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Abstract. We answer the question: which levels of Selivanov’s fine hierarchy

contain new Turing degrees?

1. Introduction

Selivanov and Yamaleev [SY18a] asked a natural question: at what levels of the
fine hierarchy do we get new Turing degrees? The fine hierarchy is an analogue
of Wadge’s hierarchy of Borel pointclasses, ordered by inclusion. For a survey
see [Sel08]. In the paper [GQT] we showed how to extend the fine hierarchy to all
levels of the hyperarithmetic hierarchy.

Cooper [Coo71] showed that there is a d.c.e. set that is not Turing equivalent to
any c.e. set. This was extended to the finite levels of the difference hierarchy [JS84],
[Sel85], answering the question for the first ω levels of the fine hierarchy. Selivanov
and Yamaleev showed, however, that the pω ` 1q-st level, while containing more
sets, does not contain any new Turing degrees; however the pω ` 2q-nd level does.
In [SY18b], the authors extended their result from ω ` 2 to ω ` n for all natural
n ě 2. In [MSY20], Melnikov, Selivanov and Yamaleev showed that the level ωω`2
contains new Turing degrees, using a complicated 0p3q-priority argument.

In this paper we answer the main question, explicitly posed in [SY18b].

Theorem 1.1. Let α ă ωck
1 be an ordinal which is not the successor of a limit,

and let Γ be the class at level α of the extended fine hierarchy. There is a set A P Γ
that is not Turing equivalent to any set in ∆pΓq.

To prove the theorem, we use two main tools. Since we need to approximate
sets that are arbitrarily high in the hyperarithmetic hierarchy, we need to use the
method of iterated priority arguments, originally due to Ash [Ash86] and Har-
rington (unpublished, see [Kni90a, Kni90b]), made more dynamic in [Mon14] and
somewhat simplified in [GT22] (a non-effective version was introduced indepen-
dently in [DSR07]). To be able to consider all the complicated combinations that
yield the levels of the fine hierarchy, we need a method for dynamically approxi-
mating sets in these classes. To do that, we use the descriptions of the classes in the
extended hierarchy, that we introduced in [GQT], following work in [DGHTT] and
[GT]. These are descriptions that generalise descriptions of Borel Wadge classes,
given by Louveau [Lou83] and by Louveau and Saint Raymond [LSR88].

Throughout the paper, we use the notation and terminology that we introduced
in [GQT]. Using these, Theorem 1.1 says that if Γ is finitely described and δpΓq ą 1
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is not the successor of a limit, then there is some A P Γ that is not Turing equivalent
to any set in ∆pΓq.

Before we embark on the proof, let us first we explain the restriction on δpΓq.

Proposition 1.2. Suppose that δpΓq “ α`1, where α is a limit. Then every A P Γ
is Turing equivalent to some set in ∆pΓq. Indeed, it is Turing equivalent to some
set in Λ, where Λ is the predecessor of Γ (the class with δpΛq “ α).

Proof. By [GQT, Prop. 5.19] (see [GQT, Exmp. 5.18]), Γ ” Λ` (or its dual; of
course, up to Turing degree, this does not make a difference). Let P P Γ; so there
are disjoint c.e. sets C1 and C2, and sets A P Λ and B P Λ̌, such that

P “ pC1 XAq Y pC2 XBq

(see the argument for the containment of Λ` “ SU0,1pΛ,0q in BiSeppΣ0
1,Λ, tHuq

in the proof of [GQT, Lem. 4.15]; that step did not rely on the admissibility of
Λ`). By [GQT, Prop. 5.20], Λ and Λ̌ are closed under taking intersections with ∆0
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sets; so C1 X A P Λ and C2 X B P Λ̌. Since Λ is closed under taking joins ([GQT,
Prop. 2.7]), the join pC1 X Aq ‘ pC2 X Bq is Turing equivalent to a set in Λ. And
P is Turing equivalent to that join: in one direction, from the join of two sets we
can easily compute their union. In the other direction, to tell if x P pC1 X Aq, and
if x P pC2 X Bq, we ask if x P P . If the answer is “no”, then the answer to both
questions is “no”. If the answer is “yes”, then the answer to one of these questions
is “yes” and the other “no” (as C1 and C2 are disjoint). To tell which, we wait
until x is enumerated into either C1 or C2. □

2. Acceptable descriptions

For calculating heights of sets in the extended fine hierarchy, we used admissible
descriptions, ones in which non-default outcomes have to increase the ordinal level
of the class. For the proof of Theorem 1.1, it will be convenient to use another kind
of finite class descriptions, that will make our book-keeping simpler.

Definition 2.1. A finite class description Γ is acceptable if it is efficient, and for
every internal node σ P TΓ, ησ “ 1.

That is, only one change is allowed, and we may assume that this one change
is from the default outcome to some non-default outcome. Acceptable class de-
scriptions were used in [DGHTT] for the proof, presented in that paper, of the
Louveau and Saint Raymond separation theorem. These are close to the “type 2
descriptions” used in [LSR88].

Proposition 2.2. Every finitely described class has an acceptable description.

Proof. By [GQT, Lem. 4.5 and Prop. 4.11], it suffices to show that for every very
admissible class description ([GQT, Def. 4.6]) there is an equivalent acceptable de-
scription. This is shown by induction on the complexity of the very admissible
description. Thus, it suffices to give an acceptable description Γ equivalent to
SUξ,npΘ,Λq, where Λ Ď Θ are acceptable, opΛq ě ξ and opΘq ą ξ. There are
two cases. If Λ “ Θ, then we let Γ be the class description given in Fig. 1, where
Θk “ Θ for even k, and Θk “ Θ̌ for odd k.

If Λ ă Θ then we let Γ be the class description given in Fig. 2, with the same
definition for the Θk’s.
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Figure 1. Acceptable description, case I
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ξ, 1

Θ0
ξ, 1

Θn´1 Θn

ξ, 1

Θ̌0
ξ, 1

Θ̌n´1 Θ̌n

Figure 2. Acceptable description, case II: Λ ă Θ.

That Γ is equivalent to SUξ,npΘ,Λq follows from [GQT, Prop. 3.12]; it is similar
to the argument of [GQT, Exmp. 3.13]. In the first case, we use the equivalence
with the description in [GQT, Fig. 5]. □

For the proof of Theorem 1.1, we will need not only Proposition 2.2; we will need
its proof, i.e., we will need particular properties of the class descriptions shown in
Figs. 1 and 2. For example, one such property is some amount of “predictability”
of labels obtained by taking non-default outcomes. If Γ is a description as in Fig. 1,
then every internal σ P SΓ has exactly one non-default outcome; so if we instruct
these nodes to choose the non-default outcome, we know what leaf of SΓ we will
obtain: the rightmost one. On the other hand, if Γ is as in Fig. 2, there will be two
leaves of SΓ obtained by only taking non-default outcomes; however, both of these
leaves τ satisfy ξτ ă ω1; this follows from the assumption that Λ ă Θ in that case.

3. The main argument

In this section we present the main argument for Theorem 1.1. The proof itself
will be a mild elaboration of this argument. Here we prove the following. Recall
that for any class Γ, we denoted by Γ` the successor class of Γ, the class of Σ-type
with δpΓ`q “ δpΓq ` 1.

Theorem 3.1. For any finitely described Γ, there is a set X P Γ`` which is not
Turing equivalent to any set in Γ`.



4 NOAM GREENBERG, RENRUI QI, AND DAN TURETSKY

To prove Theorem 3.1, we first observe that the theorem is already known for the
classes Γ` “ DnpΣ

0
1q; for every n, there is an pn` 1q-c.e. set not Turing equivalent

to any n-c.e. set, in fact, to any set in ∆pDnpΣ
0
1qq; this is a standard finite injury

construction due to Cooper [Coo71]. We assume henceforth that δpΓq ě ω.

3.1. Preparation and discussion. Let Γ be a finitely described class with δpΓq ě
ω. By Proposition 2.2, we fix an acceptable description of this class, that we also
call Γ. Observe that Γ` and Γ`` are also acceptable. We note however, that as
mentioned above, we will in fact need special properties of the class descriptions
from Figs. 1 and 2, so we assume that Γ (and all sub-descriptions) are of this form;
we will later specify the required properties.

We fix pMeqePω, an effective listing of Γ`-names ([GQT, Prop. 2.8]). We will
build a computable Γ``-name N , and we must satisfy the following requirements:

Re,i,j : ␣rΦ
Me
i “ N ^ ΦN

j “Mes

(Here we are identifying N and Me with the sets that they name.)
The construction must be computable, since the nameN needs to be computable.

It will be a finite injury construction, with additional complexity layered on top.

The salient class descriptions. The descriptions for Γ` and Γ`` are shown in Fig. 3.
We will not be making use of the middle branch of Γ``, so consider the pruned
version shown in Fig. 4. [GQT, Prop. 3.12] implies that this is an equivalent de-
scription.

0, 1

0 Γ Γ̌

0, 1

0
0, 1

0 Γ Γ̌

0, 1

1 Γ̌ Γ

Figure 3. The class descriptions for Γ` and Γ``.

0, 1

0
0, 1

1 Γ̌ Γ

Figure 4. The pruned class description for Γ``.
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The basic diagonalisation strategy. First, we describe the strategy for meeting Re,i,j

in isolation. The interaction between different requirements (and as we will see,
between different followers for the same requirement) will force us to modify this
basic strategy. The very main idea is that us, playing on Γ``, have a “one-step”
advantage over the opponent, who is playing on Γ`. We both start with a default
outcome 0; but we can move to 1, and in response the opponent must choose one of
Γ or Γ̌: we can respond to this choice at a later step. Here is the one-requirement
module.

(1) Choose a witness x; direct Npxq to take the default outcome at the root
(that is, we let fN

xy
px, sq be the default child of the root xy). Since this is

labelled 0, this means setting Npx, sq “ 0 for now. Search for strings τ0
and ρ0 with τ0pxq “ 0, Φρ0

i pxq “ 0, and Φτ0
j ě ρ0. When found, restrain N

to agree with τ0.
(2) For every y with ρ0pyq “ 1, wait until Mepyq has moved off the default

outcome, i.e., wait until we see that fMe

xy
py, sq is a non-default outcome of

the root of TΓ` .
(3) Direct Npxq to take the non-default outcome at the root, and the default

outcome above that. Recall that this is on the pruned description, so this
means setting Npx, sq “ 1. Search for strings τ1 and ρ1 with τ1pxq “ 1,
Φρ1

i pxq “ 1, Φτ1
j ě ρ1, and τ1pyq “ τ0pyq for every y ă |τ0| other than x.

When found, restrain N to agree with τ1. Fix z least such that ρ0pzq ‰
ρ1pzq.

(4) Wait until Mepzq moves off the default outcome at the root of TΓ` .
(5) Mepzq moving off the default outcome amounts to a choice our opponent

is making for Mepzq: it will be evaluated using the Γ-name pMeq1, or the
Γ̌-name pMeq2 (where 1 and 2 here name the two non-default children of the
root on TΓ`q. We respond by choosing a non-default outcome for Npxq at
the non-default child of the root of TΓ`` (call it σ), which similarly chooses

between Γ and Γ̌. The choice of which depends on ρ0pzq:
‚ If ρ0pzq “ 0, then we let define fN

σ px, sq to point to the description

which is the dual of the description fMe

xy
pz, sq is pointing to (so N

chooses Γ if Me has chosen Γ̌, and vice versa). Have N match Me on
the interior nodes of this description.

‚ If ρ0pzq “ 1, then define fN
σ px, sq to point to the same description as

fMe

xy
pz, sq is pointing to. Have N match Me on the interior nodes of

this description.

Note that τ1 is an extension of τ0, except that they disagree on x: |τ1| ě |τ0|
and τ0 and τ1 agree on each y ă |τ0| other than x.

Let us explain why this strategy works:

‚ If we search forever at step (1), then we will have Npxq “ 0; in this case,

either ΦN
j ‰Me or ΦMe

i pxq ‰ 0 “ Npxq.
‚ If we wait forever at step (2), then as 0 is the label of the default child of
the root on Γ`, there is some y with Mepyq “ 0 and ΦN

j pyq “ ρ0pyq “ 1.

‚ If we search forever at step (3), then either ΦN
j ‰ Me or ΦMe

i pxq ‰ 1 “
Npxq.
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‚ If we wait forever at step (4), then Mepzq “ 0. By the fact that we did
not wait at step (2), we have ρ0pzq “ 0, and so ρ1pzq “ 1. Then ΦN

j pzq “
ρ1pzq “ 1 ‰Mepzq.

‚ Suppose otherwise. Since τ1 and τ0 agree on all common entries except
for x, we have N ą τ0 iff Npxq “ 0, and N ą τ1 iff Npxq “ 1. Thus
ΦN

j pzq “ ρ0pzq iff Npxq “ 0.

– If ρ0pzq “ 0, then Npxq “ 1´Mepzq by construction, so ΦN
j pzq “ 0 iff

Mepzq “ 1, and thus ΦN
j pzq ‰Mepzq.

– If ρ0pzq “ 1, then Npxq “ Mepzq by construction, so ΦN
j pzq “ 1 iff

Mepzq “ 0, and thus ΦN
j pzq ‰Mepzq.

In all cases, we guarantee our requirement.

Finding the τs.
The main complexity in this proof comes from locating τ0 and τ1. If N and Me

named c.e. sets, then we could simply let τi be initial segments of a stage s approx-
imation of these sets, whenever we see enough convergence of Φi and Φj . However,
sets in Γ will be a lot more complicated. In particular, since Γ will contain internal
nodes σ with ξσ ą 0, we cannot computably see values of N . A reasonable ap-
proximation to N is only obtained on the true stages, which of course cannot be
identified computably. However, the above strategy for Re,i,j must be carried out
computably (in order to construct a valid name). Thus, we will need to find τ0
and τ1 that may seem unrelated to the current version of N . We need, however, to
be able to at times restrain N so that it extends τ0 and τ1, so not all strings will
be suitable. How then can we know what are good values for these τ?

Fix some y ă |τi| (for some candidate for τi); we need to decide if it is within
our power to restrain the value of N on y. There are two cases: those y which are
witnesses of some strategy, and those y which are not (the second case includes y
which are chosen as witnesses and then discarded because of an injury).

Let us begin by discussing the second case. We will always choose our witnesses
large. Thus, we know that y will never be a witness if it is not a witness when some
larger number is considered in the construction, and also that if y is a witness and
then discarded by injury, it will never again be a witness. When we are certain
that y is not a witness, we will be able to decide any value we need for Npyq. Let
us explain how.

Recall that we are using a description Γ which is of one of the forms given in
Figs. 1 and 2, and further, than δpΓq ě ω. This implies that either 0 ă opΓq ă ω1;
or that opΓq “ 0, and the form is as in Fig. 2 where opΘq ą 0. [The other possibility,
when opΓq “ ω1, or Γ is as in Fig. 1 and opΓq “ 0, gives us the classes with δpΓq ă ω,
namely, tHu, or DnpΣ

0
1q, or their duals.]

In particular, this implies that if τ is any leaf of TΓ that does not extend the
default outcome at the root, then there is some σ ă τ with ξσ ą 0.

Thus, when we see that y is not a witness for any requirement, we do the fol-
lowing:

‚ For any internal node σ of Γ`` with ξσ “ 0, we move fN
σ pyq off the default

outcome of σ (if they are not already off the default outcome). Here σ
includes not only possible nodes in Γ or Γ̌, but also the two nodes below
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the copy of Γ. Thus, we ensure that ℓN pyq passes through some internal
node σ with ξσ ą 0.1

‚ If ξσ ą 0, then σ has access to some positive number of jumps, so it can
tell when injuries will occur and can locate the highest priority uninjured
strategy which chooses some τ with y ă |τ |. When it finds such τ , it
can define its outcome to point to some leaf labelled with τpyq (since Γ is
nontrivial, both 0 and 1 occur amongst its leaves).

Thus, the Re,i,j strategy, when searching for its τ , can consider values of both
0 and 1 at any y which is not a higher priority witness. If it finds a τ , any lower
priority witnesses within the domain will be injured, and the resulting y will set
themselves to be the correct value (under the assumption that the Re,i,j strategy
is not itself injured).

[The reader may ask, if we have the power to set non-witnesses to any value,
why don’t we just declare in advance that we set them all to 0? But this gets the
order of events wrong. The requirement Re,i,j must examine, as candidates for τi,
all strings that are possibly consistent with N . Weaker witnesses will be initialised
only when τi are founded. Until then, we do not know that weaker witnesses will
in fact be later determined to be 0.]

Now, let us consider the first case: y is a witness of some stronger requirement.
To illustrate this, we will consider the action of R0 “ Re0,i0,j0 and R1 “ Re1,i1,j1 .
R0 chooses a witness x0 and acts according to the previously described strategy.
Every time it advances a step along that strategy, R1 is injured. Thus R1 may
assume it knows which step R0 settles at. If R0 settles at any step other than 7,
then Npx0q is determined by the step, and so R1 will know the value of Npx0q.
Thus R1 will be searching for τ which have τpx0q “ Npx0q.

However, if R0 reaches step (7), then Npx0q is determined by the behaviour of
Me0 on some z, in a manner that can involve one or more non-computable limits.
To address this, we will have R1 guess the value of Npx0q. In fact, for ease of
implementation, we will have R1 guess the particular leaf ℓN px0q which is reached,
which then determines Npx0q. Thus R1 will require many witnesses, apparently
one for each possible value of ℓN px0q. In fact, we will require many more, as we
will shortly see.

This creates additional complexity, however. Suppose R1 creates a witness x1

guessing some value of ℓN px0q. We then want to create x2 guessing some other value
of ℓN px0q. However, since x1 is an earlier witness, our search for τ ’s on behalf of x2

must take into account Npx1q. Every time x1 advances a step of the strategy, we
will injure x2, so x2 may assume it knows what step x1 settles at (for this reason
we will no longer speak of requirements being injured, but instead of individual
witnesses being injured). If x1 reaches step (7), then we will again have to guess
the value of ℓN px1q, which will require multiple witnesses for the different values.

It might seem that this will create an infinite regression, with each witness need-
ing to guess the values of previous witnesses, such that we will never be ready to

1Also, our definition of N will be reasonable, in that we never decrease the ordinal βN
σ pyq before

we move off the default outcome. That is, we never lock ourselves into the default outcome. On

the other hand, earlier, when we believed that y was a witness, we may have already moved

fN
σ pyq off the default outcome. Once that happens, we cannot change our mind again. So in the

instruction above, we would not be able to say “once we discover y is not a witness, move fN
σ pyq

to the default outcome.”
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place the witness guessing the third value of ℓN px0q, let alone find witnesses for the
next requirement R2. We escape this trap by making the various x’s promise to
behave themselves, as we will now describe.

Each witness x is based on guesses about the behaviour of previous witnesses.
The witness x promises that if any of those guesses is wrong, then it will behave in
a way which can be partly predicted from how the guess is wrong. Let us consider
again x0 and x1. Suppose x1’s guess about ℓN px0q is wrong, and let σ be the
meet of the true value of ℓN px0q and x1’s guess for ℓN px0q (so σ is the first node
along ℓN px0q which x1 has guessed the wrong outcome for). Let α1 “ ξσ. Then x1

promises that in Npx1q, every internal node π with ξπ ě α1 will behave in a way
which can be predicted from the knowledge of x1’s mistake.

Since x2 makes a different guess for ℓN px0q than x1 does, x2 is guessing that
x1 has made a specific mistake about ℓN px0q. Thus x2’s guess for ℓN px0q has
already partly determined ℓN px1q. As such, x2 only needs to guess ℓN px1q’s path
on nodes π with ξπ ă α1. The witness x2 will in turn make the same promises
about its guesses for ℓN px0q and ℓN px1q, and what it will do if those guesses are
wrong. Then x3 will make the same guess for ℓN px0q as x2 made, but a different
guess for ℓN px1q. In particular, x3’s guess for ℓ

N px1q will differ from x2’s guess at
some π with ξπ “ α2 ă α1. So x3 will also need to guess ℓN px2q, but it will only
need to make this guess on nodes with ordinal smaller than α2. The ordinals keep
decreasing in this fashion, so we will eventually reach an n such that xn`1 does not
need to guess ℓN pxnq at all: ℓ

N pxnq will be entirely determined by xn’s guesses for
previous witnesses. This is how we avoid needing an infinite stream of witnesses.

We will give the full details shortly.
Notice that because of injury and witnesses being chosen large, x2 will be beyond

any τ which x1 chooses. This is why x1 does not need to guess x2’s behaviour. For
the same reason, x0 does not need to guess x1’s behaviour.

The collection of witnesses.
Here we define the collection of witnesses which will be required for each re-

quirement, as well as what guesses each witness will be making about previous
witnesses. In the previous discussion, we had said that the finite injury nature of
the construction allows a witness to know Npyq for earlier witnesses y which settle
before step (7). Since we are developing a complex machinery to guess the outcomes
for witnesses which reach step (7), it will simplify the presentation to instead just
use the same machinery to guess the outcomes at previous steps as well. So we will
not be using the finite injury for that. Injury will still be important to ensure that
any witness is beyond the domain of any τ chosen by a higher priority witness.

Definition 3.2. Let α0 ą α1 ą ¨ ¨ ¨ ą αn´1 “ 0 list the ordinals occurring in the
description of Γ``. For i ă n, let

Si “ txyu Y tσ P TΓ`` : ξσ´ ď αiu.

We also define Sn “ txyu.

Note the similarity with SΓ from the leaf selection game. Indeed, Sn´1 “ SΓ`` ,
while S0 is the full tree TΓ`` .

Fix an effective listing R0, R1, . . . of all the requirements, with order-type ω.
The witnesses required for Rk will depend on the witnesses chosen for stronger
requirements, i.e., requirements Rk1 for k1 ă k. For requirement, we will construct
a finite tree Q “ Qk, and for each ρ P Q, a function gρ “ gρ,k and a set Yρ “ Yρ,k.
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We will always have dompgρq Ď Yρ, and in fact ρ will be a leaf of Q precisely when
dompgρq “ Yρ. The requirement Rk will require one witness for each leaf of Q.

Definition 3.3. Fix k. We construct the tree Q “ Qk recursively, depth first,
left-to-right. We begin by adding a root xy to Q. We define gxy to be the empty
function. We let Yxy be the set of all leaves of all trees Qk1 for k1 ă k.

Suppose we have added a node ρ to Q of height i ď n, also defining gρ and Yρ.
If Yρ “ dompgρq, then ρ is a leaf of Q. Otherwise, consider extensions of gρ to Yρ

such that all new values are leaves of Si. For every such extension, we add a child
ρ̂ m and define gρ̂ m to be that extension. We then let

Yρ̂ m “ Yρ Y tµ : µ is a leaf of Q and ρ̂ l ď µ for some l ă mu.

Note that this means that before defining Yρ̂ m, we must define the entire tree above
ρ̂ m’s siblings to its left. The children of ρ̂ m depend on the leaves extending these
siblings.

Observe that for k “ 0 we have Yxy “ H so xy is a leaf (and the unique node)
of Q0. Indeed, the strongest witness does not need to make any guesses, which is
why the strongest requirement only needs one witness.

Claim 3.3.1. Each tree Qk is well-defined, and finite. Further,

(a) Qk has height ď n` 1.
(b) For every ρ P Qk, Yρ consists of the leaves of trees Qk1 for k1 ă k, as well

as the leaves of Qk that are lexicographically to the left of ρ.

Proof. The claim is proved by induction on k, and within step k, by induction on
the creation of the tree.

First, we observe that if ρ P Qk and is not a leaf, then the leftmost child of ρ is
a leaf, whereas other children (if they exist) are not.

If ρ P Qk has height n, and is not a leaf of Qk, then as Sn is a singleton, ρ will
have one child on Qk, and that child will be a leaf. Thus, the instructions given
suffice to proceed with the definition of Qk in all cases; and Qk has height at most
n` 1.

To show that Qk is finite, then, it suffices to show that if ρ P Qk is not a leaf,
then it has only finitely many children. This is ensured since by induction, Yρ is
finite. □

Let L be the set of all leaves of all the trees Qk. Recall that we will have a witness
xν for every ν P L (whose values may change by injury). For µ, ν P L, we let µ ă ν
if µ P Yν , i.e., if µ occurs on an earlier tree than ν, or if µ is lexicographically left of
ν on the same tree. We will let µ have priority over ν. For µ ă ν, the value gνpµq
will be xν ’s guess as to the behaviour of xµ.

If µ occurs on an earlier tree, then µ is in the Yxy of the tree containing ν; this
means that gνpµq will be a leaf of S0, i.e., of TΓ`` . If µ and ν belong to the same
tree, let ρ be the meet of these two leaves; so µ ě ρ̂ l and ν ě ρ̂ m for some l ă m.
So µ P Yρ̂ mzYρ, and gνpµq will be a leaf of S|ρ|`1. Note though that a leaf of Sj

can also be a leaf of Si for some i ă j; in particular, a leaf of Si for some i ą 0 can
also be a leaf of S0.

The behaviour of an x.

Definition 3.4. Let j ď n, and let ν P L. We say that all of ν’s guesses are correct
up to the leaves of Sj if for every µ ă ν:
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‚ If gνpµq is a leaf of Si for some i ď j, then gνpµq and ℓN pxµq both extend
the same leaf of Sj . (Recall that S0 Ě S1 Ě ¨ ¨ ¨ Ě Sn).

‚ If i ě j, then ℓN pxµq extends gνpµq.

If j ă n, this means that all of ν’s guesses are correct up to αj : for all µ ă ν,
for every σˆm ď ℓN pxµq, if ξσ ď αj and σ ă gνpµq then σˆm ď gνpµq. Of course,
every ν guesses correctly up to the leaves of Sn.

The fact that Γ`` is acceptable, i.e., that all ησ-ordinals are 1, means that the
movement of guesses only goes from left to right. That is, for any internal σ, if
s ăξσ t then the outcome fN

σ py, sq is not to the right of fN
σ py, tq. So for every j,

if σ is an internal node of Sj , and s ăαj
t, then the guess of which leaf of Sj is

extended by ℓN pyq at stage s cannot be to the right of the guess at stage t.
This implies that the property “all of gν ’s guesses are correct up to the leaves

of Sj” is D2pΣ
0
1`αj

q. While all approximations are to the left of gν ’s guesses,
and at least one is strictly to the left, we do not believe the statement; once all
approximations agree with gν ’s guesses, we believe; then once at least one has
moved strictly to the right, we stop believing again.

Note that for i ă j, since αi ą αj , D2pΣ
0
1`αj

q Ă ∆0
1`αi

. Thus, if s ăαi ω, then
at stage s we simply know the truth of the given statement. Similarly, the set of
elements which are eventually not witnesses (either never selected as a witness, or
chosen as a witness and then injured) is Σ0

1, since we choose witnesses large, and
thus ∆0

1`αi
for any i ă n´ 1 (recall that αn´1 “ 0.)

So as long as we believe that x is a witness, we will define Npxq as described
within the basic strategy, subject to the following modifications. Say that a node σ
believes that x “ xν for some ν P L. If ξσ ą 0, σ will know that this is correct;
if ξσ “ 0, σ will only currently believe this to be correct. Let ξσ “ αi (so i ă n).
Then σ “knows” whether gν ’s guesses are correct up to the leaves of Si`1.

‚ If gν ’s guesses are not correct up to the leaves of Si`1, then σ takes an
outcome towards a leaf labelled with 0.

‚ Otherwise, we consider gν ’s guesses up to the leaves of Si:
– If all approximations are currently to the left of gν ’s guesses, at least

one strictly to the left, then σ takes the default outcome.
– If all approximations currently extend gν ’s guesses, then σ behaves as

described within the basic strategy.
– If at least one approximation is strictly to the right of gν ’s guess, then

σ takes a non-default outcome.

Note that in the first case, the choice 0 is arbitrary. All we need to do is guarantee
some fixed outcome, 0 or 1. Since Γ is efficient, both are always available.

Predicting previous witnesses’ behaviour.
Suppose that xν is a witness, and gν is correct up to the leaves of S0, i.e., all of

its guesses are correct. We will show that xν can correctly predict the outcomes
of all previous witnesses, and can thus perform a correct search for the strings τ
which it needs. Note however that “outcome” here means the value Npxµq; we will
not necessarily be able to predict the leaf ℓN pxµq.

For any witness xµ ă xν , if µ is on an earlier tree than ν, then µ P Yxy. Thus

gνpµq is a leaf of S0, so by assumption ℓN pxµq “ gνpµq.
Suppose instead µ is on the same tree Q as ν. By our ordering of witnesses, it

must be that µ is lexicographically to the left of ν. Then gνpµq is a leaf of some Si
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with i ą 0. So all we know is that ℓN pxµq extends gνpµq. In this case we will not
be able to always fully determine ℓN pxµq. However, the modifications we described
above will give us enough information to predict the label of ℓN pxµq, i.e., Npxµq.
We will need the following.

Claim 3.4.1. Let k P N, and let µ, ν be leaves of Qk, with µ to the left of ν. Let ρ “
µ^ν by the longest common initial segment of µ and ν, and let i “ |ρ|. Then there
is some λ ă µ such that gµpλq and gνpλq disagree within Si, i.e., σ “ gµpλq ^ gνpλq
satisfies ξσ ď αi.

Proof. Say µ ě ρ̂ m and ν ě ρ̂ l where m ă l. So gν extends gρ̂ l and gµ extends
gρ̂ m. Since m ‰ l, there is some λ P Yρzdom gρ such that gρ̂ mpλq ‰ gρ̂ lpλq. Both
of these will be leaves of Si, and so incomparable. □

We will also need another special property of Γ``, that follows from Γ and its
subclasses being of one of the forms in Figs. 1 and 2.

Claim 3.4.2. Let σ be an internal node of TΓ`` . One of the following hold:

(i) Following non-default outcomes from σ, we pass through internal nodes τ
with ξτ “ ξσ, until we reach a unique leaf of TΓ.

(ii) Following any choice of non-default outcomes from σ, we reach an internal
node τ with ξτ ą ξσ.

The uniqueness in (i) means that σ has a unique non-default outcome σˆm, that
node has a unique non-default outcome, and so on; and further, in (i), before we
reach the leaf, the ξ-ordinal does not increase.

Proof. Suppose first that σ is a node of TΓ or TΓ̌ (viewed as subtrees of TΓ``).
Then Γσ has one of the forms from Figs. 1 and 2. In the second case, opΘq ă ω1

(as Λ ă Θ), which guarantees that (ii) holds. In the first case, if opΘq ă ω1 then
again (ii) holds; if opΘq “ ω1 then (i) holds.

Otherwise, σ is either the root of TΓ`` , or the non-default child of the root. If
opΓq ą 0 then (ii) holds. If opΓq “ 0, consider again the form of Γ. Then opΘq ă ω1,
for otherwise, Γ has the form in Fig. 1, and then δpΓq ă ω, which we assumed is
not the case. Hence, (ii) holds for σ. □

Definition 3.5. Let ν P L. We define a function hν : Yν Ñ t0, 1u as follows. Let
µ ă ν.

If gνpµq is a a leaf of S0, i.e., of TΓ`` , then we let hνpµq be the label that Γ``

gives this leaf.
Suppose that gνpµq is not a leaf of S0. Then µ and ν lie on the same tree Qk.

Let j ă n be the greatest such that there is some λ ă µ such that gµpλq and gνpλq
disagree within Sj . By Claim 3.4.1, j ě |µ ^ ν|. Let σ “ gνpµq. Note that σ is a
leaf of S|µ^ν|`1, so ξσ ě α|µ^ν|. It follows that ξσ ě αj .

If ξσ ą αj , we let hνpµq “ 0.
Suppose that ξσ “ αj . There are three cases.

(a) For every λ ă µ, gνpλq is lexicographically to the left of gµpλq within Sj

(and so at least one of these strictly so). Consider the leftmost leaf of Sj

extending σq (i.e., the leaf reached by beginning at σ and repeatedly taking
default children until a leaf of Sj is reached). If this is a leaf of S0, let hνpµq
be the label of this leaf. Otherwise, let hνpµq “ 0.
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(b) Suppose that there is some λ ă µ such that gνpλq is lexicographically
strictly to the right of gµpλq within Sj . Consider which case in Claim 3.4.2
above holds for the tree TΓ`` above σ.
‚ In case (i), let hνpµq be the label of the rightmost leaf of Sj extending
σ (this will be a leaf of S0).

‚ In case (ii), let hνpµq “ 0.

We note that the finiteness of Yν ensures that ν ÞÑ hν is computable. We
will verify later that if gν is correct, then indeed for all µ ă ν, hνpµq “ Npxµq.
Informally: suppose that σ “ gνpµq is not a leaf of S0, so we only know that ℓN pxµq

extends σ. If ξσ ą αj then σ and its extensions know that gµ is wrong somewhere
within Sj , and are instructed to take an outcome towards a leaf labelled with 0,
which matches the definition hνpµq “ 0.

Suppose that ξσ “ αj . If every λ P Yµ has ℓN pxλq to the left of gµpλq within Sj

(at least one strictly so), then all nodes τ with ξτ “ αj will remain on their default
outcome. So ℓN pxµq will be sent to the leftmost leaf of Sj extending σ. If this is a
leaf of S0, then this gives us the value of Npxµq and of hνpµq, by construction. If
this is not a leaf of S0, then this is some internal node ρ with ξρ ą αj , so xµ will be
sent from this node to a leaf labelled with 0, as in the previous case. Again, this
matches our definition of hνpµq.

If there is some λ such that ℓN pxλq is strictly to the right of gµpλq within Sj ,
then all nodes τ with ξτ “ αj will eventually discover this, and switch to a non-
default outcome. In case (i) for σ, this determined ℓN pxµq, whose label is hνpµq.
In case (ii) we again are guaranteed to reach some internal node ρ with ξρ ą αj ,
which again, guarantees a 0 outcome.

3.2. The full construction. At each stage s, we will have some νs P L, and:

‚ a witness xν,s P N for each ν ă νs;
‚ a string πν,s P t0, 1, ‹u

ăω for each ν ď νs;
‚ for each ν ă νs, possibly, strings τ0,ν,s and τ1,ν,s, and ρ0,ν,s and ρ1,ν,s.

The witnesses xν will respect the priority ordering: if µ ă ν ă νs then xµ,s ă

xν,s. For ν ă νs we will have |πν,s| “ xν,s.
The string πν,s indicates the restraint on ν that is imposed by µ ă ν. The ‹ in the

restraint string indicate the locations of witnesses xµ, which cannot be restrained,
so ν will need to use hν to guess these values. That is, πν,spyq “ ‹ if and only if
y “ xµ,s for some µ ă ν. So if πν,s is defined, we then define π̂ν,s as follows: for
y ă |πν,s|,

π̂ν,spyq “

#

πν,spyq, if πν,spyq P t0, 1u;

hνpµq, if y “ xµ,s.

For ν ă νs, we will say that ν is (at stage s) at one of 5 steps. Say such ν is
working for some requirement Re,i,j . We say that ν requires attention at stage s`1
if one of the following holds:

‚ ν is at step (1) at stage s, and there are strings τ0, ρ0 P 2ăω of length ď s

such that Φρ0

i pxν,sq “ 0, and Φ
π̂ν,s ‹̂̂ τ0
j ě ρ0.

2

‚ ν is at step (3) at stage s, and there are strings τ1, ρ1 P 2ăω of length ď s

such that τ1 ě τ0, Φ
ρ1

i pxν,sq “ 1, and Φ
π̂ν,s 1̂̂ τ1
j ě ρ1.

2Note that this is a slightly different usage for τ0 compared to the basic strategy.
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In the following construction, unless otherwise stated, we let xµ,s “ xµ,s´1, and
similarly for π, ρi, τi.

Stage s “ 0: We let ν0 be the strongest (least) ν P L. We let πν0,0 “ xy.

Stage s ą 0: Suppose that no ν requires attention at stage s. Let µ “ νs´1. We
let xµ,s “ |πµ,s´1|. We place xµ,s at step (1). We let νs be µ’s successor in L; we
let πνs,s “ πµ,s´1 ‹̂.

For every λ ă µ, a witness for a requirement Re,i,j :

‚ If λ is at step (2) at stage s´1, and for every y with ρ0,λ,spyq “ 1, fMe

xy
py, sq

is a non-default child of the root, then we move λ to step (3) at stage s.

‚ If λ is at step (4) at stage s´ 1, and fMe

xy
pz, sq is a non-default child of the

root, where z is least with ρ0,λ,spzq ‰ ρ1,λ,spzq, then we move λ to step (5)
at stage s.

Suppose that some µ ă νs´1 requires attention at stage s. Let µ be the strongest
such. Initialise all ν ą µ by making xν,s, and all associated strings, undefined. We
let νs be µ’s successor in L. We act according to the step in which xµ,s´1 is.

‚ If xµ,s´1 is at step (1), let ρ0,µ,s and τ0,µ,s be the discovered ρ0 and τ0.
We place xµ,s at step (2). By extending, we may assume that |τ0| is fresh
(large). We let πνs,s “ πµ,sˆ‹ τ̂0.

‚ If xµ,s´1 is at step (3), let ρ1,µ,s and τ1,µ,s be the discovered ρ1 and τ1.
We place xµ,s at step (4). By extending, we may assume that |τ1| is fresh
(large). We let πνs,s “ πµ,sˆ‹ τ̂1.

Every µ P L is injured only finitely often, and so xµ,s and πµ,s will reach final
values, which we denote xµ and πµ. Similarly, if after last initialised, µ reaches
step (2), we denote the last chosen strings as τ0,µ and ρ0,µ, and similarly for τ1 and
ρ1.

We now turn to defining the computable name N . We employ some higher-level
decision procedures. The map µ ÞÑ pπµ, xµq is ∆0

2. So is the map taking π to the
last step kµ that µ reaches (after last initialised). By [GQT, Prop. 2.1]:

‚ we let p : Nˆ ω Ñ 2ăω be a 1-decision procedure for µ ÞÑ pπµ, xµ, kµq.

Further, by the recursion theorem, during the construction of N , we have access to
a computable index of the construction. This gives us, for all internal σ P TΓ`` , a
∆0

ξσ`1-index of the function y ÞÑ fN
σ pyq (the limit value of fN

σ py, sq on the ξs-true

stages). By the uniformity of [GQT, Prop. 2.1]:

‚ for every internal σ P TΓ`` , we let cσ be a pξσ ` 1q-decision procedure for
y ÞÑ fN

σ pyq.

Fix y P N. By induction on s ă ω, we define fN
σ py, sq for every internal σ P TΓ`` .

At a stage s, if y ě |πνs,s|, then we let fN
σ py, sq be the default child of σ.

For y ă |πνs,s|, we define all fN
σ py, sq by induction on y. Thus, when we are

working for y, we have ℓN py1, sq for all y1 ă y.
Let r “ s´ξσ be the ăξs -predecessor of s. We will define fN

σ py, sq by recursion
on |σ|. We will explicitly define fN

σ py, sq if we have already determined that σ ă

ℓN py, sq, i.e., if σ “ σ|σ|py, sq, where σ0py, sq “ xy and σk`1py, sq “ fN
σkpy,sq

py, sq.

For all other σ, we simply let fN
σ py, sq “ fN

σ py, rq.
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So suppose that we have already determined that σ ă ℓN py, sq. We proceed by
cases.

Case I: σ “ xy is the root of TΓ`` . Suppose that y “ xµ,s for some µ ă νs. If µ is
at step (3) or higher at stage s, then we let fN

xy
py, sq be the non-default child of the

root; if it is at stage (2) or lower, we let fN
xy
py, sq be the default child of the root.

If y ‰ xµ,s for all µ ă νs, then we let fN
xy
py, sq be the non-default child of the

root.

Case II: σ is the non-default child of the root of TΓ`` .
The non-default children of σ are identified with the roots of TΓ and TΓ̌, as are

the non-default children of the root of TΓ` .
Suppose that y “ xµ,s for some µ ă νs, a witness for a requirement Re,i,j . If µ

is at step (4) or lower at stage s, then we let fN
xy
py, sq be the default child of the

root. Suppose that it is at step (5). Let z be the least such that ρ0,µ,spzq ‰ ρ1,µ,s.

If z “ 0, let fN
σ py, sq be the opposite of fMe

xy
pz, sq. If z “ 1, let fN

σ py, sq be the

same as fMe

xy
pz, sq.

If y ‰ xµ,s for all µ ă νs, and fN
σ py, rq is a non-default child of σ, then we let

fN
σ py, sq “ fN py, rq. If fN

σ py, rq is a default child of σ, then we let fN
σ py, sq be a

non-default child of σ, say the root of Γ.

Case III: σ is an internal node of TΓ or TΓ̌, and ξσ “ 0.
Suppose that y “ xµ,s for some µ ă νs. There are four sub-cases:

(i) For all λ ă µ, ℓN pxλ,s, sq does not lie to the right of gνpλq within Sn´1, and
for at least one such λ, gνpλq lies strictly to the left of ℓN pxλ,s, sq within
Sn´1. In this case we let fN

σ py, sq be the default child of σ.
(ii) For all λ ă µ, gµpλq and ℓN pxλ,s, sq agree up to the leaves of Sn´1, and

xµ,s had not reached step (5): we let fN
σ py, sq be the default child of σ.

(iii) For all λ ă µ, gνpλq and ℓN pxλ,s, sq agree up to the leaves of Sn´1, and xµ,s

is currently at step (5): let z “ zµ,s be the least with ρ0,µ,spzq ‰ ρ1,µ,spzq.
‚ If z “ 1, let fN

σ py, sq “ fMe
σ py, sq, where σ is identified with the node

on the same tree as σ (either TΓ or TΓ̌).
‚ If z “ 0, let fN

σ py, sq “ fMe
σ py, sq, where σ is identified with the node

on the opposite tree to σ.
(iv) There is some λ ă µ such that ℓN pxλ,s, sq lies to the right of gµpλq within

Sn´1: if f
N
σ py, rq is a non-default child of σ, let fN

σ py, sq “ fN
σ py, rq. Oth-

erwise, let fN
σ py, sq be some non-default child of σ.

Suppose that y ‰ xµ,s for all µ ă νs. If fN
σ py, rq is a non-default child of σ, let

fN
σ py, sq “ fN

σ py, rq. Otherwise, let fN
σ py, sq be some non-default child of σ.

Case IV: σ is an internal node of TΓ or TΓ̌, and ξσ ą 0.
We say that σ’s guesses are aligned up to y at stage s if:

‚ If µ ď νs is least with |πµ,s| ą y, then for all λ ď µ, if λ ă νs then
ppλ, sq “ pπλ,s, xλ,s, kλ,sq, and if λ “ νs, then the first entry of ppνs, sq is
πνs,s.

‚ For all y1 ă y, for all internal τ P TΓ`` with ξτ ă ξσ, cτ py
1, sq “ fN

τ py
1, sq.

If this is not the case, we let fN
σ py, sq “ fN

σ py, rq. Suppose that the guesses do
align.

Let ξσ “ αi, where i ă n´ 1.
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Suppose that y “ xµ,s for some µ ă νs. If there is some λ ă µ such that gµpλq
and ℓN pxλ,s, sq disagree within Si`1, then we let ζ be the leftmost leaf of TΓ``

extending σ labelled by 0; we let fN
σ py, sq ď ζ.

Suppose that for all λ ă µ, gµpλq and ℓN pxλ,s, sq agree within Si`1. There are
four sub-cases, similar to case III above:

(i) For all λ ă µ, ℓN pxλ,s, sq does not lie to the right of gνpλq within Si, and
for at least one such λ, gνpλq lies strictly to the left of ℓN pxλ,s, sq within
Si. In this case we let fN

σ py, sq be the default child of σ.
(ii) For all λ ă µ, gµpλq and ℓN pxλ,s, sq agree up to the leaves of Si, and xµ,s

had not reached step (5): we let fN
σ py, sq be the default child of σ.

(iii) For all λ ă µ, gµpλq and ℓN pxλ,s, sq agree up to the leaves of Si, and xµ,s

is currently at step (5): let z “ zµ,s be the least with ρ0,µ,spzq ‰ ρ1,µ,spzq.
‚ If z “ 1, let fN

σ py, sq “ fMe
σ py, sq, where σ is identified with the node

on the same tree as σ (either TΓ or TΓ̌).
‚ If z “ 0, let fN

σ py, sq “ fMe
σ py, sq, where σ is identified with the node

on the opposite tree to σ.
(iv) There is some λ ă µ such that ℓN pxλ,s, sq lies to the right of gµpλq within Si:

if fN
σ py, rq is a non-default child of σ, let fN

σ py, sq “ fN
σ py, rq. Otherwise,

let fN
σ py, sq be some non-default child of σ.

Suppose that y ‰ xµ,s for all µ ă νs. Let µ be least with y ă |πµ,s|. Then
πµ,spyq P t0, 1u. Let ζ be the leftmost leaf of TΓ`` extending σ labelled by πµ,spyq;
we let fN

σ py, sq ď ζ.

This completes the definition of N .

3.3. Verification. We say that y is a witness at stage s if y “ xµ,s for some µ ă νs.
The standard finite injury arguments yield:

Claim 3.5.1.

(a) If s ă t then |πνs,s| ă |πνt,t|.
(b) If y ă |πνs,s| and y is not a witness at stage s, then for all t ě s, y is not a

witness at stage t.
(c) If y “ xµ,s (for some µ ă νs), t ą s and y ‰ xµ,t, then y is not a witness

at stage t.

We need to show that N is legally defined. First, observe that when we ask for
some leaf ζ ă σ of TΓ with a given label, such a leaf exists: since σ P TΓ is internal,
and Γ is efficient, σ will have extensions labelled 0 and extensions labelled 1.

We will prove, by induction on y, that fN
σ py,´q satisfies Claim 3.5.3, which is

the requirement for N being a name. Fix some y, and suppose that this has been
shown for all y1 ă y.

Claim 3.5.2. Let σ be an internal node with ξσ ą 0. The stages at which σ’s guesses
are aligned up to y are convex in ăξσ : if r ăξσ s ăξσ t and σ’s guesses are aligned
up to y at stages r and t, then they are at stage s as well.

Proof. This follows from the fact that for all µ, if ppµ, rq ‰? and r ăξσ s then
ppµ, sq “ ppµ, rq (as ξσ ě 1), and if ξτ ă ξσ, y1 ă y, and cτ py

1, rq ‰? then
cτ py

1, sq “ cτ py
1, rq (as ξσ ě ξτ ` 1). Thus, if the guesses are aligned up to y

at stages r and t, then letting µ be least with y ă |πµ,r|, we have πλ,r “ πλ,t for
all λ ď µ, and xλ,r “ xλ,t for such λ ă νr. By Claim 3.5.1, we get πλ,s “ πλ,r
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and xλ,s “ xλ,r (as well as ppλ, sq “ ppλ, rq). The same holds for the cτ ’s, using
the inductive assumption on fN

τ py
1,´q; if fN

τ py
1, rq “ fN

τ py
1, tq then we must have

fN
τ py

1, sq “ fN
τ py

1, rq. □

The next claim finishes the verification that N is a legal name.

Claim 3.5.3. Let σ P TΓ`` be internal, s ą 0 be a stage, and let r ăξs s. If fN
σ py, rq

is a non-default child of σ, then fN
σ py, sq “ fN

σ py, rq.

Proof. By induction on r, we may assume that r “ s´ξσ is the ăξσ -predecessor
of s. Since fN

σ py, rq is non-default, y ă |πνr,r|, and so y ă |πνs,s| (Claim 3.5.1). It
follows that if y is a witness at stage s, say y “ xµ,s, then y “ xµ,r, indeed, xµ is
constant between stages r and s.

We check the cases for defining fN
σ py, sq.

Case I: In this case, σ “ xy has a unique non-default child, and so it suffices to
show that fN

σ py, sq is not the default child of σ.
Toward a contradiction, suppose that it is. Then y “ xµ,s for some µ ă νs; so

xµ is constant between stages r and s. It follows that µ’s step at stage r is not
greater than µ’s step at stage s; this is impossible.

Case II: If y is not a witness at stage s then fN
σ py, sq “ fN

σ py, rq (as we are assuming
that fN

σ py, rq is non-default). Suppose that y “ xµ,s. Again, y “ xµ,r, and so, µ is
at step (5) at stage r, and so, is at step (5) at stage s. The instructions are then
the same at both stages.

Case III: As in the previous case, if y is not a witness at stage s then fN
σ py, sq “

fN
σ py, rq. Suppose that y “ xµ,s “ xµ,r. Then for all λ ă µ, xλ,r “ xλ,s. This
implies that for all such λ, within Sn´1, ℓ

N pxλ,r, rq does not lie to the right of
ℓN pxλ,s, sq. This implies that the sub-case that holds at stage s is not smaller than
the sub-case that holds at stage r.

Since fN
σ py, rq is non-default, sub-cases (i) and (ii) do not hold at stage r. Hence,

they do not hold at stage s either. If case (iv) holds at stage s, then fN
σ py, sq “

fN
σ py, rq is instructed. If case (iii) holds at stage s, then it holds at stage r as well,
and so the outcome is the same.

Case IV: We may assume that σ’s guesses are aligned up to y at stage s. Claim 3.5.2
implies that this must be the case at stage r as well, for otherwise (by induction
on r), fN

σ py, rq is the default child. Let µ be least with y ă |πµ,r|. Since ppλ, rq “
ppλ, sq for λ ď µ, and cτ py

1, rq “ cτ py
1, sq when ξτ ă ξσ, all “ingredients” are the

same at stages r and s: πλ,s “ πλ,r for λ ď µ (and so µ is the least with y ă |πµ,s|);
and for all y1 ă y, ℓN py1rq and ℓN py1, sq agree up to the leaves of Si`1.

In particular y is not a witness at stage s if and only if it is not a witness at
stage r, and the leaf ζ that is worked towards will be the same at stage s and r.
Similarly, if y “ xµ,s then y “ xµ,r; if there is some λ ă µ such that ℓN pxλ,s, sq and
gµpλq disagree within Si`1, then the same disagreement will be found at stage r,
and so again, we will get the same outcomes at both stages.

Suppose, on the other hand, that y “ xµ,s and that for all λ ă µ, ℓN pxλ,s, sq
and gµpλq agree up to the leaves of Si`1. Since r ďξσ s, know that ℓN pxλ,r, rq
cannot lie to the right of ℓN pxλ,s, sq within Si. The argument then is the same as
in case III. □

We now work toward showing that each requirement is met.
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Claim 3.5.4. Let σ be an internal node with ξσ ą 0. For all y P N, for all but
finitely many ξσ-true stages s, σ’s guesses are aligned up to y at stage s.

Proof. This is because p, and cτ for all τ with ξτ ă ξσ are indeed ξσ-decision
procedures; on ξσ-true stages, they only give us correct answers, and each question
is eventually answered. For alignment up to y, there are only finitely many questions
to ask.

In greater detail: fix y P N. Let µ be the least such that y ă |πµ|. There is
a stage s0 by which the values of xλ and πλ have settled to their final values. So
at each s ě s0, µ ă νs and µ is the least µ ď νσ with y ă |πµ,s|. Further, there
is a stage s1 such that for all internal τ , for all y1 ă y, if s ě s2 is ξτ -true then
fN
τ py, sq “ fN

τ pyq.
Also, there is a stage s2 after which for all λ ď µ, for every s ě s1 that is 1-true,

ppλ, sq “ pπλ, xλ, kλq. And there is a stage s3 such that for all internal τ , for all
y1 ă y, if s ě s2 is ξτ `1-true, then cτ py

1, sq “ fN
τ pyq. Thus, for sufficiently large s,

if s is ξσ-true, then σ’s guesses are aligned up to y at stage s. □

Claim 3.5.5. Let y P N, and suppose that y is not a witness (for all µ P L, y ‰ xµ).
Then for all µ P L, if y ă |πµ|, then πµpyq “ Npyq.

Proof. If µ ă ν then πµ ă πν , so it suffices to show this for the least µ such that
y ă |πµ|. As above, let s0 be a stage by which for all λ ď µ, the values of xλ and
πλ have settled to their final values. In particular, for all s ě s˚, µ is the least such
that y ă |πµ,s|, and y is not a follower at stage s. Thus, at each stage s ě s˚, if
σ ă ℓN py, sq and ξσ, then fN

σ py, sq is a non-default child of σ.
As we mentioned early in the discussion, since Γ has one of the forms from Figs. 1

and 2, this means that for all s ě s˚, there is some σ ă ℓN py, sq such that ξσ ą 0.
Let s ě s0 be ξσ-true for all internal σ, and sufficiently late, so that for all σ with

ξσ ą 0, σ’s guesses are aligned up to y`1 at stage s. In particular, ℓN py, sq “ ℓN pyq.
If σ ă ℓN py, sq and ξσ ą 0 then at stage s, σ is instructed to take an outcome toward
the leftmost leaf extending σ with label πµpyq. Hence, the label of ℓN py, sq “ ℓN pyq
is πµpyq, as required. □

Claim 3.5.6. Let ν P L, and suppose that all of ν’s guesses are correct up to the
leaves of S0. Then for all µ ă ν, hνpµq “ Npxµq.

Proof. The argument was given, somewhat informally, after Definition 3.5. We
show the more formal details of part of it.

Let µ ă ν. If gνpµq is a leaf of S0, i.e., of TΓ`` , then hνpµq is the label of this
leaf; by assumption, gνpµq “ ℓN pxµq.

Suppose, then, that gνpµq is not a leaf of S0. Let σ “ gνpµq and let j be as in
the definition of hνpµq. By assumption, σ ă ℓN pxµq.

Let s be a late stage that is ξτ -true for all τ ; so for all λ ď ν, ℓN pxλ, sq “ ℓN pxλq.

Suppose that ξσ ą αj . Let λ ă µ be such that gµpλq and gνpλq disagree within
Sj . By assumption, gνpλq ă ℓN pxλq. So gµpλq and ℓN pxλq disagree within Sj .

At stage s, σ, and all of its extensions below ℓN pxµq, is instructed to take an
outcome towards a leaf labelled 0; so Npxµq “ 0 “ hνpµq, as required.

The rest of the argument is as above, following the discussion after Definition 3.5.
□

Fix a requirement Re,i,j . Say that it is the kth requirement on the list.
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Claim 3.5.7. There is some ν, a leaf of Qk, whose guesses are correct up to the
leaves of S0.

Proof. This is because in the construction of Qk, we take into account all possible
functions. So the first entry of ν will be the m such that gmpµq “ ℓN pµq for all
µ P Yxy, and so on. □

Let ν be given by Claim 3.5.7, and let x “ xν . This number x witnesses that the
requirement was met. To see this, we assume, for a contradiction, that ΦN

j “ Me,

and ΦMe
i pxq “ Npxq. We consider the last step that ν reaches (with the final value

of xν , after last initialised). Let s0 be a stage at which ν has reached that step.
Note that Claim 3.5.5 and Claim 3.5.6 together imply that π̂ν ă N .

(1) In this case, at each s ě s0, the root xy of TΓ`` is instructed to take the
default outcome which is labelled 0, and so Npxq “ 0. Then π̂ν 0̂ ă N ; the
assumption for a contradiction then shows that strings such as τ0 and ρ0
do exist, so x will be moved to step (2).

(2) In this and later cases, since τ0 is part of πµ (where µ is ν’s successor in L),
Claim 3.5.5 implies that τ0 aligns with N ; so π̂ p̂Npxqq̂ τ0 ă N . At step (2),
as in step (1), the default outcome is taken at the root, so Npxq “ 0 in
this case too. So ρ0 ă Me. If ρpyq “ 1 then Mepyq “ 1 which means that
the final outcome at the root of TΓ` , when calculating Mepyq, must be the
non-default outcome. So eventually, ν will be moved to step (3).

(3) In step (3) and later, the root of TΓ`` is instructed to take the non-default
child, call it σ; at steps (3) and (4), σ is instructed to take the default
outcome, labelled 1, so in these cases, Npxq “ 1. So π̂ν 1̂̂ τ0 ă N . As in
case (1), this shows that τ1 and ρ1 will be discovered, so x will be moved
to step (4).

(4) Let z be the least point of difference between ρ0 and ρ1. If step (4) is the
last, then Mepzq “ 0; this implies that ρ0pzq “ 0, so ρ1pzq “ 1. However,
at this step, Npxq “ 1. As for τ0, Claim 3.5.5 shows that N aligns with τ1,
so overall, π̂ν 1̂̂ τ1 ă N , whence ρ1 ă Me; a contradiction.

(5) At this step we successfully diagonalise. In this case, the instructions at
the non-default child of the root, and the fact that for every σ ă ℓN pxq, at
every true stage, sub-case (iii) applies (in either case III or case IV of the
construction, depending on ξσ), ensure that ℓN pxq ‰ ℓMepzq when ρ0pzq “
0, and ℓN pxq “ ℓMepzq otherwise. As discussed above, both contradict the
assumption.

This completes the proof of Theorem 3.1.

4. Strengthening the result

Our real goal is Theorem 1.1, which is stronger than Theorem 3.1. However,
only minor modifications to the construction are required. Indeed, we only need
to alter the basic strategy; all the details for implementing the strategies are the
same.

Let Γ be a class with δpΓq ą 0 not the successor of a limit. If δpΓq is finite, then
the result is known (there are n-c.e. sets not Turing equivalent to any set which is
n-c.e. and co-n-c.e.) Hence, again, we assume that δpΓq ě ω. We build a set in Γ
not Turing equivalent to any in ∆pΓq.

There are two cases.
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Case (a): δpΓq is the successor of a successor. This is very similar to the
previous construction. Reverting to the notation above, we replace Γ by its double-
predecessor; i.e., we build a set in Γ`` not Turing equivalent to any in ∆pΓ``q.
Now, pMeq list Γ

``-names, and the requirements are:

Rd,e,i,j: If Md is the complement of Me, then it is not the case that ΦN
i “Me and

ΦMe
j “ N .

The basic strategy for meeting such a requirement is the following. Let σ be the
non-default child of the root of TΓ`` .

(1) Choose a witness x; direct Npxq to take the default outcome at the root.
Search for strings τ0 and ρ0 with τ0pxq “ 0, Φρ0

i pxq “ 0, and Φτ0
j ě ρ0.

When found, restrain N to agree with τ0.
(2) For every y with ρ0pyq “ 1, wait until Mepyq has moved off the default

outcome at the root (of TΓ`` this time). For every y with ρ0pyq “ 0, wait
until Mdpyq has moved off the default outcome at the root.

(3) Direct Npxq to take the non-default outcome at the root, and the default
outcome above that. Search for strings τ1 and ρ1 with τ1pxq “ 1, Φρ1

i pxq “
1, Φτ1

j ě ρ1, and τ1pyq “ τ0pyq for every y ă |τ0| other than x. When

found, restrain N to agree with τ1. Fix z least such that ρ0pzq ‰ ρ1pzq.
(4) If ρ1pzq “ 0, wait until Mepzq has moved off the default outcome of σ. If

ρ1pzq “ 1, wait until until Mdpzq has moved off the default outcome of σ.
(5) ‚ If ρ1pzq “ 0, then let Npxq follow Mepzq, i.e., ensure that ℓN pxq “

ℓMepzq, by copying the choices that Me makes for z.
‚ If ρ1pzq “ 1, then let Npxq follow Mdpzq, i.e., ensure that ℓN pxq “
ℓMdpzq, by copying the choices that Me makes for z.

Let us explain why this works, again by considering the last step that x reaches.
Suppose, for a contradiction, that the requirement is not met: Me is the complement
of Md, Φ

N
i “Me and ΦMe

j “ N .

‚ If x never leaves step (1), then Npxq “ 0; but then, strings τ0 and ρ0 will
be found.

‚ If x never leaves step (2), then Npxq “ 0, so τ0 ă N , so ρ0 ă Me. But
then, if ρ0pyq “ 1, then Mepyq “ 1, so on y, Me must move off the default
outcome at the root. Since Md is the complement of Me, if ρ0pyq “ 0 then
Mdpyq “ 1, so on y, Md must move off the default at the root.

‚ If x never leaves step (3), then Npxq “ 1; so strings τ1 and ρ1 will be found.
‚ Suppose that x never leaves step (4). At this step we still set Npxq “ 1, so
ρ1 ă Me.

If ρ1pzq “ 0, then ρ0pzq “ 1, which means that on z, Me already moved
off the default at the root after step (2). The default child of σ (recall,
this is the non-default child of the root of TΓ``) is labelled 1, whereas
Mepzq “ ρ1pzq “ 0, so ℓMepzq cannot be the default child of σ; so on z, Me

must move off the default child of σ.
Similarly, if ρ1pzq “ 1, then Mepzq “ 1, so Mdpzq “ 0; but also, ρ0pzq “

0, so at step (2), on z, Md already moved off the default at the root and
pointed at σ. So ℓMdpzq must extend a non-default child of σ.

‚ Suppose that x reaches step (5). If Npxq “ 0 then τ0 ă N , and so ρ0 ă Me,
so Mepzq “ ρ0pzq; if Npxq “ 1 then τ1 ă N , so Mepzq “ ρ1pzq. In other
words, Mepzq “ ρNpxqpzq.
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If ρ1pzq “ 0 then we ensure that Npxq “ Mepzq, so Npxq “ ρNpxqpzq.
But in this case, ρipzq “ 1´ i (for i “ 0, 1), a contradiction.

If ρ1pzq “ 1 then we ensure that Npxq “Mdpzq “ 1´Mepzq, so Npxq “
1´ ρNpxqpzq. But in this case, ρipzq “ i, a contradiction.

Case (b): δpΓq is a limit. In this case, we need the characterisation of classes at
limit levels from [GQT, Prop. 5.19]. Starting with a very admissible description of
the class, and applying the transformation that gives an acceptable description in
the proof of Proposition 2.2, we obtain a description Γ, hereditarily as in Figs. 1
and 2, which has the extra property that every leaf extends some internal σ with
ξσ ą 0. In particular, the predecessor σ of the leftmost leaf has ξσ ą 0; and we
note that we get to σ by repeatedly taking the default outcome.

This means that σ knows what step a witness x will end up in, and so, while
searches continue for strings, we can safely take the default outcomes up to σ, and
then let it choose a 0 or a 1 outcome, based on their superior knowledge.

The basic strategy is as follows.

(1) Choose a witness x. Wait until we find strings τ0 and ρ0 with the usual
properties: τ0pxq “ 0, ρ0 ă Φτ0

i , Φρ0

j pxq “ 0. While waiting, direct ℓN pxq
to pass through σ.

(2) When such τ0 and ρ0 are found, search for strings τ1 and ρ1 as above. While
waiting, direct ℓN pxq to pass through σ.

(3) When ρi and τi are found, let z “ |ρ0 ^ ρ1| as before; if ρ1pzq “ 0 let
Npxq “ Mepzq, otherwise let Npxq “ Mdpzq, by copying all choices the
given names make on z.

During steps (1) and (2), the node σ waits untilH1 tells it what step x will reach.
If σ finds that x will never leave step (1), then it chooses some leaf extending it
labelled 0. If σ finds that x will eventually move to step (2), but not to step (3), it
will choose some leaf above labelled 1. If it finds that step (3) will be reached, it
just chooses the default.

The argument for the previous case shows that if we reach step (3), the require-
ment will be met.
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