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COMPUTABILITY

We work with idealised computers. They input and output finite
binary strings, and give rise to (partial) computable functions.

A set is computably enumerable if it is the range of a
computable function.



REALS

There is an (almost) bijection between the set of reals in [0, 1]
and the set of infinite binary strings.

This allows us, for example, to use reals as oracles for
computers.



OPEN SETS

Recall that a basis for a topology for R consists of open
intervals B(q, r) with rational centre and rational length.

DEFINITION
An open set O ⊂ R is computably enumerable if the set

{(q, r) : B(q, r) ⊆ O}

is computably enumerable.



RELATIVISATION

Using a real as an oracle, computers may be able to enumerate
more sets. This gives rise to more open sets: if a is a real, then
an open set O ⊂ R is computably enumerable in a if

{(q, r) : B(q, r) ⊆ O}

is c.e. in a.

FACT
Every open set can be enumerated by some real.



UNIFORMITY

A sequence of c.e. open 〈On〉 sets is uniformly enumerable if,
effectively in n, we can enumerate the basic intervals contained
in On.
That is, if

{(n, q, r) : B(q, r) ⊆ On}

is computably enumerable.



EFFECTIVELY Gδ SETS

DEFINITION
A set A ⊂ R is effectively Gδ if it is the intersection of a
sequence of uniformly c.e. open sets.

Complements of effectively Gδ sets are effectively Fσ.



STRONGLY RANDOM REALS

DEFINITION
A real a is strongly random if it is not an element of any
effectively Gδ set of measure 0.



MARTIN-LÖF RANDOMNESS

Let A =
⋂

n Wn be an effectively Gδ set. Then the measure of A
is zero iff µ(Wn) → 0.

DEFINITION
A Martin-Löf test is an effectively Gδ set A of measure 0 such
that there is a uniformly c.e. sequence 〈Wn〉 such that
A =

⋂
Wn and µ(Wn) → 0 effectively.

A real is Martin-Löf random if it is not the element of any
Martin-Löf test.



KOLMOGOROV COMPLEXITY

Let f be a computable function, and suppose that σ and τ are
strings and that f (σ) = τ . Then we call σ a description of τ .

For a definite notion of complexity, we use a universal function,
one that simulates all others.

We then let K (τ) be the length of a shortest description of τ .



A string τ of length n is called incompressible if K (τ) > n.

THEOREM (LEVIN, CHAITIN)
A real a is Martin-Löf random iff every initial segment of a is
incompressible.



ANTI-RANDOMNESS

A string τ of length n is called very compressible if
K (τ) 6 K (n).

DEFINITION
A real a is K -trivial if every initial segment of a is very
compressible.



LOWNESS FOR RANDOMNESS

Relativising effecive open sets gives relativisation of all other
notions, including randomness.

DEFINITION
A real a is low for Martin-Löf randomness if every real which is
ML-random is also ML-random relative to a.

Similarly we can define lowness for strong randomness.



LOWNESS FOR COMPLEXITY

We can also relativise Kolmogorov complexity.

DEFINITION
A real a is low for K if K 6+ K a.



THEOREM (DOWNEY, HIRSCHFELDT, NIES)
The following are equivalent for any real a:

I a is K -trivial.
I a is low for ML-randomness.
I a is low for K .



DOMINATION

Let f , g : N → N. We say that f dominates g if for all but finitely
many n we have g(n) < f (n).

for any f : N → N, let D(f ) be the collection of all functions that
are dominated by f .



A.E. DOMINATION

For any real a, let C(a) denote the collection of all function
g : N → N that are computable from a.

DEFINITION
We say that a real a dominates a real b if every function
computable from b is dominated by some function computable
from a. That is,

C(b) ⊂
⋃

f∈C(a)

D(f ).

A real a is a.e. dominating if the collection of reals b which are
dominated by a has full measure.



UNIFORM DOMINATION

We say that a function f dominates a real b if every function
computable from b is dominated by f . That is, if

C(b) ⊂ D(f ).

A function f is uniformly a.e. dominating if the collection of reals
which are dominated by f has full measure.

A real is uniformly a.e. dominating if it computes some function
that is uniformly a.e. dominating.



MOTIVATION

Lebesgue measure is regular: for every measurable set A,
I µ(A) is the infimum of the measures of open sets

containing A; and
I µ(A) is the supremum of the measures of closed sets

contained in A.
It follows that there is an Fσ set B and a Gδ set C such that
B ⊆ A ⊆ C and such that µ(A) = µ(B) = µ(C).

THEOREM (DOBRINEN AND SIMPSON)
A real a is uniformly a.e. dominating iff for every effectively Gδ

set C, there is some set B which is effectively Fσ relative to a
such that B ⊂ C and µ(B) = µ(C).



EXISTENCE

THEOREM (KURTZ)
The halting problem is uniformly a.e. dominating.

A real a is called incomplete if it does not compute the halting
problem.

THEOREM (CHOLAK, GREENBERG, AND MILLER)
There is a c.e., incomplete, uniformly a.e. dominating real.



EXISTENCE

THEOREM (KURTZ)
The halting problem is uniformly a.e. dominating.

A real a is called incomplete if it does not compute the halting
problem.

THEOREM (CHOLAK, GREENBERG, AND MILLER)
There is a c.e., incomplete, uniformly a.e. dominating real.



HIGHNESS

The halting set can be relativised. The halting set relative to a
real a is denoted by a′.

A real a is called high if a′ computes 0′′.

THEOREM (MARTIN)
A real a is high iff there is some function f , computable from a,
which dominates all computable functions.

It follows that every uniformly a.e. dominating real is high.

THEOREM (GREENBERG AND MILLER; BINNS,
KJOS-HANSSEN, LERMAN, AND SOLOMON)
There is a high real that is not uniformly a.e. dominating.
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ALMOST COMPLETE REALS

A real a is called almost complete if 0′ is low for
ML-randomness relative to a.

REMARK (MILLER)
For any two reals a and b, the following are equivalent:

I a is low for ML-randomness relative to b (that is, every
random relative to b is random relative to a;)

I a is low for K relative to b (that is, K b 6+ K a.)



LOWNESS

Lowness for randomness implies “traditional” lowness.

DEFINITION
A real a is called low if 0′ computes a′.

THEOREM (NIES)
Every K -trivial real is low.

COROLLARY
Every almost complete real is high.



POSITIVE DOMINATION

DEFINITION
A real a is positively dominating if for every effectively
continuous function Φ from R to NN whose domain has positive
measure, the collection of reals b ∈ dom Φ such that Φ(b) is
dominated by some function computable in a has positive
measure too.

LEMMA
A real a is positively dominating iff for every effectively Gδ set C
of positive measure, there is some set B which is effectively Fσ

relative to a such that B ⊂ C and µ(B) > 0.
Positive domination is implied by a.e. domination.



POSITIVE DOMINATION AND ALMOST COMPLETENESS

THEOREM (HIRSCHFELDT AND KJOS-HANSSEN)
The following are equivalent for any real a:

I a is positively dominating.
I a is almost complete.



STRONG ALMOST COMPLETENESS

Strong randomness yields its own lowness and almost
completeness notions:

DEFINITION
A real a is low for strong randomness if every strongly random
real is also strongly random relative to a.

DEFINITION
A real a is strongly almost complete if 0′ is low for strong
randomness relative to a, that is, if every real which is strongly
random relative to a is also strongly random relative to the
halting problem.



STRONG ALMOST COMPLETENESS IMPLIES ALMOST

COMPLETENESS

THEOREM (DOWNEY, NIES AND WEBER)
Every real which is low for strong randomness is also low for
ML-randomness.

COROLLARY
Every real which is strongly almost complete is almost
complete.



STRONG ALMOST COMPLETENESS AND UNIFORM

DOMINATION

THEOREM
The following are equivalent for a real a:

I a is strongly almost complete.
I a is uniformly a.e. dominating.



THE CONCLUSION

THEOREM (MILLER)
A real is low for ML-randomness iff it is low for strong
randomness.

COROLLARY
A real is almost complete iff it is strongly almost complete.

COROLLARY
The following are equivalent for a real a:

I a is positively dominating.
I a is a.e. dominating.
I a is uniformly a.e. dominating.



WHAT’S LEFT? 1. REVERSE MATHEMATICS

Recall that ACA0 ` WKL0 ` WWKL0 ` DNR0 ` RCA0.
ACA0 implies Gδ − REG, and WKL0 does not.

THEOREM (CHOLAK, GREENBERG AND MILLER)

I RCA0 + Gδ − REG doesn’t imply DNR0.
I WWKL0 + Gδ − REG doesn’t imply WKL0.
I WKL0 + Gδ − REG doesn’t imply ACA0.

QUESTION

Does Gδ − REG + DNR0 imply WWKL0?



WHAT’S LEFT? 2. ML CUPPING

A real a ML-cups if there is some incomplete random r such
that a and r together compute 0′.

THEOREM (NIES)
If a doesn’t ML-cup then a is K -trivial.
The converse is unknown.

It is known that if a K -trivial a does ML-cup via some random r,
then r is almost complete.

There are K -trivial reals that are computable from every almost
complete random real, and so do not ML-cup.

QUESTION

Is every K -trivial computable from every almost complete
random real?



WHAT’S LEFT? 3. STRONG JUMP TRACEABILITY

Figueira, Nies, and Stephan define strongly jump traceable
reals. This is a combinatorial notion.

THEOREM (DOWNEY AND GREENBERG)

I Every c.e. strongly jump-traceable real is K -trivial, indeed,
does not ML-cup.

I There is a K -trivial real that is not a strongly
jump-traceable real.

I Every strongly jump-traceable real is computable from 0′

(in particular, there are only countably many.)

QUESTION

Is every strongly jump-traceable real K -trivial?



WHAT’S LEFT? 4. AND FINALLY —

QUESTION

Is there a direct proof that a.e. domination implies uniform a.e.
domination?


	Traceability

