Continuous higher randomness

Noam Greenberg Work with Laurent Bienvenu and Benoit Monin

Victoria University of Wellington

28th June 2013

Higher randomness and continuity

Let $\langle L_e\rangle_{e<\omega}$ be an effective list of all computable linear orderings. Recall that

 $CWO = \{ e < \omega : L_e \text{ is a well-ordering } \}$

is Π_1^1 -complete. That is, a set $A \subseteq \omega$ is Π_1^1 if and only if it is *m*-reducible to CWO.

Informally, this shows that Π_1^1 sets are in some sense "generalised c.e.". If A is Π_1^1 and f is an *m*-reduction of A to CWO, then we say that $n \in A$ is enumerated into A at stage otp(f(n)).

For example, consider the reduction property. If *A*, *B* are c.e., and $A \cup B = \omega$, then there are c.e. $\hat{A} \subseteq A$ and $\hat{B} \subseteq B$ which partition ω : for each $n < \omega$, put *n* into \hat{A} if *n* enters *A* before it (perhaps) enters *B*.

Similarly, suppose that *A*, *B* are Π_1^1 , and $A \cup B = \omega$; let *f*, *g* be *m*-reductions of *A*, *B* to CWO. Let $\hat{A} = \{n \in A : \operatorname{otp}(f(n)) \leq \operatorname{otp}(g(n))\}$ and $\hat{B} = \{n \in B : \operatorname{otp}(g(n)) < \operatorname{otp}(f(n))\}$ (with the obvious interpretation of \leq for ill-founded order-types).

This intuition can be formalised using a set theoretic understanding of computability. Recall that a set $A \subseteq \omega$ is c.e. if and only if it is Σ_1 -definable (with parameters) in the structure (H_{ω}, ϵ) .

What makes the basic theorems of computability work is that H_{ω} is admissible: the image of every finite set by a computable function is bounded below ω .

The structure $L_{\omega_1^{ck}}$ is admissible as well (this follows from Spector's Σ_1^1 bounding principle). Call a subset of $L_{\omega_1^{ck}}$ c.e. if it is Σ_1 -definable in that structure (with parameters). A set $A \subseteq \omega$ is c.e. if and only if it is Π_1^1 .

Computable enumerability is the most basic concept in recursion theory; everything else can be derived from it. For example, a set is computable if it is c.e. and co-c.e.

Similarly, a set $\mathcal{U} \subseteq 2^{\omega}$ is effectively open if it is generated by a c.e. set of strings.

Definition (Hjorth, Nies)

A ML test is a sequence $\langle \mathcal{U}_n \rangle$ of uniformly effectively open sets with $\lambda(\mathcal{U}_n) \leq 2^{-n}$. The test captures $\bigcap_n \mathcal{U}_n$. MLR is the set of reals not captured by any ML test.

Theorem (Schnorr,Levin;Hjorth,Nies)

The following are equivalent for $X \in 2^{\omega}$:

- **1.** *X* ∈ MLR.
- **2.** $K(X \upharpoonright_n) \ge^+ n$.

Some work is needed because it is not the case that every effectively open set is generated by a c.e. antichain. Some approximation is required.

Randomness and computability

For a Turing operator Φ and a string $\sigma,$ let

$$\Phi^{-1}[\sigma] = \{ \mathsf{Y} \in \mathsf{2}^{\omega} : \Phi(\mathsf{Y}) \ge \sigma \}.$$

(This may contain reals on which Φ is not total).

Theorem (Levin,Zvonkin;Miller,Yu)

The following are equivalent for $X \in 2^{\omega}$:

- **1.** *X* ∈ MLR.
- **2.** For any Turing operator Φ , $\lambda \left(\Phi^{-1}[X \upharpoonright_n] \right) \leq^{\times} 2^{-n}$.
- **3.** For every A and Φ , if $\Phi(A) = X$ then the use $\varphi(A, n) \ge^+ n$.

(2) is the continuous analogue of the discrete measure (prefix-free complexity) characterisation of randomness, and is essentially the same as the supermartingale characterisation of randomness.

The same holds for MLR, but we need to identify what operators we use. A Turing operator is a c.e. set of pairs (σ, τ) (the pair says that with an oracle extending σ outputs τ). We write $A \leq_T B$ if there is a Turing functional Φ such that $\Phi(B) = A$.

However, note that $\lambda(\Phi^{-1}[\sigma])$ is a supermartingale if Φ is consistent. In countable world this is not an issue. In the higher setting, it is. Interlude: think why we can't always get consistency.

Why would we consider inconsistent functionals?

First reason: "philosophical". Computable^B should mean c.e.^B and co-c.e.^B

If we require continuity, there is only one way to define **c.e**.^{*B*}:

Definition

A c.e. operator is a c.e. set of pairs $(\sigma, x) \in 2^{<\omega} \times \omega$. For $B \in 2^{\omega}$ and a c.e. operator Φ , we let

$$\Phi(B) = \{ x : \exists \sigma < B. \ (\sigma, x) \in \Phi \} .$$

Sets of this form are called *B*-c.e.

Second reason: practical. Consider for example:

Theorem (Hirschfeldt, Miller)

If $X \in MLR \setminus W2R$ then there is some noncomputable c.e. set $A \leq_T X$.

The proof does not give a consistent functional. Or:

Theorem (Franklin,Ng;Yu)

The following are equivalent for $X \in MLR$:

▶ X fails a difference test: there is a sequence $\langle \mathfrak{U}_n \rangle$ of uniformly effectively open sets and an effectively closed set \mathfrak{P} such that $\lambda(\mathfrak{P} \cap \mathfrak{U}_n) \leq 2^{-n}$ and $X \in \mathfrak{P} \cap \bigcap_n \mathfrak{U}_n$.

► $X \ge_{\mathsf{T}} O$.

(some more work is needed).

Theorem (van Lambalgen)

 $A \oplus B \in MLR$ if and only if $A \in MLR$ and $B \in MLR^A$.

A corollary of Levin-Zvonkin:

Theorem (Miller,Yu)

Suppose that C is a test-based, reasonable randomness notion stronger than MLR. Then C is downward-closed in the \leq_T -degrees of MLR.

(inconsistency must be dealt with).

Stronger notions of randomness

We mentioned in passing weak 2 randomness.

Theorem (Yu,Chong)

A left-c.e. random real is not weak 2 random.

They used the Lebesgue density theorem.

Simple proof.

Let $A = A_{\omega_1^{ck}} = \lim_{s < \omega_1^{ck}} A_s$, a monotone approximation. The set

$$\mathcal{D} = \left\{ \mathsf{A}_{\mathsf{s}} \, : \, \mathsf{s} \leqslant \omega_1^{\mathsf{ck}} \right\}$$

is closed. Let

$$\mathcal{U}_n = \bigcup_{s < \omega_1^{\mathsf{ck}}} [\mathsf{A}_s \upharpoonright_n].$$

Then $\bigcap_n \mathcal{U}_n = \mathcal{D}$. It is countable, and so null.

Corollary

Every weak 2 random real is difference random.

The converse of Hirschfeldt-Miller is not known.

Theorem (folklore?)

A real X is weak 2 random if and only if it is not captured by a test $\langle \mathfrak{U}_n \rangle$ with $\lambda(\mathfrak{U}_n) \leq 2^{-n}$ and $\mathfrak{U}_n = [W_{f(n)}]$ for some $f \leq_T \emptyset'$.

That is, $W2R = MLR\langle \emptyset' \rangle$. The higher analogue fails, because there is an *O*-computable $X \in W2R$ (Kleene basis theorem). Again, think of the time trick required.

Theorem

The following are equivalent for $X \in MLR$:

- $X \notin \mathsf{MLR}\langle O \rangle$.
- X is captured by a 'long test': a test $\langle \mathfrak{U}_{\alpha} : \alpha < \omega_{1}^{\mathsf{ck}} \rangle$, uniformly c.e., with null intersection.
- X computes a noncomputable c.e. subset of ω_1^{ck} .
- ▶ There is some O-computable non-c.e. set $A \subseteq \omega$ which is c.e.^X

Π_1^1 randomness

Theorem (Kechris)

There is a greatest null Π_1^1 set.

Its complement is the collection of Π_1^1 -random reals. Since Π_1^1 is closed under number quantification, Π_1^1 randomness implies weak 2 randomness. Again because of the basis theorem, it does not imply MLR $\langle O \rangle$.

Question (Nies,Yu)

- Is Π_1^1 -R = W2R?
- What is the Borel rank of Π_1^1 -R?

Remark (Chong,Nies,Yu)

For $X \in MLR$, $X \in \Pi_1^1$ -R if and only if $\omega_1^X = \omega_1^{ck}$.

Steel showed that the Borel rank of reals which preserve $\omega_1^{\rm ck}$ is $\omega_1^{\rm ck}+{\rm 2.}$

The Borel rank of Π_1^1 -R

Theorem Π_1^1 -R is Π_3^0 (and not Σ_3^0).

Why? Regularity behaves:

Lemma

Let \mathcal{G} be Π_1^1 . For every $\epsilon > 0$ there is an effectively closed set $\mathcal{P} \subseteq \mathcal{G}$ with $\lambda(\mathcal{G} - \mathcal{P}) < \epsilon$.

Lemma

Let $X \in MLR$. Then $X \in \Pi_1^1$ -R if and only if for any effectively G_δ set \mathcal{G} there is some effectively closed $\mathcal{P} \subseteq \mathcal{G}$ of positive measure containing X.

In fact, O can tell if an effectively closed set is null, and if it is contained in a given effectively G_{δ} set. Hence:

Theorem MLR $\langle O \rangle \subset \Pi_1^1$ -R.

 $\mathsf{MLR}\langle O\rangle \subset \mathsf{H}_1^*\mathsf{-R}.$

We still do not know if Π_1^1 -R = W2R. A positive answer will be a strong converse to Hirschfeldt-Miller.

Lowness for randomness

K-triviality

Hjorth and Nies constructed noncomputable, *K*-trivial sets, but showed that lowness for Π_1^1 -MLRand lowness for *K* are identical with being computable.

However, they did not use continuous relativisation.

Theorem

The following are equivalent for $A \in 2^{\omega}$:

- **1.** A is K-trivial.
- 2. A is low for K (but we need to say what this means!)
- 3. A is low for MLR.
- 4. A is a base for MLR.

