966) and Thorsen et al. (1968). As R, increases Cpq passes a
minimum value and then increases; at slightly higher R, the drops begin
to oscillate (either sideways like bubbles or oblate-to-prolate while rising
vertically). Then, if it was initially well below the solid sphere value, Cp,
becomes proportional to Re?, as W, is constant at about 4 (making
Cpo = Mo R,*/48) until about Cpe=1. Beyond that value Cp, rises
rather less steeply, but the curves do not level off to a constant value as they
do for bubbles. Oscillating falling drops emitted from nozzles are so much
less stable than rising bubbles released from dumping cups that they break
up when W, is of order 10 (see Lane and Green, 1956). It is a pity that no
data seem to be available for rising drops in low-M, fluids at high Weber
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numbers nor for drops released from dumping cups. (Bubbles from
nozzles may also break up.)

One might hope that a theory like that of gooﬁn (1965) could account
for the deformations of drops as successfully as it has for bubbles. Unfor-
tunately, the flow past a spheroid can never be slightly perturbed from a
condition of irrotational outside and constant Q inside unless the shape is
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very close to a sphere. The reason, given by Hill (1894), is that the tangential
velocity has a discontinuity across the surface which increases with the
distortion. For very flattened spheroids the form of the discontinuities is
sketched in Fig. 9. Outside the surface the irrotational velocity is greatest
at the equator, but inside it the greatest velocities in Hill’s (1894) spheroidal
vortex occur at a finite fraction of the radius. In the cylindrical polar
coordinates (m, s) shown in Fig. 9, the velocity just inside the very flattened
spheroid is approximately ws = Qms oc ms, where e is the vorticity, and ms
is a maximum where the eccentric angle is }m, i.e. at 1{4/2 of the distance
from the axis to the equator. Consequently, the boundary layer around the
surface contains velocity variations of the same order as the velocity itself,
and its theory would be as complicated as that of the boundary layer on a
solid body. It does not seem to have been developed, and so the shapes of
drops can be accounted for only qualitatively.

Falling drops tend to be of the shape shown in Fig. 10, with the leading
surface flatter than the trailing (Lane and Green, 1956; Winnikow and

Fic. 8. Drag coefficients plotted against Reynolds numbers for liquid drops. Experi-
mental curves are drawn solid, theoretical curves dotted. Curves 1 and 2: Harper and
Moore’s theory (1968) without and with the logarithmic term. Curve 3: rigid spheres.
Curve 4: Weber number Wy = 4.

Continuous
System M, Dispersed phase phase Reference

A 5.1 % 10~ Carbon tetrachloride Water Thorsen et al.
(1968)

B 2.2 % 107®  Ethylene bromide Water Thorsen et al.
(1968}

C 3.1 x 10~ p-dichlorobenzene Water Thorsen et al.
(1968)

D 91 x10-*  Lthyl bromide Water Thotsen et al.
(1968)

E 2.55 x 10-%  Water Finol Elzinga and
Banchero

(1961)

T 7.1 x 10-1*  Tthyl chloroacetate Water Licht and

Narasimhamurty
(1955)

G 1.9 X 10-1®  Methylene bromide Water Thorsen et al.
-(1968)

H 1.7 x 10~ Chlorobenzene Water Winnikow and
Chao (1966)

K 58 x 107 DBromobenzene Water Winnikow and

Chao (1966)
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s

Fic. 9. Schematic indication of veloeity varistions around the surface of a falling
spheroidal drop when very oblate, (Potential ow outside, Hill's spheroidal vortex inside.}

Chao, 1966). This is the opposite way round to bubbles. It seems that the
high dynamic pressure near the front stagnation point A pushes it inwards,
and surface tension is less impeded than it is for bubbles in its tendency to
make the rear surface spherical because the density difference between
inner and outer fluids is smaller in the experiments which have been
reported,

Shoemaker and Marc de Chazal (1969) studied drops rising in high-A4,
fluids at high Weber numbers. They found skirts like those behind some
bubbles (Section II, E, 3), and also reentrant dimples ” in the rear stagna-
tion regions. So did Thomson and Newall (1885), for falling drops.

S N

Fie, 10. A typical shape for a distorted falling drop, after Lane and Green (19506),
with flow pattern sketched.
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IV. Surface Activity
A. INTRODUCTION

Lt will be obvious to anyone familiar with the literature that the experi-
mental data cited above as agreeing with theory are a very small fraction
of those which have been published. Experimental liquids (especially
water) are very easily contaminated with substances which lower the surface
tension by an amount depending on the concentration. Fluid motions at the
surface are then retarded, by the following mechanism. If the motion
expands an element of area at the surface, a given amount of surfactant
will have more surface to occupy (until diffusion restores equilibrium), the
surface concentration will fall, and the surface tension will rise. This
causes a tangential stress tending to drag fluid in along the surface towards
the element of area, which opposes the original metion. Similatly contrac-
tions of elements of surface are also opposed.

B. Surrace CONCENTRATIONS

Although there are several different ways to define surface concentra-
tions (see Defay et al., 1966; Adam, 1968), most authors do not take the
trouble to show that the same definition is being used in their equations
for surface tension changes and conservation of mass of surfactant. This
can be done by using Guggenheim’s (1949) surface model and Landau and
Lifshitz’s (1959) theory of convective diffusion. The differences between
the definitions are important for weakly surface-active solutes, such as
ethyl alcohol in water.

We shall use the ““continuum approximation,” assuming quantities to
vary continuously with position and ignoring molecular fluctuations, and
we also assume that the relations between thermodynamical variables which
hold at equilibrium remain good approximations for individual “ infinitesi-
mal” fluid elements, even when the system as a whole is in motion and its
state varies from place to place. In this context, *infinitesimal” means
“much smaller than macroscopic length-scales of variation, such as
boundary-layer thicknesses, but much larger than the distances between
molecules or their mean free paths.” For a fuller discussion of this approxi-
mation, see Lighthill’s Chapter I in Rosenhead (1963)..

We follow Guggenheim (1949) in ignoring effects of curvature of the
interface. These can be allowed for (see Defay et al., 1966; Melrose, 1968),
but they do not significantly modify the argument given below except for
really minute bubbles or drops. The corrections become important at radii
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of curvature of about 1um (apart from the Young-Laplace pressure
difference across the surface which may matter mechanically whenever the
radius is less than 1 cm or thereabouts, but which has little effect on the
surface thermodynamics at such large radii). .

The Gibbs—Duhem equation connecting changes in surfactant concen-
tration and surface tension may be derived as follows. Let us indicate the
bulk phases as before by subscripts 0 and 1, and let phase 7 be a solution of
surfactant (chemical component number 2) in a solvent (component number
7). Let the mole fraction of surfactant be x,, i.e. in a volume of phase ¢
which contains %, moles altogether, there are k,x, moles of component 2
and %,(1 — x;) moles of component i. Throughout this section, =0 or 1.
To simplify the algebra we suppose that there are only these three com-
ponents in the system, that none of them associates, dissociates, or reacts
chemically with another, and that components 0 and 1 are mutually
insoluble. (Otherwise there would be at least three different components in
one or both phases.)

On each side of the interface and parallel to it, imagine planes drawn in

the bulk phases, a distance [ apart (Fig. 11). Suppose that / is large enough .

for conditions in each phase at its dividing plane to be uniform and
unaffected by the presence of the other phase. Except in dilute ionic
solutions / need only be a few molecular lengths; but / in an ionic solution
must be several times the mean thickness of the double layer, which is
0.3¢"2nm if ¢ is the concentration of a dilute uni-univalent solute in
mol dm~? (see Parsons, 1954; J. T. Davies and Rideal, 1963). Ionic
solutions, of course, require at least three chemical components to be
considered in the same phase: positive and negative ions and bulk solvent.
Their general theory is beyond the scope of this article.

'The material between the two dividing planes (see Fig. 11) forms the

Bulk phase 0

1 Surface phase s

Bulk phase 1

Fie. 11.  Diagram of a fluid interface, showing the conventions for numbering phases
and the direction of the normal. Bulk phase 0: component 2 dissolved in component 0.
Surface “phase’ s: all three components. Bulk phase 1: component 2 dissolved in
component 1,
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““surface phase ” which we indicate by a subscript s. Unlike the bulk phases
it is not even approximately homogeneous, and many of its properties
depend on the value of / and the exact position within it of the true phase
boundary. We shall be concerned in our final equations only with quantities
independent of these geometrical parameters.

If the number of moles of component i (i =0, 1, or 2) and the total
entropy in area 4 of the surface phase are respectively #,, and S,, let us
define the surface concentration I, and entropy per unit area s, by

I'y =ng,/A, (4.1)
5s = S5/4. (4.2)

Guggenheim (1949) obtains the Gibbs-Duhem equation relating infinite-
simal changes in intensive variables in the surface phase as

$dT—1dP L do+ 5 T, du, —0, 4.3)
i=0

in our notation, where 7', p, o, u, are the temperature, pressure, surface
tension, and the chemical potential of component 7, and where we imagine
infinitesimal changes in these quantities to occur with the dividing planes
fixed. The corresponding equations for the two bulk phases are (Guggen-
heim, 1949)

%o Aty -+ (1 — 25) dpzg =0, (4.4)

%, 4 1—u)dp, =0, 4.5
“f rﬂ:?.ﬁxmﬁw%ﬁ nr@..%& Mwm.tﬂm«_‘m‘%u.uza. 1) s ’ ( )
If I is so small that / dp < do, and-if-temperature-changes-are-negligible,
two terms in (4.3) disappear and the remaining ones give

[AWWV ”H,_wlﬁo._alc —TIy o
T

Dptg 1—x, l—x =5 3..3.

say,’ when we substitute for du, and dju, from (4.4) and (4.5), and use
the fact that chemical potentials are uniform throughout the system. In a
real system which may have large changes of #¢ over large distances, we
must choose [ so small that the g, are sensibly constant across the surface
phase, having the same values at each dividing plane. Unless p, can have
discontinuities, this requires only that / be much smaller than the diffusion
boundary layer thickness. The question of possible discontinuities in g, is
important and is taken up in Section TV, I below. For the moment we assume
that they do not appear.

The quantity T defined by Eq. (4.6) is the “surface excess” of com-
ponent 2, and is unaffected by movement of the imaginary dividing planes,
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unlike the three I';. This can be seen either from the definitions of the
F, and of mole fractions, or from the invariance of the left-hand side of

(4.6) under changes of position of the dividing planes. icatlyr T
unt-of surfactant-betw :Nr@. i Mﬁ%ﬂn unjt Al
would MMM WWNN, hef \m M%%_f ulk“phase had-continwéd-tnaleéred-vight®
% -piane ofse ﬂmﬁ_o?
Further progress depends on knowledge of 4, as a function of I' or #,.
Let us suppose that the surfactant is dilute enough for it to be an ideal
solution with %, € 1 in each bulk phase and a ““ gaseous film (sec Adam,

1968) at the interface, i.e.

Mo =fzo + 8 Tln x,
=gy R T'In ey
=R, TIn(I'/T5), (4.7)

where fis0, fia1, and T depend only on T, p, and the chemical natures of
the three components, and R, is the gas constant. Then x4 oc x; o T, and
Eq. (4.6) gives

Ml=¢,—0=R,TT, (4.8)

where o, is the interfacial tension between pure components 0 and 1, o the
tension when surface excess of component 2 is adsorbed on the interface,
and ITI is the “surface pressure.”

C. Drrruston Bounpary CONDITIONS

Mole fractions are convenient units for chemistry, but if one has to deal
also with dynamics and diffusion it is helpful to use mass fractions Wo, W, in
the two phases. These are analogous to the mole fractions Xg, X1, being the
ratio of the mass of component 2 to the total mass of fluid in a given volume
element. Landau and Lifshitz (1959) refer to a mass fraction as a concentra-
tion, ¢, but we follow the physical chemists’ convention (McGlashan, 1968}
of using this name and the symbol ¢; for the amount of component 2
measured in moles per unit volume of phase 7. If the molar masses of the
three components are m,, m,, and m,, and the total density of phase 7 is
p:, we have

Moy My %, L Myxy

=, = ==
Pi n my(1 — .a:V + max, My

) {(4.9)

where the last form on the right-hand side is an approximation for dilute
solutions. In the bulk phase 7, the mass flux of component 2 is piw;u, by
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convection with the fluid and, to a dilute solution approximation (Landau
and Lifshitz, 1959),

Ji=—p DV, = —m, D, Ve, (4.10)

by diffusion, where u, is the velocity vector (= momentum of unit mass),
Ji the diffusion flux, and D, the diffusivity. With these definitions of density
and velocity, the usual equation of continuity and the Navier-Stokes
equation hold in the bulk phase. Equation (4.10) for the diffusion flux holds,
as Landau and Lifshitz explain, in the absence of thermal diffusion and
barediffusion, and then conservation of mass of solute gives

.dn,._\w t 8 =D, V%, (4.11)

if we can ignore the variations of pi and D, with concentration. Whether
variations of p; are important or not depends on the type of fluid motion
under discussion. They usually do not matter for bubbles and drops, where
they are much smaller than the density difference between the two bulk
phases. They can, of course, be the cause of fluid motion in a system which
would otherwise be in mechanical equilibrium, and then they must be
taken into account.

We have not yet used the condition that mass of each chemical com-
ponent must be conserved. Let the two dividing surfaces of Fig. 11 be
fixed relative to the interface, so close to it that the tangential velocity u, is
effectively the same at all points between them. (This condition is usually
less restrictive than the one that the chemical potentials be effectively
uniform across the “surface phase.”) Let the normal velocity components
in the two phases at the dividing surfaces be Uno, Hn1, both measured
positively if in the direction of the vector from phase 1 to phase 0in Fig. 11.
As Levich (1962) pointed out, one cannot assume that the tangential
mass flux j;, of component 7 is the same as its convective part T'ym,u,, and
we shall follow his course of taking the next simplest assumption. This is
to suppose that j,, — T, m;u, is linearly dependent on the surface concen-
tration gradients. Because any one of the I", determines the other two if the
temperature, pressure, and dividing surfaces are fixed, by the phase rule,
we may use the surface gradient (Weatherburn, 1927; Scriven, 1960) of
surface excess, VI, to specify the surface concentration gradients, Then

Jss=m(Tyu,— D, V, I), (4.12)

where the Dy, are three constants of proportionality with the dimensions
(LT =) of diffusivity. At most two of them can be independent, for

2 2 2 2
> jor= A 3 m, FVE - AM , ﬁvf — A 3 3&&5 T, (413)
) {=o (=0 =0
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where the first part of (4.13) comes from the definition of total mass flux
and the second from (4.12). Hence

2
2m Dy =0. (4.14)

By considering the total mass flux of the three components into an
element of surface phase, we may now obtain

er .. 1 dw

T+ dveao = pull — welitso— po ) (4.15)

ar .. 1 ow

|®M.._h IT _.._.:\m._mp = NA.DHA.— —_— gwuzu:. |_| P1 NUM Mﬂwv_ AA..HOV

ar .. 1 oz ow

mlﬁm + &_f.ﬂmu = ﬁlmA]bo Wollno + P11ty + po D, % —pDy mIBan
(4.17)

where div, j;; denotes the surface divergence of the vector Jst (Weatherburn,
1927); i.e. Scriven’s (1960) V, - j,;. Because the surface tension depends on
I, we must take a linear combination of the above equations of the form

Xo 51
(#17) = 0 (415) — 7 (416),

and we obtain

ar ) Ly 8 o,
= + div(T'uy) ,_JMQ g AM 4 u, <v A T .Snv

(4.18)

1 H . AlHVH.DmU* mﬂﬁﬁ
=—) |——— divg(Dgym, V, ') 4 "1 1)
?Mo ASNQ — &) o(Dastm )+ (1~ w,) mav
This equation simplifies, if we use the bulk diffusion equation {4.13), the
dilute-solution approximations =, < 1, », €1, D, constant, and D, con-
stant, and the definition ¢, = w, p,/m,, to

My

ar 1
< T diva(Tug) + 3 Lo, Abn V2w, — 14y, %:v
i=0

. , (4.19)
=Dy VT + Y (—1yD, 2.
<o on
If we assume that /, the thickness of the interfacial region, is much smaller
than the diffusion boundary layer thickness, then the terms in T, in (4.19)

are negligible. Here the boundary layer thickness is best thought of as the
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shorter of the distances in the » direction over which dw,/dn and éw,/on
change by significant fractions of themselves. If / is not this small, then
using it as a thickness of a surface phase is unhelpful. We shall therefore
neglect those terms in I';, and recover Levich’s (1962) surface condition

er d¢y dey

% + divg{T'u) =D, V2T + D, I D, ™ (4.20)
on writing D,, =D,, but we have used a definition of I" and hence of
D, more explicit than his.

Equation (4.20) now appears as one of the two boundary conditions inter-
connecting the concentration and velocity fields at an interface between
surfactant solutions. The other condition derives from the fact that for
small / there is so little mass in the surface phase that the forces on it can
be taken to be in equilibrium. The normal component gives the Young-
Laplace relation between normal stresses, surface tension, and curvature
(see Section II,C,1 and Eq. 2.44), and the tangential component gives
the condition we seek, in the form (Scriven, 1960)

Voo =—V Il =poc1 — Puso (4.21)

where p, is the shear stress at the surface in phase 7. The relation between
{4.21) and concentrations is clear from Eqs. (4.7)~(4.9), which we may use
to write

Voo =-~(R IT/e) Voo, = —R, TV, for i=0,1, (4.22)

for ideal dilute solutions.

The thermodynamics of ideal solutions gives no information about the
distribution coefficients ¢qfe; and T'fe; except that they are constants
relating the concentrations of the solute in the two bulk phases and the
surface. Their values are determined by the chemical natures of the three
components. We define “adsorption depths” k,, &, by

. Nﬁu ”H,J\hu- *.Ou. H.“Ou Hw Am_..wav

they have the dimensions of length because I' is an amount of substance
per unit area and ¢; an amount per unit volume. The depth %, of phase 7
obviously contains the same amount of dissolved solute (component 2) as
is adsorbed on its surface. Numerical values of %, cover a very wide range.
In water, at an air-water interface, 7, is of the order of a molecular length
for a weakly adsorbed solute like ethyl alcohol C,HzOH [4 nm according to
Adam (1968), 7 nm according to Bakker et al. (1966)], but for strongly
adsorbed substances it is much higher, especially if they are sparingly
sofuble. [1 um for sodium dodecyl sulphate, C,,H.;S0,Na (Durham,
1961; Rubin and Jorne, 1969), 0.3 mm for dedecanol, C,,H,;OH {Shinada
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and Nakanishi, 1963).] By Traube’s rule (see Adam, 1968), A, increases by
a factor of about 3 for each additional CH, group in a homologous series
of long chain organic compounds. But the values are difficult to determine;
discrepancies by nearly a factor of 2 occur for the same substance, as in the
two values given above for ethyl alcohol, and the “Traube factor” is
sometimes nearer 4 than 3, as in Fig. 7.1 of Defay et al. (1966), reporting
work of Hommelen on the z-aliphatic alcohols C,HypsOH for
m=26,7,8, 9, and 10. Hommelen’s solutions, however, were too concen-
trated to behave as if ideal.

If more than one surfactant is present, but all of them are very dilute,
Eq. (4.20) still holds for each unless the rate of chemical change of one into
another is comparable with the rate of transfer along or into the surface.
Equation (4.22) becomes

n TV
Vio=—R,TY LV,
=2 €y

(4.24)

n
=—R, TV, T/, for ;= 0,1,
=2

where ¢;; is the concentration of component j in bulk phase 7, the bulk
solutes in phases 0, 1 are components (, I as before, and the surface-active
solutes are components 2,3,...,n T is the generalization of T, obtained
in the following way. Let %y, be the mole fraction of component j in phase ,
so that

Mcacuo for i=0,1, (4.25)

and in dilute solutions %90 == 1, and x;, = 1. The Gibbs-Duhem equations
for the surface and the bulk phases are, at constant temperature and
pressure,

~do =Y T, dy,, (4.26)
=0

0=3 x2ydu,, for i=0,1, (4.27)
=0

where u; is the chemical potential of component 7. On eliminating dy, and
dpy from Eqs. (4.26) and (4.27) we obtain an equation giving —do in
terms of du,, dy;, ..., du, , and define 'y’ to be the coefficient of dy in it
In very dilute solutions
I = —d0/8
"o o - . . (4.28)
=li—xely—ua, Ty, for HRk=23 ., miZk
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In an ionic solution this type of analysis is necessary because there must
be at least the two oppositely charged ions present together with the solute,
Then one has also to use the condition of electrical neutrality in the bulk
phases to show that the effective diffusivity D, is

DD~ (#+7)

D, = *D* L x-D-°

(4.29)

when there are two types of ion with electrovalencies &%, %~ and diffusivi-
ties D*, D~ (see Deryagin et al., 1959; Levich, 1962). In addition the
surface layer as a whole must be electrically neutral although the actual
surface is usually charged, so that the immediately subjacent fluid has an
excess of ions of the opposite charge. We shall not discuss these “ double
layers” here (see J. T. Davies and Rideal, 1963 ; Parsons, 1954}, nor the
sort of complication which arises with acetic acid at the benzene-water
interface, when (CH;COOH), and CH,COOH molecules occur in the
benzene, and CH,COO- and Ha0"* as well in the water, and reversible
reactions occur between the various species. Such behavior is common
among organic acids, at air—water or benzene--water interfaces (Glasstone,
1953).

Heat can also be considered as a surfactant, because changes in tem-
perature, like changes in chemical potential, affect the surface tension
and give rise to diffusion. One can draw up a list of quantities analogous to
one another in the theory (see Harper ez al,, 1967): D, to the heat diffusivity
ey = K,/p;c,, where K| is the heat conductivity and ¢, the specific heat at
constant pressure of phase 7, u, to R, T, I to —(1/R)(8a[8T),,, h, to
~—(1/pe,i)(d0f2T),,, where 1, is the chemical potential, Because its “hy”
is very small (0.037 nm for water at room temperature) the surface effects

of heat can usually be ignored in practice unless, of course, they cause the

motion, as in some Bénard cells (Pearson, 1958; Seriven and Sternling,
1960, 1964), or are artificially increased as in the work of Young et al. (1959)
on bubbles held fixed against gravity in a vertical temperature gradient.

Dimensional analysis takes a form in this subject which may be a little
unfamiliar, Besides the usual mass M, length L, and time T of mechanics
as dimensionally independent variables, we have temperature 8 and
amount of substance O (McGlashan, 1968). The unit for O in the metric
system is the mole. The analogies in the previous paragraph have been
altered slightly from those of Harper et al. (1967) to make analogous
quantities have the same dimensions, We collect the quantities used in this
chapter with their dimensions, in Table 4.

e
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TABLE 4

Dimensions o wzﬂmhooommznobr QUANTITIES

€1,y concentration QL-a
e specific heat LA -ag-1
D,,D,, D, diffusivity L2T -t
fre adsorption depth L
it volume mass fAux ML-27 -1
Jat surface mass flux ML-17-1

. K, heat conductivity MLT ~eg-1
my molar mass MO~
Mg amount of 1 in surface phase 0]
R, gas constant MLAT -20)-19-1
Sy entropy ML2T -20-1
S €ntropy per unit area MT-20-1
T temperature 17
0y mass fraction i
X mole fraction 1
r,r,s surface excess Q¢
I surface phase concentration QL-*
’® heat diffusivity rrr-1
i chemieal potential ML=T “FQ-
o surface tension MT -2
II surface pressure MT -2

D. A Dror or BusBLE Moving AT Low PécLer N UMBER

To illustrate the interaction of fluid motion and solute diffusion, let us
consider the case of 3 steadily moving drop which is small enough to be
considered spherical and whose Péclet numbers UdiD,, Ud[D, are much
smaller than one. Because Dy is vsually much less than »,, the Reynolds

in the results. We generalize slightly the theories of Frumkin and Levich
(see Levich, 1962); Harper et af. (1967); and Kenning (1969).

The equation of motion ;s D" =0 in each phase (Sections ILC,1 and
HI,B,1), and that of diffusion is V2¢, = 0 for 7 — 0, 1, if the Péclet numbers
are small. The boundary conditions are Egs. (4.20) to (4.23), together with
continuity of velocity at the interface, finiteness of velocity and ¢, at the
origin, and uniform limiting values ¥/ and ¢ for velocity and €o at infinity,
It is convenient to define 2 fictitious “surface pressure” throughout the
space as

=R, Th,e,, (4.30)

where k; takes its interfacia] value everywhere in phase 7. This definition
makes IT a harmonic function in each phase and continuous across the
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interface 7 =g, At the interface it keeps its previous value and meaning,
defined in (4.8). The value of IT at infinity, 1T, is convenient measure of
the strength of the solution, being given by

Mo =R, Thye,,, (4.31)

the amount by which the equilibrium interfacial tension between phases
0 and 1 is lowered by the presence of the surfactant, Then

M=TI, +5,, = Pi(p) (4.32)
n=0
inside the drop and
) n+1
I=1, 4 > e HE Py (4.33)

outside it, for some set of constants ¢,, where u == cos 8. The surface stress
condition (4.21) can be written

1 =2U[(3 — 2a5)p, — 2(er, — Dme], (4.34)
o=~ Do Fninln 41 for n> 2, (435)

if we use Egs. (3.6) and (3.7), and €quate coefficients m% # (). No informa-
tion comes from this source about &,, the difference between the surface
mean value of I and TI,,. The surface mass balance equation (4.20)
becomes

ﬁm [m. +5e 21| [6 — 201, 2 5 e, 20
4.36
HMm%:?VT?J_,:Wi‘l:mj-aw_‘ 0

By integrating this equation from p=_1 o =1 and using the
definition of #,(u) (Eq. 2.11), it can be shown that ¢, =0. We do not
attempt to equate any other coeflicients of Po(1) in the general case. It
would require the expansion of Pro()F (1) in Legendre polynomials, lead
to an infinite set of nonlinear equations to solve for the o, and be of
spurious physical generality anyway, as we shall see in the discussion
following Eq, (4.40). It will appear that in cases likely to arise in rea
fluids the surface pressure 11 is only slightly perturbed from its mean value
T, . With that assumption, to be checked later, we may ignore the term
2 FaPa(i) on the left-hand side of Eq. (4.36) and obtain Cpp1 =g, =
for n > 2, while

o ”gﬂmc QUD\HQ AA. mﬂv
= mNdo |_rwq? - Za\@uV\mmdo - mx: -+ Nﬂs\weuy ’
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where the “ diffusion velocity” vy, is defined by

D, , Do | Dy (4.38)
a he 2N

It is additive over the three routes for diffusion—phase 0, phase 1, and
surface—Dbecause a given inequality of surface concentration is ““ smoothed
out” by the three * diffusion currents ” in parallel. The surface velocity is
vq sin 9, where

Vg = QAW —_— Rmu
(4.39)
= Unof(2n0 + 291 4211 5 [3vp),
and the surface pressure is IT,, |- £, cos 0, where
&1fMla =—vofvp (4.40)

= —Unofon(2no + 29, - 211af30p).

Equation (4.40) shows that for the theory to be valid it is sufficient to
require that the two Reynolds and three Péclet numbers, Udjv,, Ud/D,,
and Ud/[D;, be all much less than one, for 2z, << U and v >2D,/d, and so
|1/l < Udj4D; € 1, by hypothesis. Wasserman and Slattery (1969)
present a theory in which &/I1, is not small but the Reynolds numbers
and two of the Péclet numbers (Ud{D,) are, and they ignore surface
diffusion. That part of their work seems unlikely to be a useful generaliza-
tion unless D, € D,, a supposition for which there is no evidence yet.

The dynamical effect of the surfactant on the drag and the surface
velocity is effectively to increase the viscosity inside the drop from =%; to
7 + Mo [3vp and hence bring the motion nearer to that of a solid sphere.
Clearly the influence is greater in more concentrated solutions (higher I1,,),
but the theory becomes invalid if the concentration is too high. The surface
pressure varies from a minimum of T1,, 4- ¢, at the front stagnation point
to a maximum of 11, — ¢, at the rear, at least if [T, > 0 and the surfactant
is positively adsorbed. Some solutes raise the surface tension instead of
lowering it, in which case I, T, A, and v, are all negative. If so, the
solute is never strongly surface-active (see Adam, 1968, Section 111.7), and
then {A,;| < a for all practical sizes of drops, and surface diffusion can be
neglected.

The implications of the theory are easiest to understand for bubbles,
where 7, €9, and D,fh, € Dok, (unless the surfactant is volatile).
Then [, /n,vp reduces for strong surfactants or small bubbles (%, > a)
to Tl,afmeDy, and for weak surfactants or large bubbles (%, < @) to
Mo ltofnoDo. For a moderately surface-active substance in water, with
ho==1 pm (for example, the dodecy! sulphate ion, or hexanol),
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p=25 %1071 m2sec™* =5 X 107° cm? sec™?, and so Il Agfne Do =1
if I, =05 puNm-*=5 x10-* dyn em~!. The surface concentration is
then 2 % 1071 mol m~2 (8 x 10* square Angstrém units per molecule)
and the bulk concentration 2 X 10~ ¢ mol m=3,

Bubble behavior might seem from these figures to provide a good means
of experimental research into surface properties of solutions too dilute to
measure by other methods, but there is a difficulty. We have assumed the
Péclet number to be small. The velocity U is at least its Stokes law value
2ga®/9v, and so Ud[D, <1 only if d <10 pum, for the example above. We
can therefore apply the present theory in water only for very small bubbles:
10 pum =0.01 mm. The situation is not much better in most other liquids,
for Ud[D, > gd®/18D,v,, and the Stokes-Einstein theory of diffusion (see
Bird et al., 1960) gives

Ub Vo ”NNMJ\@S.@OQE» AL..A.HV

where % is Boltzmann’s constant and a,, is the radius of a surfactant mole-
cule if it is spherical, or a distance of the order of the molecule’s size if not.
For a given surfactant, then, Ud{D, oc d3pofT if the bubble size and the
solute are varied. Larger bubbles can therefore satisfy the conditions of the
theory for small Péclet numbers only if the temperature is high, the density
low, or the Stokes-Einstein law is not obeyed. 'There are viscous liquids with
that last property, such as Redfield and Houghton’s (1965) dextrose
solutions in which the diffusivity of carbon dioxide was anomalously high,
but carbon dioxide, of course, is not very surface-active.

For drops the conditions are slightly less restrictive, because
UdlD, << | po— p1|£d?{12D v, p if we use the fact that

U<|po— p1|ga*[3vapa,

which is the Rybezynski-Hadamard result for , = 0. The gain is, however,.

not great. To multiply the permissible value of dby 10, | pg — p1| << 107%py;
experiments with such small density differences would need elaborate
precautions against convection currents.

E. A BuesLE AT Low RevynNoLps aND Hich PicLET NUMBER

We have seen that bubbles visible to the naked eye are unlikely to obey
the requirement of Section IV,D) that the Péclet number be small, and so
the next simplest case, of low Reynolds and high Péclet numbers, has
received a good deal of attention (Deryagin et al., 1959, 1960; Derjaguin
and Dukhin, 1961; Dukhin and Deryagin, 1961; Levich, 1962; Griffith,
1962 ; Dukhin and Buikov, 1965; Lochiel, 1965; Davis and Acrivos, 1966;



114 J. F. Harper

Newman, 1967; Wasserman and Slattery, 1969). Unfortunately some of
this work uses unjustified assumptions, and some authors neglect singu-
larities which predict infinite surface excesses at rear stagnation points. Very
little has been done for Péclet numbers of order unity except by Wasserman
and Slattery (1969), whose numerical method becomes untrustworthy at
high Péclet numbers because of those same singularities. All this work
ignores transport of surfactant through the interior. To allow for it would
involve the difficulties, caused by recirculation of fluid inside the bubble,
that we encountered for high Reynolds numbers in Section 111,C,2.

For a spherical bubble in steady flow the surface condition (4.20) be-
comes

(4.42)

a1l a2l sin 8 811
DDyt

0 . & f.
@p (Hug sin §) =D, =B Aw_: f— o ot

in terms of the surface pressure I1, defined on the surface by (4.8) and else-
where by (4.30).

1. Slghtly Contaminated Surface, Weak Surfactant

Equation (4.42) involves II and ,, both of which are unknown in
general. This makes the general theory very difficult, and so it is worth-
while to seek special cases of physical interest which are simpler. The first
is that in which w; is very near the value v, sin 8 given by the Rybczynski-
Hadamard theory for a free surface, i.e. the surfactant has had only a slight
effect on the motion of the bubble. Equation (4.42) is then linear in its

remaining unknown variable TT, but is still complicated. Suppose that the

surface diffusion term in (4.42) can be neglected, and that [T—TI, at a
large distance from the bubble. Then, as the Péclet number is high, analysis
like that of Section I1,C,2 gives

4 olljox = 11 {ay?, (4.43)
where x = (1 — cos §)%(2 -+ cos 8) as before, and

__(r—a)sin® @ (3v,d\"*
y= T AmUov . (4.44)
In (x, y) coordinates the boundary condition (4.42) becomes
0 3 @ olly 8, oIl
— (Tl sin2 §) = —lsintg—} 2=
mxA sin? §) T AmE o m&v Ty (4.45)

where P, =9,d[D, is the Péclet number __ummna on surface velocity and
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surface diffusivity, and 8,, a convenient measure of the diffusion boundary
layer thickness, is defined by

842 = Do d6v, = d?/6P,s, (4.46)

where P,, =v,d[Dy.

Equation (4.45), with the conditions IT—H, as y—co, I =1T1I, at
x =0, y >0, TI finite at x = y == 0, uniquely specifies the solution of (4.43).
If x is small, sin¥8 = 4(4)'"2, and on making that approximation we find
that

IT == 1T, — (T, — I y)erfc( y/x*/%), (4.47)
where the surface pressure I1, at the front stagnation point obeys
My =M wbef[86 + Rolm/3)*2]. (4.48)

This simple calculation shows that II /Tl is nearly zeroif 8 < o, and is
nearly one if 84 > ho. These two cases correspond respectively to there
being much less and much more surfactant dissolved in the boundary layer
than adsorbed at the surface. For brevity we shall refer to the surfactant
in these two cases as being strong and weak respectively.

The first of the two cases to be described in detail was that of a weak
surfactant, by Frumkin and Levich in 1949 (see Levich, 1962). They made
a rather crude approximation to dI1/8y, and Derjaguin and Dukhin (1961)
improved it. But even they do not deal adequately with the singularities
which appear at the rear stagnation point.

For a weak surfactant (8, > ko) in very dilute solution, we may take II
everywhere around the bubble to be close to TI,,. The neglect of surface
diffusion in (4.45) is easily justified, and the equation reduces to

oIl holl, 9, . ho Il 82N(x, 0)
—=— =— 4.49
2y 8o ox (sin® 6) 43, oy (+49)
approximately, and the solution to
hy AN(, %Vv
= — ). 4.50
II EST + B, 9 (4.50)

In these equations N{x, ¥} is the solution of the diffusion equation (4.43)
with initial condition N(0, y)=0 and boundary condition N(x, 0) ==
sin? f(x) = f(x), say, on y =0, where #(x) is the inverse function to x(0).
That is (Dukhin, 1966),

&
N y)= [ ;M:in ?lu\::m dt. (4.51)
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From Eq. (4.51) we find (see Harper, 1972) that as 1 =cos ¢-»—1,
dN[8y— o0 on the surface ¥ =0, and that 8N/dy is asymptotic to an exact
solution of the full diffusion equation near the rear stagnation point but it
does not satisfy all the boundary conditions there. The form of the singu-
larity is that of a line sink, with 8I1/@m— constant/m as distance m from
the axis of symmetry tends to zero. One must therefore add to the expres-
sion for IT a line-source solution of the full diffusion equation, of the correct
strength to cancel that singularity. The correction is significant only in a
small neighborhood = — 8 = O(P'"®) of the stagnation point, in which
H — Il is of order TT, i, In P, /8, instead of T1., 24/8, its order of magni-
tude at the front stagnation point and in most of the boundary layer.

The drag coefficient is hardly affected by the correction, because the
integral from which it is calculated converges even for the singular expres-
sion (4.50). To caiculate the drag, the most convenient method is to use
Egs. (2.12), (2.13), and {4.21) to prove that

16 1 16 L
Coa |ﬂ T +M@§o ._,IH_:QAE &:.v ”.%llo T INQ:Q .ﬁlH I1Gk) aﬂ._:.v_
(4.52)

in this equation o(u), I1(u) are the values of the surface tension and surface
pressure where cos # = p. Hence

16
Coo=- T 4 0.608

where Py = Ud|Dy =2P,,.

Bl v (4.53)

M0 Do P32,

2. Slightly Contaminated Surface, Strong Surfactant

The quantitative theory for a strong surfactant (ko > 8,) was first given
by Deryagin et al. (1960), but their treatment of the singularity at the rear
stagnation point is inadequate. The error is worse than in the previous
case. We have already seen in Eq. (4.48) that the surface pressure [T, at
the front stagnation point is very much smaller than JT,, if surface diffusion
is neglected, being O(I1,, 84/h,).

If we assume that IT, < 1, even when surface diffusion is allowed for,
there will be some part of the bubble’s surface over which TI < .,
and then the normal diffusive flux to the surface will be approximately
the same as if 1T were put equal to zero, That is,

oI 210, A ewv 211,
—_— OuhHU =

dy - {mx)t!2 T x ()2

at y=0, (4.54)

X
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from Eq. (4.43). Equation (4.54) can be rewritten in terms of oll/ér, m.:m
the result substituted into (4.42) and integrated, to obtain the following
differential equation for IT on the bubble surface:

D, ol 20,5, (2 + )"
ave O w2, (14+p)

From this equation it appears that IT is of order I, 8o/fo not only at the
front stagnation point but over most of the bubble surface, and that
surface diffusion may be neglected over most of the surface, because
D,Jav, is a small parameter. Near the rear stagnation point, however, these
estimates fail, because =1 p ~ Jp?—0, where ¢ =7~ 8. Hence
TT/T1,, does not remain small all the way round the bubble.

HMarper (1972) has described how to resolve the singularity, but the
complicated details will not be given here. He finds a first approximation to
Cpo in the form of

I -+ (4.55)

16 I
- = 4.56
Cor=g. (1 +3) (+56)
which is independent of D, although the distribution of surfactant at
distances of order aP;'/2 from the rear stagnation point is not. At that
point
T == 11, Pafv/3. (4.57)

For comparisons with experiments, it is easier to give Cpo for a given
liquid and surfactant concentration in the form

Cpo = (16/R)(1 + Ad™), (4.58)

where the correction term Ad" is assumed much smaller than unity, A is a
constant, n = —#§ for a weak surfactant, from (4.53), and n=—2 for a
strong one, from (4.56).

F. Drors aND HicH ReyNoLDs NUMBERS

If the surfactant is soluble only in the continuous phase, all the theory
in Section IV,E is applicable to drops, except that v, is now slightly per-
turbed from }Unof{nq - m.) instead of $U (Eq. 3.9), and Cp, is given by a
formula more elaborate than (4.52), because Eqs. (3.6) and (3.7} for the
internal velocity and shear stress must be taken into account, The result is

8
Ro{no + 1)

1

1
Coo= (Zrotsm—g [ i du). (459
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which generalizes Eq. (4.52), and for a weak surfactant

8 B 11, m0 \112
Coome— S |20 4 3m, +0.608 A v %
mo EsliTl 008 h A o

(4.60)
to the first order.

If the Reynolds number R, of a bubble is much larger than one, but not
large enough for the bubble to be significantly distorted, it can be shown
(Harper, 1972) that the analysis is again affected only in the value of v,
and the final calculation of C'hq, which is now

48 43 1.0534,11,,
=— 11— IT - =
Coo R, T Nﬁdc% # Q.& &_Fv bo T + doUomuw.Ev

(4.61)

for a weak surfactant. In this case the perturbations reach larger fractions
of the basic flow than for small R,, and there is not much difference in
aqueous solutions between the values of I, which are too small for Cyp, to
be noticeably affected and too large for the small perturbation theory to
be applicable. The situation is worse for a strong surfactant, and the value
of Cy, does not seem worth giving.

Unfortunately no theory seems to be available for finite perturbations at
high Reynolds numbers. Proportional increases in drag coefficient can
occur which are greater than at low Reynolds numbers, because the ratio
of Cpe values for spheres with rigid and free surfaces increases with R,
(see Fig. 1). For distorted bubbles the effect of surfactants diminishes,
until it can be neglected for spherical caps, whose shape and drag can be
explained fairly well without considering surface tension at all (see
Section 1LE).

To date, all the theory described in this chapter has been confirmed only
qualitatively and semiquantitatively by experiments (Levich, 1962).
Surfactant solutions with accurately known concentrations are difficult to
prepare, and even more difficult to keep in a known chemical state while
bubbles are passed through them. In addition, the main physical para-
meters, k,, Dy, and D)., are difficult to measure. Determinations of /z; and
D, commonly disagree with one another by factors of 2, and only two
measurements of D, seemn to have been made. That of Sakata and Berg
(1969) is probably in error because of their assumptions that bulk diffusion
is always much faster than desorption and readsorption, even when times
of several hours are in question, and that evaporation of their myristic acid
could be neglected. We are left with Imahori’s (1952) work, in which D;
for an adsorbed protein of relative molecular mass 70400 was found to be
1.1 x 10-1° m? sec™?, or about twice its bulk diffusivity.
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G. STAGNANT SURFACES

In many practical applications, enough surfactant is present for rising
bubbles and drops to have their surface motion almost completely stopped.
Much of the experimental work gives nearly rigid-sphere values of drag
coefficients for undistorted bubbles (Haberman and Morton, 1953, 1956;
Peebles and Garber, 1953) and drops (Hu and Kintner, 1955; Licht and
Narasimhamurty, 1955; Keith and Hixson, 1955; Klee and Treybal, 1956;
Elzinga and Banchero, 1961). Because the transfer of heat and mass to
bubbles and drops obeys different laws for free and rigid surfaces (Levich,
1962) it is important to know how small the velocity at the surface should
be for the rigid-surface theory to apply.

At low Péclet numbers (much less than one) there is no problem: the
diffusion equation is 8cf/dt =DV3 in either case, and for steady flow
involving surfactants the theory is to be found in Section IV,D. But at
high Péclet numbers the diffusion equation is no longer 4d¢/dx = 9%c[ay®
(see Egs. 4.43 and 4.44), but (Levich, 1962)

90c/eX =(1]Y)d%c[oY 2, (4.62)
for flow past a rigid sphere at low Reynolds numbers, for which
Pro = 3Ungsin 8/2a  on the surface, (4.63)
= 3U(r — a)?sin? 8 near it, (4.64)
Xe==0—}sin20, making dX[df=2sin?0, (4.65)
% Mm_m—H_.M\”membH._uq:mama )
= (Pof6)12[(r — a)sin B/a], e (4.66)

where Py =2Ua/D,» 1 as before. The solutions of Eq. (4.62) will nor-
mally vary significantly over ranges of ¥ of order unity, and so the boundary
layer thickness will be of order aPg 1/ » aPyj /2, the value for free surfaces.
In the diffusion boundary layer, the fluid velocity is then O(UP;''3),

Like Eq. (4.43), Eq. (4.62) has some simple similarity solutions. We need
the one which takes values c =0 on X =0for ¥ >0, c—=0as Y — o for
X0 ande=10on Y =0 for X >0, namely

J2 exp{—1®) dt
J& ox_uﬁln %) dt
1

= nxﬂln %) dt = h{=z), say, | (4.67)
O

L=

where

7 =YX, (4.68)
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With x, 3, 2, and { replacing X, Y, 3, } throughout we recover the corre-
sponding solution of Eq. (4.43).

Equations equivalent to (4.62)-{4.68) are the basis of Levich’s (1962)
diffusion theory for rigid spheres, and we must now follow Dukhin and
Buikov (1965) by investigating what strength of surfactant solution makes

bubbles (or drops) obey them. Equation (4.63) specifies the surface shear
stress, and so

M=R, Thoc=Tl,+% Uno (1 — cos 8)
=11, 4 g(X'), say, (4.69)

on the surface of the bubble or drop, if II, denotes the surface pressure
at the front stagnation point. Equation (4.69) is one boundary condition
to (4.62) in the region 0 <X <w, 0<Y <00, the other being that
[1—1I,, the fictitious surface pressure at a great distance defined by
(4.30),as ¥ — coand as X — 0 for ¥ > 0. The solution resembles Eq. (4.51),
being

S I:LAN:@V .\ ﬁ dg(t) Aﬁklﬁa:uv &,

(4.70)

where the functions g and % are defined in Eqgs. (4.67) and (4.69). From
Eq. (4.70) the valuc of 8T1/dr at the surface is

ol APVE sin § 211

o \6 a Y
.NUO 13 w_..—t— Q :8 X awhﬁm NNN
B Aﬂv ($)!a A ;uw\:m l.— TN::&HBV. (4.1)
Substitution of IT and 2T1/ér into Eq. (4.42),
4 8T\  a2Dgsin 8 4TI
5 (5 0) 5 5

allows us to caiculate #,. For the theory to be consistent, #, must be much
less than UP;R, or

d .
ey (1luy sin 8) =D

1/3 213
[T, 3 max APSS , Do g v .72)
@ __wmc
To find IT,, we integrate Iiq. (4.42) right m_o:m the surface to obtain
" a1l
b sin 0 —~ df =0 — % —dX, (4.73)
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and hence from (4.71)

2Un, 7 o0 sin @' sin? 8 49’ do
-1, = % % (6— &

s — % sin 28 + } sin 28')2/8°
= 1.768Un,, 4.74)

a result equivalent to that of Dukhin and Buikov (1965) to the degree of
accuracy they used.

For a bubble or drop to behave like a rigid sphere as far as convective
diffusion to its surface through the continuous phase is concerned, we see
that Il, = R; Thyc,, must be large enough for IT, given by (4.74) to obey
the inequality (4.72). If IL,, is not this large, the surface velocity u, will be
great enough to nullify equation (4.62) and make the boundary layer
diffusion equation take a form like (2:27), i.e.

Bcjox = Do %/, (4.75)

where i is the stream function and

x = b {m(s'Wouo(s") d, (4.76)

where s measures arc length from the front stagnation point (af for a
sphere) and m(s) is distance from the axis of symmetry to the bubble
surface (a sin & for a sphere). Of course, this set of equations is difficult to
work with if #, is one of the unknowns, and calculations can be found in
the literature only for #, = v, sin 6 (see Section IV,E), the form it takes for
surfactants so dilute that the motion is hardly affected. Authors who
assume u, == ¥, sin & in other circumstances may be overoptimistic.

H. INsSOLUBLE SURFACTANTS

So far, we have considered bubbles moving through solutions of surface-
active material when their interfaces have reached a steady state, in which
the total rate of diffusion to the more sparsely covered parts of their surfaces
balances the rate of diffusion away from the more heavily covered parts. If
the surfactant is very strong (i.e. the mamogmcu depths A, are very large)
it may happen that the latter process is very slow. (A characteristic time
for it is mSQo:zw the smaller value of %,8,/D,.} Then we may consider
bubbles to be rising with a constant amount of surfactant adsorbed, and
bulk diffusion can be neglected. If so, Eq. (4.42) simplifies to

allu, = D, a11/26, (4.77)

N
mw Nm\,




122 J. F. Harper

if the bubble is spherical, and so IT increases by a factor e while & increases
by the amount au,/D,, i.e.

.I: Q QRH_A%__V _.
:1:9 969 bm %v . Aﬁmu

The surface shear stress p,, is (1/a)(811/06) = Iuy[D, if the surface
excess is small enough, and p,, never exceeds O(Un,/a) at low Reynolds
numbers. Therefore either II or 1, is small at each point around the bubble,
and the bubble tends to reach a state in which u, is of order U over a part
of the surface where II is very small and may be neglected, whereas
1g € U over the remainder. The transition region between the two parts
has small angular extent at Jarge Péclet numbers, but its details have not
been elucidated.

Theories for the motion of such bubbles have been developed by
several authors. They all consider the transition between a tangentially
stress-free and rigid surface to occur suddenly at an angle 8 == 6*. Savic

(1953} began this work both experimentally and theoreticallyfer-bubbles. -

Griffith (1962) reported many observations on drops and suggested an
approximate method for adapting Savic’s theory to them. The theory for
bubbles has since been improved by Davis and Acrivos (1966), who used a
series expansion for the shear stress in the range where it was nonzero, and
found the coefficients by minimizing the velocity in that range.

Davis and Acrivos found rather sudden transitions from free to rigid
behavior of bubbles in a given liquid as their diameter decreased, with
n = —4 in the notation of (4.58), whereas Levich’s (1962) theory gives a
more gradual change with # = — £. Experiments (Bond and Newton, 1928;
Griffith, 1962) may give either type, and vary widely among themselves.

I. SLow ADSORPTION

Levich (1962) mentions the possibility that the transfer of adsorbed
solute from regions of high to low surface excess through the bulk solution
might be hindered by slowness of adsorption or desorption, i.e. that there
might be an ‘“activation energy” barrier between the dissolved and
adsorbed states of a surfactant. His equation (74.18) implies that # = —1
in our Eq. (4.58) for a surfactant whose energy barrier controls its adsorp-
tion. In this review such barriers have been ignored. We take the view that
no convincing experimental evidence for their existence has yet been put
forward, except possibly for systems with several interacting surface-active
components. :

Many workers who have measured the surface tension of freshly formed
liquid surfaces disagree, but Defay and Hommelen (1958a) found no
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measurements on surfactant solutions in which proper allowance was made
for the effect of the fluid motion on the surfactant distribution. It is, of
course, impossible to alter the area of a fluid surface without sctting the
fluid in motion.

Hansen et al. (1958), Defay and Pétré(1962), and Hansen (1964) have made
a start on determining short-term hydrodynamical effects in vibrating-jet
measurements of surface tension. It seems that surface ages can be over-
estimated by a millisecond or so, and surface tensions can be overestimated
by a few percent in the first few milliseconds. This casts some doubt on
the suggestion of Tsonopoulos et al. (1971} that Defay and Hommelen’s
(1958b) experimental results imply an adsorption barrier for hexanol. For
surface ages of several seconds the hydrodynamics may no longer be a
problem, but evaporation of the solute may simulate an adsorption barrier
with higher alcohols such as decanol (Defay and Hommelen, 1959b).

The above comments apply to systems in which chemical reactions
between the components can be ignored. When several reacting surface-
active substances are present, it may happen that an element of fluid
in the bulk solution contains an equilibrium mixture, but the mixture is no
longer in chemical equilibrium if brought to the surface when each com-
ponent adsorbs according to its own value of % = I'[c. If so, the approach
to surface equilibrium may be delayed by the slowness of the reactions
restoring equilibrium among the various chemical components. Hansen
and Wallace (1959) found some evidence for this in organic acids, which are
known to exist in ionized, unionized, and associated forms. Defay and
Hommelen (1959b) found that a slow reaction occurred for the dibasic
azelaic acid HO,C(CH.,),CO,H.

Reaction times of the order of milliseconds are the most important for
bubbles, because a bubble small enough to be appreciably affected by
surfactants rises through its own diameter in a few milliseconds in water.
Unfortunately, there is no very good method of measuring surface tensions
which vary as rapidly as this (Defay and Hommelen, 1958a, 195%a; Defay
and Pétre, 1962; Wegener and Parlange, 1964; reviewed by Defay et al,
1966). Another complication is that dissolved ions, especially polyvalent
ones, may modify the molecular structure of the water in their neighbor-
hood enough to affect the behavior of bubbles. Zieminski and Whittemore
(1971) discussed their experiments on bubble coalescence from this point
of view, but admit that it is controversial.
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