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ABSTRACT. We show how to extend Selivanov’s fine hierarchy using descrip-
tions of Borel Wadge classes. We give a game characterisation of containment
between classes. We show that every class in the extended fine hierarchy has
an admissible description, and use this to calculate heights in the hierarchy.

1. INTRODUCTION

Descriptive set theory and computability theory study hierarchies of classes, that
at first appear merely analogues, but in fact can be considered as manifestations
of the same basic concept in different settings. The most prominent example is the
Borel hierarchy of X0 subsets of Polish spaces (for all countable ordinals «), and
the hyperarithmetic hierarchy of X0 subsets of N (for all computable ordinals ).
The underlying connection here is that the lightface (effective) classes X% can be
defined not only for N, but also for subsets of any computably presented Polish
space. They can be relativised to oracles z (and z-computable ordinals «). We
then get 25 = J{2%(2) : o is z-computable}. This enables us to apply effective
methods to study Borel sets. Among prominent results in the effective theory, or
using effective methods, are Louveau’s separation theorem [Lou80], the Harrington-
Kechris-Louveau dichotomy [HKL90], and the Go-dichotomy [KST99].

A hierarchy finer than the Borel / hyperarithmetic one is defined using differ-
ences of sets in the Borel hierarchy. In set theory this is known as the Hausdorff,
or Lavrentiev, difference hierarchy Dn(Eg). In computability, this is the Ershov
hierarchy [Es68, Ers68, Ers70]; see also [Put65]. The prominent result regarding
the difference hierarchy in set theory is the Hausdorff-Kuratowski theorem, that
AL L1 = U, <w, Dn(22). The analogous result, due to Ershov, is that every AJ set
is X ! for some notation 7 for a computable ordinal (2, 1is Ershov’s notation for
D, (29)). The effective version is more “fragile”, as the class D,(X}) depends on
the notation (computable presentation) of 1, rather than just its order-type.

The finest hierarchy of them all is due to Wadge [Wad84]. Motivated by “many-
one” reducibility in computability, Wadge defined a subset A of Baire space to
be reducible to B if A is a continuous pre-image of B. A Wadge class is a col-
lection of sets closed under taking continuous pre-images. The structure of Borel
Wadge classes under containment is surprisingly regular; it is semi-well-ordered,
with alternating self-dual and non-self-dual classes. Wadge was able to calculate
the order-type of the non-self-dual classes (after identifying such a class with its
dual). He also showed that all such classes are the result of applying a Borel w-ary
Boolean operation to the class of open sets.

The authors were partially supported by the Marsden Fund of New Zealand.
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In computability, the analogue of the Wadge hierarchy was defined by Seliv-
anov [Sel83; Sel89], which he called the fine hierarchy. To avoid the problem of
dependence on ordinal notation, Selivanov looked at generalisations of the finite
difference hierarchy. The hierarchy was first defined using generalised jump opera-
tions in [Sel83]. This resembles Wadge’s use of Kuratowski (i, 0)-homeomorphisms,
which we now know can be thought of as relativised iterated Turing jumps. In
[Sel89], Selivanov gave an inductive definition of the hierarchy (of length eg), using
(essentially) jumps, and some fixed Boolean operations, most notably the BiSep
operation (two sided separated unions). In [Sel95], an equivalent definition is given
using typed Boolean terms. Selivanov also noted a close relationship between the
fine hierarchy and the Wagner hierarchy in automata theory [Wag79, Sel02]. For
a survey, see [Sel08]. Selivanov also generalised his hierarchy beyond subsets of
spaces, to k-partitions and functions to BQOs [Selll, Sel20], and to general Polish
and quasi-Polish spaces [Sel21].

In this paper, we show how to naturally extend Selivanov’s hierarchy beyond
the arithmetic, all the way up the hyperarithmetic sets. To do this, we give a
new way to define the hierarchy, using descriptions of Borel Wadge classes that
were introduced in [DGHTTa] and systematically investigated in [GT]. These are
descriptions that generalise ones given by Louveau [Lou83] and by Louveau and
Saint Raymond [LSR88b]. The levels of the extended hierarchy will be the ones
that have finite descriptions.

We then give a game characterisation of containment between classes, which is
a modification of one given for Borel Wadge classes in [GT]. Using this characteri-
sation we can explain why the fine hierarchy satisfies Wadge’s semi-linear ordering
principle. Essentially, this is due to the determinacy of finite games. We also use
this game characterisation to explain why the hierarchy is well-founded.

To calculate the height of a class in the fine hierarchy, we introduce the notion
of an admissible description, and show that every class in the hierarchy has such
a description. Admissible descriptions directly give us information about the class
described, for example, if it is at a successor or limit level.

The class descriptions we introduce utilise Montalbdan’s method of true stages
(a non-effective version was introduced independently in [DSR07]). This allows
us to computably approximate sets at all levels in the extended fine hierarchy:
our descriptions are inherently dynamic. This is useful when performing priority
arguments. In the sequel to this paper [GQT], we do exactly that, to give a complete
answer to the question of which levels of the hierarchy contain new Turing degrees.

2. PRELIMINARIES: DESCRIBED CLASSES

To define and analyse the classes of the extended fine hierarchy, we use the
class descriptions introduced in [DGHTTa, GT]. These are used to define classes of
subsets of Baire space. We can, however, identify the natural numbers as a subspace
of Baire space (identify n with the infinite sequence n®). To simplify notation we
use true stage relations on w + 1 rather than w<*, that were developed in [GT22],
and adapt the class descriptions to this setting.

2.1. True stage relations. The true stage relations allow us to computably ap-
proximate transfinite iterations of the Turing jump.

A concrete computable ordinal is a computable well-ordering of a computable
subset of N, in which the successor relation and collection of limit points are both
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computable. For concrete computable ordinals « and 8 we write o < g if « is an
initial segment of 3. For every concrete computable ordinal o we obtain a partial
ordering <, on w + 1 with a variety of pleasing properties. In particular:

(i) <o is the usual ordering < on w + 1.

i) If @ < B then s <g t implies s <, t.

) (w+1,<,) is a tree, with root 0.

v) {s : s <4 w} is the unique infinite path of (w, <,).

) The restriction of <, to w is computable, uniformly in «.

) A set A < Nis X9, if and only if its characteristic function 14 has
a computable a-enumeration: a computable function f: N x w — {0,1}
satisfying, for all x € N:

o If s <, tand f(z,s) =1 then f(x,t) =1;

o 14(x) =Um{f(z,s) : s <, w}.
In (vi), and below, we write N x w (rather than N2?) to indicate that the first
input z is an element of the “space” N, and the second represents a stage of the
approximation.

We will use the following corollary of property (vi).

Proposition 2.1. Let a be a concrete computable ordinal. Let h: N — N be
AV, -measurable (for all n ,h~'[{n}] is AY, ., uniformly in n). Then h admit an
“a-decision procedure”: a computable function f: N x w — N U {7} satisfying:

o Ifs<,tand f(z,s) € N then f(z,t) = f(z,s);

e For all x, for all but finitely many s <o w, f(z,s) = h(x).

That is, for a while, f(x,s) could be ?, indicating that we are not yet sure what
h(z) is;; but once some value is guessed for h(x), we never change our mind again.
Along the a-true stages (the stages s <, w), we eventually guess the correct value.

Proof. For each n,let A,, = h™1[{n}]. Let g, be uniformly computable a-enumerations
of A,. Let x € N. We define f(z, s) by recursion on s < w. If there is some r <, s
such that f(z,r) € N, then we let f(x,s) = f(x,r). Otherwise, if there is some
n < s such that g,(x,s) = 1 then we let f(z,s) = n for the least such n. If there
is no such n then we let f(z,s) =7. O

We remark that (vi), and so Proposition 2.1, are uniform: given a X9, index
of A, we can effectively compute an a-enumeration of A.

Definition 2.2. A computable a-approximation is a function f: N x w — N such
that for all o, lim {f(z,s) : s <, w} exists. The function approximated by f is the
one taking = to that stable value.

The following is a “higher limit lemma”. It is proved in [DGHTTb, Proposition
3.6].

Proposition 2.3. A function g: N — N has a computable a-approzimation if
and only if it is AV, -measurable, meaning that for all n, g~ *{n} is A9, .,
uniformly in n, equivalently X9, 1, uniformly in n.

We will require a particular type of a-approximations, that generalises the notion

of a a-enumeration. Let n = 1. An (o, n)-enumeration is a a-approximation f such
that for all z,

e f(z,0) =0; and
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e For all s,
#{t<as: flz,1) # fla, 7)) <mn,
where ¢t~ is t’s predecessor in the tree (w, <4).

An (a, 1)-enumeration is simply an a-enumeration (with the added requirement
that f(z,0) = 0, which is an easy modification).

Proposition 2.4. A set has an (o, n)-enumeration if and only if it is D, (39, ).

Proof. Suppose that C has an («, n)-enumeration f. For k < n let Ay be the set of
x € N such that there are sy <q 51 <q $2 <a * <a Sk <a w such that f(x,s;) #
f(z,8;41) for all i < k. Then each Ay, is Xy, ,,N=4,24, 24,2 -2 A4,, and
C = (A1\A2) U (A3\A4) U~ - -, showing that C is D, (X9, ). In the other direction,
let C' = (A1\A42) U (A35\A4) U -+, with A; € 89, and A 2 Ay 2 --- 2 A,. For
i=1,...,n,let g; be a a-enumeration of A;. For simplicity let go(x,s) = 1 for all
and s. We may also assume that g;(x,s) = 1 implies ¢g;_1(z,s) = 1 when i > 0. We
let f(x,s) = 0 if the greatest i such that g;(z,s) = 1 is even, f(z,s) = 1 otherwise.
Then f is an («, n)-enumeration of C. g

2.2. Class descriptions. A (computable) class description T' consists of a well-
founded computable tree Tr ¢ w<¥, computably labelled as follows:

(i) If o € Tr is not a leaf of Tr, then o is labelled by a pair (§,,7,) where &,
and 7, are concrete computable ordinals, and 7, > 1;
(ii) If o € Tr is a leaf of TT then o is labelled by a value I'(o) € {0, 1}.

We use the term internal node of a tree T' to denote a node of T' that is not a leaf
of T. We require that if ¢ < 7 are both internal nodes of T then £, < &.. We let
o(I") = &, be the ¢-label of the root () of T, unless Tt consists only of the root, in
which case we set o(T") = wy (where w is treated as a formal symbol). We similarly
set £, = wy for a leaf o of Tr. We let b = 5.

The idea is that at an internal node ¢ we need to choose one of its children. The
leftmost child is considered a default, the one we choose initially. We can change
our mind about the child we are choosing, but the “number” of mind-changes is
bounded by 7,: every time we change our mind, we need to decrease the ordinal.
The ordinal &, tells us at what level we conduct this approximation. Informally,
this means that the approximation is computable from j(¢=). Technically, we use
the true stage relations. Our intention is formalised using the notion of a I'-name.

If T" is a computable class description, then a (computable) I'-name N consists
of a choice, for each internal o € Tr, of a pair of functions (f,,[Ss), uniformly
computable given o, both defined on N x w, satisfying the following:

(i) For each (z,s) € N x w, f,(z,s) is a child of ¢ on Tr, and B,(z, s) < 1,;
(ii) For each z € N and s,t € w, if s <¢_ t then:
o B,(x,t) < Bo(x,s); and
o if f,(x,t) # fo(x,s) then B, (x,t) < B,(x,s).
(iii) For each (x,s) € N x w, if B,(z,s) = n, then f,(x,s) is the leftmost child
of o on Tt (the default outcome of o).

Let N be a I'-name. The definition ensures that for all internal ¢ € Tr, for all
z € N, the limit lim {f,(x,s) : s <¢, w} exists, and we denote it by f,(z). Since
Tr is well-founded, for each z € N, the sequence og(v) = (), 01() = foy(2)(2),
02(x) = fo,()(x), ..., terminates in a leaf of Tp that we denote by ¢~ (). We then
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let N(z) be the value I'(¢"(z)) assigned by T to this leaf. The subset of N named
by N is the set whose characteristic function is x — N(z).

Definition 2.5. Let I" be a computable class description. The class described by T’
is the collection of all subsets of N that are named by computable I'-names.

We will abuse notation and use I' to denote both the description and the class
that it described, even though a given class may have many different descriptions.
A collection of subsets of N is a described class if it is the class described by some
class description.

The simplest examples are the class descriptions I" consisting only of the root (),
labelled either 0 or 1. The former gives the class {Z}, and the latter the class {N}.
The next simplest example is a tree consisting of the root and two children. The
root is labelled with some £ and n = 1, the leftmost child is labelled 0 and the other
one 1 (see Fig. 1). The resulting class is Z?Jrf. Replacing n = 1 with any 7, the
resulting class is D, (29 +¢) of iterated differences of Y +¢ sets.

0 1 1 0

NSNS

§1 1

FIGURE 1. The simplest descriptions of E?+§ and H‘f+£.

The dual description and class. The dual T' of a class description T is the class
description obtained from I' by exchanging all labels at the leaves. The resulting
described class is the collection of complements of elements of the class described
by T

We let A(T) = T'n T be the class of sets A for which both A and its complement
are in I'.

Subclasses. Let I be a class description and let o € Tr. The subclass I',, is the class
obtained by restricting to the tree above o: Tr, = {7 : 0’7 € Tr} and the label
of 7 on I, is the label of "7 on I'. Observe that o(T',) = &L

We can think of I" as the class constructed from the classes I',, (for n € 1) via
an (o(T"),n')-approximation method.

For a T-name N and o € T we also let N, be the T'y-name defined by fNo = N,
and similarly for 3.

2.3. Described classes are principal pointclasses. Every described class is a
lightface (effective) pointclass. The following is essentially proved in [DGHTTa],
but in the setting of N is particularly simple.

Proposition 2.6. Let I' be a computable class description. For all A,B < N, if
A<,,Band BeT then AeTl.

Proof. Let g be a computable function such that g7![B] = A, and let N be a
I-name of B. A I'-name M of A is defined by letting, for every internal o € T,

[ (@, 5) = [N (g(x), ) and B (z,s) = B (9(), 5). =
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Similarly:

Proposition 2.7. Let T' be a computable class description. For all A,B € T,
A® BeT. Indeed, the following are equivalent for a sequence of sets (Ay):

(1) There are uniformly computable I'-names N,, with N,, a name for A,;

(2) @, A, eT.
We say that (A,) are uniformly in T.

Note that it is not the case that a described class I' is always closed under taking
unions or intersections, the simplest counter-example being Do (39).

In [DGHTTa], it is shown that every described boldface class has a universal set.
The same construction holds in the discrete setting.

Proposition 2.8. Let I' be a described class. There is an acceptable listing of the
sets in I': a sequence Ag, A1,... of sets, uniformly in I', such that if By, By,...
is any sequence of sets uniformly in T, then there is a computable function g such
that for all m, B, = Agm)-

As a result, the effective pointclass I' is principal: there is a set B € I" such that
'={A: A<, B}.

Proof. As mentioned, the proof of [DGHTTa, Lemma 3.13] applies, using Lemma
3.12 of that paper. Namely, we can uniformly, given o € Tt and a partial com-
putable approximation (g,, @, ), extend that approximation to a total computable
approximation (f,,3,) as required, which has the same limit as the given partial
approximation, if the latter happens to be total. This is enabled by the fact that
there is a default outcome: as long as we do not see any value given for g, (x,0), we
choose the default outcome (with ordinal value 7); as g, (z, s) reveals more values,
we copy them, with delay. O

Corollary 2.9. For any computable class description I', the class T' is non-self-
dual.

Proof. If (A,) is an acceptable listing of the sets in I', then A = @), A,, is universal
for I', and the diagnoal argument shows that A ¢ I'. O

2.4. Definition by cases. The analogue of the following proposition is proved in
[DGHTTa]:
Proposition 2.10. Let I' be a computable class description. Suppose that:
e (X,,) is a partition of N into uniformly A?JFO(F) sets;
e (A,) is a sequence of subsets of N, uniformly in T.
Define A < N by letting A} X,, = Ap | Xn. Then AeT.

Proof. The proof of [GT, Proposition 2.4] holds. Informally, we say that every
internal node “eventually knows” which set X,, a given input x is in. More formally,
let g be an o(T')-decision procedure for the the function taking z € N to the n
such that z € X,, (Proposition 2.1). Let (N,) be I'-names for (4,), uniformly
computable. We define a I-name N for A by taking the “disjoint union” of (V)
using g. Namely, for internal o € Tr, = and s:

o If g(z,s) = n € N then we let fN(z,s) = f¥(x,s) and BN (x,s) =

/BU " (l‘, 5)
o If g(z,s) =7 then we let fN(z,s) be the default child of o and BY = n,.
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Since o(T") < &, the nestedness of the true stage relations (property (ii)) implies
that when s < t and g(z,s) = n, we have g(z,t) = n, so N is indeed a I'-name;
and similarly, that for all x € X,,, g(z, s) = n for all but finitely many s <., w. O

Corollary 2.11. Let " be a computable class description, and suppose that &, N €
I'. Then A?H(F) c T, and furthermore, I' is closed under taking unions and

intersections with A(l) ‘o

() sets.

2.5. Ordinal invariance. To define the true stage relations, and in general, to
use ordinals in computability, we need concrete ordinals. If o and o’ are two
concrete computable ordinals of the same order-type, then they may fail to be
computably isomorphic. Nonetheless, we can computably translate between the

true-stage relations involved:

Proposition 2.12. Suppose that o and o' are isomorphic concrete computable
ordinals. There is a computable function h: w — w satisfying:

(i) For all s,t < w, if s <ot then h(s) <4 h(t); and

(i) {h(s) : s<qw}={t:t <o w}.
Such a function h can be calculated uniformly, given o and .

The reason is that even if o and o’ are not computably isomorphic, the iterated
jumps @ and ¢ (@) are Turing equivalent, uniformly. As a result, the X9 4o Sets
are the same as the X9 1o Sets, again uniformly. For more details see [DGHTTa,
Proposition 2.20].

The uniformity shows that the choice of concrete copies of the ordinals £, does
not affect the class defined by a description:

Proposition 2.13. Let T’ and IV be two class descriptions. Suppose that:
(Z) Ir = TF’;
(it) for every leaf o of Tr, T'(0) =T"(0); and
(i1i) for every internal o, nl = nl" and otp(¢L) = otp(&L').
Then I" and I define the same class.

Note that we cannot relax condition (iii) to otp(nl) = otp(nL’). Here the pre-
sentation matters, as the names use the particular copies of the n-ordinals, rather
than the associated true stage relations. To translate names effectively, we would
need uniformly computable isomorphisms between nl' and nl’.

2.6. ¥ and II classes. To differentiate between classes within a dual pair {T',T},
we use the following definition:

Definition 2.14. A computable class description I' has X-type if the label of the
leftmost leaf of T is 0; otherwise it has II-type.

The leftmost leaf of Tr is the “ultimate default” (the default outcome of the
default outcome of the default outcome...) The notation generalises that for the
classes X9, . and I17, . (Fig. 1).

In [GT], it is shown that restricted to “efficient” descriptions (to be discussed
later), all descriptions of a particular class have the same type, thus we can talk
about a described class having type II or type X. It is also shown that a described
class has the separation property if and only if it is a II-class. A more complicated
condition characterises the classes with the reduction property: those are the classes
that have hereditarily ¥-type descriptions (for all internal o € Tr, I', has ¥-type).
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2.7. Finite descriptions.

Definition 2.15. A class description I' is finite if Tt is a finite tree, and for all
internal o € I, 1, < w.

Note that we do not require that the ordinals &, be finite. A class is finitely
described if it has a finite description.

Theorem 2.16. The finitely described classes form a semi-well-ordered hierarchy
that extends the Selivanov fine hierarchy. The height of the hierarchy is w§<.

In fact, the classes in the fine hierarchy are precisely those classes that have a
finite description in which every £,-ordinal is finite as well. We let the eztended fine
hierarchy denote the collection of all finitely described classes, partially ordered by
inclusion.

Remark 2.17. If n, = n is finite, then in specifying a name N, we don’t need to
explicitly define BY; it suffices to ensure that f~ does not change more than n

times, as in the definition of an (a,n)-enumeration above. However, sometimes it
will be useful to nonetheless specify 5.

3. COMPARING CLASSES

For two class descriptions I' and A, we write:

e ' A, if the class defined by I is contained in the class defined by A;
eI'=AifTcAand AT}
e < Aif T A(A).
Note that the existence of universal sets implies that every containment is ef-
fective: if I' € A then there is a computable procedure translating I'-names into
equivalent A-names.

Lemma 3.1. For any computable class description I', and any o € Ty, I'; < T.

Proof. Let N be a I';-name. We extend N to a ['-name M that names the same
set, by letting, for 7€ Ty, (fM ,BM ) = (fN,BN); for p € Tt such that p < o, we

let, for all z and s, f}(x,s) be the child of p extended by o, and 8} (x, s) = 0; for
p € Tr incomparable with o, it doesn’t matter how we define ( é‘/f, B,])VI). O

3.1. The tree Sr. In [GT], the authors define the containment game Gcont (T, A)
that characterises containment between the described boldface classes. It is a clopen
game. They use determinacy of such games to show that the described Wadge
classes are semi-linearly ordered. The arguments in that paper can be carried over
to the current setting, provided that the games and the winning strategies are
computable. When restricted to finite classes, all games are finite, and so have
finite winning strategies, and therefore, computable ones.

In the current paper we present a simplification of the argument for the setting
of finite class descriptions. The games we present are not technically finite, but we
will observe that they are essentially finite, with finite positional strategies.

We remark that much of what we do here can be extended to computable class
descriptions that are not finite. However, the semi-linear-ordering principle will fail
in general.

LWe do not write I' = A, to emphasise that this is equality of classes, not of descriptions.



BOREL WADGE CLASSES AND SELIVANOV’S FINE HIERARCHY I 9

Definition 3.2. For a class description I'" with o(T") < wy, let
Sr={O}u {T eTr : ff_ = O(F)},

where 77 is the predecessor of 7 on Tr. This is a subtree of 7. The internal nodes
of Sr are precisely those nodes o € Tr with &, = o(T"). The leaves of St are those
nodes o € Tt (internal or not) that are minimal with respect to £, > o(I"). Again
recall that for leaves o of T we set £, = wy, so every leaf of T has a predecessor
which is a leaf of Sr, possibly itself.

Lemma 3.3. Let T’ be a computable class description with o(T") < w;. Let N be
a computable I'-name. For a leaf ¢ of S, the set

{xeN: N(z) >0}

is AY uniformly in o.

1+0(T)+1
Proof. Follows from Proposition 2.3; for every internal o € Tr, for any child p of o,
the set of z such that f¥(x) = pis A, ,,, uniformly. O

The game characterisation of containment also yields information about con-
tainment and subclasses; see Proposition 3.12 below. For now, we observe the
following.

Lemma 3.4. Let I" and A be computable class descriptions. Suppose that o(T") <
o(A). Then I € A if and only if for every leaf o of Sp, I'; € A, uniformly.

The containment being uniform means that given o and a I',-name M we can
compute a A-name M equivalent to A (one that names the same set). For example,
Lemma 3.1 is uniform in o.

For this lemma and its proof, and similarly below, we appeal to Proposition 2.13
and therefore blur the distinction betweeen concrete computable ordinals and their
order-types. That is, the lemma holds also when otp(o(T")) < otp(o(A)).

Proof. In the easier direction we use Lemma 3.1. In the other direction, let A € T';
let N be a I-name for A. For each leaf o of Sr, let X, = {neN: (N(z) > o}.
Then (X,) is a partition of N into uniformly A(1)+0(F)+1 sets. By assumption, for
every leaf o of Sr, the set A, named by N, is in A, uniformly. Since o(A) > o(T),
A is closed under definition by cases at level o(I") + 1 (Proposition 2.10); note that
A=A, on X,. ([

3.2. The leaf selection game. The main tool for comparing classes at the same
ordinal level is a “leaf selection” game. The game presented here is simpler than
the one presented in [GT], as we do not need to worry about passing and the
termination of the game.

Let T' be a computable class description with o(I') < wy. An Sr-position p

consists of a choice, for each internal node o of St, of
(i) a child ¢, = ¢ of o on Sr; and
(ii) an ordinal n2 < L,

subject to the following restrictions:

e For all internal o € S, if n? = nL then ¢ is the default child of o; and
e For all but finitely many internal o € Sr, n2 = L.
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Of course the latter condition always holds if I' is a finite class description. Its
purpose is to ensure that there are only countably many Sp-positions when St is
infinite. If T is a finite class description, then there are only finitely many Sp-
positions (again note that this holds even if the £,-ordinals are infinite).

For two St-positions p and ¢, we let ¢ < p if for every internal node ¢ of St,

(iii) n2 < nP, and further, if ¢? # £ then nZ < nP.

The initial Sp-position is the position p determined by setting 72 = nL for all
internal o € Sr.

Every Sp-position p determines a leaf 7P of Sr, by following the choices from
the root upwards, much like the definition of the leaf ¢~ (2) of Tr used to compute
the value N(z). Namely, 77 is the unique leaf 7 of Sr determined by £ < 7 for all
o<T.

We let Pr denote the collection of all Sp-positions, ordered by <.

Lemma 3.5. The relation “p < g and 7P # 79” on Pr is well-founded.

Proof. Let p1,p2,... be an infinite sequence with pgy1 < pg. For each o, (1, )P* is
non-increasing, so stabilises to some value; it follows that (cE*) stabilises to some
value ¢,. Let 09 =) and 0,41 = ¢,,; this sequences ends with a leaf 7* of Sr, and
for all but finitely many k, 7P = 7%, O

Let T" and A be two class descriptions, and suppose that £ = o(I") = o(A) < ws.
In the game Gieas (T', A), two players, 1 and 2, take turns choosing positions:

p[1] p[2] p[3]
q[1] q(2] q3]

(so player 1 plays p[1],p[2],... and player 2 plays ¢[1],¢[2],...), satisfying:
e each p[k] is an Sp-position, and each ¢[k] is an Sa-position;
e for each k > 1, p[k + 1] < p[k] and q[k + 1] < ¢[k].

We write o[k] = 7PI*] and p[k] = 79%]. By Lemma 3.5, the sequences (o[k]) and
(p[k]) both stabilise at a pair of leaves (o*, p*) of Sr and Sy. This is the outcome
of the play of the game.

Note that for computable I' and A, the game Gieas(I', A) is computable (the
partial orderings Pr and P, are computable). However, neither player may have
a useful computable strategy. We will show that when I" and A are finite, such
strategies exist.

Definition 3.6.

(a) A containment strategy for player 2 in Gieas (', A) is a strategy that ensures
an outcome (o, p) such that I'y < A,.

(b) A containment strategy for player 1 in Gieas(I', A) is a strategy that ensures
an outcome (o, p) such that A, € T',.

Lemma 3.7. Let I and A be computable class descriptions with o(T") = o(A) < wy.
Player 2 has a (computable) containment strategy in Gieas(I', A) if and only if
player 1 has a (computable) containment strategy in Gieas (A, T).

Proof. Suppose that player 2 has a containment strategy & in Gieas(I',A). In
Greas (A, T), given a play p[1],p[2],... for player 2, player 1 can respond by using
the strategy & against the play p[0], p[1],p[2], ... for player 1 in Gieas(T', A), where
p[0] is the initial Sp-position.
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Suppose that player 1 has a containment strategy T in Gieas (A, T'). In Greas (T, A),
given a play p[l],p[2],... for player 1, player 2 can respond by using the strategy
% against the same play p[1],p[2],... for player 1 in Gieas(T',A). (In this case
the strategy for player 2 always ignores the most recent move by player 1, but
eventually reaches the same outcome.) O

Lemma 3.8. Let T" and A be finite class descriptions with o(T") = o(A) < w;.
Suppose that player 2 has a computable containment strategy in Gieas (I, A). Then
I cA.

Proof. This is the main part of the proof of [GT, Proposition 3.5]. We simplify the
argument. Let N be a computable I'-name; we devise a A-name M naming the
same set. For a leaf o of Sr, let X, be the set of x € N such that ¢V (z) > o.

Fix a leaf p of Sp. Since £ > o(A) = o(I'), by Proposition 2.10 and Lemma 3.3,
there is a Ay-name M, such that for all o such that I'; < A,, for all z € X,
M,(xz) = Ny(x) = N(x). Note that we are using the finiteness of Sr to obtain
uniformity of containment (and being able to “tell” if I'; < A, or not); we will use
the finiteness of S to get that the names M, are uniformly computable.

The names M, define the approximations for M on all nodes that are not internal
on Sy. Thus, to define the name M, it remains to define f and 8 for all internal
o € Sp. This is done using a computable containment strategy & for player 2. Fix
x € N. For each s < w let ps be the Sp-position defined, for all internal o € Sr,
by s = fN(z,s) and 2+ = BN(x,s). The notion of position and ordering of
positions ensures that each ps is indeed an Sp-position (if 72 = 7, then 2 is the
default outcome), and that p; < ps when s <, t.

For each s, consider the partial play ps,, ps,, - - -, Ps;,, Where 0 = so <o) 81 <o)

. <o(r) Sk = s is the enumeration of the stages r <,y s. Thus, k = [s[,) + 1,
where [s[,r) is the height of s on the tree (w,<yr)). The strategy & gives a
response ¢s,,qs,,- - -, ¢s,; note that g, only depends on ps,,...,ps,. For internal
o€ Sy welet fM(x,s) = c% and M (x,s) = n%:. The fact that & always responds
with a legal play implies that (f(z,—),8M (x,—)) obey the rules for properly
defining a A-name. The fact that it is a successful strategy implies that (M (x)
extends a leaf p(z) of Sy such that T'y(,) S A,e); by the definition of M) we
then get

N(.’L‘) = No’(x) = Mp(m) = M(l‘)

as required. O

Remark 3.9. Lemma 3.8 can be extended to computable classe descriptions that
are not necessarily finite. We need to add the assumption that I'; < A, is uniform.
More specifically, it suffices to have a partial computable function that gives, for
each pair (o, p) such that I'; < A,, a Aj,-name for N,,. In the definition of the name
M,, we don’t actually need to know if I'; < A, or not: we simply instruct M, at
and above p, to keep taking the default outcome, until p discovers which X, the
number x belongs to, and further, the partial procedure gives us some A,-name.
This holds when player 2 has a computable winning strategy in the containment
game Geons (I, A) from [GT].

Next, we show that for finite class descriptions, Gieas (I, A) is effectively deter-
mined.
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Lemma 3.10. Let I', A be finite class descriptions with o(T') = o(A) < wy. Exactly
one of the following holds:

(1) Player 2 has a computable containment strategy in Gieas(I', A).
(2) Player 2 has a computable strategy in Gieas (A, T'), that ensures an outcome
(p,o) such that T'y ¢ A,.

Proof. This is because the partial orderings Pr and P (of all Sr and Sx-positions)
are finite, and the outcome of the game is decided by the final positions only. So
the game is almost a finite game, so Zermelo determinacy holds. For the current
game: define the notion of a “good pair” of positions (g, p) € Px x Pr by induction
on the number of predecessors ¢’ < ¢ and p’ < p in P, and Pr. Namely, suppose
that the notion has been defined for all pairs (¢, p’) where ¢’ < ¢ and p’ < p. Then
we say that (g,p) is good if T';» € A, and further, for all p’ < p there is some
¢’ < g such that (¢/,p’) is good.

Let po be the initial Sp-position. There are two possibilities. If there is some
q € Pp such that (g,po) is good, then player 1 has a computable containment
strategy in Gieas(A,T'): first move to ¢, and then keep moving to ensure that we
are in a good position. As mentioned above (Lemma 3.7), this means that player 2
has a computable containment strategy in Gieas(I', A).

Otherwise, player 2 has a computable “anti-containment” strategy as in (2)
above. Call a pair (g,p) “bad” if for all ¢ < ¢, the pair (¢’,p) is not good. By
assumption, the pair (go,pp) of initial positions is bad. Also if (g, p) is bad then
for all ¢ < ¢, (¢,p) is bad. Call a pair (q,p) “very bad” if it is bad, and further,
I;» € Asq. By definition, if (¢, p) is bad, then it is very bad, or there is some p’ < p
such that (q,p’) is bad. Hence (by induction on the predecessors of p), if (q,p) is
bad then there is some p’ < p such that (g, p’) is very bad. Hence, player 2 can keep
responding with moves that keep the game situation at very bad positions. [

We now obtain the semi-linear-ordering principle for the extended fine hierachy:

Proposition 3.11. If T and A are finite class descriptions, then either I' < A or
ACT.

Note that this proposition, together with I' & T, imply the familiar pattern for
the fine hierarchy: for any two finite I' and A, either ' < A, or A < T, or I' = A,
orT'=A.

Proof. We prove the proposition by induction on the complexity of the pair (T, A).
In particular, if o(T') < wy, then we assume that for all leaves o of Sr, for all 7 € A,
either 'y € A,, or A, < I',; and similarly, if o(A) < w;, then we assume that for
all leaves p of Sy, for all 0 € I', either 'y € A, or A, < I,.

The induction starts with any pair (I',A) such that o(I') = o(A) = wy1. In
this case, both T" and A are one of {(J}, {N}, and the proposition in this case is
immediate.

Let T" and A be class descriptions, and suppose that either o(T') < w;y or o(A) <
w1; without loss of generality, assume that o(I') < wq. There are two cases.

First, suppose that o(I') < o(A) (including the case o(A) = wy). In this case we
use the induction hypothesis for all pairs (I'y, A), where o is a leaf of Sp. If there is
some such o such that T'y & A, then by induction, A < I',; by Lemma 3.1, A < I.
Otherwise, by Lemma 3.4, I" € A.
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Next, suppose that o(T") = o(A) (so both are < wy). If player 2 has a computable
containment strategy in Gieas(I', A), then by Lemma 3.8, I' € A. Otherwise, by
Lemma 3.10, and by induction, player 2 has a computable containment strategy in
Greas (A, T), s0 by Lemma 3.8, A = T. O

We summarise our findings.

Proposition 3.12. Let I" and A be finite class descriptions.
(a) If o(T') < o(A) then T < A if and only if for every leaf o of Sr, Ty S A.
(b) If o(T") > o(A), then T' < A if and only if there is some leaf T of Sp such
that ' A,
(¢) If o(T) = o(A), then T < A if and only if player 2 has a computable con-
tainment strategy in Gheas (L', A), if and only if player 1 has a computable
containment strategy in Gieas(A,T).

Proof. (1) is Lemma 3.4. For (2), in the harder direction, if there is no leaf 7 of Sy
such that ' € A, then by Proposition 3.11, for all leaves 7 of Sy, A, < T'; by (1),
A c T it follows that ' & A, as T' & T' (Corollary 2.9).

For (3), one direction is the combination of Lemma 3.8 and Lemma 3.7. In the
other direction, if player 2 does not have a computable containment strategy for
Greas (T, A), then by Lemma 3.10 and Proposition 3.11, player 2 has an effective
containment strategy for Gleaf(A,f), and we conclude that A < I'; again, this
implies that A & T". O

Ezample 3.13. The two class descriptions in Fig. 2 describe the same class Dy (X%9)
of differences of c.e. sets. Let I' denote the description on the left and A the
description on the right. Note that Sp = Tr and Sy, = TA. Thus, a containment
strategy for player 2 is one which guarantees an outcome in which both leaves
have the same label, 0 or 1. In Gieas (I, A), both players start with the defaults,
labelled 0, and player 1 cannot change labels more than twice, showing how player 2
can always move to match the label of the leaf chose by player 1. In Gieas (A, T),
if player 1 shifts to the 1-outcome, player 2 chooses the rightmost leaf labelled 1
on Tt (choosing the other one would be a bad move, since no further changes would
then be allowed).

0 0 1

0,1 0,1 \/

0,1 0,2
FIGURE 2. Two descriptions of Dy(%9)

3.3. The successor class.

Definition 3.14. Let I' be a class description. We let I'" denote the class descrip-
tion obtained by letting the root have three children, 0, 1 and 2; the first is a leaf
of Tr+, labelled 0; we set I'; =T and I'; =T'. See Fig. 3.



14 NOAM GREENBERG, RENRUI QI, AND DAN TURETSKY

0 r r

N

0,1

FiGURE 3. The successor class I'T.

The following proposition says that for a finite description I', the pair consisting
of 't and its dual is the successor of the pair {I', '} in the extended fine hierarchy.”

Proposition 3.15. Let ' be a finite class description. Then T' < T'", and for any
finite class description A, if I < A thenTT € A or 't € A.

Proof. That T',T" < T'* follows from Lemma 3.1. Let A be a finite class description,
and suppose that I' < A. Suppose that A is a Y-type description (Definition 2.14);
we show that Tt < A. It follows that if A has II-type then Tt < A.

There are three cases.

Suppose that o(A) > 0. For every leaf o of Sp+ we have I} < T or T} < T'; by
assumption, in either case, 'Y € A. Then I'* A by Proposition 3.12(a).?

If o(A) = 0 < o(T"), then there are some leaves 7,7 of Sy with I' € A, and
I' € A;. A containment strategy for player 2 in the game Greae (I'F, A) is to remain
on the default outcomes until player 1 makes a change at the root. Since A has
3-type, its ultimate default outcome is 0, so player 2 is covering, as long as this
situation persists. If player 1 switches at the root to the I' child, then player 2
immediately switches all necessary nodes such that it is selecting 7 as its leaf. If
player 1 instead switches at the root to the I' child, then player 2 immediately
switches to 7. By Proposition 3.12(c), 't < A.

If o(A) = o(T') = 0, then the argument is a more complicated version of the
previous one. Player 2 has a containment strategy S in the game Giear(T', A),
and a containment strategy &; in the game Gieae(I',A). Player 2’s strategy in
G1eas (T, A) is to remain on default outcomes until player 1 makes a change at the
root. Again, since A has YX-type, this is a success if player 1 never changes. If player
1 switches to the I' child, then player 2 begins playing &. If player 2 switches to
the T' child, then player 2 begins playing ;. (]

3.4. Efficient descriptions, and the ordinal level of a class. Let I' be a class
description, with o(I") < wy. Suppose that there is some leaf o of St such that for
every leaf 7 of Sp we have I'r € I',. Then as o(I';) > o(I"), by Proposition 3.12
(and Lemma 3.1), T' = T',. Such a class description is “wasteful”. In [GT, Defi-
nition 4.1], the authors introduce the notion of an efficient description, one which
is not wasteful. The definition is based on the following observation. Let C be a
collection of finitely described classes. Proposition 3.11 implies that exactly one of
the following holds: (1) C contains a C-greatest element; (2) For all I' € C there is
some A € C with I < A.

2Note that by Example 3.13, this implies that the pair consisting of D2 (29) and its dual, is
the successor of the pair {7, TI7}.

3Note that in this case, we did not use the fact that A has X-type, and indeed, the argument
shows that 't < A. Later, we will see that such A must have limit order-type in the extended
fine hierarchy.
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In the context of finite descriptions, we define the following:

Definition 3.16. A finite class description I is efficient if o(T") = wy, or o(T') < w1
and for every leaf o of Sp there is some leaf 7 of Sp such that T'y < I';.*

The pleasing properties of efficient descriptions hold in the current context as
well. For example, they determine the ordinal level of a finitely described class:

Proposition 3.17. If © and T are finite class descriptions, with T efficient, and
© =T, then 0(©) < o(T).

The proof is the same as that of the analogous [GT, Proposition 4.2]: suppose
that o(T") < o(A). Since A € T, by Proposition 3.12, there is a leaf o of Sr such
that A < T',. Since I is efficient, there is a leaf 7 of Sp such that T', < I',, and
I', <T';so AT, contradicting ' < A.

This allows us to unambiguously define the ordinal level of a finitely described
class. As in [GT, Proposition 4.3], the ordinal level has a characterisation due to
Louveau and Saint Raymond [LSR88a]: it is the greatest & such that T" is closed
under definitions by cases at level £ (Proposition 2.10); the proof is identical.

3.5. Well-foundedness of the extended fine hierarchy. To prove Theorem 2.16,
it remains to show that the extended fine hierarchy is well-founded. We will give
two arguments. For the second, we will define a “normal form” for descriptions, and
will be able to directly calculate the ordinal rank of each class from these special
descriptions, called “admissible”.

The first proof is a direct proof, using Proposition 3.12. We first remark that in
fact, we can deduce well-foundedness directly from the results in [GT], and the fact
that the Wadge hierarchy is well-founded: using the containment characterisation
in [GT] for described Wadge classes, and an equivalent characterisation in the
effective setting, we see that if --- < I's < I'y < I'g is an infinite descending
sequence in the extended fine hierarchy, then the associated boldface classes are an
infinite descending sequence --- < I's < I'; < T’y in the Wadge degrees, which is
impossible.

This argument is unsatisfying. The proof of well-foundedness for Borel Wadge
classes relies on heavy tools, such as Borel determinacy, and universal sets for the
boldface classes. It seems that there should be a direct, “local” argument. We give
such a proof. The same proof can be also used to show that the Wadge hierarchy is
well-founded. The final part of the proof is similar to the Martin-Monk argument,
in its use of Baire category. However, the bulk of the argument seems different.

First proof that the extended fine hierarchy is well-founded. Suppose, for a contra-
diction, that there is a sequence I'0,T'',... of finite class descriptions such that
I+l < T for all n. (We use superscripts to accommodate nodes / stage numbers
as subscripts.)

For all n, we let T™! = I'" and ™0 = '

4This definition is slightly different from [GT, Definition 4.1]. The latter requires the property
to be hereditary, namely, for every o € Ir, I's is efficient as well. This difference is not important
to us right now. The latter also defines efficiency in terms of children of the root, rather than
leaves of Sp. This is a bit different; we will return to this when discussing admissible descriptions
below.
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Since this proof is not effective, we blur the distinction between a concrete ordi-
nal L™ and its order-type. We therefore let

& =sup{L” :neNoeTr, & " <wi}+1,

which is a countable ordinal.
Fix X € 2. We define an array of nodes 0% € Tr» for n € N and o < £* by

transfinite recursion on «. To simplify notation, we let I'" = I'?, and £ = £L =

o(I'™). We similarly define I = T/ for i = 0, 1.
We will ensure that for all n and o < 5 < €%,
(i) on <op;
(if) & = o; and
(i) T2+ < FZ’X(").

We start with of being the root of Tr». The containment property (iii) follows
from the assumption that T™*! < A(I'™).

If 8 < &* is a limit ordinal, and o7 were defined for all o < 3, then for each n,
by (i), and by the fact that Tpr» is finite (well-founded would be enough), the

sequence (07, )a<p stabilises; we let oy be that stable value. Note that (iii) holds

(0%
at [ since for all n there is some a < 8 such that both O'ngl =07

Also (ii) holds since it holds at each a < 3.

Let o < £* and suppose that o} have been defined for all n. We define o7} ;.

If £§ > o then we let o, = 0. It thus remains to define o, ; for all n such
that §; = a. For such n we will choose o, to be a leaf of Srn; this will ensure
that (ii) holds for n and a + 1, as we will have £ | > £1.

Let I be any maximal interval of N such that &} = « for all n € I. There are
two cases.

If I is finite, let m = max . We choose o, for n € I by reverse recursion on n.
The maximality of I and m implies that £™*! > . Hence by Proposition 3.12(b),

we can choose 077", ; > o' to be a leaf of Spm such that T ! < X Ifpel,

n < m, and o'T{ was defined, then by Proposition 3.12(c), we can find a leaf o,

of Srn such that T 1] < FZ’fl(n).

The more complicated case is when I is infinite, i.e., is a final segment of N.
In this case we need to play the leaf selection games. By (iii) and Proposi-
tion 3.12(c), fix, for each n € I, a containment strategy &,, for player 1 in the
game Gleaf(FZ’X(n), rotl).

For each n in I, we define a descending sequence of Sra positions, py > pt >
py = ... starting with the first move given by &,,. We then “steal moves”: we let

pT be the move given by &,, in response to the move ng, regarded as a move for

+1 n _ -n
and o5 = og.

player 2 in the game G1eas (PZ’X("X I'm1). In general, if p} is defined for all n € I,
then we let pj! ; be the move given by &,, in response to pottL ,pZH.

For each n, the sequence of leaves (T”Z) stabilises to a leaf o}, ; of Srn.
We check that (iii) holds at o + 1. Let n € N. There are four cases:

o If &7, &7 are both > «, then this follows from (iii) holding at stage a.

o If &7 = 7M1 = o then n and n + 1 belong to the same interval I. If I is
finite, then (iii) follows by construction. If I is infinite, this follows from
the success of the strategy &,,.
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o If a = &7 < £ then again this is by construction, as in this case n is the
maximal element of its interval 1.
o If &7 > ¢+l = v then this follows from (iii) holding at stage «, together

with the choice of £T{ to be a leaf of Spn+1, and Proposition 3.12(a).

At the end of this construction we obtain nodes ofx € Tpn with fgg* > &% by
choice of £*, this means that 502* = wj. Let £(X,n) be the label of ofy on Trn.
By (iii), 4(X,n) = £(X,n + 1) if and only if X (n) = 0.

We observe that in the construction above, each choice o} depended only on I'”
and I+, and X (n). This implies:

(#*): f X, Y €2 neN, and X | [n,0) =Y I [n,©) then {(X,n) = (Y, n).

For i = 0,1 let B; be the set of X € 2% such that ¢(X,0) = . The sets By and B
are Borel: essentially, they can be decided by roughly £* many Turing jumps of X
(and the sequence of descriptions (T';,)). On the other hand, they fail the property
of Baire, as in the Martin-Monk argument. If X,Y € 2% and XAY = {n} then
(X,n+1)=1Y,n+1) (by (%)), but by reverse induction on m < n we see that
I(X,m)=1—1(Y,m). Hence, X € By & Y € B;. O

4. ADMISSIBLE DESCRIPTIONS

Among all finite descriptions, we specify a collection of particularly nice descrip-
tions that are easier to analyse. We adapt the definition [GT, Definition 4.5] to
finite classes. We will then show that this restricted collection suffices to describe
all finitely describable classes.

Definition 4.1. A finite class description I' is admissible if for all internal o € Tr:

(i) For any non-default child 7 of o on TT, &, > &,; and
(ii) For any child o"n of o there is some child o"m of o such that T'y~, S T'pop.

Note that we allow &, = &,, where 7 is the default child of . Note also that the
definition implies that if I' is admissible, then for every o € T, I, is admissible as
well (T is “hereditarily admissible”).

Notation 4.2. For admissible descriptions, we will denote the default outcome by 0,
i.e., the default child of o will always be ¢”0.

Lemma 4.3. Every admissible class description is efficient.

Proof. Let I' be admissible, and let ¢ be a leaf of Sp. Let n be the child of the root
that o extends. By assumption, there is a child m of the root such that T', < T,
so 'y € T',,. Note that n # m. If m is a leaf of St then we are done. Otherwise,
m = 0 is the default child of the root, so n # 0. Hence o(T'y) > o(T"), and o = n.
Since m is not a leaf of Sr, o(T'g) = o(I"). By Proposition 3.12(b), there is a leaf 7
of Sr, such that I',, < I',; 7 is also a leaf of Sp. O

Definition 4.4. For two finite descriptions I' and A, an ordinal £ < o(A), o(T),
and n < w, we let

SUE,n<F7 A)
be the class description © defined by declaring the children of the root to be 0,1,
and 2 (so 0 is the default), and setting ©g = A, ©; =T, Oy =T, 0(©) = ¢ and
n® = n (see Fig. 4).

If:
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() AcT
(ii) o(I) > 5 and o(A) = &; and
(iii) A and I' are admissible,

then SU; ,,(T', A) is admissible as well.

Lemma 4.5. If O is admissible, then there are A,T",¢ and n as above such that
© = SU¢ (T, A).

Proof. By the semi-linear ordering principle, and the fact that Tg is finite, there
are children n and m of the root on Te such that letting I' = ©,,, we have ©,,, =T,
and for all leaves o of Sg we have ©, < T or ©, < I'. Since n and m cannot both
be the default outcome, we have o(T') > 0(©). Let k denote the default child of the
root in Te; let A = Oy. Let £ = 0(0©) and n = 7°. We claim that © = SU ,,(T, A).

In one direction, in the game Gieas (©,SU¢ »(I', A)), while player 1 plays above
the default outcome, player 2 extends the default outcome 0 and matches the moves
of player 1. If player 1 moves away from the default outcome, player 2 chooses
either n or m, i.e., either T or I', to contain the class played by player 1; the
n-ordinal is matched with player 1.

In the other direction, in the game Gheat(SUg o (T, A), ©), player 2 can always
match the classes played by player 1. O

By the semi-linear-ordering property, there are two possibilities:
e A<T;or
e A=TorA=T.

In the second case we have o(A) = o(T') > &. By Proposition 3.12(c), in this case,
we can then omit one of the non-default outcomes and obtain the description seen
in Fig. 5 (or its dual).

FIGURE 4. The class description SUg ,, (T, A).

—
<

&n

FIGURE 5. The class description equivalent to SU¢ ,,(I',T") (when

o(T) > €).

We will later give “Boolean interpretations” of these two kinds of classes, in
terms of the operations of one- and two-sided separated unions.
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Definition 4.6. An admissible class description I' is wvery admissible if for all
internal o € Ty, I'pog € T'p1 and I'y = SUg, ,,, (T'6-1,T570).

Proposition 4.11 and Lemma 4.5 imply that every finitely described class has a
very admissible description. Note that I' is very admissible if and only if I" is very
admissible.

4.1. Containment and equivalence between admissible descriptions. Ad-
missibility allows us to easily characterise containment between classes. For a finite
class description I', let

c() = U{F" : o is a leaf of Sr}

be the union of the classes I', for the leaves o of Sp. If I is efficient then C(I') =
I', uT, for some leaf o. For two finite efficient class descriptions I" and A we write
C(T) < C(A) if C(T') < C(A); this is equivalent to having some leaf 7 of Sy such
that for all leaves o € Sp, I', € A, equivalently, I', < A,. Note that for efficient I"
we have C(T') = C(I"). If T" is admissible, then we can choose the witnessing o to be
a non-default child n of the root.

Proposition 4.7. Suppose I' and A are finite admissible descriptions with o(T") =
o(A). Then T < A if and only if
e C(I') < C(A); or
e C(T') =C(A), and:
—f < nh; or
—nf =9t and Ty S Ay.
Proof. We first prove the forward direction. We use Proposition 3.12(c). Again we
use the fact that any non-default outcome of the root is a leaf of the corresponding
S-tree.

First, suppose that C(I') < C(A). A containment strategy for player 2 is to
choose any outcome n such that C(A) = A, U A,,.

Suppose then that C(T') = C(A). Let ng and n; be outcomes of the root on Tx
such that C(A) = Ay, U Ay, (so A,, = A,,). Since o(A,,) > o(A), both ng and n,
are leaves of Sj. For every child m of the root on Tt, either I',,, € A,,, or Iy, € A, .

Suppose that nI' < p. The strategy for player 2 is to first choose n; (either ng or
np) so that T'p € A,,,. Player 2 decreases the ordinal at the root by 1. Henceforth,
the ordinal at the root of A is at least as large as that at the root of I'; player 2
always chooses either ng or n;. If player 1 “goes out of cover”, i.e., chooses some
leaf o of Sr such that I', is not contained in the current class player by player 2,
then it must be that player 1 made a change at the root, enabling player 2 to move
from ng to ny or the other way round.

Suppose that 7 = n* and that 'y € Ag. While player 1 chooses leaves of St
extending 0, player 2 responds in kind: if o(Ag) > o(A) then player 1 just chooses
the outcome 0; if o(T'g) > o(T') = o(A) but o(Ag) = o(A) then player 1 just chooses
some leaf 7 of Sy, such that I'y € A, (Proposition 3.12(b)); if o(Ty) = o(Ag) =
o(T") then player 2 plays a containment strategy in the game Gieas (o, Ag). Once
player 1 moves away from the default outcome 0, player 2 can alternate between
the outcomes ny and n; as necessary, keeping the ordinals at the root equal.

In the reverse direction, first note that if C(I') < C(A), or C(I') = C(A) and
nT <n®, or C(I') = C(A) and n'" = n* and T'y < A, then the same conditions hold
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for (I', A), so by the forward direction, I' < A. Hence, if T ¢ Aand AL T, then it
must be the case that C(I') = C(A) and ' = n® and Ty = Ay; taking the dual and
using the forward direction again, we see that in this case, A =1, so I' & A. O

Corollary 4.8. IfT" and A are finite admissible descriptions, then I' = A if and
only if:

o(T') = o(A);
Cﬁ) ()
U

[ ]

o n; and

o 'y = A
Proof. o(I') = o(A) by Proposition 3.17 (and Lemma 4.3). The rest follows by
applying Proposition 4.7 in both directions. O

Remark 4.9. The X/II type of an admissibly described class is well-defined: if T’
and A are admissible, and I' = A, then ' has X-type if and only if A has X-type.
This follows from Ay = I'y, and induction along the leftmost paths.

As in [GT], we can show that for admissible I', the class I has the separation
property if and only if it has II-type.

Remark 4.10. Corollary 4.8 implies that a very admissible description of a class
(Definition 4.6) is almost unique. The only freedom to vary the description is when
A < T are very admissible; in that case, the descriptions © = SU¢ ,(I',A) and
@’ = SU¢ (T, A) describe the same class. That is, we can exchange ©; and Os.
By Remark 4.9, if we wish to specify a unique description, we can require that in
this case, ©1 has X-type.

4.2. Ubiquity of admissible descriptions.

Proposition 4.11. Every finitely describable class has a finite admissible descrip-
tion.

Let © be a finite class description. How do we go about finding an admissible
description equivalent to ©7 The main idea is the following. Consider all the classes
O,, where o is a leaf of Sg. Among these classes we can identify a maximal pair:
some I such that ©, < T or ©, < I for all such o. In most cases we will show that
© = SU¢ (', A), where £ = o(T"). What is n? In light of Proposition 3.12, we will
let n be the length of the longest descending sequence of St positions p1,p2,...,pn
that alternates between I' and I". There will be three possibilities:

(1) Only T appears as O, (and T' does not): in this case © =T,

(2) For somen > 1, there is an Sg-play alternating between I" and I of length n,
starting with T', but all such alternating plays starting with I' have length
at most n — 1. In this case © = SU¢ ,,_1 (', T).

(3) There is no such preference for T over T' (or the other way round): there
is a T'/T" alternating sequence of length n starting with T, and one of the
same length starting with T, but no alternating sequences (of either kind)
of length n + 1. In this case © = SU, ,,(T', A) for some A <T.

The main challenge will be to identify the class A in the third case. Naively,
we would think that we should take the class obtained from © by removing all
leaves 7 of Sg with ©, equivalent to one of I" and I". Consider, however, trying
to show that SU¢ ,(A,I') < ©. In the leaf-selection game, while player 1 extends
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the default at the root, player 2 can copy his moves. But once player 1 moves
away, player 2 still needs to be able to produce a F/f alternating play of length n
(by choosing appropriate leaves of Sg). We know that there is such a play; but
there is no reason to believe that such a play is still available to us after the moves
made at the first part of the game. Ideally, we would need to restrict ourselves to a
class A determined by some collection of leaves of Sg such that every Sy-play can
be extended to a F/f alternating play of length n. It is not clear, though, how to
identify such a collection of leaves, and further, why player 2 would be able to win
the game in the other direction (showing © < SU¢ (T, A)).

The solution is to look first not for a collection of leaves of Sg, but at the
collection of Sg-positions that can be extended by maximal alternating sequences.
Among the classes appearing in these, we can identify a maximal pair of classes
IV,I”, and the process can repeat.

For this reason, we will need to extend the leaf-selection game, to accommodate
restrictions on the kind of positions we allow in the game.

To take the first case above into account (where the ordinal level of the admissible
description increases), we need to extend the notation Sg. Let £ be a computable
ordinal. For a class description © with o(©) > &, define Sg ¢ as follows:

o If 0(©) = £ then Se ¢ = Se;
o If 0(©) > £ then Se ¢ consists only of the root of Te.

Note that both cases can be defined together as in the original definition of Sg,
replacing 0(©) by &.

Se ¢-positions are defined as in Definition 3.2; when o(©) > ¢, there is just
one Seg ¢ position p, determined by taking 77 to be the root of Tg. Note that these
notions apply even when 0(0) = w;.

Fixing &, in this proof, we let P and Q denote nonempty collections of Sg ¢-
positions, for some O, that are upwards closed: if p € P and ¢ = p then g € P.

Let © and = be class descriptions with ordinal levels > £; let P be a nonempty,
upwards closed collection of Sg ¢-positions, and let Q be such a collection of Sz ¢-
positions. The game Giear(P, Q) is defined as the game Gieas (0, Z), except that
the trees used are Sg ¢ and Sz ¢, and further, player 1 is only allowed to choose
positions from P, while player 2 must choose positions from Q. We write

P<Q

if player 2 has a computable containment strategy in the game Gieas (P, Q): one
which guarantees an outcome (o, p) satisfying ©, < Z,. We write P= Qif P < Q
and Q < P.

We let Pg denote the collection of all Sg ¢-positions. Proposition 3.12 implies:

Claim 4.11.1. If 0(©), 0(E) = &, then © < E if and only if Po < P=.

(Observe that Proposition 3.12 covers all cases, whether o(©) = £ or 0(©) > &,
and similarly for Z.) We therefore write © in place of Pg, and so write @ < Q,
P ==Z, etc.

Proposition 4.11 follows from:

Claim 4.11.2. Let © be a finite class description with £ = 0(0). For any nonempty
upwards-closed collection P of Sg-positions there is an admissible class descrip-
tion = with P = =.
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The notation implies that o(Z) > 0(0). Claim 4.11.1 shows that Claim 4.11.2
implies Proposition 4.11.

For brevity, for an Sg-position p, let ©, = O,». Claim 4.11.2 is proved by a
double induction: first on the complexity of ©, and then on the size of D(P), where

D(P)={©, : pe P}.

Let © be a finite class description. If 0(©) = w; then O is admissible. Suppose,
then, that £ = 0(©) < w;. By induction, we assume that for every leaf 7 of Sg,
O, is admissible; Proposition 3.17 ensures that this does not change Sg. Fix a
nonempty, upwards closed collection P of Sg-positions.

We dispose of the easy case first.

Claim 4.11.3. Suppose that there is some maximal T' € D(P): for all IV € D(P),
IY<T. Then P =T.

Proof. There are computable containment strategies for Player 2 in both G(P,T)
and G(T', P), using constant plays. O

We assume henceforth that the hypothesis of Claim 4.11.3 fails. By the semi-
linear-ordering property of finitely described classes, we obtain a maximal pair of
classes in D(P): some I' such that I',T' € D(P), and for all I” € D(P), I” < T or
I"cT.

Call a descending sequence p; = py = -+ = pg from P a F/f‘ sequence if ©,, =T’
for odd 7 and ©,, = I' for even i. Similarly, such a descending sequence is a I'/T
sequence if ©,, =T for odd i and ©,, =T for even i.

We let n be the greatest such that there are both: a F/f sequence of length n
and a f/F sequence of length n. Our assumption implies that n > 1.

We let Q be the collection of all ¢ € P such that there are both T'/T' sequence
P1,--.,pn of length n such that p; < ¢, and a f/F sequence 71, . ..,r, of length n
such that r; < ¢g. By definition, Q is upwards closed. By choice of n, the initial Sg
position is in @, so Q is nonempty.

Claim 4.11.4. D(Q) < D(P).

Proof. We claim that either T' ¢ D(Q) or I' ¢ D(Q). Otherwise, let ¢; € Q with
0, =T and ¢» € Q with ©,, =T. Since ¢; € Q, (¢1) can be extended by a I'/T
sequence of length n; similarly, go can be extended by a F/f‘ sequence of length n.
This shows that in P there are both a I'/T and a I'/T" sequence of length n + 1,
contradicting the definition of n. O

By induction, there is some admissible class description A (with o(A) = &) sat-
isfying @ = A.

Claim 4.11.5. AcTor AcT.

Proof. Without loss of generality, suppose that I ¢ D(Q). Then A < I. To see this,
by Claim 4.11.1, it suffices to show that Q@ < I'. Since o(I") > &, this is witnessed
by constant plays, as T < T for all T € D(Q). O

It follows that one of SU¢ (', A) or SU¢ (I, A) is admissible; without loss of
generality, suppose that I' ¢ D(Q), so Z = SUg¢ (T', A) is admissible.

The following claim then concludes the proof of Claim 4.11.2, and so of Propo-
sition 4.11.
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Claim 4.11.6. P ==.

Proof. In Gheas (P, E), as long as player 1 plays within Q, player 2 remains above
the default at the root, and responds according to her containment strategy in the
game Greas(Q,A) (note that this covers both cases o(A) = £ and o(A) > £). Once
player 1 leaves Q, player 2 chooses either I' or I', moving only when she must. The
first step out of Q@ “breaks the tie” between I' and T, so even if that move results in
some ©, < I, player 2 can examine all future possibilities and choose a safe option
between I and T.

In G1eas (E,P), as long as player 1 remains above the default at the root, player 2
plays his containment strategy in G(A, Q); once player 1 chooses either T' or I,
player 2 can move to an alternating sequence of length n with the appropriate
start. O

4.3. Ranked Boolean formulas. Selivanov gave an equivalent definition of the
fine hierarchy, using ranked Boolean formulas. We show that the extended hierarchy
has a similar characterisation. We consider a ranked language of propositional logic.
Each propositional variable is assigned a rank (or level), which is a computable
ordinal. For a ranked variable v, we let r(v) denote the rank of v.

A ranked Boolean formula is a (finite) propositional formula using ranked vari-
ables. For a ranked Boolean formula 1, let:

e V,, denote the set of variables appearing in 1; and
e By:{0,1}V* — {0,1} be the “truth table” of .

Definition 4.12. Let ¢ be a ranked Boolean formula. A i-name N consists of a
choice of a % (o) Set A, for every variable v € V,,. The set named by a ¢-name N
is the result of applying the truth-table By to this choice:

N(J?) = BIZ)(Avl (.1?), sz (Z‘), s 7Avm (l‘))

where v1,...,v,, are the variables appearing in ).
The class Cy, defined by 1 is the collection of all sets that have 1-names.

Note that by definition, if ¢ and ¢’ are logically equivalent (meaning V,, = Vi
and Bil’ = B¢/) then Cw = Cwl.

Proposition 4.13. A collection of subsets of N is a finitely described class if and
only if it is Cy for some ranked Boolean formula 1.

In one direction, we give explicit names to the Boolean operations from which
we can build all admissibly defined classes. We recall the following definitions (see
for example [Lou83]).

e Let = and T be classes. The class Sep(Z,T") is the class of all sets of the
form (AN C)u (B nCY), where BeT, AeT, and C e E.

e Let =, I" and A be classes. The class BiSep(E,T", A) is the class of all sets
of the form (A~ Cy) U (B nCy)u (D n(CpuCy)b), where AeT, BeTl,
D e A and C4,Cs € = are disjoint.

Lemma 4.14. Let © = SU¢,,(I',T), where T' is a finite description with o(T") > .
The class described by © is Sep(Dy (2 ), T).

Proof. As mentioned above, © is equivalent to the class in Fig. 5, which has only
two outcomes, 0 and 1. Let N be a O-name. We let C be the set of x € N such
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that ¢~ (z) > 1. By Proposition 2.4, C'is D, (%9, ,); letting A = N, and B = Np
shows that N € Sep(Dy, (29 ),T).

In the other direction, let P € Sep(Dn(E(l)+£), '), given by sets A, B, C as in the
definition. Let Ny be a I'name for B and N; be a I''name for A. To define a
O-name N, we let fg be a &, n-enumeration of C' (Proposition 2.4). O

For the following, we modify the definition of BiSep as follows:
e Let Z, T and A be classes. The class BiSep* (=, T, A) is the class of all sets
of the form (A (C1\Cs)) U (B (C2\C1))u (D (CruC)t), where A eT,
Bel,DeAand Cy,Co € E.

Lemma 4.15. Let © = SU¢ ,(I', A), where o(') > &, o(A) = &, and A < T are
finite descriptions. The following coincide:

(1) BiSep(Dn(E(1)+£),F,A);

(2) BiSep*(Dn(ESJ%g),F,A);

(3) The class described by ©.
Proof. This extends [GT, Proposition 4.6]. We show three containments. One
is immediate: BiSep(Dyn(%],),T,A) € BiSep™ (D, (27, ,),T,A). Another is also
fairly simple: © < BiSep(Dn(29,¢),T,A). To see this, given a ©-name N, for
i=1,2let C; = {weN: (N(x)>i}, A= Ny, B= Ny, and D = Ny. Then C;
and Cs are both Dn(2?+§), as witnessed by modifications of fg, so the sets defined
show that N € BiSep(Dn(E(l)JrE), I, A).

For the last containment, BiSep*(Dn(E(l)Jrg),I‘,A) C O, we use the stage com-
parison argument. First note that since A < I', we cannot have I' = {J} or
I' = {N}; and so, & e I',I". Let P e BiSep*(Dn(E?+€),F,A), witnessed by sets
A,B,D,C1,Cy. Let g1 and g2 be (&, n)-enumerations of C; and Cy (Proposi-
tion 2.4). Let Ny be a A-name for D. Since o(T') > &, and since A < T, by
Proposition 2.10, we let N7 be a I'-name for the set

(An (C1\C2)) U (D (CruCy));

That is, N; behaves as A on C1\Cy, as D on (C; u C3)°), and as & on Cy. We
similarly let Ny be a I' name for (B n (C2\C1)) u (D n (Cy U Cy)Y). To specify N it
remains to define fg For each x and s, if for all t <¢ s we have g1 (z, s) = ga(z,s) =
0, then we set fg(x, s) = 0. Otherwise, let ¢(s) be the least t <¢ s such that either
g1(z,s) =1 or ga(z,s) = 1. If g1(x,t(s)) = 1 set i(s) = 1, otherwise set i(s) = 2.
Then set fg(x,s) = i(s) if g;(5)(z,s) = 1, otherwise let fg(w,s) =3—i(s). If
x € C1\Cq then N(z) = Ni(x) = A(x); if z € C5\C then N(z) = Ny(z) = B(z).
If z € (C; U Cy)° then we may have ¢ (x) extending either 0, 1 or 2; but in each
case we will have N(z) = D(z). If z € C; n Cy then ¢V (x) will extend either 1 or
2, but in either case we will have N(z) = 0. The number of mind changes of fg
on any z will be bounded by n, as the number of mind changes of both g; and of
g2 is bounded by n. [

Proof of Proposition 4.13. First, we show that any finitely described class is Cy, for
some ranked Boolean formula 1. We use Proposition 4.11 and Lemma 4.5, and use
induction over the complexity of very admissible descriptions (Definition 4.6). The
base of the induction are the class descriptions with o(T") = wy, i.e., the classes { S}
and {N}. For these, we allow the Boolean formulas T and L, that have no variables.
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For the inductive step, we are given a very admissible class description © =
SU¢ »(I', A), and by induction assume that we have ranked Boolean formulas 14,
Yr, and ¥y, that define the same classes as A, I' and I'. We assume that these
three formulas share no common variables (this is why we did not take ¢p = —¢r).
If A = T then we use Lemma 4.14; we take a formula ¢ that defines the class
D, (29 +§), again with its own variables, and use ¢, ¥r and ¥y to write a formula
that defines Sep(Dy (%7, ¢),T). We used distinct variables so that we could choose

sets Bel', AeTl, and C e Dn(2?+f) independently of each other.

If A < T then we use two formulas ¢; and 3, each with their own variables,
both defining D,,(X¢ +¢)» and use these and the other given formulas to write a
formula that defines BiSep™(D,,(2{,¢),T,A), and appeal to Lemma 4.15. Note
that we can’t use BiSep directly, since a ranked Boolean formula cannot force the
chosen C; and C5 to be disjoint.

It remains to show that each class Cy has a finite description. To see this, we
show, in fact, that for any ranked Boolean formula ¢, letting o(+)) = min {r(v) : v e Vy},
the class Cy, has a finite description I with o(I") = o(%).

We use induction on the number of variables of . Again, the base of the
induction are the formulas T and L, that have no variables, and we already observed
that they define finitely described classes. (We can set o(T) = o(l) = wy.)

Let ¢ be a ranked Boolean formula which has variables. Let £ = o(¢). Let
Vo, ... ,Vp—1 be a list of those v € Vj, with r(v;) = & Let W = Vy\{v1,..., v}
For any p € 28 = {0, 1}{0bh=1 et 5P = A, _, vf(l), where of course v?
v? = —v. Find ranked Boolean formulas 1, for each such p, with Vi, = W, such
that 1 is logically equivalent to

= v and

\/ (ﬁp A wp).

pe2k

By induction, for each p there is a finite description I', of Cy,, with o(T',) > &.

We let T' be the class description obtained by first taking the full binary tree 2<%
of height k, with all internal nodes of labels £, = £ and 1, = 1, and then attaching
I', at the node p. So the notation I', is appropriate. Since o(I',) > &, this is a valid
class description. We claim that I is a description of Cy.

To see this, first, let B € Cy, obtained by a choice of sets A, for v € V. For
p:{l,...,k} —{0,1}, let B, be the set in Cy, obtained by choosing the same A,
for ve W. Let N, be a I'"-name for B,. Then a I''name M for B is obtained by
setting, for each o € 2<¥, the node o to follow Ay, That is, if f; is a {-enumeration
of A,, (for i < k), then for each o € {0,1}* we let fM = f;.

The other direction is a bit trickier. We are given a I'-name M. This gives a sub-
name M, for each p € 2¥ (a I',-name), and &-enumerations f2 for o € 2<%, One
difficulty is that there is no reason to believe that f and f3 are enumerations
of the same X7, set when |o| = [o’|. Another is that while we can simulate
each M, by a t,-name, all of the formulas 1), share the same variables (those
in W), and the 9,-names need not agree on the assignments of these variables.
Both of these problems can be summarised by saying that M is “too independent”;
approximations in one node do not need to correspond to approximations in others.

The first problem is not actually a real problem; we can take unions and obtain
the same effect. This works since the “movement” on 2F is always left-to-right, as
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we set 1, = 1 for o € 2<%, For the second problem, we use the the higher ordinal
level of the variables in W.

For p € 2% let C, be the set of € N such that M (z) > p. These sets are
For i < k, we let

AO

1+&+1°
Ao = J1C, : pli) = 1}

These sets are E?+€: x € A,, if some o of length ¢ sends 2 to the non-default
outcome. More formally, A, is the set of z such that for some o € 2¢, for some
¢-true stage s, we have fM(z,s) = 1. The point now is that for all z € N, z € C, if
and only if the assignment v; — A,, makes v” true on z.

For p € 2%, we are given sets D?, € E?+T(w), for the variables w € W, that give a
,-name N, equivalent to M,. For w € W we then let

Ay = | @4~ Gy

pe2k
Since r(w) > &, each set C, is Z?+T(w), and so Dy, is 2(1)+T(w). Then the assignment
of A,, for i < k and A,, for w e W gives a i-name that is equivalent to M. O

Remark 4.16. The proof of Proposition 4.11 can be used to directly translate from
ranked Boolean formulas to admissible descriptions, rather than merely finite de-
scriptions; instead of collections of Sg-positions, we look at “initial segments” of the
truth table of v. It is more difficult, though, to pass from a finite class description
to a ranked Boolean formula, without considering admissible descriptions first.

4.4. The fine hierarchy. Selivanov showed in [Sel95] that the classes in the fine
hierarchy are precisely the classes Cy, where v is a ranked Boolean formula where all
the variables have finite ranks. An examination of the proofs of Proposition 4.11 and
Proposition 4.13 shows that the translations between finite descriptions, admissible
descriptions, and ranked Boolean formulas, all preserve ranks. Hence:

Proposition 4.17. The following are equivalent for a finitely described class T':

e I' has a finite description in which &, is finite for all internal o;

e I' has an admissible description in which &, is finite for all internal o;

o I' = Cy, where ¢ is a ranked Boolean formula in which all variables have
finite ranks.

Corollary 4.18. The fine hierarchy forms an initial segment of the extended fine
hierarchy.

That is, if T is in the fine hierarchy, A is in the extended fine hierarchy, and
A < T, then A is in the fine hierarchy.

Proof. All classes in the fine hierarchy consist of subclasses of the arithmetic sets.
On the other hand, if I' is in the extended fine hierarchy but not the fine hierarchy,
then I'" has an admissible description in which we have £, > w for some internal
o. That is, w < o(T'y) < wy. Since I', is efficient, by Corollary 2.11, AY < T',, so
A cT. O
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5. THE EXTENDED FINE HIERARCHY

As Wadge did for Borel classes, and Selivanov for the fine hierarchy, we can
calculate the ordinal height of described classes — the order-type of the class T U T
under proper containment. The level will be read recursively off admissible de-
scriptions. This will give an alternative proof that the extended fine hierarchy is
well-founded.

5.1. The modified Veblen functions. The heights of Borel Wadge classes are
calculated using the wy-based Veblen functions. For example, the height of X9 is wy,
of 39 is wi*, and so on. A similar phenomenon holds for the admissibly described
classes, except that we use the w-based Veblen functions. A slight modification at
finite inputs allows for a uniform treatment.

We define a sequence of closed and unbounded classes of ordinals. We start with

Co={a: (V8,y <a)B+7v<a},

the class of ordinals closed under ordinal addition. The class C contains 0, 1, and all
infinite ordinal powers of w (and in fact, 1is a power of w): Co = {0}u{w? : 8 = 0}.

Now given the closed unbounded class C., we let

Cyy1 ={aeCy : otp(Cy na) = a};
and for limit -y, we of course let
cy =) Cs.
B<vy

Note that for all v, 0,1 € C,. We let ¢, be the increasing enumeration of the
elements of C,.
Ezample 5.1. For all v, ¢, (0) = 0 and ¢, (1) = 1. We have ¢0(2) = w, ¢o(3) = w?,
vo(w) = w?, and in general, (1 + o) = w®.

The class C; contains 0,1 and all ordinals o with w® = «. In other words, all
ordinals « such that ¢g(«) = . Hence, ¢1(2) = g, and in general, p1 (24 ) = 4.

In general, C, 11 is the class of all ordinals o with ¢, (o) = o, and so ¢2(2) is
the least ordinal ¢ with e, = (.

Ty is the least ordinal ¢ with ¢ = ¢¢(2).”

Using the modified Veblen functions and Cantor’s normal form for ordinals, we
define “increment functions” 63 defined as follows.

Definition 5.2. For an ordinal 8 > 0 write

b =w +w*? 4. 4w
with oy = a9 = -+ = ag. We let

03 = Yoy © Pay O+ 0 Q-
We also let 6y be the identity function on the ordinals.

If « > o then C,, = range @, consists of fixed points of ¢/, and 80 o = Y 0P4 .
This shows:

Lemma 5.3. For any two ordinals 8 and v, 0g4, = g0 0,.

5Here we are using the notation “I'g” as is standard in the ordinal literature, not as we have
been using it to denote a sub-description of a description I'; this usage will not be used outside
examples.
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5.2. Jumps of classes.
Definition 5.4. For a computable class description I' and a computable ordinal 3,
we let T'?) be the class description obtained from T by replacing each £L by 3+ £L.

Lemma 5.5. Let I be a computable class description.

(a) For all @ and 8, (T®)(@) = (a+8),
(b) For all o € Tr and all 3, (I'y)#) = (T¥),.

For any class description I', because for each internal o € Tt we have &L = o(T),
for all ¢ < o(T') there is a (unique) class description I'(=9) satisfying (I'(=¢))(©) = T;
for internal o € T, € is the unique ordinal ¢ satisfying ¢ +& = £L. In particular,
o(T(—M)) = 0,

Lemma 5.6. For any two finite class descriptions I' and A, and any computable 3,
FcA < IO cpA®,

Proof. By Lemma 5.5, Spsy = St. The result then follows from Proposition 3.12,
and induction on the complexity of the pair (T', A). a
As a result, T' is admissible if and only if I'”) is admissible. Indeed:
O = SU¢ (T, A) if and only if ©F) = SUg,¢ ,,(TE), AP).
In particular, I' is very admissible (Definition 4.6) if and only if T'®) is very
admissible.

5.3. Assigning heights to very admissible descriptions. For every very ad-
missible class description I', we define an ordinal §(I") > 0. We will verify that 6(T")
is the height of the class defined by I'" (with a 41 offset for finite heights). The
definition is by recursion on the complexity of the description.

(i) If o(T") = wy then §(T) = 1.
(ii) If o(T") = 0 then
§(L) = 8(T'1) - 0" + 6(T).
That is, if I' = SU¢ ,, (O, A) then 6(I") = §(O) - n + 6(A).
(iii) If 0 < o(T") < wy then we let
O(I) = Oo(ry (D)),

Ezample 5.7. Let 0 denote the trivial class description of {¢J}, and let 1 be the
trivial class description of {N}. By definition, §(0) = §(1) = 1. Let I' = SU( 1 (0, 0);
then §(I') = 6(0) - 1 + 6(0) = 2. Note that I' names the class ¥Y. Similarly, for
n > 1,let I' = SUp,(0,0) be the description of the class of D,,(3?), the n-c.e. sets;
then (") =n + 1.

By induction on the complexity of I" we observe:
Lemma 5.8. For any very admissible class description T', §(T") = §(T).
Lemma 5.3 implies:
Lemma 5.9. For any very admissible I' and computable ordinal 3,
S() = 05(5(D)).
The range of any 63, for any 5 > 0, is contained in Cy, and so:

Lemma 5.10. For any very admissible class description T', if o(T") > 0 then 6(T")
is a power of w.
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5.4. Assigning heights to classes. The following proposition implies that we
can unambiguously define ¢ of a finitely described class.

Proposition 5.11. For very admissible class descriptions T and A, if ' < A then
d(T) < d(A). IfT' = A, then §(T) = §(A).

One step will require the following special case:
Lemma 5.12. Let I' = SU¢ (0, A) be very admissible. Then §(0) < §(I).

Proof. If £ = 0 then this follows from the definition, since §(A) > 0 (and n > 1).
If ¢ > 0, then as T(=%) = U, (09 A(=9)) (Lemma 5.5), we obtain 6(0(~9)) <
§(T(=9)); now apply Lemma 5.9, noting that 6 is strictly increasing. O

Note that without Proposition 5.11, we cannot yet conclude that §(A) < §(T).

Proof of Proposition 5.11. The proof is by induction on the complexity of the pair
(T, A). Note that if the proposition has been proved for some pair (T, A), then by
the semi-linear-ordering property, if I' € A then 6(T") < 6(A).

Let ¢ = min{o(T'), 0(A)}. By Lemma 5.9, §(T') = 0¢(T(~%)) and §(A) = 0 (A7),
Since 0 is strictly increasing, by Lemma 5.6, it suffices to show the appropriate
relation for §(T(=9)) and §(A(-%)). Thus we may assume & = 0. We assume that
I' € A. Now we consider the cases. Note that only in the last one we have equality
of the classes.

If 0 = o(T") < o(A), then 6(T') = 6(T'y) - ¥ + §(Tg). Since 'y, I’y € T < A, we
have 6(Tg),d(I'1) < 6(A) by induction. Since o(A) > 0, by Lemma 5.10, 6(A) is
closed under ordinal addition, so §(I") < §(A).

If o(T) > o(A) = 0, then by Proposition 3.12, T < A; or I' € A;. Since
5(T1) = 6(T'y) (Lemma 5.8), by induction, §(T') < §(A;); now apply Lemma 5.12.

Suppose then that o(I') = 0 = o(A). If I'; < Ay, then by induction, §(I'1) <
0(Ay); since I'y < T'y, we also have §(I'g) < 0(A1). As o(A1) > 0, 6(Ay) is closed
under addition (Lemma 5.10), so 6(T') < (A1) < 6(A).

Suppose that {T';,T1} = {A1,A1}. Let v = §(I'1) = o(A;) (by induction). Also
by induction, 6(Ty) < 7.

If n© < n?, then §(T) = v -0t +46(To) <v-(nF +1) <§(A) (as 6(Ag) > 0).

Suppose that ' = pA. If Ty < Ag then by induction, §(T'g) < §(Ag), and then
by definition we obtain §(I") < §(A); if T'g = Ag then by induction, 6(Ig) = d(Ag),
and then by definition we obtain §(I") = §(A).

By Proposition 4.7, this covers all the possibilities. (]

By the semi-linear-ordering property, we immediately get a converse.

Corollary 5.13. For very admissible class descriptions T' and A, if 6(T') < 6(A)
then T < A. If §(T) = 6(A), thenT = A or T = A.

Example 5.14. Let a be a computable ordinal. Then E?Jra is the a-jump of XY,
and so by definition (and Example 5.7) 6(XY, ) = 64(2). So:
o 5(ZY) = 01(2) = pol2) — wi D(EY) = 6a(2) — Pol(2) = ¥, and simi-
larly, §(29) = w*", and so on.
0 5(50) = 0,(2) = 1(2) = <03 5(%011) = uir(2) = P1(00(2)) = 1 (w) =
€u, the w'l fixed point of B — w?; §(X2,,) = eu«, and so on.
o 5(X%,) = ¢2(2) is the least fixed point of § — e3, 6(X°

0s.y) is the g™
fixed point of §+— €g, etc.
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e The least a such that §(XY) = « is the ordinal Ty.
There are no gaps:

Proposition 5.15. For every computable ordinal € > 0 there is a finitely described
class T with §(T') = €.

To show this, we will require the following:

Lemma 5.16. For any finitely described class T, o(T") > 0 if and only if 6(T) is a
power of w.

Proof. One direction is Lemma 5.10. The other direction is proved by induction on
the complexity of a very admissible description of T'. Suppose that o(T") = 0. By
Proposition 5.11, 6(T'y) < §(T'1). Since 6(Tp) > 0,

8(T1) < 8(T1) - < 8(T) < 8(Ty) - (nF +1) < 8(Ty) - w.

Since o(T'1) > 0, §(I'1) is a power of w, and so there are no powers of w strictly
between §(T'1) and 6(T'y) - w; so §(T") is not a power of w. O

Proof of Proposition 5.15. We proceed by induction on . The base case ¢ = 1 is
immediate.

For € > 1, a straightforward induction shows that ¢ ¢ C..1, so fix the least ~
with € ¢ C,. By construction, v cannot be a limit ordinal.

If v = B + 1, then € is in the range of ¢ but is not a fixed point of ¢g, hence
e = @g(a) for some o < e. By induction, & = §(A) for some finitely described
class A. Let T = A", By Lemma 5.9, §(T") = 0,5 (6(A)) = pg(a) = €.

If v = 0, then ¢ is not a power of w. There are two cases. One is when ¢ is finite.
This case is covered by Example 5.7. We assume then that e is infinite. Write
€ = p1-n+ po, where p; is the largest power of w less than € and 0 < pg < p1. By
the inductive hypothesis, there are classes Ag and Ay with 6(A;) = p; for ¢ € {0, 1}.
By Lemma 5.16, o(A1) > 0. By Corollary 5.13, Ag € A; or Ag € A;. So one of
SUg,n (A1, Ag) and SUom(/le, Ag) is very admissible, and is as required. O

Corollary 5.17. For any admissibly described class T,
{A U A ;A is admissible and A < F}

is well-ordered under <, and its order-type is:
e §(T), if 6(T) is infinite;
e (') —1, if 6(T) is finite.

Ezample 5.18. Recall that 't = SUg (T, 0) is the successor of I' in the extended
fine hierarchy (Proposition 5.19). Thus, by Corollary 5.17, §(I't) = §(T") + 1. Note
that this can be deduced by the definition if o(T") > 0 (and T is very admissible of
Y-type), but is less obvious when o(T') = 0, in which case T'" is not admissible.

5.5. A characterisation of limit classes. In [DGHTTal, a classification of the
ambiguous classes of boldface described pointclasses is given based on the ordinals
appearing along the leftmost path of a description. This determines the ordertype of
the height of the class in the Wadge ordering: successor, limit of countable cofinality,
or limit of uncountable cofinality. For the effective hierarchy, the classification is a
little simpler, since we don’t have different cofinalities at limit points.
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Proposition 5.19. Let I" be a very admissible class description, and suppose that
o(T') < wy. Let p* be the leftmost leaf of Tr. Then 6(T) is a successor ordinal if
and only if for every o < p*, L = 0.

Proof. This is proved by induction on the length of p*. By Lemma 5.10, we may
assume that o(T") =0, so 6(I") = §(I'1) - n* + §(To).

If |p*| = 1, i.e., if o(Tg) = wy, then §(T'y) = 1 is a successor. Otherwise, since I is
admissible, we have o(T'1) < wy; by Lemma 5.10, 6(T'y) is a limit ordinal, and so §(T")
is a limit if and only if §(T'g) is a limit. The result then follows by induction. O

Here is a consequence. As we will see in the sequel [GQT], this explains the fact
that classes whose heights are successors of limits do not contain any new Turing
degrees.

Proposition 5.20. Let T' be a finitely described class, and suppose that 6(T') is a
limit ordinal. Then T is closed under unions and intersections with AY sets.

Proof. If o(T') > 0 then we appeal to Corollary 2.11; so we assume that o(T") = 0.
Let T' be a very admissible description of the class. Let o* be the leftmost leaf
of Sr (Definition 3.2), and p* the leftmost leaf of Tr. By Proposition 5.19, o* < p*
as 0 < o(T'y#) < wy.

Since I',x is admissible, @J,N € I'yx. Also, if 7 # o* is a leaf of Sr, then
7 = o’m for some o < o* and m € {1,2}, and T',-g € I'; or ',y < I';; in either
case, J,NeI'.. By Corollary 2.11, for any leaf 7 of Sr, I'; is closed under unions
and intersections with AY sets. For any I'-name N and any AY set B, for any leaf 7
of Sr, let M. be aT'; name for N, uB; for internal o € Sr, let (fM, M) = (fN,gN).
Then M is a I'-name for N U B. The same argument holds for intersections. [

Remark 5.21. Note that the argument above does not show that I' is closed under
definition by cases at the level AY, and indeed cannot; we mentioned that if o(T') = 0
then I" cannot be closed under definition by cases at this level. The point is that
with more than one I'-name, we would not know which leaf of St to take (essentially,
the choice is between I'; and f‘l). Once we get to a leaf, we would know which one
we should have taken, but by then it is too late.
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