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Abstract. We show that any locally countable partial ordering of size at
most continuum and height at most 3, that has at most ℵ1 many elements of
depth 3, is embeddable into the Turing degrees.

1. Introduction

In 1963, Sacks conjectured [6, (C4)] that if P is a partial ordering of size at
most continuum which is locally countable (every point has only countably many
predecessors), then P is embeddable into the Turing degrees. Sacks showed that the
conjecture holds assuming the continuum hypothesis, or assuming Martin’s axiom.
Whether the conjecture is a theorem of ZFC remains open.

Indeed, the conjecture remains open when restricted to well-founded partial or-
derings. There is a universal locally countable, well-founded partial ordering of
size c = 2ℵ0 : it can be built as a collection of ω1 many levels, with each countable
type over a collection of countable levels realised in each level above. Even restrict-
ing to finite levels results in open problems. Define a partial ordering to have height
at most n if any chain in it has size at most n. Among locally countable partial
orderings of height n and size at most c there are again universal ones. An example,
that can be found in [4, 3] (where it is credited to Higuchi), is as follows:

• H0 is an anti-chain of size c.
• Hn+1 is obtained from Hn by adding, for every countable infinite subset
A of the nth level of Hn, a point pA which is above all points in A, the
predecessors of any a ∈ A, and no other elements of Hn.

Then Hn is universal for partial orderings of height at most n + 1 and size ⩽ c.
Kumar and Raghavan [5] showed that H1 is embeddable into the Turing degrees.
They also defined a generalisation: for a cardinal κ, let Hn

κ be defined as Hn is,
except that H0

κ is an antichain of size κ. Kumar [4] showed that H2
ω is embeddable

into the Turing degrees; the result for H1 = H1
c follows, as it is isomorphic to the top

2 layers of H2
ω. We remark that Kumar and Raghavan’s work was also motivated

by previous work by Higuchi, Lempp, Raghavan, and Stephan [1], who studied H1

in relation to the order dimension of the Turing degrees.
It is still open, whether H2 = H2

c is always embeddable into the Turing degrees
(this is Question 2.6 in [5]). Higuchi and Lutz [2] explained why this problem is
difficult: they showed that there is a Borel embedding of H1

c into the Turing degrees,
but there is no Borel embedding of H2

c into the Turing degrees: indeed, there is
no embedding of H2

c into the Turing degrees in which the image of the lowest level
contains (the Turing degrees of reals in) a perfect set. It follows (assuming the
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consistency of some large cardinals) that Sacks’s conjecture cannot be a theorem
of ZF. For a survey of this and related questions, see [3].

In this paper, we show:

Theorem 1.1. H2
ω1

is embeddable into the Turing degrees.

The partial ordering H2
ω1

is again universal for a class of partial orderings. If P
is a partial ordering, the the depth of an element p ∈ P is the supremum of the
sizes of chains in P with least element p.

Proposition 1.2. Every partial ordering P satisfying:
(i) |P | ⩽ c;
(ii) P is locally countable;
(iii) The height of P is at most 3; and
(iv) P has at most ℵ1 many elements of depth 3,1

is embeddable into H2
ω1

.

As a result, Theorem 1.1 implies that each such linear ordering is embeddable
into the Turing degrees.

Proof of Proposition 1.2. We think of H2
ω1

as consisting of three disjoint levels: the
lowest level is (some set of size) ω1; the second, [ω1]

ℵ0 (note the collection of infinite
countable subsets of ω1); the third, [[ω1]

ℵ0 ]ℵ0 . The ordering on H2
ω1

is the reflexive,
transitive closure of the relation consisting of (x,A), where x is an element of the
first or second level, A is an element of the next level up, and x ∈ A.

Let P be a partial ordering as discussed. For i = 1, 2, 3, let Pi be the collection
of elements of P of depth i; so {P1, P2, P3} is a partition of P .

Fix disjoint countable and infinite sets A,B ⊆ ω1, and injective functions f : P2 →
[A]ℵ0 and g : P1 → [B]ℵ0 .

We define an embedding p : P → H2
ω1

by steps. First, we define p ↾ P3 to be any
injective function from P3 to ω1 ∖ (A ∪B).

Then, for y ∈ P2, we let

p(y) = {p(x) : x <P y} ∪ f(y);

and finally, for z ∈ P1, we let

p(z) = {p(y) : y <P z & y ∈ P2} ∪ {{p(x) : x <P z & x ∈ P3} ∪ g(z)} .

To show that this is an embedding, first we check that p is injective; since it maps
level-to-level, it suffices to see that p ↾ P1, p ↾ P2, and p ↾ P3 are all injective. This
uses the injectivity of f and g (and the fact that p(x) /∈ A ∪ B for x ∈ P3, and
p(y) ⊆ ω1 ∖ B for y ∈ P2). That p preserves <P is immediate from its definition.
Preservation of ≮P is done by cases. For example, suppose that x ∈ P3, z ∈ P1,
and p(x) < p(z). Then there is some c ∈ p(z) such that p(x) ∈ c. If c = p(y) for
some y <P z in P2, then p(x) ∈ p(y) implies x <P y, as p(x) /∈ f(y). Otherwise,
c = {p(w) : w <P z & x ∈ P3} ∪ g(z); since p(x) /∈ g(z), we must have x <P z.
The other cases are easier. □

In the rest of the paper, we prove Theorem 1.1.

1Note that (iv) is weaker than saying that P has at most ℵ1 many minimal elements; there
can be minimal elements of depth 2 or of depth 1.
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2. Embedding H2
ω1

Our main construction will yield the following.

Theorem 2.1. There are:
• For α < ω1, a real Aα ∈ 2ω;
• For all limit δ < ω1 and all B ⊆ {Aα : α < δ}, a real Cδ

B ∈ 2ω, which is a
Turing upper bound of B,

such that whenever:
• δ1, . . . , δn are limit ordinals; and for i ⩽ n, Bi ⊆ {Aα : α < δi}; and
• α1, . . . , αk < ω1 are such that for all j ⩽ k, Aαj /∈ B1 ∪ · · · ∪ Bn,

the set {Aα1
, . . . , Aαk

, Cδ1
B1
, . . . , Cδn

Bn
} is Turing independent.

We now show how Theorem 2.1 implies Theorem 1.1. We use the presentation
of H2

ω1
that was described in the proof of Proposition 1.2 above (the disjoint union

of ω1, [ω1]
ℵ0 , and [[ω1]

ℵ0 ]ℵ0).
As the image of the lowest level, we take the Turing degrees of the reals Aα.
For the second level, for each I ∈ [ω1]

ℵ0 , let δ be the least limit ordinal > sup I
and let CI = Cδ

B, where B = {Aα : α ∈ I}. We map I ∈ H2
ω1

to the Turing degree
of CI .

Theorem 2.1 implies that both levels are antichains, and that CI ⩾T Aα if and
only if α ∈ I.

We construct the third level by modifying an argument of Kumar in [3, Lemma 3.5].
Recall that X is a Sacks upper bound of an Turing ideal J if X is an upper bound

of J , and for all Y ⩽T X outside J there is some Z ∈ J such that X ≡T (Y,Z).
For J ∈ [[ω1]

ℵ0 ]ℵ0 , let DJ be the Turing ideal generated by {CI : I ∈ J}.
We observe that for any such J , if X is any Sacks upper bound of DJ , then:

• for all I ∈ [ω1]
ℵ0 ∖ J , CI ⩽̸T X;

• for all α ∈ ω1 ∖
⋃
J , Aα ⩽̸T X.

For let Y = CI (in the first case) or Y = Aα (in the second case). For any
finite tuple I1, . . . , Ik ∈ J , the set {Y,CI1 , . . . , CIk} is Turing independent. Hence,
Y /∈ DJ , and further, since J is infinite, for all Z ∈ DJ there is some W ∈ DJ such
that W ⩽̸T (Z, Y ). This implies that Y ⩽̸T X.

We also observe that if J1, J2 ∈ [[ω1]
ℵ0 ]ℵ0 and X is any upper bound of DJ1

,
then X /∈ DJ2

. Again, this is because J1 is infinite; no Z ∈ DJ2
can compute all

W ∈ DJ1 .
So it suffices to choose, for each J ∈ [[ω1]

ℵ0 ]ℵ0 , a Sacks upper bound of DJ , such
that the collection of all chosen upper bounds is a Turing antichain.

Enumerate [[ω1]
ℵ0 ]ℵ0 as (Jγ : γ < 2ℵ0). By recursion on γ, We choose a Sacks

upper bound Xγ for DJγ
. Let γ < 2ℵ0 , and suppose that Xγ′ were chosen for all

γ′ < γ.
There is a perfect set P of Sacks upper bounds of DJγ

([6]; see also [3, Fact 2.7]).
We claim that some X ∈ P is Turing incomparable with each Xγ′ (for γ′ < γ).
Fix γ′ < γ. Of course only countably many X ∈ P are computable from Xγ′ . On
the other hand, since Xγ′ /∈ DJγ

, if Xγ′ ⩽T X for some X ∈ P , then there is
some Z ∈ DJγ

such that X ≡T (Xγ′ , Z). Since DJγ
is countable, this shows that

there are only countably many X ∈ P that compute Xγ′ . Overall, for each γ′ < γ,
Xγ′ is Turing comparable with only countably many X ∈ P . Since |P | = 2ℵ0 and
|γ| · ℵ0 < 2ℵ0 , an Xγ ∈ P as required can be chosen.
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3. Adding generic upper bounds

We will use notions of forcing where the conditions are compact subsets of (es-
sentially) Cantor space.

Definition 3.1. Let P be a countable notion of forcing. We say that P is forc-
ing with compact sets if for some 0-dimensional effectively compact space XP, the
conditions in P are nonempty closed subsets of XP, ordered by containment.

Example 3.2. The simplest example is Cohen forcing, denoted by C, consisting of
all clopen subsets of X = 2ω.

3.1. Restricted genericity. We will use a restricted form of genericity for our
notions of forcing.

Definition 3.3. Let P be a notion of forcing with compact sets. Let Z ∈ 2ω be an
oracle. A real G ∈ XP is P-generic relative to Z if for every U ⊆ XP that is Σ0

1(Z),
either

(i) G ∈ U ; or
(ii) there is some P ∈ P such that G ∈ P and P ∩ U = ∅.

Let us make a few remarks.
1. This is a restricted notion of genericity. There may be dense subets D of P such
that for no oracle Z does P-genericity relative to Z ensure that G is an element of
some P ∈ D. See Remark 3.13.
2. The definition applies to all oracles Z, even when Z does not compute all the
conditions in P (let alone a presentation of P itself).
3. For an open set U and G ∈ XP, G ∈ U if and only if there is some clopen D
such that G ∈ D and D ⊆ U . Usually, all clopen subsets of XP are in P, so the
genericity requirement can be reformulated as follows: for every U ⊆ XP that is
Σ0

1(Z) there is some P ∈ P such that G ∈ P and either P ⊆ U or P ⊆ U∁.
4. Our notion of genericity is invariant under computable isomorphism between
spaces. For example, if XP = (2ω)2, we can also regard P as a notion of forcing
adding elements of 2ω, by taking joins.

Example 3.4. For Cohen forcing C, for all Z, G ∈ 2ω is C-generic relative to Z if
and only if it is 1-generic relative to Z.

3.2. A product theorem. If P and Q are notions of forcing with compact sets,
then so is P × Q (where XP×Q = XP × XQ). The following product theorem
generalises the familiar one for Cohen 1-genericity (see [8]), and is analogous to
the one for Martin-Löf randomness, named after van Lambalgen, [7]. Both are
effectivisations of a product theorem for forcing in set theory. Care needs to be
taken since we are not assuming that the conditions themselves are all computable.
For computational purposes, we identify a closed set Q with the collection of clopen
subsets that it intersects. We will only use the “hard” part of the theorem (part (b))
for Cohen forcing.

Theorem 3.5. Let P and Q be notions of forcing with compact sets; let Z ∈ 2ω be
an oracle. Let G ∈ XP and H ∈ XQ.

(a) If (G,H) is P × Q-generic relative to Z then H is Q-generic relative to
(G,Z) and G is P-generic relative to (H,Z).
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(b) If H is Q-generic relative to (G,Z), and for all Q ∈ Q, G is P-generic
relative to (Z,Q), then (G,H) is P×Q-generic relative to Z.

Proof. For (a), by symmetry, it suffices to show that H is Q-generic relative to
(G,Z). Let U ⊆ XQ be Σ0

1(G,Z). Then there is some V ⊆ XP × XQ which is
Σ0

1(Z) and such that U = V G = {Y ∈ XQ : (G, Y ) ∈ V }. Suppose that H /∈ U . So
(G,H) /∈ V . By assumption, there is some P ×Q ∈ P×Q such that (G,H) ∈ P ×Q

and P ×Q ⊆ V ∁. Since G ∈ P , Q ⊆ U∁.

For (b), let V ⊆ XP ×XQ be Σ0
1(Z); suppose that (G,H) /∈ V . So H /∈ V G, and

V G is Σ0
1(G,Z). Since H is Q-generic relative to (G,Z), there is some Q ∈ Q such

that H ∈ Q and Q ∩ V G = ∅.
Let S be the union of all clopen C ⊆ XP such that for some clopen D ⊆ XQ,

we have C × D ⊆ V and D ∩ Q ̸= ∅. Since V is Σ0
1(Z), S is Σ0

1(Z,Q). Since
Q ∩ V G = ∅, {G} × Q ∩ V = ∅, and this shows that G /∈ S. By the assumption
on G, there is some P ∈ P such that G ∈ P and P ⊆ S∁. Then (G,H) ∈ P × Q

and P ×Q ⊆ V ∁. □

3.3. Turing independence. We show that genercitiy for products implies Turing
independence.

Lemma 3.6. Let P be a notion of forcing with compact sets, and suppose that no
singleton is in P. Suppose that G is P-generic relative to Z. Then G ⩽̸T Z.

Proof. Let Y ⩽T Z. Then XP ∖ {Y } is Σ0
1(Z). Since P does not contain the

singleton {Y }, No P ∈ P is disjoint from XP ∖ {Y }. Hence G ∈ XP ∖ {Y }, i.e.,
G ̸= Y . □

Remark 3.7. In general, we will not be able to obtain Turing incomparabilty be-
tween G and Z; indeed, in our main application, we will want G to be an upper
bound for some ideal, and generic relative to all oracles in that ideal. We can’t
avoid computing Z since some conditions compute Z. This is the only obstacle:
suppose that G is P-generic relative to Z, but that Z ⩽T G; say Z = Φ(G) for a
Turing functional Φ. Let U = {Y ∈ XP : Φ(Y ) ⊥ Z}. Since G /∈ U , let P ∈ P such
that G ∈ P and P ⊆ U∁. Since Φ(G) is total, {Z} = {Φ(Y ) : Y ∈ P}, i.e., Z is a
Π0

1(P ) singleton, so Z ⩽T P . We will not need this result.

Proposition 3.8. Let P1, . . . ,Pn be notions of forcing with compact sets, and sup-
pose that no Pi contains a singleton. Let Z be an oracle.

If (G1, . . . , Gn) is P1×· · ·×Pn-generic relative to Z, then {G1, . . . , Gn} is Turing
independent relative to Z.

Proof. It suffices to show that G1 ⩽̸T (G2, . . . , Gn, Z). By Theorem 3.5, G1 is
P1-generic relative to (G2, . . . , Gn, Z). The result follows from Lemma 3.6. □

3.4. Adding upper bounds of countable ideals. The following notion of forcing
adds a generic upper bound to a countable Turing ideal.

Definition 3.9. Let A ⊆ 2ω be countable. We let PA be the collection of partial
functions x from ω to 2 satisfying:

• for almost all n, domx[n] is empty;
• for all n, either domx[n] is finite, or domx[n] = ω, in which case x[n] ∈ A.

For x, y ∈ PA, y extends x if x ≼ y (y extends x as a function).



6 JOSEPH S. MILLER AND NOAM GREENBERG

For x ∈ PA we let [x] be the collection of all X ∈ 2ω such that x ≺ X. Since
x ≼ y if and only if [y] ⊆ [x], we can think of PA as forcing with compact sets.

Remark 3.10. P∅ is Cohen forcing.

We will need to work with finite products: suppose that Ā = (A1, . . . ,Am) is a
finite tuple of countable subsets of 2ω. We let

PĀ = PA1
× · · · × PAm

.

For x̄ = (x1, . . . , xm) ∈ PĀ we let [x̄] = [x1]× · · · × [xm] ⊆ (2ω)m.

3.5. Anticipating future conditions. In our construction, we will need to con-
struct reals while preparing them to be part of generic tuples. The typical situation
is the following. Let δ1 < δ2 ⩽ δ3 be limit ordinals. Recall that we aim to construct
reals Aα, and for i = 1, 2, 3, for some Bi ⊆ {Aα : α < δi}, an upper bound Ci

of the ideal generated by Bi. We want to make {C1, C2, C3} Turing independent;
we will do this by ensuring that the triple (C1, C2, C3) is P(B1,B2,B3)-generic, and
then invoke Proposition 3.8. We construct C1 at stage δ1 of the construction, by
which we have only defined the reals Aα for α < δ1. On the other hand, B2 and B3

will likely contain Aα for various α ⩾ δ1. So at stage δ1 we need to construct C1

while preparing it to be generic relative to conditions in P(B2,B3), that haven’t been
defined yet. At stage δ1 we can imagine these conditions, except that columns in
which such Aα appear, we leave undefined. However, we also need to “remember”
which of these erased columns were the same. This gives us closed sets a bit more
complicated than those in some PĀ. A mild complication is that we also need
tuples such as (C1, C2, C3, Aα) to be P(B1,B2,B3) × C-generic, where α ⩾ δ1 (but
Aα /∈ B2 ∪ B3). Then at stage δ1 we will need to “leave room” for Aα as well.

Definition 3.11. Let m ⩾ 1. We let S(m) be the collection of pairs p = (ȳp, ap),
where:

• ȳp = (yp1 , . . . , y
p
m), with each ypi a partial function from ω to 2;

• ap is a finite set, whose elements are pairwise disjoint, finite subsets of
{1, . . . ,m} × ω, such that: for all b ∈ ap, for all (i, n), (j, k) ∈ b, (ypi )

[n] =

(ypj )
[k], and is finite.

With each p ∈ S(m) we associate a closed set P (p) ⊆ (2ω)m, defined to be the
collection of tuples X̄ = (X1, . . . , Xm) ∈ (2ω)m satisfying:

• X̄ ∈ [ȳp];
• for all b ∈ a, for all (i, n), (j, k) ∈ b, X [n]

i = X
[k]
j .

Observe that the restrictions imposed on p imply that P (p) is nonempty. For
p,q ∈ S(m), we let q ⩽ p if P (q) ⊆ P (p). Note that this is equivalent to:

• for all i ⩽ m, ypi ≼ yqi ;
• for all b ∈ ap there is some b′ ∈ aq such that b ⊆ b′.

If A ⊆ 2ω and m ⩾ 1 then we let S(A,m) denote the collection of all p ∈ S(m)
for which, for each i = 1, . . . ,m, ypi ∈ PA.

The empty condition of length m, which we denote by 0m, is the condition such
that y0m

i is the empty (nowhere defined) function, and a0m = ∅.

We will need to concatenate S-conditions. Suppose that p ∈ S(m) and q ∈ S(k).
We let pˆq ∈ S(m+ k) be defined as follows:
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• ȳpˆq = (ȳp, ȳq);
• apˆq is the union of ap and the “k-shift” of aq, namely the collection of sets

{(m+ i, n) : (i, n) ∈ b} for each b ∈ aq.
We will need to consider “mild extensions”. For p,q ∈ S(m), we write p =∗ q if:

• for all i ⩽ m, ypi =∗ yqi ;
• ap = aq.

Remark 3.12. A variant of PA is defined using an existing enumeration of A. A
coding constraint is a sequence X = (Xn) where each Xn is either a real in 2ω, or
the symbol ∗, indicating no coding allowed in the nth column. An X -condition is
a partial function α : ω → 2 such that for almost all n, domα[n] is empty, and for
all n, either domα[n] is finite, or domα[n] = ω, Xn ̸= ∗, and αn =∗ Xn. Thus, the
coding constraint tells us where a real is to be coded, but may leave room for Cohen
reals to be interleaved in the generic. Let P̃X be the collection of X -conditions. If
Xn = ∗ for all n then P̃X is equivalent to Cohen forcing.

An advantage of working with coding constraints is that they are closed under
taking finite products: if X1 and X2 are two coding constraints, and X is some join
of X1 and X2, then P̃X is equivalent to P̃X1

× P̃X2
.

On the other hand, if we were to work with coding-constraint forcing instead,
we would need to modify Definition 3.11 to deal with =∗. The S-conditions would
need to remember which pairs of columns are =∗, and for each pair, state from
which point they are equal, and how they are filled up to that point.

Remark 3.13. Coding constraint forcing gives a good illustration of the restricted
nature of genericity that we defined. Suppose, for example, that X is a coding
constraint (say with no ∗ entries), and that infinitely many of the Xn end with 0ω.
Then the set of X -conditions in which some column ends in 11⌢0ω is dense in P̃X .
However, for any oracle Z, there is some G, P̃X -generic relative to Z, that does not
meet this dense set.

4. The construction

We prove Theorem 2.1. During the construction, we will choose, for each α < ω1,
a real Aα. By stage δ of the construction, we will have defined Aα for all α < δ,
and we let

Aδ = {Aα : α < δ}.
Further, for all finite c ⊆ δ, we write c = {α1 < α2 < · · · < α|c|}, and we let

Ac = (Aα1
, . . . , Aα|c|).

For the “second layer”, at limit stages δ, we will approximate the sets Cδ
B (for

all B ⊆ Aδ) by defining a tree of conditions xδ
σ for σ ∈ 2<ω. Here σ will code an

initial segment of the characteristic function of B as a subset of Aδ (based on some
ω-enumeration of Aδ), and Cδ

B will extend xδ
σ when B extends σ.

Towards making the desired tuples generic, we will try to meet a collection of
requirements. For the following definitions, suppose that Aα have been chosen for
all α < δ.

Definition 4.1. Let δ = 0 or δ < ω1 be a limit ordinal. A δ-requirement is a tuple
(n, δ̄, m̄, c, U,p) satisfying:

(i) n ⩾ 0;
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(ii) δ̄ is an increasing sequence δ0 < δ1 < δ2 < · · · < δn of non-successor
ordinals, with δn = δ and δ0 = 0 (hence n = 0 iff δ = 0);

(iii) m̄ = (m1, . . . ,mn,mfut) ∈ ωn+1, where:
• for i = 1, . . . , n, mi > 0;
• if n = 0 then mfut > 0;

(iv) c is a finite subset of δ (so if δ = 0 then c = ∅);
(v) U ⊆ (2ω)m1+m2+···+mn+|c|+mfut is Σ0

1;
(vi) p ∈ S(Aδ,mfut) (if mfut = 0 then p is the vacuous condition).
(vii) For all α ∈ c, Aα is not a column of ypi (for any i = 1, . . . ,mfut).

The meaning of this is the following. At stage δ = δn we are looking at tuples
of the form:

(Cδ1
B̄1
, Cδ2

B̄2
, . . . , Cδn

B̄n
, Ac)

where B̄i = (Bi,1,Bi,2, . . . ,Bi,mi
) is a tuple of subsets of Aδi and Cδi

B̄i
= (Cδi

Bi,1
, . . . , Cδi

Bi,mi
).

We are trying to take another step toward making this tuple generic, by trying to
meet or avoid U . However, when mfut > 0, we are actually planning for this tuple
to be part of a longer tuple (with mfut more components), and p is our guess of
the structure of the rest of this tuple. When n = 0, we are just planning for the
future. The last restriction, (vii), is because we cannot make (Aα, C

δ
B) generic when

Aα ∈ B; see Remark 4.4 below.

4.1. Restricting conditions. Let δ < ω1 and let x̄ = (x1, . . . , xm) ∈ (PAδ
)m.

For γ < δ we define q(x̄, γ) ∈ S(m) by erasing occurrences of Aα for α ⩾ γ, and
remembering which columns are equal. That is:

• ȳq(x̄,γ) = (y1, . . . , ym), where yi is defined as follows: for each column n,
– If x[n]

i = Aα for some α ⩾ γ, then y
[n]
i is everywhere undefined.

– Otherwise, y[n]i = x
[n]
i .

• For all α ∈ [γ, δ), let

bα =
{
(i, n) ∈ {1, . . . ,m} × ω : & x

[n]
i = Aα

}
.

We let aq(x̄,γ) be the collection of all bα which are nonempty.
Observe that q(x̄, γ) ∈ S(Aγ ,m), and that [x̄] ⊆ P (q(x̄, γ)).

We extend the previous definition as follows. For p ∈ S(Aδ,m) and γ < δ we let
q(p, γ) be defined by:

• ȳq(p,γ) = ȳq(ȳ
p,γ);

• aq(p,γ) = ap ∪ aq(ȳ
p,γ).

Recall that if (i, n) is an element of any element of ap, then (ypi )
[n] is finite, and so⋃

ap and
⋃
aq(ȳ

p,γ) are disjoint; so q(p, γ) ∈ S(Aγ ,m).

Finally, we define the restriction of a δ-requirement. Let δ > 0 and let r be a
δ-requirement (so nr > 0). Let γ = (δn−1)

r. Let x̄ ∈ (PAδ
)(mn)

r

. We define

q(r, x̄) = 0|cr∩[γ,δ)|ˆq(x̄, γ)̂ q(p
r, γ).

Definition 4.2. Let r be a δ-requirement, and suppose that nr > 0. Let γ =
(δn−1)

r. Let x̄ ∈ (PAδ
)(mn)

r

.
We say that a γ-requirement s is a predecessor of (r, x̄) if:

• ns = nr − 1;
• δ̄s = (δr0, . . . , (δn−1)

r);
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• for i = 1, . . . , nr − 1, ms
i = mr

i ;
• ms

fut = |cr ∩ [γ, δ)|+ (mn)
r +mr

fut;
• cs = cr ∩ γ;
• Us = U r;
• ps ⩽ q(r, x̄) and ps =∗ q(r, x̄).

Here the idea is that s is a requirement that can anticipate (r, x̄). During stage δ,
we will have constructed x̄ as an approximation to an mr

n-tuple of sets Cδ
B. In

stepping back to stage γ, we need to let s know about the “γ-part of x̄”, namely,
q(x̄, γ), stripping away Aα for α ∈ [γ, δ) (but remembering which stripped columns
are equal). We also leave an empty space for Acr∩[γ,δ). Also, we incorporate
the future from r’s point of view into s’s view of the future, again stripping Aα’s
that s cannot know about—thus, s is supplied with q(pr, γ). We do not require
ps = q(r, x̄), only the weaker condition ps ⩽ q(r, x̄) and ps =∗ q(r, x̄), in order to
exploit the genericity of the Aα’s; this is used in the proof of Lemma 4.11 below.

Remark 4.3. Condition (vii) of Definition 4.1 impies that (r, x̄) has a predecessor
if and only if for all α ∈ cr ∩ γ, Aα is not a column of any xi.

Remark 4.4. Note that in passing from r to s, if there is some α ∈ c ∩ [γ, δ) such
that Aα is a column of some xi, then this fact is not recorded by s. This is because
we will only try to meet r in situations when no such equality occurs. Meeting the
requirement entails making the pair (Aα, C

δ
B) generic, where α ∈ c and Cδ

B extends
some xi. But if Aα is already a column of xi, this means that Aα ∈ B, and recall
that we are trying to make Cδ

B an upper bound of B. So we do not want (and cannot
hope) to make {Cδ

B, Aα} Turing independent. This complements condtition (vii) of
Definition 4.1.

Remark 4.5. Applying Definition 4.2 repeatedly, we see that our envisioned tuple
of Aα’s and Cδ

B’s from above needs to be re-ordered as(
Ac∩[δ0,δ1), C

δ1
B̄1
, Ac∩[δ1,δ2), C

δ2
B̄2
, . . . , Ac∩[δn−1,δn), C

δn
B̄n

)
.

4.2. The construction. Recall that we will construct, for each α < ω1, a real Aα,
and for limit δ < ω1 and σ ∈ 2<ω, a partial function xδ

σ. In addition, we will define:
• For all α < ω1, an oracle Zα; and
• For non-successor δ < ω1, for all e < ω, a tuple of partial functions w̄δ,e.

Let us elaborate on the latter. For non-successor δ, we will define an ω-list rδ,0, rδ,1, . . .
of δ-requirements (with many repetitions). For brevity, we will let

rδ,e = (nδ,e, γ̄δ,e, m̄δ,e, cδ,e, Uδ,e,pδ,e).

Further, we write ȳδ,e for ȳp
δ,e

and aδ,e for ap
δ,e

.
For each e, w̄δ,e will be an mδ,e

fut-tuple of partial functions (wδ,e
1 , wδ,e

2 , . . . , wδ,e

mδ,e
fut
),

whose role is to “prompt” future tuples; if those extend w̄δ,e, this will help decide
Uδ,e. We will ensure:

• For all i = 1, . . . ,mδ,e
fut, w

δ,e
i is a finite extension of yδ,ei ;

• [w̄δ,e] ∩ P (pδ,e) ̸= ∅, which in light of (a), amounts to ensuring that if
(i, n), (j, k) belong to some element of aδ,e, then (wδ,e

i )[n] is consistent with
(wδ,e

j )[k].
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Let δ < ω1, and suppose that the construction has been performed for all stages
α < δ.

1. We determine Zδ. We choose Zδ to be sufficiently strong so that it computes
a copy of δ, and based on this copy, computes, uniformly in α < δ, both Aα and
Zα, and for limit γ < δ, the construction at stage γ, uniformly in such γ. We start
with Z0 = ∅′.
2. We let Aδ be Cohen generic relative to Zδ.

3. When δ = 0, we perform a preparatory construction. Note that the 0-requirements
are essentially tuples (mfut, U,p) where mfut > 0, U ⊆ (2ω)mfut is Σ0

1, and p ∈
S(A0,mfut). Since A0 = ∅, the latter means that each ypi is a finite function.

Thus, we can let (r0,e) be a computable list of all 0-requirements, with each
requirement appearing infinitely often on the list. For each e we define a tuple w̄0,e

as follows. We ask if:
P (p0,e) ∩ U0,e = ∅.

If so, we let w̄0,e = ȳ0,e. If not, then we let w̄0,e be an m0,e
fut-tuple of finite functions

from ω to 2 such that:
• Each w0,e

i is a finite extension of y0,ei ;
• [w̄0,e] ∩ P (p0,e) ̸= ∅; and
• [w̄0,e] ⊆ U0,e.

4. If δ is a limit ordinal, we perform the stage δ construction as follows.
Based on the Zδ-computable copy of δ, let ⟨Aδ

e : e < ω⟩ be an enumeration of Aδ.
Note that Zδ can enumerate S(Aδ,m) for all m (uniformly), and thus, enumerate all
δ-requirements. So we create a Zδ-computable list of δ-requirements rδ,0, rδ,1, . . . ,
so that each δ-requirement appears infinitely often on the list.

The stage δ construction is performed in ω-many steps. At the beginning of
step e, we will have defined:

• a partial function xδ
σ for all σ ∈ {0, 1}⩽e; and

• w̄δ,e′ for all e′ < e.
We start with xδ

⟨⟩ being the empty function.
Let e < ω and suppose that the construction has been performed up to the

beginning of step e. We then consider the eth requirement on the list. In what
follows, we omit all superscripts δ and e from all objects considered or constructed
at step e. So n = nδ,e, c = cδ,e, and so on. When we consider parameters of other
requirements we will write the superscripts in full.

Recall that δ > 0 implies n > 0.
Let τ̄0, τ̄1, . . . , τ̄ t−1 be an enumeration of all mn-tuples of distinct σ ∈ {0, 1}e.

By recursion, for all k = 0, 1, . . . , t, we define:
• for all σ ∈ {0, 1}e, a partial function uk

σ; and
• A tuple w̄k = (wk

1 , . . . , w
k
mfut

) of partial functions from ω to 2.
We start with u0

σ = xσ and w̄0 = ȳp.
Let k < t, and suppose that w̄k and all uk

σ have been defined. We will ensure
that [w̄k] ∩ P (p) ̸= ∅.

Enumerate τ̄k as (τk1 , . . . , τ
k
mn

). For brevity, for i ⩽ mn we let uk
i = uk

τk
i
; let

ūk = (uk
1 , . . . , u

k
mn

).
Since n > 0, let γ = γn−1; let c′ = c ∩ [γ, δ).
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We first check if we need to tend to this instance of the requirement. We say that
(δ, e) is active at k if for all α ∈ c, Aα is not a column of any uk

i (for i = 1, . . . ,mn).
If (δ, e) is inactive at k then we do nothing: we let w̄k+1 = w̄k and uk+1

σ = uk
σ for

all σ.
Suppose that (δ, e) is active at k. Let

z̄k = (Ac′ , ū
k, w̄k).

Note that the length of z̄k is |c′|+mn+mfut, which is ms
fut, where s is any predecessor

of (rδ,e, ūk).
We say that d < ω is suitable at (δ, e, k) if:

• d ⩾ e;
• rγ,d is a predecessor of (rδ,e, ūk); and
• the tuple w̄γ,d is consistent with z̄k.

Below (in Lemma 4.11) we will show that there is some d which is suitable for
(δ, e, k). Choose d to be the least such.

• for i ⩽ mn we let uk+1
τk
i

= uk
i ∪ wγ,d

|c′|+i, and

• we let w̄k+1 = (wγ,d
|c′|+mn+1 ∪ wk

1 , . . . , w
γ,d
|c′|+mn+mfut

∪ wk
mfut

).

For σ ∈ {0, 1}e that is not τki for any i, we let uk+1
σ = uk

σ.

At the end of step e, we let, for each σ ∈ {0, 1}e:
• xδ

σ 0̂ = ut
σ;

• xδ
σ 1̂ be a condition extending ut

σ by setting, for some large r, the rth column
of xδ

σ 1̂ to be Aδ
e.

We also let w̄δ,e = w̄t.
This completes step e of the δ-construction, and so, the description of the con-

struction as a whole.

4.3. Verification: the construction makes sense. For the first part of the
verification, we need to show that the construction can be carried out as described.
Namely: for non-successor δ and e < ω,

(a) If δ > 0, then for all σ ∈ {0, 1}e+1, xδ
σ is a function, and xδ

σ 0̂ is a finite
extension of xδ

σ.
(b) For all i = 1, . . . ,mδ,e

fut, w
δ,e
i is a function, which is a finite extension of yδ,ei .

(c) [w̄δ,e] ∩ P (pδ,e) ̸= ∅.
(d) If δ > 0, for all k < tδ,e, if (δ, e) is active at k, then some d is suitable for

(δ, e, k).
We start with δ = 0:

Lemma 4.6. (b) and (c) hold when δ = 0; further, for each e, w̄0,e is a tuple of
finite functions.

Proof. As noted above, since A0 = ∅, every y0,ei is a finite function. Note that by
definition, for all p ∈ S(m), [ȳp] ⊇ P (p) and P (p) ̸= ∅, ensuring that (c) holds in
the case that w̄0,e = ȳ0,e. □

Let δ be a countable limit ordinal and e < ω. Suppose that the construction was
performed successfully up to step e of stage δ, and that (a)–(d) above hold for all
non-successor γ < δ and for (δ, e′) for all e′ < e. We will show that step e of the
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construction can be performed successfully, and that (a)–(d) hold for (δ, e). To do
this, by induction on k ⩽ tδ,e, we show:

(1) For all σ ∈ {0, 1}e, uδ,e,k
σ is a function, which is a finite extension of xδ

σ.
(2) For all i ⩽ mδ,e

fut, w
δ,e,k
i is a function, which is a finite extension of yδ,ei .

(3) [w̄δ,e,k] ∩ P (pδ,e) ̸= ∅.
(4) If (δ, e) is active at k, then some d is suitable for (δ, e, k).

We observe that for k = 0, (1)–(3) hold by induction, and the choice of w̄δ,e,0 =
ȳδ,e. Let k < tδ,e, and suppose that (1)–(3) hold at k.

Lemma 4.7. If (4) holds at (δ, e, k), then (1)–(3) hold at k + 1.

Proof. If (δ, e) is inactive at k, then (1)–(3) follow by induction. Suppose otherwise;
let d be the least which is suitable for (δ, e, k). As in the construction, we omit the
superscripts δ, e.

Since w̄γ,d is consistent with z̄k, for all i ⩽ mn, uk+1
τk
i

is a function, and so is

wk+1
j for all j ⩽ mfut. For i ⩽ mn, yγ,δ|c′|+i is a finite extension of uk

i (after all Aα

columns for α ⩾ γ are stripped away), and similarly, for i ⩽ mfut, y
γ,δ
|c′|+mn+i is a

finite extension of wk
i . By induction ((b) above), each wγ,d

j is a finite extension of
yγ,dj . This gives us (1) and (2) at k + 1.

By induction, [w̄γ,d]∩ P (pγ,d) ̸= ∅. Let b ∈ aδ,e. By the definition of q(rδ,e, ūk),
the (|c′|+mn)-shift of b is in aγ,d. Thus, for for all (i, o), (i′, o′) ∈ b, (wγ,d

|c′|+mn+i)
[o]

and (wγ,d
|c′|+mn+i′)

[o′] are compatible. Also by induction, (wk
i )

[o] and (wk
i′)

[o′] are
compatible. It follows that (wk+1

i )[o] and (wk+1
i′ )[o

′] are compatible. This gives (3)
at k + 1. □

It remains to show that (4) holds at (δ, e, k). To do so, we need a few lemmas
which will also be useful later.

Lemma 4.8. For all non-successor γ < δ, Zγ computes the stage γ construction.

Proof. For γ = 0, Z0 = ∅′ can determine if U0,e ∩ P (p0,e) ̸= ∅. For a limit γ, the
entire construction is computable from Zγ . □

Lemma 4.9. For any finite c ⊂ δ, the tuple Ac is Cohen generic relative to Zmin c.

Proof. This follows from the product theorem for Cohen forcing (part (b) of The-
orem 3.5), and the fact that Zα ⩾T Zβ , Aβ when α > β. □

Lemma 4.10. For all σ,

xδ
σ ∈ P{Aδ

r : r<|σ| & σ(r)=1}.

In particular, xδ
σ ∈ PAδ

.

Proof. By induction on the length of σ. The lemma holds for σ = ⟨⟩. Suppose that
the lemma holds for some σ; let e = |σ|. By (a) above, xδ

σ 0̂ is a finite extension
of xδ

σ, so the lemma holds for σ 0̂ as well; and by construction, we only add Aδ
e to

xδ
σ 1̂, so the lemma holds for σ 1̂ as well. □

Lemma 4.11. (4) holds at k.
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Proof. We use the notation of the construction. Let γ = γn−1; let q = q(r, ūk); let
m∗ = |c′|+mn +mfut. Recall that we let z̄k = (Ac′ , ū

k, w̄k). We assume that (δ, e)
is active at k.

Let r be the set of α ∈ [γ, δ) such that Aα appears as a column of some uk
i or

wk
j . Since (δ, e) is active at k, and by (vii) of Definition 4.1 (applied to rδ,e), r and c

are disjoint, and so r and c′ are disjoint.
By Lemma 4.9, the tuple Ar∪c′ is Cohen generic relative to Zγ .
First, observe that (r, ūk) has predecessors: to do so, we need to check that q

satisfies (vii) of Definition 4.1 with respect to c ∩ γ. Let i ⩽ m∗, and suppose that
some Aα is a column of yqi . Then i > |c′|, as yqi is the empty function when i ⩽ |c′|.
If i = |c′|+ j for some j ⩽ mn, then yqi is the result of stripping various Aβ ’s from
uk
j . Since (δ, e) is active at k, α /∈ c, so α /∈ c ∩ γ. If i = |c′| + mn + j for some

j ⩽ mfut, then yqi is the result of stripping various Aβ ’s from wk
j , so (vii) for rδ,e

ensures that α /∈ c.

For a sequence of finite functions µ̄ = (µα)α∈r∪c′ we define q(µ̄) ∈ S(m∗) by
letting:

• aq(µ̄) = aq;
• for all i = 1, . . . , |c′|, y

q(µ̄)
i = µα where zki = Aα. That is, y

q(µ̄)
i = µαi ,

where c′ = {α1 < · · · < α|c′|}.
• for all i = |c′|+ 1, . . . ,m∗, for all l,

– if (zki )[l] = Aα for some α ∈ r, then (y
q(µ̄)
i )[l] = µα;

– Otherwise, (yq(µ̄)i )[l] = (zki )
[l].

In other words, q(µ̄) is defined like q, except that instead of erasing all of Aα

for α ⩾ γ, we write µα in the appropriate coordinate or column. Since y
q(µ̄)
i is a

finite extension of yqi (for all i ⩽ m∗), q(µ̄) also satisfies (vii) of Definition 4.1 with
respect to c ∩ γ. Hence, q(µ̄) ∈ S(Aγ ,m

∗) appears in γ-requirements which are
predecessors of rδ,e; note that q(µ̄) ⩽ q and q(µ̄) =∗ q for any µ̄.

For each such µ̄, let d(µ̄) be the least d such that:

• d ⩾ e;
• rγ,d is a predecessor of (rδ,e, ūk);
• pγ,d = q(µ̄).

Let µ̄ be such a tuple, and let d = d(µ̄). For all i ⩽ |c′|, since yγ,di = y
q(µ)
i = µα

for some α ∈ c, and (by induction) wγ,d
i is a finite extension of yγ,di , we see that

wγ,d
i is a finite function; we let να = wγ,d

i . For α ∈ r let bα be the set of pairs
(i, l) where |c′| < i ⩽ m∗ and (zki )

[l] = Aα. Then for all α ∈ r, for all (i, l) ∈ bα,
(y

[γ,d]
i )[l] = µα, so (wγ,d

i )[l] is a finite function. Further, since bα ∈ aq = aq(µ̄), and
since by induction, [w̄γ,d] ∩ P (q(µ̄)) ̸= ∅, for all (i1, l1), (i2, l2) ∈ bα, (wγ,δ

i1
)[l1] and

(wγ,δ
i2

)[l2] are compatible. We let να =
⋃{

(wγ,d
i )[l] : (i, l) ∈ bα

}
. Then:

• For all α ∈ r ∪ c′, να is a finite function and να ≽ µα;
• ν̄ = (να)α∈r∪c′ “ensures extending w̄γ,d in the correct places”: for all i ⩽ m∗

– if i ⩽ |c′|, and zki = Aα (where α ∈ c′), then να = wγ,d
i ;

– if i > |c′| and l is such that (zki )
[l] = Aα for some α ∈ r, then να ≽

(wγ,d
i )[l].
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By Lemma 4.8, the search for d(µ̄) is computable in Zγ . As a result, by the
genericity of Ar∪c′ , there is some µ̄ such that the resulting ν̄ is extended by Ar∪c′ .
Then d(µ̄) is suitable for (δ, e, k): to show that w̄γ,d is compatible with z̄k, let
i ⩽ m∗.

• If i ⩽ |c′| then zki = Aα for some α ∈ c′, and wγ,d
i = να ≺ Aα.

• If i > |c′|, let l < ω.
– If (zki )[l] = Aα for some α ∈ r, then (wγ,d

i )[l] = να ≺ Aα.
– Otherwise, (wγ,d

i )[l] ≽ (yγ,di )[l] = (zki )
[l]. □

This concludes the induction above: (1)–(4) hold at k, and so (a)–(d) hold at
(δ, e). The entire construction can be carried out as described.

4.4. Verification: genericity. For any limit δ < ω1 and any B ⊆ Aδ, we define
fδ
B ∈ 2ω by fδ

B(e) = 1 iff Aδ
e ∈ B. We then let

Cδ
B =

⋃{
xδ
σ : σ ≺ fδ

B
}
.

Theorem 2.1 follows from Proposition 3.8 and the following lemma.

Lemma 4.12. Let:
• δ1 < δ2 < · · · < δn be limit ordinals, and
• for l = 1, . . . , n, B̄l = (Bl,1, . . . ,Bl,|B̄l|) be a tuple of distinct subsets of Aδl ;

and
• c be a finite subset of ω1, such that {Aα : α ∈ c} is disjoint from

⋃
l⩽n

⋃
j⩽|B̄l| Bl,j.

Then (Cδ1
B̄1
, . . . , Cδn

B̄n
, Ac) is PB̄1

× · · · × PB̄n
× C|c|-generic (relative to ∅).

Proof. Let m∗ = |B̄1|+ · · ·+ |B̄n|+ |c|. Let δ0 = 0; for l = 1, . . . , n, let

cl = c ∩ [δl−1, δl).

Recall (Remark 4.5) that we need to reorder our to-be-generic tuple as

X̄ = (Ac1 , C
δ1
B̄1
, . . . , Acn , C

δn
B̄n

).

Let U ⊆ (2ω)m
∗

be Σ0
1; we need to show that either X̄ ∈ U , or there is some

condition
q̄ ∈ C|c1| × PB̄1

× · · · × C|cn| × PB̄n

such that X̄ ∈ [q̄] and [q̄] ⊆ U∁.

Fix some e∗ sufficiently large so that for l = 1, . . . , n, the strings

fδl
Bl,1

↾ e∗, fδl
Bl,2

↾ e∗, . . . , fδl
Bl,|B̄l|

↾ e∗

are all distinct.
By reverse induction on l = n, n − 1, . . . , 0, we define el ⩾ e∗, and when l ⩾ 1,

also some kl < tδl,el . We start with choosing some en ⩾ e∗ such that:
• nδn,en = n;
• δ̄δn,en = (δ0, δ1, δ2, . . . , δn);
• for l = 1, . . . , n, mδn,en

l = |B̄l|;
• mδn,en

fut = 0;
• cδn,en = c;
• U δn,en = U .
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(Since mδn,en
fut = 0, pδn,en is the vacuous condition; so (vii) of Definition 4.1 holds

vacuously.)
Now for l ⩾ 1, given el ⩾ e∗, let

σ̄l = (fδl
Bl,1

↾ el, f
δl
Bl,2

↾ el, , . . . , f
δl
Bl,|B̄l|

↾ el).

and let kl be the k < tδl,el such that τ̄ δl,el,k = σ̄l.
Let l ⩾ 1 and suppose that el and kl have been chosen, with cδl,el = c ∩ δl. By

assumption, and by Lemma 4.10, for all α ∈ cel,δl and i ⩽ |B̄l|, Aα is not a column
of xδl

σl,i
, and so of uδl,el,kl

i . That is, (δl, el) is active at kl. We thus let el−1 be the
least e which is suitable for (δl, el, kl). Note that el−1 ⩾ el ⩾ e∗. This concludes
the definition of el for all l ⩽ n.

For l = 1, . . . , n, let

v̄l =
(
yδl,el,kl+1
σl,1

, yδl,el,kl+1
σl,2

, . . . , yδl,el,kl+1
σl,|B̄l|

)
.

We observe:
• Cδl

B̄l
∈ [v̄l], and v̄l ∈ PB̄l

.
For l = 0, . . . , n− 1, write

w̄δl,el = (s̄l,l+1, t̄l,l+1, s̄l,l+2, t̄l,l+2, . . . , s̄l,n, t̄l,n),

where |s̄l,j | = |cj | and |t̄l,j | = |B̄j |.
Let 0 < j ⩽ n. For all i = 1, . . . , |B̄j |, by definition,

vj,i ≽ tj,j−1,i,

i.e., [v̄j ] ⊆ [t̄j,j−1]. Also, since w̄δj−1,ej−1 is consistent with z̄δj ,ej ,kj , Acj ∈ [s̄j,j−1].
Further, if j > l, then the choice of w̄δl,el ensures that [s̄l,j ] ⊆ [s̄l−1,j ] and

[t̄l,j ] ⊆ [t̄l−1,j ]. Hence: for all l = 1, . . . , n,
• [v̄l] ⊆ [t̄0,l]; and
• Acl ∈ [s̄0,l].

Further, observe that each s̄0,l is finite. Let

q̄ = (s̄0,1, v̄1, s̄0,2, v̄2, . . . , s̄0,n, v̄n).

Then q̄ ∈ C|c1| × PB̄1
× · · · × C|cn| × PB̄n

and X̄ ∈ [q̄]. Further, [q̄] ⊆ [w̄0,e0 ]. Note
that this also implies [q̄] ⊆ [ȳ0,e0 ], as [w̄0,e0 ] ⊆ [ȳ0,e0 ]. Further, for every b ∈ a0,e0 ,
if (i1, o1), (i2, o2) ∈ b, then this is because (qi1)

[o1] = (qi2)
[o2] = Aα for some α.

Putting these together, we get

[q̄] ⊆ P (p0,e0).

Now we can finish the proof:
• If U ∩ P (p0,e0) ̸= ∅, then as [w̄0,e0 ] ⊆ U and [q̄] ⊆ [w̄0,e0 ], we have X̄ ∈ U .
• If not, then as [q̄] ⊆ P (p0,e0), [q̄] ⊆ U∁.

Thus, q̄ is a condition as required. □

Remark 4.13. Where did we use the assumption that {Aα : α ∈ c} is disjoint from⋃
l⩽n

⋃
j⩽|B̄l| Bl,j? It would, at first look, appear that the proof of Lemma 4.11

relies on this fact (on (δ, e) being active at k). However, we could modify S so that
the lemma applies in the inactive case as well: instead of just passing q as defined
above to the predecessor requirement, we could also tell that requirement, for each
α ∈ c′, which columns of which zki are equal to Aα. The argument of the lemma
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would then proceed in the same way. (Note that we would need to rescind condition
(vii) of Definition 4.1).

It is only in the proof of Lemma 4.12 that the assumption is used, and it is
perhaps not easy to see where. Under the proposed modification, when X̄ /∈ U , we
still get P (p0,e0) ⊆ U∁. The rest of the argument is defining [q̄] ⊆ P (p0,e0) that is a
cylinder: a product of 1-dimensional closed sets. In other words, a condition in the
product of m∗-many notions of forcing. This allows us to apply Proposition 3.8,
which relies on the product theorem (Theorem 3.5). The restrictions embodied
in ap

0,e0 prevent P (p0,e0) from being a cylinder; they “cause an interaction” (or
dependence) between different coordinates. However, when we fill in the missing
Aα’s (that is, pass to the conditions v̄l), we do get a cylinder; the dependency
between coordinates is eliminated by completely filling in the columns that are
required to be equal. In the proof above, we are allowed to do so, because the
conditions in PB̄ allow us to fill in entire columns with such Aα. However, under
the proposed modification, to obtain a cylinder, we would need to also fill in the
various Aα for α ∈ c. That is, the cylinder we would obtain would be, in the worst
case,

{Ac1} × [v̄1]× · · · × {Acn} × [v̄n].

But Acl is not a condition in C|cl|, whereas s̄l is.
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