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Abstract. We show how to extend Selivanov’s fine hierarchy using descrip-

tions of Borel Wadge classes. We give a game characterisation of containment
between classes. We show that every class in the extended fine hierarchy has

an admissible description, and use this to calculate heights in the hierarchy.

1. Introduction

Descriptive set theory and computability theory study hierarchies of classes, that
at first appear merely analogues, but in fact can be considered as manifestations
of the same basic concept in different settings. The most prominent example is the
Borel hierarchy of Σ0

α subsets of Polish spaces (for all countable ordinals α), and
the hyperarithmetic hierarchy of Σ0

α subsets of N (for all computable ordinals α).
The underlying connection here is that the lightface (effective) classes Σ0

α can be
defined not only for N, but also for subsets of any computably presented Polish
space. They can be relativised to oracles z (and z-computable ordinals α). We
then get Σ0

α “
Ť
␣

Σ0
αpzq : α is z-computable

(

. This enables us to apply effective
methods to study Borel sets. Among prominent results in the effective theory, or
using effective methods, are Louveau’s separation theorem [Lou80], the Harrington-
Kechris-Louveau dichotomy [HKL90], and the G0-dichotomy [KST99].

A hierarchy finer than the Borel / hyperarithmetic one is defined using differ-
ences of sets in the Borel hierarchy. In set theory this is known as the Hausdorff,
or Lavrentiev, difference hierarchy DηpΣ

0
αq. In computability, this is the Ershov

hierarchy [Es68, Ers68, Ers70]; see also [Put65]. The prominent result regarding
the difference hierarchy in set theory is the Hausdorff-Kuratowski theorem, that
∆0
α`1 “

Ť

ηăω1
DηpΣ

0
αq. The analogous result, due to Ershov, is that every ∆0

2 set

is Σ´1
η for some notation η for a computable ordinal (Σ´1

η is Ershov’s notation for

DηpΣ
0
1q). The effective version is more “fragile”, as the class DηpΣ

0
1q depends on

the notation (computable presentation) of η, rather than just its order-type.
The finest hierarchy of them all is due to Wadge [Wad84]. Motivated by “many-

one” reducibility in computability, Wadge defined a subset A of Baire space to
be reducible to B if A is a continuous pre-image of B. A Wadge class is a col-
lection of sets closed under taking continuous pre-images. The structure of Borel
Wadge classes under containment is surprisingly regular; it is semi-well-ordered,
with alternating self-dual and non-self-dual classes. Wadge was able to calculate
the order-type of the non-self-dual classes (after identifying such a class with its
dual). He also showed that all such classes are the result of applying a Borel ω-ary
Boolean operation to the class of open sets.
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In computability, the analogue of the Wadge hierarchy was defined by Seliv-
anov [Sel83, Sel89], which he called the fine hierarchy. To avoid the problem of
dependence on ordinal notation, Selivanov looked at generalisations of the finite
difference hierarchy. The hierarchy was first defined using generalised jump opera-
tions in [Sel83]. This resembles Wadge’s use of Kuratowski pµ, 0q-homeomorphisms,
which we now know can be thought of as relativised iterated Turing jumps. In
[Sel89], Selivanov gave an inductive definition of the hierarchy (of length ε0), using
(essentially) jumps, and some fixed Boolean operations, most notably the BiSep
operation (two sided separated unions). In [Sel95], an equivalent definition is given
using typed Boolean terms. Selivanov also noted a close relationship between the
fine hierarchy and the Wagner hierarchy in automata theory [Wag79, Sel02]. For
a survey, see [Sel08]. Selivanov also generalised his hierarchy beyond subsets of
spaces, to k-partitions and functions to BQOs [Sel11, Sel20], and to general Polish
and quasi-Polish spaces [Sel21].

In this paper, we show how to naturally extend Selivanov’s hierarchy beyond
the arithmetic, all the way up the hyperarithmetic sets. To do this, we give a
new way to define the hierarchy, using descriptions of Borel Wadge classes that
were introduced in [DGHTTa] and systematically investigated in [GT]. These are
descriptions that generalise ones given by Louveau [Lou83] and by Louveau and
Saint Raymond [LSR88b]. The levels of the extended hierarchy will be the ones
that have finite descriptions.

We then give a game characterisation of containment between classes, which is
a modification of one given for Borel Wadge classes in [GT]. Using this characteri-
sation we can explain why the fine hierarchy satisfies Wadge’s semi-linear ordering
principle. Essentially, this is due to the determinacy of finite games. We also use
this game characterisation to explain why the hierarchy is well-founded.

To calculate the height of a class in the fine hierarchy, we introduce the notion
of an admissible description, and show that every class in the hierarchy has such
a description. Admissible descriptions directly give us information about the class
described, for example, if it is at a successor or limit level.

The class descriptions we introduce utilise Montalbán’s method of true stages
(a non-effective version was introduced independently in [DSR07]). This allows
us to computably approximate sets at all levels in the extended fine hierarchy:
our descriptions are inherently dynamic. This is useful when performing priority
arguments. In the sequel to this paper [GQT], we do exactly that, to give a complete
answer to the question of which levels of the hierarchy contain new Turing degrees.

2. Preliminaries: described classes

To define and analyse the classes of the extended fine hierarchy, we use the
class descriptions introduced in [DGHTTa, GT]. These are used to define classes of
subsets of Baire space. We can, however, identify the natural numbers as a subspace
of Baire space (identify n with the infinite sequence n8). To simplify notation we
use true stage relations on ω ` 1 rather than ωďω, that were developed in [GT22],
and adapt the class descriptions to this setting.

2.1. True stage relations. The true stage relations allow us to computably ap-
proximate transfinite iterations of the Turing jump.

A concrete computable ordinal is a computable well-ordering of a computable
subset of N, in which the successor relation and collection of limit points are both
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computable. For concrete computable ordinals α and β we write α ă β if α is an
initial segment of β. For every concrete computable ordinal α we obtain a partial
ordering ďα on ω ` 1 with a variety of pleasing properties. In particular:

(i) ď0 is the usual ordering ď on ω ` 1.
(ii) If α ă β then s ďβ t implies s ďα t.
(iii) pω ` 1,ďαq is a tree, with root 0.
(iv) ts : s ăα ωu is the unique infinite path of pω,ďαq.
(v) The restriction of ďα to ω is computable, uniformly in α.
(vi) A set A Ď N is Σ0

1`α if and only if its characteristic function 1A has
a computable α-enumeration: a computable function f : N ˆ ω Ñ t0, 1u
satisfying, for all x P N:
‚ If s ďα t and fpx, sq “ 1 then fpx, tq “ 1;
‚ 1Apxq “ limtfpx, sq : s ăα ωu.

In (vi), and below, we write N ˆ ω (rather than N2) to indicate that the first
input x is an element of the “space” N, and the second represents a stage of the
approximation.

We will use the following corollary of property (vi).

Proposition 2.1. Let α be a concrete computable ordinal. Let h : N Ñ N be
∆0

1`α-measurable (for all n ,h´1rtnus is ∆0
1`α, uniformly in n). Then h admit an

“α-decision procedure”: a computable function f : Nˆ ω Ñ NY t?u satisfying:
‚ If s ďα t and fpx, sq P N then fpx, tq “ fpx, sq;
‚ For all x, for all but finitely many s ăα ω, fpx, sq “ hpxq.

That is, for a while, fpx, sq could be ?, indicating that we are not yet sure what
hpxq is;; but once some value is guessed for hpxq, we never change our mind again.
Along the α-true stages (the stages s ăα ω), we eventually guess the correct value.

Proof. For each n, letAn “ h´1rtnus. Let gn be uniformly computable α-enumerations
of An. Let x P N. We define fpx, sq by recursion on s ă ω. If there is some r ăα s
such that fpx, rq P N, then we let fpx, sq “ fpx, rq. Otherwise, if there is some
n ď s such that gnpx, sq “ 1 then we let fpx, sq “ n for the least such n. If there
is no such n then we let fpx, sq “?. □

We remark that (vi), and so Proposition 2.1, are uniform: given a Σ0
1`α index

of A, we can effectively compute an α-enumeration of A.

Definition 2.2. A computable α-approximation is a function f : N ˆ ω Ñ N such
that for all x, lim tfpx, sq : s ăα ωu exists. The function approximated by f is the
one taking x to that stable value.

The following is a “higher limit lemma”. It is proved in [DGHTTb, Proposition
3.6].

Proposition 2.3. A function g : N Ñ N has a computable α-approximation if
and only if it is ∆0

1`α`1-measurable, meaning that for all n, g´1tnu is ∆0
1`α`1,

uniformly in n, equivalently Σ0
1`α`1, uniformly in n.

We will require a particular type of α-approximations, that generalises the notion
of a α-enumeration. Let n ě 1. An pα, nq-enumeration is a α-approximation f such
that for all x,

‚ fpx, 0q “ 0; and
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‚ For all s,

#
␣

t ďα s : fpx, tq ‰ fpx, t´αq
(

ď n,

where t´α is t’s predecessor in the tree pω,ăαq.

An pα, 1q-enumeration is simply an α-enumeration (with the added requirement
that fpx, 0q “ 0, which is an easy modification).

Proposition 2.4. A set has an pα, nq-enumeration if and only if it is DnpΣ
0
1`αq.

Proof. Suppose that C has an pα, nq-enumeration f . For k ď n let Ak be the set of
x P N such that there are s0 ăα s1 ăα s2 ăα ¨ ¨ ¨ ăα sk ăα ω such that fpx, siq ‰
fpx, si`1q for all i ă k. Then each Ak is Σ0

1`α, N “ A0 Ě A1 Ě A2 Ě ¨ ¨ ¨ Ě An, and
C “ pA1zA2qYpA3zA4qY ¨ ¨ ¨ , showing that C is DnpΣ

0
1`αq. In the other direction,

let C “ pA1zA2q Y pA3zA4q Y ¨ ¨ ¨ , with Ai P Σ0
1`α and A1 Ě A2 Ě ¨ ¨ ¨ Ě An. For

i “ 1, . . . , n, let gi be a α-enumeration of Ai. For simplicity let g0px, sq “ 1 for all x
and s. We may also assume that gipx, sq “ 1 implies gi´1px, sq “ 1 when i ą 0. We
let fpx, sq “ 0 if the greatest i such that gipx, sq “ 1 is even, fpx, sq “ 1 otherwise.
Then f is an pα, nq-enumeration of C. □

2.2. Class descriptions. A (computable) class description Γ consists of a well-
founded computable tree TΓ Ă ωăω, computably labelled as follows:

(i) If σ P TΓ is not a leaf of TΓ, then σ is labelled by a pair pξσ, ησq where ξσ
and ησ are concrete computable ordinals, and ησ ě 1;

(ii) If σ P TΓ is a leaf of TΓ then σ is labelled by a value Γpσq P t0, 1u.

We use the term internal node of a tree T to denote a node of T that is not a leaf
of T . We require that if σ ď τ are both internal nodes of TΓ then ξσ ď ξτ . We let
opΓq “ ξxy be the ξ-label of the root xy of TΓ, unless TΓ consists only of the root, in
which case we set opΓq “ ω1 (where ω1 is treated as a formal symbol). We similarly
set ξσ “ ω1 for a leaf σ of TΓ. We let ηΓ “ ηxy.

The idea is that at an internal node σ we need to choose one of its children. The
leftmost child is considered a default, the one we choose initially. We can change
our mind about the child we are choosing, but the “number” of mind-changes is
bounded by ησ: every time we change our mind, we need to decrease the ordinal.
The ordinal ξσ tells us at what level we conduct this approximation. Informally,
this means that the approximation is computable from Hpξσq. Technically, we use
the true stage relations. Our intention is formalised using the notion of a Γ-name.

If Γ is a computable class description, then a (computable) Γ-name N consists
of a choice, for each internal σ P TΓ, of a pair of functions pfσ, βσq, uniformly
computable given σ, both defined on Nˆ ω, satisfying the following:

(i) For each px, sq P Nˆ ω, fσpx, sq is a child of σ on TΓ, and βσpx, sq ď ησ;
(ii) For each x P N and s, t P ω, if s ďξσ t then:

‚ βσpx, tq ď βσpx, sq; and
‚ if fσpx, tq ‰ fσpx, sq then βσpx, tq ă βσpx, sq.

(iii) For each px, sq P N ˆ ω, if βσpx, sq “ ησ then fσpx, sq is the leftmost child
of σ on TΓ (the default outcome of σ).

Let N be a Γ-name. The definition ensures that for all internal σ P TΓ, for all
x P N, the limit lim tfσpx, sq : s ăξσ ωu exists, and we denote it by fσpxq. Since
TΓ is well-founded, for each x P N, the sequence σ0pxq “ xy, σ1pxq “ fσ0pxqpxq,

σ2pxq “ fσ1pxqpxq, . . . , terminates in a leaf of TΓ that we denote by ℓN pxq. We then
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let Npxq be the value ΓpℓN pxqq assigned by Γ to this leaf. The subset of N named
by N is the set whose characteristic function is x ÞÑ Npxq.

Definition 2.5. Let Γ be a computable class description. The class described by Γ
is the collection of all subsets of N that are named by computable Γ-names.

We will abuse notation and use Γ to denote both the description and the class
that it described, even though a given class may have many different descriptions.
A collection of subsets of N is a described class if it is the class described by some
class description.

The simplest examples are the class descriptions Γ consisting only of the root xy,
labelled either 0 or 1. The former gives the class tHu, and the latter the class tNu.
The next simplest example is a tree consisting of the root and two children. The
root is labelled with some ξ and η “ 1, the leftmost child is labelled 0 and the other
one 1 (see Fig. 1). The resulting class is Σ0

1`ξ. Replacing η “ 1 with any η, the

resulting class is DηpΣ
0
1`ξq of iterated differences of Σ0

1`ξ sets.

ξ, 1

0 1

ξ, 1

1 0

Figure 1. The simplest descriptions of Σ0
1`ξ and Π0

1`ξ.

The dual description and class. The dual Γ̌ of a class description Γ is the class
description obtained from Γ by exchanging all labels at the leaves. The resulting
described class is the collection of complements of elements of the class described
by Γ.

We let ∆pΓq “ ΓX Γ̌ be the class of sets A for which both A and its complement
are in Γ.

Subclasses. Let Γ be a class description and let σ P TΓ. The subclass Γσ is the class
obtained by restricting to the tree above σ: TΓσ “ tτ : σ τ̂ P TΓu and the label
of τ on Γσ is the label of σ τ̂ on Γ. Observe that opΓσq “ ξΓσ .

We can think of Γ as the class constructed from the classes Γn (for n P TΓ) via
an popΓq, ηΓq-approximation method.

For a Γ-nameN and σ P TΓ we also letNσ be the Γσ-name defined by fNστ “ fNσ τ̂ ,
and similarly for βτ .

2.3. Described classes are principal pointclasses. Every described class is a
lightface (effective) pointclass. The following is essentially proved in [DGHTTa],
but in the setting of N is particularly simple.

Proposition 2.6. Let Γ be a computable class description. For all A,B Ď N, if
A ďm B and B P Γ then A P Γ.

Proof. Let g be a computable function such that g´1rBs “ A, and let N be a
Γ-name of B. A Γ-name M of A is defined by letting, for every internal σ P TΓ,
fMσ px, sq “ fNσ pgpxq, sq and β

M
σ px, sq “ βNσ pgpxq, sq. □
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Similarly:

Proposition 2.7. Let Γ be a computable class description. For all A,B P Γ,
A‘B P Γ. Indeed, the following are equivalent for a sequence of sets pAnq:

(1) There are uniformly computable Γ-names Nn with Nn a name for An;
(2)

À

nAn P Γ.

We say that pAnq are uniformly in Γ.

Note that it is not the case that a described class Γ is always closed under taking
unions or intersections, the simplest counter-example being D2pΣ

0
1q.

In [DGHTTa], it is shown that every described boldface class has a universal set.
The same construction holds in the discrete setting.

Proposition 2.8. Let Γ be a described class. There is an acceptable listing of the
sets in Γ: a sequence A0, A1, . . . of sets, uniformly in Γ, such that if B0, B1, . . .
is any sequence of sets uniformly in Γ, then there is a computable function g such
that for all n, Bn “ Agpnq.

As a result, the effective pointclass Γ is principal: there is a set B P Γ such that
Γ “ tA : A ďm Bu.

Proof. As mentioned, the proof of [DGHTTa, Lemma 3.13] applies, using Lemma
3.12 of that paper. Namely, we can uniformly, given σ P TΓ and a partial com-
putable approximation pgσ, ασq, extend that approximation to a total computable
approximation pfσ, βσq as required, which has the same limit as the given partial
approximation, if the latter happens to be total. This is enabled by the fact that
there is a default outcome: as long as we do not see any value given for gσpx, 0q, we
choose the default outcome (with ordinal value ησ); as gσpx, sq reveals more values,
we copy them, with delay. □

Corollary 2.9. For any computable class description Γ, the class Γ is non-self-
dual.

Proof. If pAnq is an acceptable listing of the sets in Γ, then A “
À

nAn is universal

for Γ, and the diagnoal argument shows that A R Γ̌. □

2.4. Definition by cases. The analogue of the following proposition is proved in
[DGHTTa]:

Proposition 2.10. Let Γ be a computable class description. Suppose that:

‚ pXnq is a partition of N into uniformly ∆0
1`opΓq

sets;

‚ pAnq is a sequence of subsets of N, uniformly in Γ.

Define A Ď N by letting AæXn “ An æXn. Then A P Γ.

Proof. The proof of [GT, Proposition 2.4] holds. Informally, we say that every
internal node “eventually knows” which set Xn a given input x is in. More formally,
let g be an opΓq-decision procedure for the the function taking x P N to the n
such that x P Xn (Proposition 2.1). Let pNnq be Γ-names for pAnq, uniformly
computable. We define a Γ-name N for A by taking the “disjoint union” of pNnq
using g. Namely, for internal σ P TΓ, x and s:

‚ If gpx, sq “ n P N then we let fNσ px, sq “ fNnσ px, sq and βNσ px, sq “

βNnσ px, sq.
‚ If gpx, sq “? then we let fNσ px, sq be the default child of σ and βNσ “ ησ.
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Since opΓq ď ξσ, the nestedness of the true stage relations (property (ii)) implies
that when s ďξσ t and gpx, sq “ n, we have gpx, tq “ n, so N is indeed a Γ-name;
and similarly, that for all x P Xn, gpx, sq “ n for all but finitely many s ăξσ ω. □

Corollary 2.11. Let Γ be a computable class description, and suppose that H,N P
Γ. Then ∆0

1`opΓq
Ď Γ, and furthermore, Γ is closed under taking unions and

intersections with ∆0
1`opΓq

sets.

2.5. Ordinal invariance. To define the true stage relations, and in general, to
use ordinals in computability, we need concrete ordinals. If α and α1 are two
concrete computable ordinals of the same order-type, then they may fail to be
computably isomorphic. Nonetheless, we can computably translate between the
true-stage relations involved:

Proposition 2.12. Suppose that α and α1 are isomorphic concrete computable
ordinals. There is a computable function h : ω Ñ ω satisfying:

(i) For all s, t ă ω, if s ďα t then hpsq ďα1 hptq; and
(ii) thpsq : s ăα ωu “ tt : t ăα1 ωu.

Such a function h can be calculated uniformly, given α and α1.

The reason is that even if α and α1 are not computably isomorphic, the iterated
jumps Hpαq and Hpα1

q are Turing equivalent, uniformly. As a result, the Σ0
1`α sets

are the same as the Σ0
1`α1 sets, again uniformly. For more details see [DGHTTa,

Proposition 2.20].
The uniformity shows that the choice of concrete copies of the ordinals ξσ does

not affect the class defined by a description:

Proposition 2.13. Let Γ and Γ1 be two class descriptions. Suppose that:

(i) TΓ “ TΓ1 ;
(ii) for every leaf σ of TΓ, Γpσq “ Γ1pσq; and
(iii) for every internal σ, ηΓσ “ ηΓ1

σ and otppξΓσ q “ otppξΓ1

σ q.

Then Γ and Γ1 define the same class.

Note that we cannot relax condition (iii) to otppηΓσ q “ otppηΓ1

σ q. Here the pre-
sentation matters, as the names use the particular copies of the η-ordinals, rather
than the associated true stage relations. To translate names effectively, we would
need uniformly computable isomorphisms between ηΓσ and ηΓ1

σ .

2.6. Σ and Π classes. To differentiate between classes within a dual pair tΓ, Γ̌u,
we use the following definition:

Definition 2.14. A computable class description Γ has Σ-type if the label of the
leftmost leaf of TΓ is 0; otherwise it has Π-type.

The leftmost leaf of TΓ is the “ultimate default” (the default outcome of the
default outcome of the default outcome. . . ) The notation generalises that for the
classes Σ0

1`ξ and Π0
1`ξ (Fig. 1).

In [GT], it is shown that restricted to “efficient” descriptions (to be discussed
later), all descriptions of a particular class have the same type, thus we can talk
about a described class having type Π or type Σ. It is also shown that a described
class has the separation property if and only if it is a Π-class. A more complicated
condition characterises the classes with the reduction property: those are the classes
that have hereditarily Σ-type descriptions (for all internal σ P TΓ, Γσ has Σ-type).



8 NOAM GREENBERG, RENRUI QI, AND DAN TURETSKY

2.7. Finite descriptions.

Definition 2.15. A class description Γ is finite if TΓ is a finite tree, and for all
internal σ P TΓ, ησ ă ω.

Note that we do not require that the ordinals ξσ be finite. A class is finitely
described if it has a finite description.

Theorem 2.16. The finitely described classes form a semi-well-ordered hierarchy
that extends the Selivanov fine hierarchy. The height of the hierarchy is ωck

1 .

In fact, the classes in the fine hierarchy are precisely those classes that have a
finite description in which every ξσ-ordinal is finite as well. We let the extended fine
hierarchy denote the collection of all finitely described classes, partially ordered by
inclusion.

Remark 2.17. If ησ “ n is finite, then in specifying a name N , we don’t need to
explicitly define βNσ ; it suffices to ensure that fNσ does not change more than n
times, as in the definition of an pα, nq-enumeration above. However, sometimes it
will be useful to nonetheless specify βNσ .

3. Comparing classes

For two class descriptions Γ and Λ, we write:

‚ Γ Ď Λ, if the class defined by Γ is contained in the class defined by Λ;
‚ Γ ” Λ if Γ Ď Λ and Λ Ď Γ;1

‚ Γ ă Λ if Γ Ď ∆pΛq.

Note that the existence of universal sets implies that every containment is ef-
fective: if Γ Ď Λ then there is a computable procedure translating Γ-names into
equivalent Λ-names.

Lemma 3.1. For any computable class description Γ, and any σ P TΓ, Γσ Ď Γ.

Proof. Let N be a Γσ-name. We extend N to a Γ-name M that names the same
set, by letting, for τ P TΓσ , pf

M
σ τ̂ , β

M
σ τ̂ q “ pf

N
τ , β

N
τ q; for ρ P TΓ such that ρ ă σ, we

let, for all x and s, fMρ px, sq be the child of ρ extended by σ, and βMρ px, sq “ 0; for

ρ P TΓ incomparable with σ, it doesn’t matter how we define pfMρ , βMρ q. □

3.1. The tree SΓ. In [GT], the authors define the containment game GcontpΓ,Λq
that characterises containment between the described boldface classes. It is a clopen
game. They use determinacy of such games to show that the described Wadge
classes are semi-linearly ordered. The arguments in that paper can be carried over
to the current setting, provided that the games and the winning strategies are
computable. When restricted to finite classes, all games are finite, and so have
finite winning strategies, and therefore, computable ones.

In the current paper we present a simplification of the argument for the setting
of finite class descriptions. The games we present are not technically finite, but we
will observe that they are essentially finite, with finite positional strategies.

We remark that much of what we do here can be extended to computable class
descriptions that are not finite. However, the semi-linear-ordering principle will fail
in general.

1We do not write Γ “ Λ, to emphasise that this is equality of classes, not of descriptions.
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Definition 3.2. For a class description Γ with opΓq ă ω1, let

SΓ “ txyu Y
␣

τ P TΓ : ξΓ
τ´ “ opΓq

(

,

where τ´ is the predecessor of τ on TΓ. This is a subtree of TΓ. The internal nodes
of SΓ are precisely those nodes σ P TΓ with ξσ “ opΓq. The leaves of SΓ are those
nodes σ P TΓ (internal or not) that are minimal with respect to ξσ ą opΓq. Again
recall that for leaves σ of TΓ we set ξσ “ ω1, so every leaf of TΓ has a predecessor
which is a leaf of SΓ, possibly itself.

Lemma 3.3. Let Γ be a computable class description with opΓq ă ω1. Let N be
a computable Γ-name. For a leaf σ of SΓ, the set

␣

x P N : ℓN pxq ě σ
(

is ∆0
1`opΓq`1, uniformly in σ.

Proof. Follows from Proposition 2.3; for every internal σ P TΓ, for any child ρ of σ,
the set of x such that fNσ pxq “ ρ is ∆0

1`ξσ`1, uniformly. □

The game characterisation of containment also yields information about con-
tainment and subclasses; see Proposition 3.12 below. For now, we observe the
following.

Lemma 3.4. Let Γ and Λ be computable class descriptions. Suppose that opΓq ă
opΛq. Then Γ Ď Λ if and only if for every leaf σ of SΓ, Γσ Ď Λ, uniformly.

The containment being uniform means that given σ and a Γσ-name M we can
compute a Λ-nameM equivalent to Λ (one that names the same set). For example,
Lemma 3.1 is uniform in σ.

For this lemma and its proof, and similarly below, we appeal to Proposition 2.13
and therefore blur the distinction betweeen concrete computable ordinals and their
order-types. That is, the lemma holds also when otppopΓqq ă otppopΛqq.

Proof. In the easier direction we use Lemma 3.1. In the other direction, let A P Γ;
let N be a Γ-name for A. For each leaf σ of SΓ, let Xσ “

␣

n P N : ℓN pxq ě σ
(

.

Then pXσq is a partition of N into uniformly ∆0
1`opΓq`1 sets. By assumption, for

every leaf σ of SΓ, the set Aσ named by Nσ is in Λ, uniformly. Since opΛq ą opΓq,
Λ is closed under definition by cases at level opΓq ` 1 (Proposition 2.10); note that
A “ Aσ on Xσ. □

3.2. The leaf selection game. The main tool for comparing classes at the same
ordinal level is a “leaf selection” game. The game presented here is simpler than
the one presented in [GT], as we do not need to worry about passing and the
termination of the game.

Let Γ be a computable class description with opΓq ă ω1. An SΓ-position p
consists of a choice, for each internal node σ of SΓ, of

(i) a child cσ “ cpσ of σ on SΓ; and
(ii) an ordinal ηpσ ď ηΓσ ,

subject to the following restrictions:

‚ For all internal σ P SΓ, if η
p
σ “ ηΓσ then cpσ is the default child of σ; and

‚ For all but finitely many internal σ P SΓ, η
p
σ “ ηΓσ .
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Of course the latter condition always holds if Γ is a finite class description. Its
purpose is to ensure that there are only countably many SΓ-positions when SΓ is
infinite. If Γ is a finite class description, then there are only finitely many SΓ-
positions (again note that this holds even if the ξσ-ordinals are infinite).

For two SΓ-positions p and q, we let q ď p if for every internal node σ of SΓ,

(iii) ηqσ ď ηpσ, and further, if cqσ ‰ cpσ then ηqσ ă ηpσ.

The initial SΓ-position is the position p determined by setting ηpσ “ ηΓσ for all
internal σ P SΓ.

Every SΓ-position p determines a leaf τp of SΓ, by following the choices from
the root upwards, much like the definition of the leaf ℓN pxq of TΓ used to compute
the value Npxq. Namely, τp is the unique leaf τ of SΓ determined by cpσ ă τ for all
σ ă τ .

We let PΓ denote the collection of all SΓ-positions, ordered by ď.

Lemma 3.5. The relation “p ă q and τp ‰ τ q” on PΓ is well-founded.

Proof. Let p1, p2, . . . be an infinite sequence with pk`1 ď pk. For each σ, pησq
pk is

non-increasing, so stabilises to some value; it follows that pcpkσ q stabilises to some
value cσ. Let σ0 “ xy and σi`1 “ cσi ; this sequences ends with a leaf τ˚ of SΓ, and
for all but finitely many k, τpk “ τ˚. □

Let Γ and Λ be two class descriptions, and suppose that ξ “ opΓq “ opΛq ă ω1.
In the game GleafpΓ,Λq, two players, 1 and 2, take turns choosing positions:

pr1s pr2s pr3s . . .
qr1s qr2s qr3s . . .

(so player 1 plays pr1s, pr2s, . . . and player 2 plays qr1s, qr2s, . . . ), satisfying:

‚ each prks is an SΓ-position, and each qrks is an SΛ-position;
‚ for each k ě 1, prk ` 1s ď prks and qrk ` 1s ď qrks.

We write σrks “ τprks and ρrks “ τ qrks. By Lemma 3.5, the sequences pσrksq and
pρrksq both stabilise at a pair of leaves pσ˚, ρ˚q of SΓ and SΛ. This is the outcome
of the play of the game.

Note that for computable Γ and Λ, the game GleafpΓ,Λq is computable (the
partial orderings PΓ and PΛ are computable). However, neither player may have
a useful computable strategy. We will show that when Γ and Λ are finite, such
strategies exist.

Definition 3.6.

(a) A containment strategy for player 2 in GleafpΓ,Λq is a strategy that ensures
an outcome pσ, ρq such that Γσ Ď Λρ.

(b) A containment strategy for player 1 in GleafpΓ,Λq is a strategy that ensures
an outcome pσ, ρq such that Λρ Ď Γσ.

Lemma 3.7. Let Γ and Λ be computable class descriptions with opΓq “ opΛq ă ω1.
Player 2 has a (computable) containment strategy in GleafpΓ,Λq if and only if
player 1 has a (computable) containment strategy in GleafpΛ,Γq.

Proof. Suppose that player 2 has a containment strategy S in GleafpΓ,Λq. In
GleafpΛ,Γq, given a play pr1s, pr2s, . . . for player 2, player 1 can respond by using
the strategy S against the play pr0s, pr1s, pr2s, . . . for player 1 in GleafpΓ,Λq, where
pr0s is the initial SΓ-position.
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Suppose that player 1 has a containment strategy T inGleafpΛ,Γq. InGleafpΓ,Λq,
given a play pr1s, pr2s, . . . for player 1, player 2 can respond by using the strategy
T against the same play pr1s, pr2s, . . . for player 1 in GleafpΓ,Λq. (In this case
the strategy for player 2 always ignores the most recent move by player 1, but
eventually reaches the same outcome.) □

Lemma 3.8. Let Γ and Λ be finite class descriptions with opΓq “ opΛq ă ω1.
Suppose that player 2 has a computable containment strategy in GleafpΓ,Λq. Then
Γ Ď Λ.

Proof. This is the main part of the proof of [GT, Proposition 3.5]. We simplify the
argument. Let N be a computable Γ-name; we devise a Λ-name M naming the
same set. For a leaf σ of SΓ, let Xσ be the set of x P N such that ℓN pxq ě σ.

Fix a leaf ρ of SΛ. Since ξΛρ ą opΛq “ opΓq, by Proposition 2.10 and Lemma 3.3,
there is a Λρ-name Mρ such that for all σ such that Γσ Ď Λρ, for all x P Xσ,
Mρpxq “ Nσpxq “ Npxq. Note that we are using the finiteness of SΓ to obtain
uniformity of containment (and being able to “tell” if Γσ Ď Λρ or not); we will use
the finiteness of SΛ to get that the names Mρ are uniformly computable.

The namesMρ define the approximations forM on all nodes that are not internal
on SΛ. Thus, to define the nameM , it remains to define fMσ and βMσ for all internal
σ P SΛ. This is done using a computable containment strategy S for player 2. Fix
x P N. For each s ă ω let ps be the SΓ-position defined, for all internal σ P SΓ,
by cpsσ “ fNσ px, sq and ηpsσ “ βNσ px, sq. The notion of position and ordering of
positions ensures that each ps is indeed an SΓ-position (if ηpσ “ ησ then cpσ is the
default outcome), and that pt ď ps when s ďopΓq t.

For each s, consider the partial play ps0 , ps1 , . . . , psk , where 0 “ s0 ďopΓq s1 ďopΓq

. . . ďopΓq sk “ s is the enumeration of the stages r ďopΓq s. Thus, k “ |s|opΓq ` 1,
where |s|opΓq is the height of s on the tree pω,ďopΓqq. The strategy S gives a
response qs0 , qs1 , . . . , qsk ; note that qsi only depends on ps0 , . . . , psi . For internal
σ P SΛ we let fMσ px, sq “ cqsσ and βMσ px, sq “ ηqsσ . The fact that S always responds
with a legal play implies that pfMσ px,´q, β

M
σ px,´qq obey the rules for properly

defining a Λ-name. The fact that it is a successful strategy implies that ℓM pxq
extends a leaf ρpxq of SΛ such that Γσpxq Ď Λρpxq; by the definition of Mρpxq we
then get

Npxq “ Nσpxq “Mρpxq “Mpxq

as required. □

Remark 3.9. Lemma 3.8 can be extended to computable classe descriptions that
are not necessarily finite. We need to add the assumption that Γσ Ď Λρ is uniform.
More specifically, it suffices to have a partial computable function that gives, for
each pair pσ, ρq such that Γσ Ď Λρ, a Λρ-name for Nσ. In the definition of the name
Mρ, we don’t actually need to know if Γσ Ď Λρ or not: we simply instruct M , at
and above ρ, to keep taking the default outcome, until ρ discovers which Xσ the
number x belongs to, and further, the partial procedure gives us some Λρ-name.
This holds when player 2 has a computable winning strategy in the containment
game GcontpΓ,Λq from [GT].

Next, we show that for finite class descriptions, GleafpΓ,Λq is effectively deter-
mined.
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Lemma 3.10. Let Γ,Λ be finite class descriptions with opΓq “ opΛq ă ω1. Exactly
one of the following holds:

(1) Player 2 has a computable containment strategy in GleafpΓ,Λq.
(2) Player 2 has a computable strategy in GleafpΛ,Γq, that ensures an outcome

pρ, σq such that Γσ Ę Λρ.

Proof. This is because the partial orderings PΓ and PΛ (of all SΓ and SΛ-positions)
are finite, and the outcome of the game is decided by the final positions only. So
the game is almost a finite game, so Zermelo determinacy holds. For the current
game: define the notion of a “good pair” of positions pq, pq P PΛˆPΓ by induction
on the number of predecessors q1 ă q and p1 ă p in PΛ and PΓ. Namely, suppose
that the notion has been defined for all pairs pq1, p1q where q1 ď q and p1 ă p. Then
we say that pq, pq is good if Γτp Ď Λτq , and further, for all p1 ă p there is some
q1 ď q such that pq1, p1q is good.

Let p0 be the initial SΓ-position. There are two possibilities. If there is some
q P PΛ such that pq, p0q is good, then player 1 has a computable containment
strategy in GleafpΛ,Γq: first move to q, and then keep moving to ensure that we
are in a good position. As mentioned above (Lemma 3.7), this means that player 2
has a computable containment strategy in GleafpΓ,Λq.

Otherwise, player 2 has a computable “anti-containment” strategy as in (2)
above. Call a pair pq, pq “bad” if for all q1 ď q, the pair pq1, pq is not good. By
assumption, the pair pq0, p0q of initial positions is bad. Also if pq, pq is bad then
for all q1 ď q, pq1, pq is bad. Call a pair pq, pq “very bad” if it is bad, and further,
Γτp Ę Λτq . By definition, if pq, pq is bad, then it is very bad, or there is some p1 ă p
such that pq, p1q is bad. Hence (by induction on the predecessors of p), if pq, pq is
bad then there is some p1 ď p such that pq, p1q is very bad. Hence, player 2 can keep
responding with moves that keep the game situation at very bad positions. □

We now obtain the semi-linear-ordering principle for the extended fine hierachy:

Proposition 3.11. If Γ and Λ are finite class descriptions, then either Γ Ď Λ or
Λ Ď Γ̌.

Note that this proposition, together with Γ Ę Γ̌, imply the familiar pattern for
the fine hierarchy: for any two finite Γ and Λ, either Γ ă Λ, or Λ ă Γ, or Γ “ Λ,
or Γ “ Λ̌.

Proof. We prove the proposition by induction on the complexity of the pair pΓ,Λq.
In particular, if opΓq ă ω1, then we assume that for all leaves σ of SΓ, for all τ P Λ,
either Γσ Ď Λρ, or Λρ Ď Γ̌σ; and similarly, if opΛq ă ω1, then we assume that for

all leaves ρ of SΛ, for all σ P Γ, either Γσ Ď Λρ or Λρ Ď Γ̌σ.
The induction starts with any pair pΓ,Λq such that opΓq “ opΛq “ ω1. In

this case, both Γ and Λ are one of tHu, tNu, and the proposition in this case is
immediate.

Let Γ and Λ be class descriptions, and suppose that either opΓq ă ω1 or opΛq ă
ω1; without loss of generality, assume that opΓq ă ω1. There are two cases.

First, suppose that opΓq ă opΛq (including the case opΛq “ ω1). In this case we
use the induction hypothesis for all pairs pΓσ,Λq, where σ is a leaf of SΓ. If there is
some such σ such that Γσ Ę Λ, then by induction, Λ Ď Γ̌σ; by Lemma 3.1, Λ Ď Γ̌.
Otherwise, by Lemma 3.4, Γ Ď Λ.
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Next, suppose that opΓq “ opΛq (so both are ă ω1). If player 2 has a computable
containment strategy in GleafpΓ,Λq, then by Lemma 3.8, Γ Ď Λ. Otherwise, by
Lemma 3.10, and by induction, player 2 has a computable containment strategy in
GleafpΛ, Γ̌q, so by Lemma 3.8, Λ Ď Γ̌. □

We summarise our findings.

Proposition 3.12. Let Γ and Λ be finite class descriptions.

(a) If opΓq ă opΛq then Γ Ď Λ if and only if for every leaf σ of SΓ, Γσ Ď Λ.
(b) If opΓq ą opΛq, then Γ Ď Λ if and only if there is some leaf τ of SΛ such

that Γ Ď Λτ .
(c) If opΓq “ opΛq, then Γ Ď Λ if and only if player 2 has a computable con-

tainment strategy in GleafpΓ,Λq, if and only if player 1 has a computable
containment strategy in GleafpΛ,Γq.

Proof. (1) is Lemma 3.4. For (2), in the harder direction, if there is no leaf τ of SΛ

such that Γ Ď Λτ , then by Proposition 3.11, for all leaves τ of SΛ, Λτ Ď Γ̌; by (1),
Λ Ď Γ̌; it follows that Γ Ę Λ, as Γ Ę Γ̌ (Corollary 2.9).

For (3), one direction is the combination of Lemma 3.8 and Lemma 3.7. In the
other direction, if player 2 does not have a computable containment strategy for
GleafpΓ,Λq, then by Lemma 3.10 and Proposition 3.11, player 2 has an effective
containment strategy for GleafpΛ, Γ̌q, and we conclude that Λ Ď Γ̌; again, this
implies that Λ Ę Γ. □

Example 3.13. The two class descriptions in Fig. 2 describe the same class D2pΣ
0
1q

of differences of c.e. sets. Let Γ denote the description on the left and Λ the
description on the right. Note that SΓ “ TΓ and SΛ “ TΛ. Thus, a containment
strategy for player 2 is one which guarantees an outcome in which both leaves
have the same label, 0 or 1. In GleafpΓ,Λq, both players start with the defaults,
labelled 0, and player 1 cannot change labels more than twice, showing how player 2
can always move to match the label of the leaf chose by player 1. In GleafpΛ,Γq,
if player 1 shifts to the 1-outcome, player 2 chooses the rightmost leaf labelled 1
on TΓ (choosing the other one would be a bad move, since no further changes would
then be allowed).

0, 1

0
0, 1

0 1

0, 1

1 0

0, 2

0 1

Figure 2. Two descriptions of D2pΣ
0
1q

3.3. The successor class.

Definition 3.14. Let Γ be a class description. We let Γ` denote the class descrip-
tion obtained by letting the root have three children, 0, 1 and 2; the first is a leaf
of TΓ` , labelled 0; we set Γ`

1 “ Γ and Γ`
2 “ Γ̌. See Fig. 3.
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0, 1

0 Γ Γ̌

Figure 3. The successor class Γ`.

The following proposition says that for a finite description Γ, the pair consisting
of Γ` and its dual is the successor of the pair tΓ, Γ̌u in the extended fine hierarchy.2

Proposition 3.15. Let Γ be a finite class description. Then Γ ă Γ`, and for any
finite class description Λ, if Γ ă Λ then Γ` Ď Λ or Γ` Ď Λ̌.

Proof. That Γ, Γ̌ Ď Γ` follows from Lemma 3.1. Let Λ be a finite class description,
and suppose that Γ ă Λ. Suppose that Λ is a Σ-type description (Definition 2.14);
we show that Γ` Ď Λ. It follows that if Λ has Π-type then Γ` Ď Λ̌.

There are three cases.
Suppose that opΛq ą 0. For every leaf σ of SΓ` we have Γ`

σ Ď Γ or Γ`
σ Ď Γ̌; by

assumption, in either case, Γ`
σ Ď Λ. Then Γ` Ď Λ by Proposition 3.12(a).3

If opΛq “ 0 ă opΓq, then there are some leaves τ, τ̌ of SΛ with Γ Ď Λτ and
Γ̌ Ď Λτ̌ . A containment strategy for player 2 in the game GleafpΓ

`,Λq is to remain
on the default outcomes until player 1 makes a change at the root. Since Λ has
Σ-type, its ultimate default outcome is 0, so player 2 is covering, as long as this
situation persists. If player 1 switches at the root to the Γ child, then player 2
immediately switches all necessary nodes such that it is selecting τ as its leaf. If
player 1 instead switches at the root to the Γ̌ child, then player 2 immediately
switches to τ̌ . By Proposition 3.12(c), Γ` Ď Λ.

If opΛq “ opΓq “ 0, then the argument is a more complicated version of the
previous one. Player 2 has a containment strategy S0 in the game GleafpΓ,Λq,
and a containment strategy S1 in the game GleafpΓ̌,Λq. Player 2’s strategy in
GleafpΓ

`,Λq is to remain on default outcomes until player 1 makes a change at the
root. Again, since Λ has Σ-type, this is a success if player 1 never changes. If player
1 switches to the Γ child, then player 2 begins playing S0. If player 2 switches to
the Γ̌ child, then player 2 begins playing S1. □

3.4. Efficient descriptions, and the ordinal level of a class. Let Γ be a class
description, with opΓq ă ω1. Suppose that there is some leaf σ of SΓ such that for
every leaf τ of SΓ we have Γτ Ď Γσ. Then as opΓσq ą opΓq, by Proposition 3.12
(and Lemma 3.1), Γ ” Γσ. Such a class description is “wasteful”. In [GT, Defi-
nition 4.1], the authors introduce the notion of an efficient description, one which
is not wasteful. The definition is based on the following observation. Let C be a
collection of finitely described classes. Proposition 3.11 implies that exactly one of
the following holds: (1) C contains a Ď-greatest element; (2) For all Γ P C there is
some Λ P C with Γ Ď Λ̌.

2Note that by Example 3.13, this implies that the pair consisting of D2pΣ0
1q and its dual, is

the successor of the pair tΣ0
1,Π

0
1u.

3Note that in this case, we did not use the fact that Λ has Σ-type, and indeed, the argument
shows that Γ` ă Λ. Later, we will see that such Λ must have limit order-type in the extended
fine hierarchy.
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In the context of finite descriptions, we define the following:

Definition 3.16. A finite class description Γ is efficient if opΓq “ ω1, or opΓq ă ω1

and for every leaf σ of SΓ there is some leaf τ of SΓ such that Γσ Ď Γ̌τ .
4

The pleasing properties of efficient descriptions hold in the current context as
well. For example, they determine the ordinal level of a finitely described class:

Proposition 3.17. If Θ and Γ are finite class descriptions, with Γ efficient, and
Θ ” Γ, then opΘq ď opΓq.

The proof is the same as that of the analogous [GT, Proposition 4.2]: suppose
that opΓq ă opΛq. Since Λ Ď Γ, by Proposition 3.12, there is a leaf σ of SΓ such
that Λ Ď Γσ. Since Γ is efficient, there is a leaf τ of SΓ such that Γσ Ď Γ̌τ , and
Γ̌τ Ď Γ̌; so Λ Ď Γ̌, contradicting Γ Ď Λ.

This allows us to unambiguously define the ordinal level of a finitely described
class. As in [GT, Proposition 4.3], the ordinal level has a characterisation due to
Louveau and Saint Raymond [LSR88a]: it is the greatest ξ such that Γ is closed
under definitions by cases at level ξ (Proposition 2.10); the proof is identical.

3.5. Well-foundedness of the extended fine hierarchy. To prove Theorem 2.16,
it remains to show that the extended fine hierarchy is well-founded. We will give
two arguments. For the second, we will define a “normal form” for descriptions, and
will be able to directly calculate the ordinal rank of each class from these special
descriptions, called “admissible”.

The first proof is a direct proof, using Proposition 3.12. We first remark that in
fact, we can deduce well-foundedness directly from the results in [GT], and the fact
that the Wadge hierarchy is well-founded: using the containment characterisation
in [GT] for described Wadge classes, and an equivalent characterisation in the
effective setting, we see that if ¨ ¨ ¨ ă Γ2 ă Γ1 ă Γ0 is an infinite descending
sequence in the extended fine hierarchy, then the associated boldface classes are an
infinite descending sequence ¨ ¨ ¨ ă Γ2 ă Γ1 ă Γ0 in the Wadge degrees, which is
impossible.

This argument is unsatisfying. The proof of well-foundedness for Borel Wadge
classes relies on heavy tools, such as Borel determinacy, and universal sets for the
boldface classes. It seems that there should be a direct, “local” argument. We give
such a proof. The same proof can be also used to show that the Wadge hierarchy is
well-founded. The final part of the proof is similar to the Martin-Monk argument,
in its use of Baire category. However, the bulk of the argument seems different.

First proof that the extended fine hierarchy is well-founded. Suppose, for a contra-
diction, that there is a sequence Γ0,Γ1, . . . of finite class descriptions such that
Γn`1 ă Γn for all n. (We use superscripts to accommodate nodes / stage numbers
as subscripts.)

For all n, we let Γn,1 “ Γn and Γn,0 “ Γ̌n.

4This definition is slightly different from [GT, Definition 4.1]. The latter requires the property

to be hereditary, namely, for every σ P TΓ, Γσ is efficient as well. This difference is not important

to us right now. The latter also defines efficiency in terms of children of the root, rather than
leaves of SΓ. This is a bit different; we will return to this when discussing admissible descriptions

below.
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Since this proof is not effective, we blur the distinction between a concrete ordi-
nal ξΓnσ and its order-type. We therefore let

ξ˚ “ sup tξΓnσ : n P N, σ P TΓn , & ξΓnσ ă ω1u ` 1,

which is a countable ordinal.
Fix X P 2ω. We define an array of nodes σnα P TΓn for n P N and α ď ξ˚ by

transfinite recursion on α. To simplify notation, we let Γnα “ Γnσnα and ξnα “ ξΓ
n

σnα
“

opΓnαq. We similarly define Γn,iα “ Γn,iσnα for i “ 0, 1.

We will ensure that for all n and α ď β ď ξ˚,

(i) σnα ď σnβ ;

(ii) ξnα ě α; and

(iii) Γn`1
α Ď Γ

n,Xpnq
α .

We start with σn0 being the root of TΓn . The containment property (iii) follows
from the assumption that Γn`1 Ď ∆pΓnq.

If β ď ξ˚ is a limit ordinal, and σnα were defined for all α ă β, then for each n,
by (i), and by the fact that TΓn is finite (well-founded would be enough), the
sequence pσnαqαăβ stabilises; we let σnβ be that stable value. Note that (iii) holds

at β since for all n there is some α ă β such that both σn`1
β “ σn`1

α and σnβ “ σnα.

Also (ii) holds since it holds at each α ă β.
Let α ă ξ˚ and suppose that σnα have been defined for all n. We define σnα`1.
If ξnα ą α then we let σnα`1 “ σnα. It thus remains to define σnα`1 for all n such

that ξnα “ α. For such n we will choose σnα`1 to be a leaf of SΓnα
; this will ensure

that (ii) holds for n and α` 1, as we will have ξnα`1 ą ξnα.
Let I be any maximal interval of N such that ξnα “ α for all n P I. There are

two cases.
If I is finite, let m “ max I. We choose σnα`1 for n P I by reverse recursion on n.

The maximality of I and m implies that ξm`1
α ą α. Hence by Proposition 3.12(b),

we can choose σmα`1 ą σmα to be a leaf of SΓmα
such that Γm`1

α Ď Γ
m,Xpmq

α`1 . If n P I,

n ă m, and σn`1
α`1 was defined, then by Proposition 3.12(c), we can find a leaf σnα`1

of SΓnα
such that Γn`1

α`1 Ď Γ
n,Xpnq

α`1 .
The more complicated case is when I is infinite, i.e., is a final segment of N.

In this case we need to play the leaf selection games. By (iii) and Proposi-
tion 3.12(c), fix, for each n P I, a containment strategy Sn for player 1 in the

game GleafpΓ
n,Xpnq
α ,Γn`1

α q.
For each n in I, we define a descending sequence of SΓαn

positions, pn0 ě pn1 ě
pn2 ě . . . starting with the first move given by Sn. We then “steal moves”: we let
pn1 be the move given by Sn in response to the move pn`1

0 , regarded as a move for

player 2 in the game GleafpΓ
n,Xpnq
α ,Γn`1

α q. In general, if pnk is defined for all n P I,

then we let pnk`1 be the move given by Sn in response to pn`1
0 , . . . , pn`1

k .

For each n, the sequence of leaves pτp
n
k q stabilises to a leaf σnα`1 of SΓnα

.
We check that (iii) holds at α` 1. Let n P N. There are four cases:

‚ If ξnα, ξ
n`1
α are both ą α, then this follows from (iii) holding at stage α.

‚ If ξnα “ ξn`1
α “ α then n and n ` 1 belong to the same interval I. If I is

finite, then (iii) follows by construction. If I is infinite, this follows from
the success of the strategy Sn.
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‚ If α “ ξnα ă ξn`1
α then again this is by construction, as in this case n is the

maximal element of its interval I.
‚ If ξnα ą ξn`1

α “ α then this follows from (iii) holding at stage α, together
with the choice of ξn`1

α`1 to be a leaf of SΓn`1
α

, and Proposition 3.12(a).

At the end of this construction we obtain nodes σnξ˚ P TΓn with ξσn
ξ˚
ě ξ˚; by

choice of ξ˚, this means that ξσn
ξ˚
“ ω1. Let ℓpX,nq be the label of σnξ˚ on TΓn .

By (iii), ℓpX,nq “ ℓpX,n` 1q if and only if Xpnq “ 0.
We observe that in the construction above, each choice σnα depended only on Γn

and Γn`1, and Xpnq. This implies:

(˚): If X,Y P 2ω, n P N, and X ærn,8q “ Y ærn,8q then ℓpX,nq “ ℓpY, nq.

For i “ 0, 1 let Bi be the set of X P 2ω such that ℓpX, 0q “ i. The sets B0 and B1

are Borel: essentially, they can be decided by roughly ξ˚ many Turing jumps of X
(and the sequence of descriptions pΓnq). On the other hand, they fail the property
of Baire, as in the Martin-Monk argument. If X,Y P 2ω and X△Y “ tnu then
lpX,n ` 1q “ lpY, n ` 1q (by (˚)), but by reverse induction on m ď n we see that
lpX,mq “ 1´ lpY,mq. Hence, X P B0 Ø Y P B1. □

4. Admissible descriptions

Among all finite descriptions, we specify a collection of particularly nice descrip-
tions that are easier to analyse. We adapt the definition [GT, Definition 4.5] to
finite classes. We will then show that this restricted collection suffices to describe
all finitely describable classes.

Definition 4.1. A finite class description Γ is admissible if for all internal σ P TΓ:

(i) For any non-default child τ of σ on TΓ, ξτ ą ξσ; and
(ii) For any child σˆn of σ there is some child σˆm of σ such that Γσˆn Ď Γ̌σˆm.

Note that we allow ξτ “ ξσ, where τ is the default child of σ. Note also that the
definition implies that if Γ is admissible, then for every σ P TΓ, Γσ is admissible as
well (Γ is “hereditarily admissible”).

Notation 4.2. For admissible descriptions, we will denote the default outcome by 0,
i.e., the default child of σ will always be σ 0̂.

Lemma 4.3. Every admissible class description is efficient.

Proof. Let Γ be admissible, and let σ be a leaf of SΓ. Let n be the child of the root
that σ extends. By assumption, there is a child m of the root such that Γn Ď Γ̌m,
so Γσ Ď Γ̌m. Note that n ‰ m. If m is a leaf of SΓ then we are done. Otherwise,
m “ 0 is the default child of the root, so n ‰ 0. Hence opΓnq ą opΓq, and σ “ n.
Since m is not a leaf of SΓ, opΓ0q “ opΓq. By Proposition 3.12(b), there is a leaf τ
of SΓ0 such that Γn Ď Γ̌τ ; τ is also a leaf of SΓ. □

Definition 4.4. For two finite descriptions Γ and Λ, an ordinal ξ ď opΛq, opΓq,
and n ă ω, we let

SUξ,npΓ,Λq

be the class description Θ defined by declaring the children of the root to be 0,1,
and 2 (so 0 is the default), and setting Θ0 “ Λ, Θ1 “ Γ, Θ2 “ Γ̌, opΘq “ ξ and
ηΘ “ n (see Fig. 4).

If:
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(i) Λ Ď Γ;
(ii) opΓq ą ξ and opΛq ě ξ; and
(iii) Λ and Γ are admissible,

then SUξ,npΓ,Λq is admissible as well.

Lemma 4.5. If Θ is admissible, then there are Λ,Γ, ξ and n as above such that
Θ ” SUξ,npΓ,Λq.

Proof. By the semi-linear ordering principle, and the fact that TΘ is finite, there
are children n and m of the root on TΘ such that letting Γ “ Θn, we have Θm ” Γ̌,
and for all leaves σ of SΘ we have Θσ Ď Γ or Θσ Ď Γ̌. Since n and m cannot both
be the default outcome, we have opΓq ą opΘq. Let k denote the default child of the
root in TΘ; let Λ “ Θk. Let ξ “ opΘq and n “ ηΘ. We claim that Θ ” SUξ,npΓ,Λq.

In one direction, in the game GleafpΘ,SUξ,npΓ,Λqq, while player 1 plays above
the default outcome, player 2 extends the default outcome 0 and matches the moves
of player 1. If player 1 moves away from the default outcome, player 2 chooses
either n or m, i.e., either Γ or Γ̌, to contain the class played by player 1; the
η-ordinal is matched with player 1.

In the other direction, in the game GleafpSUξ,npΓ,Λq,Θq, player 2 can always
match the classes played by player 1. □

By the semi-linear-ordering property, there are two possibilities:

‚ Λ ă Γ; or
‚ Λ “ Γ or Λ “ Γ̌.

In the second case we have opΛq “ opΓq ą ξ. By Proposition 3.12(c), in this case,
we can then omit one of the non-default outcomes and obtain the description seen
in Fig. 5 (or its dual).

ξ, n

Λ Γ Γ̌

Figure 4. The class description SUξ,npΓ,Λq.

ξ, n

Γ Γ̌

Figure 5. The class description equivalent to SUξ,npΓ,Γq (when
opΓq ą ξ).

We will later give “Boolean interpretations” of these two kinds of classes, in
terms of the operations of one- and two-sided separated unions.
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Definition 4.6. An admissible class description Γ is very admissible if for all
internal σ P TΓ, Γσ 0̂ Ď Γσ 1̂ and Γσ “ SUξσ,ησ pΓσ 1̂,Γσ 0̂q.

Proposition 4.11 and Lemma 4.5 imply that every finitely described class has a
very admissible description. Note that Γ is very admissible if and only if Γ̌ is very
admissible.

4.1. Containment and equivalence between admissible descriptions. Ad-
missibility allows us to easily characterise containment between classes. For a finite
class description Γ, let

CpΓq “
ď

tΓσ : σ is a leaf of SΓu

be the union of the classes Γσ for the leaves σ of SΓ. If Γ is efficient then CpΓq “
Γσ Y Γ̌σ for some leaf σ. For two finite efficient class descriptions Γ and Λ we write
CpΓq ă CpΛq if CpΓq Ĺ CpΛq; this is equivalent to having some leaf τ of SΛ such
that for all leaves σ P SΓ, Γσ Ď Λτ , equivalently, Γσ ă Λτ . Note that for efficient Γ
we have CpΓq “ CpΓ̌q. If Γ is admissible, then we can choose the witnessing σ to be
a non-default child n of the root.

Proposition 4.7. Suppose Γ and Λ are finite admissible descriptions with opΓq “
opΛq. Then Γ Ď Λ if and only if

‚ CpΓq ă CpΛq; or
‚ CpΓq “ CpΛq, and:

– ηΓ ă ηΛ; or
– ηΓ “ ηΛ and Γ0 Ď Λ0.

Proof. We first prove the forward direction. We use Proposition 3.12(c). Again we
use the fact that any non-default outcome of the root is a leaf of the corresponding
S-tree.

First, suppose that CpΓq ă CpΛq. A containment strategy for player 2 is to
choose any outcome n such that CpΛq “ Λn Y Λ̌n.

Suppose then that CpΓq “ CpΛq. Let n0 and n1 be outcomes of the root on TΛ
such that CpΛq “ Λn0

Y Λn1
(so Λn1

“ Λ̌n0
). Since opΛniq ą opΛq, both n0 and n1

are leaves of SΛ. For every childm of the root on TΓ, either Γm Ď Λn0 or Γm Ď Λn1 .
Suppose that ηΓ ă ηΛ. The strategy for player 2 is to first choose ni (either n0 or

n1) so that Γ0 Ď Λni . Player 2 decreases the ordinal at the root by 1. Henceforth,
the ordinal at the root of Λ is at least as large as that at the root of Γ; player 2
always chooses either n0 or n1. If player 1 “goes out of cover”, i.e., chooses some
leaf σ of SΓ such that Γσ is not contained in the current class player by player 2,
then it must be that player 1 made a change at the root, enabling player 2 to move
from n0 to n1 or the other way round.

Suppose that ηΓ “ ηΛ and that Γ0 Ď Λ0. While player 1 chooses leaves of SΓ

extending 0, player 2 responds in kind: if opΛ0q ą opΛq then player 1 just chooses
the outcome 0; if opΓ0q ą opΓq “ opΛq but opΛ0q “ opΛq then player 1 just chooses
some leaf τ of SΛ0 such that Γ0 Ď Λτ (Proposition 3.12(b)); if opΓ0q “ opΛ0q “

opΓq then player 2 plays a containment strategy in the game GleafpΓ0,Λ0q. Once
player 1 moves away from the default outcome 0, player 2 can alternate between
the outcomes n0 and n1 as necessary, keeping the ordinals at the root equal.

In the reverse direction, first note that if CpΓq ă CpΛq, or CpΓq “ CpΛq and
ηΓ ă ηΛ, or CpΓq “ CpΛq and ηΓ “ ηΛ and Γ0 ă Λ0, then the same conditions hold
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for pΓ̌,Λq, so by the forward direction, Γ ă Λ. Hence, if Γ Ę Λ and Λ Ę Γ, then it
must be the case that CpΓq “ CpΛq and ηΓ “ ηΛ and Γ0 ” Λ̌0; taking the dual and
using the forward direction again, we see that in this case, Λ ” Γ̌, so Γ Ę Λ. □

Corollary 4.8. If Γ and Λ are finite admissible descriptions, then Γ ” Λ if and
only if:

‚ opΓq “ opΛq;
‚ CpΓq “ CpΛq;
‚ ηΓ “ ηΛ; and
‚ Γ0 ” Λ0.

Proof. opΓq “ opΛq by Proposition 3.17 (and Lemma 4.3). The rest follows by
applying Proposition 4.7 in both directions. □

Remark 4.9. The Σ{Π type of an admissibly described class is well-defined: if Γ
and Λ are admissible, and Γ ” Λ, then Γ has Σ-type if and only if Λ has Σ-type.
This follows from Λ0 ” Γ0, and induction along the leftmost paths.

As in [GT], we can show that for admissible Γ, the class Γ has the separation
property if and only if it has Π-type.

Remark 4.10. Corollary 4.8 implies that a very admissible description of a class
(Definition 4.6) is almost unique. The only freedom to vary the description is when
Λ ă Γ are very admissible; in that case, the descriptions Θ “ SUξ,npΓ,Λq and

Θ1 “ SUξ,npΓ̌,Λq describe the same class. That is, we can exchange Θ1 and Θ2.
By Remark 4.9, if we wish to specify a unique description, we can require that in
this case, Θ1 has Σ-type.

4.2. Ubiquity of admissible descriptions.

Proposition 4.11. Every finitely describable class has a finite admissible descrip-
tion.

Let Θ be a finite class description. How do we go about finding an admissible
description equivalent to Θ? The main idea is the following. Consider all the classes
Θσ, where σ is a leaf of SΘ. Among these classes we can identify a maximal pair:
some Γ such that Θσ Ď Γ or Θσ Ď Γ̌ for all such σ. In most cases we will show that
Θ ” SUξ,npΓ,Λq, where ξ “ opΓq. What is n? In light of Proposition 3.12, we will
let n be the length of the longest descending sequence of SΓ positions p1, p2, . . . , pn
that alternates between Γ and Γ̌. There will be three possibilities:

(1) Only Γ appears as Θσ (and Γ̌ does not): in this case Θ ” Γ.
(2) For some n ą 1, there is an SΘ-play alternating between Γ and Γ̌ of length n,

starting with Γ, but all such alternating plays starting with Γ̌ have length
at most n´ 1. In this case Θ ” SUξ,n´1pΓ,Γq.

(3) There is no such preference for Γ over Γ̌ (or the other way round): there
is a Γ{Γ̌ alternating sequence of length n starting with Γ, and one of the
same length starting with Γ̌, but no alternating sequences (of either kind)
of length n` 1. In this case Θ ” SUξ,npΓ,Λq for some Λ ă Γ.

The main challenge will be to identify the class Λ in the third case. Naively,
we would think that we should take the class obtained from Θ by removing all
leaves τ of SΘ with Θτ equivalent to one of Γ and Γ̌. Consider, however, trying
to show that SUξ,npΛ,Γq Ď Θ. In the leaf-selection game, while player 1 extends
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the default at the root, player 2 can copy his moves. But once player 1 moves
away, player 2 still needs to be able to produce a Γ{Γ̌ alternating play of length n
(by choosing appropriate leaves of SΘ). We know that there is such a play; but
there is no reason to believe that such a play is still available to us after the moves
made at the first part of the game. Ideally, we would need to restrict ourselves to a
class Λ determined by some collection of leaves of SΘ such that every SΛ-play can
be extended to a Γ{Γ̌ alternating play of length n. It is not clear, though, how to
identify such a collection of leaves, and further, why player 2 would be able to win
the game in the other direction (showing Θ Ď SUξ,npΓ,Λq).

The solution is to look first not for a collection of leaves of SΘ, but at the
collection of SΘ-positions that can be extended by maximal alternating sequences.
Among the classes appearing in these, we can identify a maximal pair of classes
Γ1, Γ̌1, and the process can repeat.

For this reason, we will need to extend the leaf-selection game, to accommodate
restrictions on the kind of positions we allow in the game.

To take the first case above into account (where the ordinal level of the admissible
description increases), we need to extend the notation SΘ. Let ξ be a computable
ordinal. For a class description Θ with opΘq ě ξ, define SΘ,ξ as follows:

‚ If opΘq “ ξ then SΘ,ξ “ SΘ;
‚ If opΘq ą ξ then SΘ,ξ consists only of the root of TΘ.

Note that both cases can be defined together as in the original definition of SΘ,
replacing opΘq by ξ.
SΘ,ξ-positions are defined as in Definition 3.2; when opΘq ą ξ, there is just

one SΘ,ξ position p, determined by taking τp to be the root of TΘ. Note that these
notions apply even when opΘq “ ω1.

Fixing ξ, in this proof, we let P and Q denote nonempty collections of SΘ,ξ-
positions, for some Θ, that are upwards closed: if p P P and q ě p then q P P.

Let Θ and Ξ be class descriptions with ordinal levels ě ξ; let P be a nonempty,
upwards closed collection of SΘ,ξ-positions, and let Q be such a collection of SΞ,ξ-
positions. The game GleafpP,Qq is defined as the game GleafpΘ,Ξq, except that
the trees used are SΘ,ξ and SΞ,ξ, and further, player 1 is only allowed to choose
positions from P, while player 2 must choose positions from Q. We write

P ď Q

if player 2 has a computable containment strategy in the game GleafpP,Qq: one
which guarantees an outcome pσ, ρq satisfying Θσ Ď Ξρ. We write P ” Q if P ď Q
and Q ď P.

We let PΘ denote the collection of all SΘ,ξ-positions. Proposition 3.12 implies:

Claim 4.11.1. If opΘq, opΞq ě ξ, then Θ Ď Ξ if and only if PΘ ď PΞ.

(Observe that Proposition 3.12 covers all cases, whether opΘq “ ξ or opΘq ą ξ,
and similarly for Ξ.) We therefore write Θ in place of PΘ, and so write Θ ď Q,
P ” Ξ, etc.

Proposition 4.11 follows from:

Claim 4.11.2. Let Θ be a finite class description with ξ “ opΘq. For any nonempty
upwards-closed collection P of SΘ-positions there is an admissible class descrip-
tion Ξ with P ” Ξ.
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The notation implies that opΞq ě opΘq. Claim 4.11.1 shows that Claim 4.11.2
implies Proposition 4.11.

For brevity, for an SΘ-position p, let Θp “ Θτp . Claim 4.11.2 is proved by a
double induction: first on the complexity of Θ, and then on the size of DpPq, where

DpPq “ tΘp : p P Pu .
Let Θ be a finite class description. If opΘq “ ω1 then Θ is admissible. Suppose,

then, that ξ “ opΘq ă ω1. By induction, we assume that for every leaf τ of SΘ,
Θτ is admissible; Proposition 3.17 ensures that this does not change SΘ. Fix a
nonempty, upwards closed collection P of SΘ-positions.

We dispose of the easy case first.

Claim 4.11.3. Suppose that there is some maximal Γ P DpPq: for all Γ1 P DpPq,
Γ1 Ď Γ. Then P ” Γ.

Proof. There are computable containment strategies for Player 2 in both GpP,Γq
and GpΓ,Pq, using constant plays. □

We assume henceforth that the hypothesis of Claim 4.11.3 fails. By the semi-
linear-ordering property of finitely described classes, we obtain a maximal pair of
classes in DpPq: some Γ such that Γ, Γ̌ P DpPq, and for all Γ1 P DpPq, Γ1 Ď Γ or
Γ1 Ď Γ̌.

Call a descending sequence p1 ě p2 ě ¨ ¨ ¨ ě pk from P a Γ{Γ̌ sequence if Θpi ” Γ

for odd i and Θpi ” Γ̌ for even i. Similarly, such a descending sequence is a Γ̌{Γ

sequence if Θpi ” Γ̌ for odd i and Θpi ” Γ for even i.

We let n be the greatest such that there are both: a Γ{Γ̌ sequence of length n
and a Γ̌{Γ sequence of length n. Our assumption implies that n ě 1.

We let Q be the collection of all q P P such that there are both Γ{Γ̌ sequence
p1, . . . , pn of length n such that p1 ď q, and a Γ̌{Γ sequence r1, . . . , rn of length n
such that r1 ď q. By definition, Q is upwards closed. By choice of n, the initial SΘ

position is in Q, so Q is nonempty.

Claim 4.11.4. DpQq Ĺ DpPq.

Proof. We claim that either Γ R DpQq or Γ̌ R DpQq. Otherwise, let q1 P Q with
Θq1 ” Γ and q2 P Q with Θq2 ” Γ̌. Since q1 P Q, pq1q can be extended by a Γ̌{Γ

sequence of length n; similarly, q2 can be extended by a Γ{Γ̌ sequence of length n.
This shows that in P there are both a Γ{Γ̌ and a Γ̌{Γ sequence of length n ` 1,
contradicting the definition of n. □

By induction, there is some admissible class description Λ (with opΛq ě ξ) sat-
isfying Q ” Λ.

Claim 4.11.5. Λ Ď Γ or Λ Ď Γ̌.

Proof. Without loss of generality, suppose that Γ̌ R DpQq. Then Λ Ď Γ. To see this,
by Claim 4.11.1, it suffices to show that Q Ď Γ. Since opΓq ą ξ, this is witnessed
by constant plays, as Υ Ď Γ for all Υ P DpQq. □

It follows that one of SUξ,npΓ,Λq or SUξ,npΓ̌,Λq is admissible; without loss of

generality, suppose that Γ̌ R DpQq, so Ξ “ SUξ,npΓ,Λq is admissible.
The following claim then concludes the proof of Claim 4.11.2, and so of Propo-

sition 4.11.
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Claim 4.11.6. P ” Ξ.

Proof. In GleafpP,Ξq, as long as player 1 plays within Q, player 2 remains above
the default at the root, and responds according to her containment strategy in the
game GleafpQ,Λq (note that this covers both cases opΛq “ ξ and opΛq ą ξ). Once
player 1 leaves Q, player 2 chooses either Γ or Γ̌, moving only when she must. The
first step out of Q “breaks the tie” between Γ and Γ̌, so even if that move results in
some Θp ă Γ, player 2 can examine all future possibilities and choose a safe option

between Γ and Γ̌.
In GleafpΞ,Pq, as long as player 1 remains above the default at the root, player 2

plays his containment strategy in GpΛ,Qq; once player 1 chooses either Γ or Γ̌,
player 2 can move to an alternating sequence of length n with the appropriate
start. □

4.3. Ranked Boolean formulas. Selivanov gave an equivalent definition of the
fine hierarchy, using ranked Boolean formulas. We show that the extended hierarchy
has a similar characterisation. We consider a ranked language of propositional logic.
Each propositional variable is assigned a rank (or level), which is a computable
ordinal. For a ranked variable v, we let rpvq denote the rank of v.

A ranked Boolean formula is a (finite) propositional formula using ranked vari-
ables. For a ranked Boolean formula ψ, let:

‚ Vψ denote the set of variables appearing in ψ; and
‚ Bψ : t0, 1u

Vψ Ñ t0, 1u be the “truth table” of ψ.

Definition 4.12. Let ψ be a ranked Boolean formula. A ψ-name N consists of a
choice of a Σ0

1`rpvq
set Av for every variable v P Vψ. The set named by a ψ-name N

is the result of applying the truth-table Bψ to this choice:

Npxq “ BψpAv1pxq, Av2pxq, . . . , Avmpxqq

where v1, . . . , vm are the variables appearing in ψ.
The class Cψ defined by ψ is the collection of all sets that have ψ-names.

Note that by definition, if ψ and ψ1 are logically equivalent (meaning Vψ “ Vψ1

and Bψ “ Bψ1) then Cψ “ Cψ1 .

Proposition 4.13. A collection of subsets of N is a finitely described class if and
only if it is Cψ for some ranked Boolean formula ψ.

In one direction, we give explicit names to the Boolean operations from which
we can build all admissibly defined classes. We recall the following definitions (see
for example [Lou83]).

‚ Let Ξ and Γ be classes. The class SeppΞ,Γq is the class of all sets of the
form pAX Cq Y pB X CAq, where B P Γ, A P Γ̌, and C P Ξ.

‚ Let Ξ, Γ and Λ be classes. The class BiSeppΞ,Γ,Λq is the class of all sets
of the form pAX C1q Y pB X C2q Y pD X pC1 Y C2q

Aq, where A P Γ, B P Γ̌,
D P Λ and C1, C2 P Ξ are disjoint.

Lemma 4.14. Let Θ “ SUξ,npΓ,Γq, where Γ is a finite description with opΓq ą ξ.
The class described by Θ is SeppDnpΣ

0
1`ξq,Γq.

Proof. As mentioned above, Θ is equivalent to the class in Fig. 5, which has only
two outcomes, 0 and 1. Let N be a Θ-name. We let C be the set of x P N such
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that ℓN pxq ě 1. By Proposition 2.4, C is DnpΣ
0
1`ξq; letting A “ N1 and B “ N0

shows that N P SeppDnpΣ
0
1`ξq,Γq.

In the other direction, let P P SeppDnpΣ
0
1`ξq,Γq, given by sets A,B,C as in the

definition. Let N0 be a Γ-name for B and N1 be a Γ̌-name for A. To define a
Θ-name N , we let fN

xy
be a ξ, n-enumeration of C (Proposition 2.4). □

For the following, we modify the definition of BiSep as follows:

‚ Let Ξ, Γ and Λ be classes. The class BiSep˚
pΞ,Γ,Λq is the class of all sets

of the form pAXpC1zC2qqYpBXpC2zC1qqYpDXpC1YC2q
Aq, where A P Γ,

B P Γ̌, D P Λ and C1, C2 P Ξ.

Lemma 4.15. Let Θ “ SUξ,npΓ,Λq, where opΓq ą ξ, opΛq ě ξ, and Λ ă Γ are
finite descriptions. The following coincide:

(1) BiSeppDnpΣ
0
1`ξq,Γ,Λq;

(2) BiSep˚
pDnpΣ

0
1`ξq,Γ,Λq;

(3) The class described by Θ.

Proof. This extends [GT, Proposition 4.6]. We show three containments. One
is immediate: BiSeppDnpΣ

0
1`ξq,Γ,Λq Ď BiSep˚

pDnpΣ
0
1`ξq,Γ,Λq. Another is also

fairly simple: Θ Ď BiSeppDnpΣ
0
1`ξq,Γ,Λq. To see this, given a Θ-name N , for

i “ 1, 2 let Ci “
␣

x P N : ℓN pxq ě i
(

, A “ N1, B “ N2, and D “ N0. Then C1

and C2 are both DnpΣ
0
1`ξq, as witnessed by modifications of fN

xy
, so the sets defined

show that N P BiSeppDnpΣ
0
1`ξq,Γ,Λq.

For the last containment, BiSep˚
pDnpΣ

0
1`ξq,Γ,Λq Ď Θ, we use the stage com-

parison argument. First note that since Λ ă Γ, we cannot have Γ “ tHu or
Γ “ tNu; and so, H P Γ, Γ̌. Let P P BiSep˚

pDnpΣ
0
1`ξq,Γ,Λq, witnessed by sets

A,B,D,C1, C2. Let g1 and g2 be pξ, nq-enumerations of C1 and C2 (Proposi-
tion 2.4). Let N0 be a Λ-name for D. Since opΓq ą ξ, and since Λ ă Γ, by
Proposition 2.10, we let N1 be a Γ-name for the set

pAX pC1zC2qq Y pD X pC1 Y C2q
Aq;

That is, N1 behaves as A on C1zC2, as D on pC1 Y C2q
Aq, and as H on C2. We

similarly let N2 be a Γ̌ name for pBXpC2zC1qqY pDXpC1YC2q
Aq. To specify N it

remains to define fN
xy
. For each x and s, if for all t ďξ s we have g1px, sq “ g2px, sq “

0, then we set fN
xy
px, sq “ 0. Otherwise, let tpsq be the least t ďξ s such that either

g1px, sq “ 1 or g2px, sq “ 1. If g1px, tpsqq “ 1 set ipsq “ 1, otherwise set ipsq “ 2.
Then set fN

xy
px, sq “ ipsq if gipsqpx, sq “ 1, otherwise let fN

xy
px, sq “ 3 ´ ipsq. If

x P C1zC2 then Npxq “ N1pxq “ Apxq; if x P C2zC1 then Npxq “ N2pxq “ Bpxq.
If x P pC1 Y C2q

A then we may have ℓN pxq extending either 0, 1 or 2; but in each
case we will have Npxq “ Dpxq. If x P C1 X C2 then ℓN pxq will extend either 1 or
2, but in either case we will have Npxq “ 0. The number of mind changes of fN

xy

on any x will be bounded by n, as the number of mind changes of both g1 and of
g2 is bounded by n. □

Proof of Proposition 4.13. First, we show that any finitely described class is Cψ for
some ranked Boolean formula ψ. We use Proposition 4.11 and Lemma 4.5, and use
induction over the complexity of very admissible descriptions (Definition 4.6). The
base of the induction are the class descriptions with opΓq “ ω1, i.e., the classes tHu
and tNu. For these, we allow the Boolean formulas J and K, that have no variables.
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For the inductive step, we are given a very admissible class description Θ “

SUξ,npΓ,Λq, and by induction assume that we have ranked Boolean formulas ψΛ,

ψΓ, and ψΓ̌, that define the same classes as Λ, Γ and Γ̌. We assume that these
three formulas share no common variables (this is why we did not take ψΓ̌ “ ␣ψΓ).
If Λ “ Γ then we use Lemma 4.14; we take a formula φ that defines the class
DnpΣ

0
1`ξq, again with its own variables, and use φ, ψΓ and ψΓ̌ to write a formula

that defines SeppDnpΣ
0
1`ξq,Γq. We used distinct variables so that we could choose

sets B P Γ, A P Γ̌, and C P DnpΣ
0
1`ξq independently of each other.

If Λ ă Γ then we use two formulas φ1 and φ2, each with their own variables,
both defining DnpΣ

0
1`ξq, and use these and the other given formulas to write a

formula that defines BiSep˚
pDnpΣ

0
1`ξq,Γ,Λq, and appeal to Lemma 4.15. Note

that we can’t use BiSep directly, since a ranked Boolean formula cannot force the
chosen C1 and C2 to be disjoint.

It remains to show that each class Cψ has a finite description. To see this, we
show, in fact, that for any ranked Boolean formula ψ, letting opψq “ min trpvq : v P Vψu,
the class Cψ has a finite description Γ with opΓq ě opψq.

We use induction on the number of variables of ψ. Again, the base of the
induction are the formulas J and K, that have no variables, and we already observed
that they define finitely described classes. (We can set opJq “ opKq “ ω1.)

Let ψ be a ranked Boolean formula which has variables. Let ξ “ opψq. Let
v0, . . . , vk´1 be a list of those v P Vψ with rpviq “ ξ. Let W “ Vψztv1, . . . , vku.

For any ρ P 2k “ t0, 1ut0,1,...,k´1u, let v̄ρ “
Ź

iăk v
ρpiq
i , where of course v1 “ v and

v0 “ ␣v. Find ranked Boolean formulas ψρ for each such ρ, with Vψρ “ W , such
that ψ is logically equivalent to

ł

ρP2k

`

v̄ρ ^ ψρ
˘

.

By induction, for each ρ there is a finite description Γρ of Cψρ , with opΓρq ą ξ.

We let Γ be the class description obtained by first taking the full binary tree 2ďk

of height k, with all internal nodes of labels ξσ “ ξ and ησ “ 1, and then attaching
Γρ at the node ρ. So the notation Γρ is appropriate. Since opΓρq ą ξ, this is a valid
class description. We claim that Γ is a description of Cψ.

To see this, first, let B P Cψ, obtained by a choice of sets Av for v P Vψ. For
ρ : t1, . . . , ku Ñ t0, 1u, let Bρ be the set in Cψρ obtained by choosing the same Av
for v P W . Let Nρ be a Γρ-name for Bρ. Then a Γ-name M for B is obtained by
setting, for each σ P 2ăk, the node σ to follow Av|σ|

. That is, if fi is a ξ-enumeration

of Avi (for i ă k), then for each σ P t0, 1ui we let fM “ fi.
The other direction is a bit trickier. We are given a Γ-nameM . This gives a sub-

name Mρ for each ρ P 2k (a Γρ-name), and ξ-enumerations fMσ for σ P 2ăk. One
difficulty is that there is no reason to believe that fMσ and fMσ1 are enumerations
of the same Σ0

1`ξ set when |σ| “ |σ1|. Another is that while we can simulate

each Mρ by a ψρ-name, all of the formulas ψρ share the same variables (those
in W ), and the ψρ-names need not agree on the assignments of these variables.
Both of these problems can be summarised by saying that M is “too independent”;
approximations in one node do not need to correspond to approximations in others.

The first problem is not actually a real problem; we can take unions and obtain
the same effect. This works since the “movement” on 2k is always left-to-right, as
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we set ησ “ 1 for σ P 2ăk. For the second problem, we use the the higher ordinal
level of the variables in W .

For ρ P 2k let Cρ be the set of x P N such that ℓM pxq ě ρ. These sets are
∆0

1`ξ`1. For i ă k, we let

Avi “
ď

tCρ : ρpiq “ 1u .

These sets are Σ0
1`ξ: x P Avi if some σ of length i sends x to the non-default

outcome. More formally, Avi is the set of x such that for some σ P 2i, for some
ξ-true stage s, we have fM px, sq “ 1. The point now is that for all x P N, x P Cρ if
and only if the assignment vi ÞÑ Avi makes v̄ρ true on x.

For ρ P 2k, we are given sets Dρ
w P Σ

0
1`rpwq

, for the variables w PW , that give a

ψρ-name Nρ equivalent to Mρ. For w PW we then let

Aw “
ď

ρP2k

pDρ
w X Cρq.

Since rpwq ą ξ, each set Cρ is Σ
0
1`rpwq

, and so Dw is Σ0
1`rpwq

. Then the assignment

of Avi for i ă k and Aw for w PW gives a ψ-name that is equivalent to M . □

Remark 4.16. The proof of Proposition 4.11 can be used to directly translate from
ranked Boolean formulas to admissible descriptions, rather than merely finite de-
scriptions; instead of collections of SΘ-positions, we look at “initial segments” of the
truth table of ψ. It is more difficult, though, to pass from a finite class description
to a ranked Boolean formula, without considering admissible descriptions first.

4.4. The fine hierarchy. Selivanov showed in [Sel95] that the classes in the fine
hierarchy are precisely the classes Cψ, where ψ is a ranked Boolean formula where all
the variables have finite ranks. An examination of the proofs of Proposition 4.11 and
Proposition 4.13 shows that the translations between finite descriptions, admissible
descriptions, and ranked Boolean formulas, all preserve ranks. Hence:

Proposition 4.17. The following are equivalent for a finitely described class Γ:

‚ Γ has a finite description in which ξσ is finite for all internal σ;
‚ Γ has an admissible description in which ξσ is finite for all internal σ;
‚ Γ “ Cψ, where ψ is a ranked Boolean formula in which all variables have
finite ranks.

Corollary 4.18. The fine hierarchy forms an initial segment of the extended fine
hierarchy.

That is, if Γ is in the fine hierarchy, Λ is in the extended fine hierarchy, and
Λ ď Γ, then Λ is in the fine hierarchy.

Proof. All classes in the fine hierarchy consist of subclasses of the arithmetic sets.
On the other hand, if Γ is in the extended fine hierarchy but not the fine hierarchy,
then Γ has an admissible description in which we have ξσ ě ω for some internal
σ. That is, ω ď opΓσq ă ω1. Since Γσ is efficient, by Corollary 2.11, ∆0

ω Ď Γσ, so
∆0
ω Ď Γ. □
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5. The extended fine hierarchy

As Wadge did for Borel classes, and Selivanov for the fine hierarchy, we can
calculate the ordinal height of described classes — the order-type of the class ΓY Γ̌
under proper containment. The level will be read recursively off admissible de-
scriptions. This will give an alternative proof that the extended fine hierarchy is
well-founded.

5.1. The modified Veblen functions. The heights of Borel Wadge classes are
calculated using the ω1-based Veblen functions. For example, the height ofΣ0

2 is ω1,
of Σ0

3 is ωω1
1 , and so on. A similar phenomenon holds for the admissibly described

classes, except that we use the ω-based Veblen functions. A slight modification at
finite inputs allows for a uniform treatment.

We define a sequence of closed and unbounded classes of ordinals. We start with

C0 “ tα : p@β, γ ă αq β ` γ ă αu ,

the class of ordinals closed under ordinal addition. The class C0 contains 0, 1, and all
infinite ordinal powers of ω (and in fact, 1 is a power of ω): C0 “ t0uY

␣

ωβ : β ě 0
(

.
Now given the closed unbounded class Cγ , we let

Cγ`1 “ tα P Cγ : otppCγ X αq “ αu ;

and for limit γ, we of course let

Cγ “
č

βăγ

Cβ .

Note that for all γ, 0, 1 P Cγ . We let φγ be the increasing enumeration of the
elements of Cγ .

Example 5.1. For all γ, φγp0q “ 0 and φγp1q “ 1. We have φ0p2q “ ω, φ0p3q “ ω2,
φ0pωq “ ωω, and in general, φ0p1` αq “ ωα.

The class C1 contains 0,1 and all ordinals α with ωα “ α. In other words, all
ordinals α such that φ0pαq “ α. Hence, φ1p2q “ ε0, and in general, φ1p2`αq “ εα.

In general, Cγ`1 is the class of all ordinals α with φγpαq “ α, and so φ2p2q is
the least ordinal ζ with εζ “ ζ.

Γ0 is the least ordinal ζ with ζ “ φζp2q.
5

Using the modified Veblen functions and Cantor’s normal form for ordinals, we
define “increment functions” θβ defined as follows.

Definition 5.2. For an ordinal β ą 0 write

β “ ωα1 ` ωα2 ` ¨ ¨ ¨ ` ωαk

with α1 ě α2 ě ¨ ¨ ¨ ě αk. We let

θβ “ φα1
˝ φα2

˝ ¨ ¨ ¨ ˝ φαk .

We also let θ0 be the identity function on the ordinals.

If α ą α1 then Cα “ rangeφα consists of fixed points of φα1 , and so φα “ φα1˝φα.
This shows:

Lemma 5.3. For any two ordinals β and γ, θβ`γ “ θβ ˝ θγ .

5Here we are using the notation “Γ0” as is standard in the ordinal literature, not as we have
been using it to denote a sub-description of a description Γ; this usage will not be used outside

examples.
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5.2. Jumps of classes.

Definition 5.4. For a computable class description Γ and a computable ordinal β,
we let Γpβq be the class description obtained from Γ by replacing each ξΓσ by β` ξΓσ .

Lemma 5.5. Let Γ be a computable class description.

(a) For all α and β, pΓpβqqpαq “ Γpα`βq.
(b) For all σ P TΓ and all β, pΓσq

pβq “ pΓpβqqσ.

For any class description Γ, because for each internal σ P TΓ we have ξΓσ ě opΓq,
for all ζ ď opΓq there is a (unique) class description Γp´ζq satisfying pΓp´ζqqpζq “ Γ;
for internal σ P TΓ, ξΓ

p´ζq

σ is the unique ordinal ε satisfying ζ`ε “ ξΓσ . In particular,
opΓp´opΓqqq “ 0.

Lemma 5.6. For any two finite class descriptions Γ and Λ, and any computable β,

Γ Ď Λ ðñ Γpβq Ď Λpβq.

Proof. By Lemma 5.5, SΓpβq “ SΓ. The result then follows from Proposition 3.12,
and induction on the complexity of the pair pΓ,Λq. □

As a result, Γ is admissible if and only if Γpβq is admissible. Indeed:

Θ ” SUξ,npΓ,Λq if and only if Θpβq ” SUβ`ξ,npΓ
pβq,Λpβqq.

In particular, Γ is very admissible (Definition 4.6) if and only if Γpβq is very
admissible.

5.3. Assigning heights to very admissible descriptions. For every very ad-
missible class description Γ, we define an ordinal δpΓq ą 0. We will verify that δpΓq
is the height of the class defined by Γ (with a +1 offset for finite heights). The
definition is by recursion on the complexity of the description.

(i) If opΓq “ ω1 then δpΓq “ 1.
(ii) If opΓq “ 0 then

δpΓq “ δpΓ1q ¨ η
Γ ` δpΓ0q.

That is, if Γ “ SUξ,npΘ,Λq then δpΓq “ δpΘq ¨ n` δpΛq.
(iii) If 0 ă opΓq ă ω1 then we let

δpΓq “ θopΓqpδpΓ
p´opΓqqqq.

Example 5.7. Let 0 denote the trivial class description of tHu, and let 1 be the
trivial class description of tNu. By definition, δp0q “ δp1q “ 1. Let Γ “ SU0,1p0,0q;
then δpΓq “ δp0q ¨ 1 ` δp0q “ 2. Note that Γ names the class Σ0

1. Similarly, for
n ě 1, let Γ “ SU0,np0,0q be the description of the class of DnpΣ

0
1q, the n-c.e. sets;

then δpΓq “ n` 1.

By induction on the complexity of Γ we observe:

Lemma 5.8. For any very admissible class description Γ, δpΓq “ δpΓ̌q.

Lemma 5.3 implies:

Lemma 5.9. For any very admissible Γ and computable ordinal β,

δpΓpβqq “ θβpδpΓqq.

The range of any θβ , for any β ą 0, is contained in C0, and so:

Lemma 5.10. For any very admissible class description Γ, if opΓq ą 0 then δpΓq
is a power of ω.
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5.4. Assigning heights to classes. The following proposition implies that we
can unambiguously define δ of a finitely described class.

Proposition 5.11. For very admissible class descriptions Γ and Λ, if Γ ă Λ then
δpΓq ă δpΛq. If Γ ” Λ, then δpΓq “ δpΛq.

One step will require the following special case:

Lemma 5.12. Let Γ “ SUξ,npΘ,Λq be very admissible. Then δpΘq ă δpΓq.

Proof. If ξ “ 0 then this follows from the definition, since δpΛq ą 0 (and n ě 1).
If ξ ą 0, then as Γp´ξq “ SU0,npΘ

p´ξq,Λp´ξqq (Lemma 5.5), we obtain δpΘp´ξqq ă

δpΓp´ξqq; now apply Lemma 5.9, noting that θξ is strictly increasing. □

Note that without Proposition 5.11, we cannot yet conclude that δpΛq ă δpΓq.

Proof of Proposition 5.11. The proof is by induction on the complexity of the pair
pΓ,Λq. Note that if the proposition has been proved for some pair pΓ,Λq, then by
the semi-linear-ordering property, if Γ Ď Λ then δpΓq ď δpΛq.

Let ξ “ mintopΓq, opΛqu. By Lemma 5.9, δpΓq “ θξpΓ
p´ξqq and δpΛq “ θξpΛ

p´ξqq.
Since θξ is strictly increasing, by Lemma 5.6, it suffices to show the appropriate

relation for δpΓp´ξqq and δpΛp´ξqq. Thus we may assume ξ “ 0. We assume that
Γ Ď Λ. Now we consider the cases. Note that only in the last one we have equality
of the classes.

If 0 “ opΓq ă opΛq, then δpΓq “ δpΓ1q ¨ ηΓ ` δpΓ0q. Since Γ0,Γ1 Ď Γ ă Λ, we
have δpΓ0q, δpΓ1q ă δpΛq by induction. Since opΛq ą 0, by Lemma 5.10, δpΛq is
closed under ordinal addition, so δpΓq ă δpΛq.

If opΓq ą opΛq “ 0, then by Proposition 3.12, Γ Ď Λ1 or Γ Ď Λ̌1. Since
δpΓ̌1q “ δpΓ1q (Lemma 5.8), by induction, δpΓq ď δpΛ1q; now apply Lemma 5.12.

Suppose then that opΓq “ 0 “ opΛq. If Γ1 ă Λ1, then by induction, δpΓ1q ă

δpΛ1q; since Γ0 Ď Γ1, we also have δpΓ0q ă δpΛ1q. As opΛ1q ą 0, δpΛ1q is closed
under addition (Lemma 5.10), so δpΓq ă δpΛ1q ă δpΛq.

Suppose that tΓ1, Γ̌1u ” tΛ1, Λ̌1u. Let γ “ δpΓ1q “ opΛ1q (by induction). Also
by induction, δpΓ0q ď γ.

If ηΓ ă ηΛ, then δpΓq “ γ ¨ ηΓ ` δpΓ0q ď γ ¨ pηΓ ` 1q ă δpΛq (as δpΛ0q ą 0).
Suppose that ηΓ “ ηΛ. If Γ0 ă Λ0 then by induction, δpΓ0q ă δpΛ0q, and then

by definition we obtain δpΓq ă δpΛq; if Γ0 ” Λ0 then by induction, δpΓ0q “ δpΛ0q,
and then by definition we obtain δpΓq “ δpΛq.

By Proposition 4.7, this covers all the possibilities. □

By the semi-linear-ordering property, we immediately get a converse.

Corollary 5.13. For very admissible class descriptions Γ and Λ, if δpΓq ă δpΛq
then Γ ă Λ. If δpΓq “ δpΛq, then Γ ” Λ or Γ ” Λ̌.

Example 5.14. Let α be a computable ordinal. Then Σ0
1`α is the α-jump of Σ0

1,
and so by definition (and Example 5.7) δpΣ0

1`αq “ θαp2q. So:

‚ δpΣ0
2q “ θ1p2q “ φ0p2q “ ω; δpΣ0

3q “ θ2p2q “ φ0pφ0p2qq “ ωω, and simi-
larly, δpΣ0

4q “ ωω
ω

, and so on.
‚ δpΣ0

ωq “ θωp2q “ φ1p2q “ ε0; δpΣ
0
ω`1q “ θω`1p2q “ φ1pφ0p2qq “ φ1pωq “

εω, the ω
th fixed point of β ÞÑ ωβ ; δpΣ0

ω`2q “ εωω , and so on.

‚ δpΣ0
ω2q “ φ2p2q is the least fixed point of β ÞÑ εβ , δpΣ

0
ω2`ωq is the ε0

th

fixed point of β ÞÑ εβ , etc.
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‚ The least α such that δpΣ0
αq “ α is the ordinal Γ0.

There are no gaps:

Proposition 5.15. For every computable ordinal ε ą 0 there is a finitely described
class Γ with δpΓq “ ε.

To show this, we will require the following:

Lemma 5.16. For any finitely described class Γ, opΓq ą 0 if and only if δpΓq is a
power of ω.

Proof. One direction is Lemma 5.10. The other direction is proved by induction on
the complexity of a very admissible description of Γ. Suppose that opΓq “ 0. By
Proposition 5.11, δpΓ0q ď δpΓ1q. Since δpΓ0q ą 0,

δpΓ1q ď δpΓ1q ¨ ηΓ ă δpΓq ď δpΓ1q ¨ pηΓ ` 1q ă δpΓ1q ¨ ω.

Since opΓ1q ą 0, δpΓ1q is a power of ω, and so there are no powers of ω strictly
between δpΓ1q and δpΓ1q ¨ ω; so δpΓq is not a power of ω. □

Proof of Proposition 5.15. We proceed by induction on ε. The base case ε “ 1 is
immediate.

For ε ą 1, a straightforward induction shows that ε R Cε`1, so fix the least γ
with ε R Cγ . By construction, γ cannot be a limit ordinal.

If γ “ β ` 1, then ε is in the range of φβ but is not a fixed point of φβ , hence
ε “ φβpαq for some α ă ε. By induction, α “ δpΛq for some finitely described

class Λ. Let Γ “ Λpωβq. By Lemma 5.9, δpΓq “ θωβ pδpΛqq “ φβpαq “ ε.
If γ “ 0, then ε is not a power of ω. There are two cases. One is when ε is finite.

This case is covered by Example 5.7. We assume then that ε is infinite. Write
ε “ ρ1 ¨ n` ρ0, where ρ1 is the largest power of ω less than ε and 0 ă ρ0 ă ρ1. By
the inductive hypothesis, there are classes Λ0 and Λ1 with δpΛiq “ ρi for i P t0, 1u.
By Lemma 5.16, opΛ1q ą 0. By Corollary 5.13, Λ0 Ď Λ1 or Λ0 Ď Λ̌1. So one of
SU0,npΛ1,Λ0q and SU0,npΛ̌1,Λ0q is very admissible, and is as required. □

Corollary 5.17. For any admissibly described class Γ,
␣

ΛY Λ̌ : Λ is admissible and Λ ă Γ
(

is well-ordered under Ď, and its order-type is:

‚ δpΓq, if δpΓq is infinite;
‚ δpΓq ´ 1, if δpΓq is finite.

Example 5.18. Recall that Γ` “ SU0,1pΓ,0q is the successor of Γ in the extended
fine hierarchy (Proposition 5.19). Thus, by Corollary 5.17, δpΓ`q “ δpΓq ` 1. Note
that this can be deduced by the definition if opΓq ą 0 (and Γ is very admissible of
Σ-type), but is less obvious when opΓq “ 0, in which case Γ` is not admissible.

5.5. A characterisation of limit classes. In [DGHTTa], a classification of the
ambiguous classes of boldface described pointclasses is given based on the ordinals
appearing along the leftmost path of a description. This determines the ordertype of
the height of the class in the Wadge ordering: successor, limit of countable cofinality,
or limit of uncountable cofinality. For the effective hierarchy, the classification is a
little simpler, since we don’t have different cofinalities at limit points.
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Proposition 5.19. Let Γ be a very admissible class description, and suppose that
opΓq ă ω1. Let ρ˚ be the leftmost leaf of TΓ. Then δpΓq is a successor ordinal if
and only if for every σ ă ρ˚, ξΓσ “ 0.

Proof. This is proved by induction on the length of ρ˚. By Lemma 5.10, we may
assume that opΓq “ 0, so δpΓq “ δpΓ1q ¨ ηΓ ` δpΓ0q.

If |ρ˚| “ 1, i.e., if opΓ0q “ ω1, then δpΓ0q “ 1 is a successor. Otherwise, since Γ is
admissible, we have opΓ1q ă ω1; by Lemma 5.10, δpΓ1q is a limit ordinal, and so δpΓq
is a limit if and only if δpΓ0q is a limit. The result then follows by induction. □

Here is a consequence. As we will see in the sequel [GQT], this explains the fact
that classes whose heights are successors of limits do not contain any new Turing
degrees.

Proposition 5.20. Let Γ be a finitely described class, and suppose that δpΓq is a
limit ordinal. Then Γ is closed under unions and intersections with ∆0

2 sets.

Proof. If opΓq ą 0 then we appeal to Corollary 2.11; so we assume that opΓq “ 0.
Let Γ be a very admissible description of the class. Let σ˚ be the leftmost leaf
of SΓ (Definition 3.2), and ρ˚ the leftmost leaf of TΓ. By Proposition 5.19, σ˚ ň ρ˚

as 0 ă opΓσ˚q ă ω1.
Since Γσ˚ is admissible, H,N P Γσ˚ . Also, if τ ‰ σ˚ is a leaf of SΓ, then

τ “ σˆm for some σ ă σ˚ and m P t1, 2u, and Γσ 0̂ Ď Γτ or Γσ 0̂ Ď Γ̌τ ; in either
case, H,N P Γτ . By Corollary 2.11, for any leaf τ of SΓ, Γτ is closed under unions
and intersections with ∆0

2 sets. For any Γ-name N and any ∆0
2 set B, for any leaf τ

of SΓ, letMτ be a Γτ name forNτYB; for internal σ P SΓ, let pf
M
s , βMs q “ pf

N
s , β

N
s q.

Then M is a Γ-name for N YB. The same argument holds for intersections. □

Remark 5.21. Note that the argument above does not show that Γ is closed under
definition by cases at the level ∆0

2, and indeed cannot; we mentioned that if opΓq “ 0
then Γ cannot be closed under definition by cases at this level. The point is that
with more than one Γ-name, we would not know which leaf of SΓ to take (essentially,
the choice is between Γ1 and Γ̌1). Once we get to a leaf, we would know which one
we should have taken, but by then it is too late.
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