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Degree spectra

Recall that for a countable structure M in a computable language L,
the Turing degree of M is the degree of the uniform join of the
interpretation of the nonlogical symbols of L in M. The Turing
degree of M is also the degree of the atomic (or quantifier-free)
diagram of M.

Definition
The degree spectrum of a countable structure M is the collection of
Turing degrees of isomorphic copies of M.

We write Spec(M).



A research programme

Characterise the sets of degrees that are degree spectra of
structures.

Motivating idea: classes of degrees that are not cones cannot be
captured entirely by sets of natural numbers. But a countable
structure nevertheless “captures” its spectrum.



A structure theorem

Theorem (Knight)

Let M be a structure. Either

1. Spec(M) = {0}; or
2. Spec(M) is closed upwards in D.



Examples and nonexamples

I Every upper cone is a degree spectrum.

I But a finite or countable union of incomparable cones is not a
degree spectrum.



A subprogramme

Which complements of ideals of D are degree spectra?

Naturally we focus on countable ideals. In particular:

For which degrees d is D(
 d) a degree spectrum?



The simplest ideals

Theorem (Slaman;Wehner)

D \ {0} is a degree spectrum.

Theorem (Kalimullin)
D \∆0

2 is a degree spectrum.



Large spectra

Every degree spectrum is ΣΣΣ1
1, and so is measurable. Since it is a set

of degrees, it is either null or co-null.

The complements of countable ideals are co-null.



The bounding theorem

Theorem (GMS;Nies,Kalimullin)

If Spec(M) is co-null, then O ∈ Spec(M).

In fact, every Π1
1-random set is in Spec(M); note that O computes

Π1
1-random sets.

Corollary

There are only countably many structures M such that Spec(M) is
co-null.

Corollary

There are only countably many countable ideals I of D such that
D \ I are degree spectra. There are only countably many degrees d
such that D(
 d) is a degree spectrum.



Proof of the bounding theorem

Suppose that Spec(M) is co-null. There is a Turing functional Φ such
that

λ {X ∈ 2ω : Φ(X) ∼= M} > 1/2.

Let
B = {(X, Y) : Φ(X) ∼= Φ(Y)} .

Then B is Σ1
1. Then

C = {X : λBX > 1/2}

has positive measure, is Σ1
1, and is contained in Spec(M).



Is the O-bound sharp?

We cannot improve the bound O in the bounding theorem to a
hyperarithmetic degree.

Theorem
The collection of nonhyperarithmetic degrees is a degree spectrum.



Construction of a universally

nonhyperarithmetic structure

Relativising the Slaman-Wehner theorem, we get, for any
computable ordinal α, a structure Mα such that

Spec(Mα) ∩D(> 0(α)) = D(> 0α).

Inverting the α-jump (Ash), we get a structure Nα whose degree
spectrum is the collection of non-lowα degrees:

Spec(Nα) =
{

d : d(α) > 0(α)
}
.

Observation: A degree is hyperarithmetic if and only if it is lowα for
some α.
Hence a “stringing” of all the structures Nα for α < ωCK

1 should work.
However, this stringing cannot be done computably, as O is Π1

1.
Solution: work with a non-standard extension of O (overspill). For
nonstandard α, the “no” and “yes” fibers of Nα are isomorphic, and
so Nα is computable.



Capturing randomness precisely

Theorem (J. Miller)

If Spec(M) is co-null, then it contains a non-random set.

So an algebraic structure cannot capture a notion of randomness



Capturing genericity

Unlike randomness, notions of genericity can be algebraically
captured. The following theorem follows from an careful
examination of a theorem of Kumabe and Slaman’s.

Theorem
The collection of array nonrecursive degrees is a degree spectrum.

(Recall that the array nonrecursive degrees are those that compute
pb-generic sets.)



Separating randomness and genericity

Note that the collection of array nonrecursive degrees is null (every
2-random degree is array recursive).

We can also separate randomness and genericity in the other
direction:

Theorem
There is a degree spectrum which is meagre and co-null.



Weaker reducibilities

The fact that the collection of nonhyperarithmetic degrees is a
degree spectrum, implies that the analogue of the Slaman-Wehner
theorem holds in the hyperdegrees.

Going further up fails.

Theorem
The Slaman-Wehner theorem fails for the degrees of
constructibility. That is, if for every nonconstructible real X, L[X]
contains a copy of M, then M has a constructible copy.



Constructible structures

Suppose that for every nonconstructible X ∈ 2ω, there is a copy of
M in L[X].

For every X, fix a bijection jX from ω
L[X]
1 to 2ω ∩ L[X]. Since ω1 is

inaccessible from reals, for almost all X, ωL[X]
1 = ωL

1.
The relation Y = jX(α) is ∆1

1(R) in any real code R for α. Hence there
is some α < ωL

1 such that the collection of X such that jX(α) ∼= M is
non-null.
An argument as above now shows that there is a copy of M
constructible from OR, where R codes α. We can find such R in L.



A finer analysis

A more delicate programme is to classify the collections of degrees
which are degree spectra of structures in a given class. For
example, one asks what are the degree spectra of linear orderings.
There are some restrictions:

Theorem (Richter)

The only cone which is the degree spectrum of a linear ordering is
D.

Question

Is there a linear ordering L such that Spec(L) = D \ {0}?



Structures that capture nonhyperarithmeticity

Theorem
There is a linear ordering L whose degree spectrum is the collection
of nonhyperarithmetic degrees.

Theorem
There is no structure whose theory is uncountably categorical,
whose degree spectrum is the collection of nonhyperarithmetic
degrees.

Question

Is there a stable one?



The complements of cones

Theorem (Kalimullin)

For any r.e. degree d, D(
 d) is a degree spectrum. There is a
degree d < 0′′ such that D(
 d) is not a degree spectrum.

Nothing else is known.



Further questions

Question

Is D(
 0′′) a degree spectrum?

Question

Is the collection of nonarithmetic degrees a degree spectrum?

Question

If D(
 d) is a degree spectrum, is d hyperarithmetic?


