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Abstract. We use our descriptions of Borel Wadge classes from [DGHTTa] to

characterise those Borel Wadge classes that have the separation property, and
those that have the reduction property. Our analysis shows that both proper-

ties are equivalent to their effective versions. To do so, we give a characterisa-
tion of containment between Borel Wadge classes based on their descriptions,

and give a direct proof that all such classes admit admissible descriptions.

1. Introduction

In [LSR88a], Louveau and Saint Raymond gave a characterisation of those non-
self-dual Borel Wadge classes that have the separation property, and those that
have the reduction property. Their work is based on Louveau’s classification of
Borel Wadge classes ([Lou83]), which extends Wadge’s work ([Wad84]).

In [DGHTTa], together with Day and Harrison-Trainor, we defined a new system
of descriptions of Borel Wadge classes, which is effective in nature. It is based on
Montalbán’s “true stage” method. This method was first applied in descriptive set
theory by Day, Downey and Westrick [DDW] and by Day and Marks [DM]. See
[DGHTTb], a survey, in which the authors use the technique to give a new proof
of Louveau’s separation theorem.

Here, we use the class descriptions from [DGHTTa] to give intuitive character-
isations of both the separation and reduction properties for Borel Wadge classes.
These characterisations flesh out the dynamic intuition behind these properties:
both rely on a “stage comparison” argument. The standard argument for the re-
duction property of the class of c.e. subsets of N is: run simultaneous enumerations
of two c.e. sets A and B. When a number n enters A Y B, if it first enters A,
put it on the A-side (enumerate it into a c.e. A0 Ď A), otherwise put it on the
B-side. The result is a pair pA0, B0q reducing pA,Bq, meaning, A0 Ď A, B0 Ď B,
A Y B “ A0 Y B0, and A0 X B0 “ H.

The same argument applies to open subsets of Baire space. Using the true stage
machinery, we can extend this argument to all classes Σ0

α, as follows. Let A,B Ď N
be Σ0

α. After relativising to an oracle, we may assume that α ă ωck
1 and that

A,B P Σ0
α. Let ξ be the ordinal such that α “ 1 ` ξ. Then there are computable

sets U, V Ď ωăω, upwards closed in ďξ, such that A “ rU sξ and B “ rV sξ, meaning
that A “ tx P N : pDσ ăξ xqσ P Uu (and similarly for B). Here ďξ is the ξ-true
stage relation given by a particular computable copy of ξ. Now define computable
U0 Ď U and V0 Ď V by letting σ P U0 if the least τ ďξ σ with τ P U Y V belongs
to U ; we let σ P V0 if the least τ ďξ σ with τ P U Y V belongs to V zU . Then
A0 “ rU0sξ and B0 “ rV0sξ are Σ0

α sets that reduce pA,Bq. In brief: B0 is the set
1
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of x P B such that x P B is witnessed before x P A is; a witness is a ξ-true stage
for x that places x in B.

In this paper we show that an analysis of this kind can be carried out for all
non-self-dual Borel Wadge classes. Informally:

‚ A non-self-dual Borel Wadge class has the separation property if and only
if some (equivalently, every) description Γ of the class has default outcome
“in” (we say it is of Π-type, the dual of a Σ-type).

‚ A non-self-dual Borel Wadge class has the reduction property if and only if
some description Γ of the class is hereditarily of Σ-type, meaning that all
of the classes Γs used in the construction of Γ have Σ-type.

Further, these characterisations show that the separation property is equivalent
to the effective separation property, which states that a separator can be obtained
effectively from the pair needing separation. Similarly, the reduction property for
a Borel Wadge class is equivalent to the effective reduction property, however in
this case, we may need to relativise to a Turing cone. The base of the cone can be
taken to be ∆1

1 relative to any given description of the class.
Along the way, we describe clopen games that characterise containment between

non-self-dual Borel Wadge classes, and similarly, games that characterise the sep-
aration and reduction properties. An effective version of these games is used in
up-coming work on Selivanov’s fine hierarchy. Further, our game characterisation
of containment between classes allows us to give direct translations of class descrip-
tions into “admissible” class descriptions, which was hitherto done only indirectly.

Our characterisations are analogous to those provided by Louveau and Saint
Raymond in [LSR88a]. The methods are fundamentally different, though. In par-
ticular, their argument uses Borel determinacy, whereas as in [DGHTTa], ours can
be carried out in the system ATR0 ` Π1

1-IND.

2. Class descriptions

We shall use the true stage relations and class descriptions that were developed
in [DGHTTa]. Let us recall the main notions.

We work with Baire space N “ ωω. A (concrete) computable ordinal is a com-
putable well-ordering of a computable subset of N, in which the successor relation
and collection of limit points are both computable. For concrete computable ordi-
nals α and β we write α ă β if α is an initial segment of β.

For every concrete computable ordinal α we obtain a partial ordering ďα with
a variety of pleasing properties, (denoted TSP(1)–TSP(7) in [DGHTTa]). In par-
ticular, pωďω,ďαq is a tree, with root xy (the empty sequence); ď0 is usual string
extension ď; the relations are nested: if β ă α then ďα implies ďβ . For all x P N ,
tσ P ωăω : σ ăα xu is the unique infinite path in ptσ : σ ă xu ,ďαq. And most
importantly: a set A Ď N is Σ0

1`α if and only if there is a c.e. (or computable) set
U Ď ωăω such that A “ rU sα “ tx P N : pDσ ăα xqσ P Uu. These relations can
be relativised to oracles z, in which case we write ďz

α.
Informally, the idea is that we can associate with each finite sequence σ, a guess

about finitely many entries of the αth iterated Turing jump of reals extending σ.
The relation σ ďα τ for finite τ means that the τ guesses extend the σ guesses;
the relation σ ăα x for infinite x means that σ guesses correctly about the iterated
jump of x. While the true stage machinery is required for the definition of the
class descriptions, we will see that our game characterisations will free us from
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directly using this machinery when analysing containment between classes, and the
reduction and separation properties.

The presentation of Σ0
1`α sets (as those which are generated by computable

sets of strings using ďα) extends to a characterisation of a corresponding class
of approximated functions. An α-approximation of a function F : N Ñ N is a
function f : ωăω Ñ N such that for all x P N , the sequence xfpσq : σ ăα xy is
eventually constant with value F pxq. Generalizing the case α “ 0, we have that
a function F : N Ñ N is Σ0

1`α`1-measurable if and only if it has a computable
α-approximation (see [DGHTTa, Prop. 2.14] or [DGHTTb, Prop. 3.6]).

A class description is a labelled tree Γ satisfying the following:

(i) the underlying tree TΓ Ď ωăω is well-founded;
(ii) for a leaf s of TΓ, Γpsq P t0, 1u;
(iii) for a non-leaf s P TΓ, Γpsq is a pair pξs, ηsq “ pξΓs , η

Γ
s q of (concrete) ordinals,

with ηs ě 1.

We require that ξs ď ξt if s ď t. A class description Γ is also equipped with an
oracle yΓ that computes Γ (including all the ordinals ξs and ηs, uniformly in s).

A class description is a template for defining nested approximations, that give
decision procedures for sets in the described classes. A Γ-name will determine, for
each real x, a leaf s of TΓ, and x will be an element of the named set if the Γ-label
of s is 1. If t is a non-leaf of TΓ, and it has been determined that t is an initial
segment of the leaf corresponding to x, then the label pξs, ηsq tells us that in order
to find which child of t on TΓ is an initial segment of the leaf, we apply ξs many
Turing jumps to x, and then computably approximate the choice of a child using
an ηs-c.e. process: we first need to choose the leftmost child of t, which is a default
child; we can then change our mind, but each time that we do, we need to decrease
the counter ordinal, which started at ηs.

More formally, if Γ is a class description, then a Γ-name N consists of an oracle
z “ zN ěT yΓ computing N , and for each non-leaf s P TΓ, a pair pfs, βsq “

pfN
s , βN

s q, such that fs is a ξs-approximation of a function choosing children of t,
with βs being a witness for the convergence of the approximation. That is:

(1) for all σ P ωăω, fspσq is a child of s on TΓ, and βspσq ď ηΓs ;
(2) if σ ďz

ξs
τ then βspσq ě βspτq, and if in addition, fspσq ‰ fspτq, then

βspσq ą βspτq; and
(3) if βspσq “ ηΓs then fspσq is the leftmost child of s on TΓ.

For each such s, for each x P ωω, the conditions above ensure that the sequence
xfspσq : σ ăz

ξs
xy stabilizes to some value, which we denote by fspxq “ fN

s pxq.

(Similarly, the sequence of ordinals xβspσq : σ ăz
ξs

xy stabilizes to a value denoted

by βspxq “ βN
s pxq.) For each x P ωω, we can then recursively define a sequence

s0, s1, . . . of nodes on TΓ, starting with s0 being the root, and letting sk`1 “ fskpxq.
This terminates in a leaf ℓpxq “ ℓN pxq of TΓ; the set named by N is the collection
of x for which the Γ-label of ℓpxq is 1.

Notation 2.1. To keep notation clean, for a Γ-name N , we will occasionally let N
denote the set named by N , which we will also identify with its characteristic
function (this was denoted by FN in [DGHTTa]).
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Remark 2.2. In [DGHTTa] we needed to consider names of partial functions on
Baire space; these are not required in the current paper, and so we only defined
total Γ-names.

For an oracle z ěT yΓ, we let Γpzq be the collection of all sets named by Γ-
names N with zN “ z; we let

Γ “
ď

tΓpzq : z ěT yΓu .

The collection Γ is a non-self-dual Borel Wadge class, which has a universal set. This
can be seen by the fact that we can effectively list z-computable approximations
pfs, βsq as above, much as we can give effective lists of all η-c.e. sets; the default
child allows us to convert partial approximations to total ones while preserving
the limit. That Γ is closed under taking continuous preimages follows from the
fact that we can effectively translate between true stage relations; this also shows
that if w ěT z ěT yΓ then Γpzq Ď Γpwq, uniformly. For details, see [DGHTTa,
Prop. 3.10,3.14].

A Γpzq-name is a Γ-name N such that zN “ z.

The definitions so far may seem abstract, but examples can explain the intuition
behind them. Perhaps the simplest examples are the descriptions of the classes
Σ0

1`α and Π0
1`α (Fig. 1). To approximate membership in a Σ0

1`α set, we first take
α many jumps, start with the default value “out”, and are allowed to change our
mind once, to the value “in”. The dual class is similar, except that the default
value is “in”. We will encounter further examples below.

ξ “ α, η “ 1

10

ξ “ α, η “ 1

01

Figure 1. The simplest descriptions of Σ0
1`α and Π0

1`α.

Notation 2.3. The labels of nodes on TΓ do not play any role in the determination
of the classes described; the only distinction is between the default child of a node,
and all the rest. It will be convenient to assume that for any class description and
any non-leaf s P TΓ, the default child of s is ŝ 0.

Associated with class descriptions are the following concepts.

‚ The ordinal level of a class description Γ, denoted by opΓq, is the ξ-ordinal
ξΓ

xy
at the root of TΓ. This is defined unless the root is also the leaf of TΓ (in

which case the class described is either tHu or tN u); we then set opΓq “ ω1.
When opΓq ă ω1 we let ηΓ “ ηΓ

xy
denote the η-ordinal specified by Γ at

the root of TΓ.
‚ The dual Γ̌ of a class description Γ is obtained from Γ by flipping the values
Γpsq at the leaves. The described class is indeed the dual of Γ.

‚ If Γ is a class description and s P TΓ then Γs is the class description obtained
by setting s to be the new root and taking Γ above s: Γsptq “ Γpŝ tq. The
various classes Γs are those which are used in a recursive construction of Γ
(starting with the leaves).
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We will use “definition by cases”. For sets A and X, a class description Γ, and
an oracle z ěT yΓ, we say that A æ X P Γpzq if there is some B P Γpzq such that
A X X “ B X X. For sequences pAnq and pXnq, we say that An æ Xn P Γpzq

uniformly if with oracle z, given n, we can compute a Γpzq-name Nn for a set Bn

with An X Xn “ Bn X Xn.

Proposition 2.4. Let Γ be a class description, and let z ěT yΓ. Suppose that:

‚ pXnqnPω is a partition of N into sets which are uniformly ∆0
1`opΓq

pzq; and

‚ A Ď N is a set such that AæXn P Γpzq, uniformly.

Then A P Γpzq.

This proposition follows from [DGHTTa, Prop. 3.17]. The proof, however, is
easy, so we give a direct one.

Proof. For simplicity of notation, assume that z is computable. Let α “ opΓq.
By the true stage properties mentioned above, there is a sequence of uniformly
computable sets Un Ď ωăω with Xn “ rUnsα; we may assume that the sets Un

are pairwise incomparable under ďα, and that the union
Ť

Un is also computable.
The nestedness of the true stage relations, together with the requirement that α is
an initial segment of ξΓs for all non-leaf s P TΓ, imply that for all such s, for all n,
rUnsξs “ rUnsα “ Xn.

Let Nn be a uniformly computable sequence of Γ-names, with Nn naming a
set An such that An X Xn “ A X Xn. Define a new Γpzq-name M by taking the
“disjoint union” of the names Nn according to pUnq: for each non-leaf s of TΓ

we define fM
s and βM

s as follows: for each σ P ωăω, if σ has no predecessor in
any Un then we set βM

s pσq “ ηs and fM
s pσq “ ŝ 0 (the default); otherwise, for

some unique n, σ has a predecessor in Un, and then we set fM
s pσq “ fNn

s pσq and
βM
s pσq “ βNn

s pσq. □

We now introduce terminology that did not appear in [DGHTTa], but mentioned
in the introduction. If Γ is a class description, then as TΓ is well-founded, it has
a leftmost leaf. This leaf of TΓ is in some sense the ultimate default outcome: the
default of the default of the default. . . .

Definition 2.5. Let Γ be a class description; let s be the leftmost leaf of TΓ. We
say that Γ is of Π-type if Γpsq “ 1, and Γ is of Σ-type if Γpsq “ 0.

Every description is either of Σ-type or of Π-type. A class description Γ has
Σ-type if and only if its dual Γ̌ has Π-type. If opΓq ă ω1 (i.e., if TΓ is not just the
root) then Γ and Γ0 have the same type. The natural descriptions of Σ0

1`α and
Π0

1`α (Fig. 1) are of Σ-type and Π-type, respectively, justifying the name.

For Wadge classes Γ and Λ, we write Γ ă Λ when Γ Ď ∆pΛq “ ΛXΛ̌. For class
descriptions Γ and Λ we write Γ Ď Λ if Γ Ď Λ effectively: yΓ ěT yΛ and uniformly,
given z ěT yΓ and a Γpzq-name N , we can compute a Λpzq-name M , equivalent
to N , in the sense that they name the same set.

Remark 2.6. Computability considerations are important for the definition of class
descriptions, as they rely on the true-stage relations, which are inherently “light-
face”. We will also be interested in the effective versions of the separation and
reduction properties, and there too we will need to keep track of which oracle we
are working with. However, if we are willing to increase the complexity of the oracle
as necessary, then boldface considerations suffice. For example, if Γ and Λ are class
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descriptions, and Γ Ď Λ, then Γ Ď Λ on a cone: there is some oracle w ěT yΓ, yΛ

such that after changing the Γ-oracle to w we have Γ Ď Λ. (This follows from
results in [DGHTTa], but will also follow from our game characterisation of con-
tainment in the next section.) Technically, changing the oracle means replacing Γ
with a new class description Γ1 which is identical to Γ except that yΓ1

“ w. This
does not change the boldface class: Γ “ Γ1 as for all z ěT w, Γpzq “ Γ1pzq.

Below, we will often assume that a sufficiently strong oracle is being used, and
ignore the difference between Γ and Γ1. See Remark 3.3.

The main result we use from [DGHTTa] is:

Theorem 2.7. Every non-self-dual Borel Wadge class has a description.

See [DGHTTa, Thm. 6.8].

3. A clopen game characterisation of containment

Wadge’s semi-linear-ordering principle says that for Borel Wadge classes Γ andΛ,
either Γ Ď Λ or Λ Ď Γ̌. In this section we attempt to answer the question: given
two class descriptions Γ and Λ, how can we tell whether Γ Ď Λ or not? An answer
of sorts is given by Lemma 6.1 of [DGHTTa]. There, we devise a closed game GΛ

and show that Γ Ď Λ if and only if player I has a winning strategy in the game
GΛpHΛ, HΓ, HΓ̌q, where HΓ is a universal set for Γ, and similarly for HΛ. We now
devise a much simpler game that is: (i) clopen, rather than closed; and (ii) relies
only on the descriptions Γ and Λ, and not on their universal sets.

The leaf selection game. The main ingredient in the containment game is an auxil-
iary “leaf selection game” that we describe first. We need the following definition.

Definition 3.1. For a class description Γ with opΓq ă ω1, let

SΓ “ txyu Y
␣

t P TΓ : ξΓ
t´ “ opΓq

(

,

where t´ is the predecessor of t on TΓ. This is a subtree of TΓ. The non-leaves
of SΓ are precisely those s P TΓ with ξΓs “ opΓq. Note that if s P SΓ is not a leaf
of SΓ, then all the children of s on TΓ are also on SΓ.

An SΓ-position p consists of a choice, for each non-leaf s P SΓ, of:

(i) a child cs “ cps of s on SΓ; and
(ii) an ordinal ηps ď ηΓs ,

subject to the following restriction:

‚ If ηps “ ηΓs then cps “ ŝ 0 is the default child of s.
‚ For all but finitely many non-leaves s P SΓ, η

p
s “ ηΓs .

The second restriction is in place so that there are only countably many positions.
For two SΓ-positions p and q, we let q ď p if for every non-leaf s of SΓ,

(iii) ηqs ď ηps , and further, if cqs ‰ cps then ηqs ă ηps .

The initial SΓ-position is the position p determined by, for every non-leaf s of SΓ,
ηps “ ηΓs (which forces cps “ ŝ 0).

Every SΓ-position p determines a leaf tp of SΓ, by following the choices from the
root, much like the definition of a leaf ℓN pxq of TΓ used to compute the set named
by a Γ-name N : for every non-leaf s ă tp, cps ď tp.
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Now let Γ and Λ be two class descriptions, and suppose that ξ “ opΓq “ opΛq ă

ω1. In the game GleafpΓ,Λq, two players, 1 and 2, take turns choosing positions
pr´1s, pr0s, pr1s, pr2s, . . . , satisfying:

(a) for odd k, prks (played by player 1) is an SΓ-position, and for even k, prks

(played by player 2) is an SΛ-position;
(b) pr´1s is the initial SΓ-position, and pr0s is the initial SΛ-position;
(c) For all k ě 1, prks ď prk ´ 2s.

For each k we write trks “ tprks.

‚ A choice prks (for k ě 1) is called a pass if trks “ trk ´ 2s.

Note that if no other legal move is possible, a player can always choose prks “

prk ´ 2s, which is, of course, a pass.

‚ The play ends when one player passes immediately after the other player
passed.

‚ The outcome of the play of the leaf selection game is the pair of leaves
ptrk1s, trk2sq, where kj is the last round at which player j played.

Remark 3.2. Every play of the leaf selection game is finite: the child cs0rks of the
root s0 of SΓ must stabilise to some s1, and then the child cs1rks must stabilise,
and so on.

The containment game. For two class descriptions Γ and Λ, the game GcontpΓ,Λq

is played between two players, 1 and 2. During the game, player 1 traverses a path
up TΓ, from the root to some leaf; player 2 does the same on TΛ.

For every round k of a play of the game, the players choose nodes s1rks P TΓ

and s2rks P TΛ. We start with s1r0s “ s2r0s “ xy being the roots of the respective
trees. Suppose that s1rks and s2rks have already been chosen. At round k ` 1:

(1) If ξΓs1rks
‰ ξΛs2rks

then the player i with the smaller ordinal ξsirks chooses

sirk ` 1s to be some child of sirks on the corresponding tree TΓ or TΛ,
whereas the other player j does not move: sjrk ` 1s “ sjrks.

(2) If ξΓs1rks
“ ξΛs2rks

“ ξ ă ω1 then the two players play the leaf selection game

GleafpΓs1rks,Λs2rksq. The pair of nodes that are the outcome of the play of
the leaf selection game are then chosen as s1rk ` 1s and s2rk ` 1s.

(3) Henceforth, for a leaf s of TΓ, we set ξΓs “ ω1, and similarly for Λ. Hence,
(1) implies that once a player reaches a leaf, they stop moving, and the
other player must work their way up the tree until they get to a leaf.

The game ends with two leaves s1 “ s1rks P TΓ and s2 “ s2rks P TΛ. Player 2
wins the play if

Λps2q “ Γps1q.

The containment game can be coded by a clopen subset of N , and so is deter-
mined.

Remark 3.3. In the description of the games, we have implicitly identified concrete
ordinals (well-orderings of subsets of N) with their order-types (set theoretic, von-
Neumann ordinals). The games do not use the true stage relations, or involve any
computability for that matter, and so we didn’t need concrete ordinals. Below we
will use the game to define Γ- or Λ-names, and these, of course, require the true
stage relations. We will work relative to an oracle that can compute the game (and
a winning strategy for one of the players). This means that the oracle can compare
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all the ordinals involved. By [DGHTTa, Prop. 2.20], when we work with such an
oracle, we may assume that the concrete ordinals appearing in both Γ and Λ are all
initial segments of one long ordinal (they are all comparable as concrete ordinals).
The resulting true stage relations are then all nested. We can also unambiguously
speak of the concrete ordinal ξ ` 1, for any ordinal ξ involved.

Note that since two hyperarithmetic ordinals are hyperarithmetically compa-
rable, and the containment game is clopen, we can find such an oracle which is
hyperarithmetic in yΓ ‘ yΛ.

The following, together with clopen determinacy and the fact that every non-
self-dual Borel Wadge class has a description, implies Wadge’s semi-linear-ordering
principle for such classes.

Theorem 3.4. Let Γ and Λ be class descriptions.

(a) Player 2 has a winning strategy in the game GcontpΓ,Λq if and only if
Γ Ď Λ.

(b) Player 1 has a winning strategy in the game GcontpΓ,Λq if and only if
Λ Ď Γ̌.

To prove Theorem 3.4, it suffices to prove the following two propositions:

Proposition 3.5. If player 2 has a winning strategy in the game GcontpΓ,Λq then
Γ Ď Λ.

Proposition 3.6. If player 1 has a winning strategy in GcontpΓ,Λq, then player 2
has a winning strategy in GcontpΛ, Γ̌q.

This suffices, since the game GcontpΓ,Λq is determined, and the class Γ has a
universal set (so Γ Ę Γ̌).

We start with the first proposition.

Proof of Proposition 3.5. Let S be a winning strategy for player 2 in the game
GcontpΓ,Λq. We show that Γ Ď Λ effectively: let z be an oracle that computes S
and the game (as discussed in Remark 3.3); we show that Γpzq Ď Λpzq, uniformly.
This means that given any Γpzq-name N , we can, with the aid of z, compute a
Λpzq-name M which is equivalent to N , meaning that they both name the same
set.

Roughly, the idea of transforming N into M is, for every x P N , to run the
approximation to Npxq as a play for player 1, and to let Mpxq follow the strategy S.
We present this construction as the result of effective transfinite recursion on the
complexity of the pair pΓ,Λq.

There are four cases.

Case I: opΓq “ opΛq “ ω1, so Γ,Λ P ttHu, tN uu. The game GcontpΓ,Λq ends before
it even begins, and player 2 winning it means that Γ “ Λ.

Case II: opΓq ą opΛq. In this case, player 2 makes the first move in the game, and
so the strategy S selects an outcome n (a child of the root). After this first move,
the rest of the strategy is a winning strategy for player 2 in the game GcontpΓ,Λnq.
By induction, Γpzq Ď Λnpzq. The result follows from Λnpzq Ď Λpzq.

Case III: opΓq ă opΛq. In this case, player 1 makes the first move in the game.
For each child n of the root on TΓ, the strategy Sn for player 2 that is played by
following S after player 1 played n, is a winning strategy for player 2 in the game
GcontpΓn,Λq. By induction, Γnpzq Ď Λpzq, uniformly.
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Let N be a Γ-name of a set A. For each n on TΓ, let

Hn “
␣

x P N : ℓN pxq ě n
(

.

For each n,Hn is ∆0
1`opΓq`1pzq: the function fN

xy
has a z-computable opΓq-approximation,

and so is ∆0
1`opΓq`1pzq-measurable.1 Since opΛq ě opΓq `1, Hn P ∆0

1`opΛq
pzq. Each

name Nn shows that A æ Hn P Γnpzq, so A æ Hn P Λpzq, uniformly. By Proposi-
tion 2.4, N P Λpzq.

Case IV: opΓq “ opΛq “ ξ ă ω1. The game GcontpΓ,Λq starts with the leaf selection
game GleafpΓ,Λq, played on the trees SΓ and SΛ.

Let N be a Γpzq-name of a set A; we will design an equivalent Λpzq-name M .
For simplicity of notation, we omit mentioning the oracle z in true stage relations.
We assume that for all non-leaf s P TΓ, β

N
s pxyq “ ηΓs (redefining βN

s pxyq “ ηΓs and
fN
s pxyq to be the default child ŝ 0 of s on TΓ does not violate the required properties
of Γ-names, and does not change the limit values fN

s pxq for any x P N ).
For each σ P ωăω we will define a sequence of moves for player 1 in the game

GleafpΓ,Λq. Player 2 will follow the strategyS. We let ppσqr´1s, ppσqr0s, . . . denote
the resulting play. We write tpσqrks for tppσqrks and similarly write cspσqrks and
ηspσqrks. Let kpσq be the last round of the play. We define a round number mpσq:

‚ if kpσq is even (the play ends with a pass by player 2), let mpσq “ kpσq ´ 2;
‚ if kpσq is odd (the play ends with a pass by player 1), let mpσq “ kpσq ´ 1.

In other words, mpσq is the round preceding the last pass made by player 1. In
particular, by the end of this round, the play has not yet ended.

Let qpσq be the SΓ-position defined by choosing, for all non-leaf s of SΓ,

(1) c
qpσq
s “ fN

s pσq;

(2) η
qpσq
s “ βN

s pσq.

The definition of Γ-names implies that if σ ďξ τ then qpτq ď qpσq. The assumption
on βN

s pxyq implies that qpxyq is the initial SΓ-position.
The definition of the play for σ is done by induction on |σ|ξ, the number of

proper ăξ-predecessors of σ.

‚ If σ “ xy then player 1 keeps playing qpxyq.

Suppose that σ ‰ xy; let σ´ be the immediate ăξ-predecessor of σ.

‚ In the play for σ, player 1 first follows all the moves ppσ´qrks for k ă mpσ´q.
From round mpσ´q`1 onwards, player 1 keeps playing qpσq. (Since mpσ´q

is even, we do not need to specify player 1’s play at that round.)

This play is legal for player 1 since qpσq ď qpσ´q. Note that since qpxyq “ ppxyqr´1s

is the initial SΓ-position, every move by player 1 in the play for σ “ xy is a pass.
Note that it is possible that σ ăξ τ but that mpσq “ mpτq: if ℓN pσq and ℓN pσ´q

extend the same leaf of SΓ, then the play ppσqrmpσq ` 1s “ qpσq is a pass.

We define, for non-leaf s P SΛ, the functions fM
s and βM

s . For σ P ωăω,

‚ we let fM
s pσq “ cspσqrmpσqs and βM

s pσq “ ηspσqrmpσqs.

1In fact, the associated “time-keeping” function βN
xy

shows that the set H0 is ĎηpΣ0
1`opΓq

qpzq,

and DηpΣ0
1`opΓq

qpzq for non-default childrenn. Here η “ ηΓ
xy
. See the proof of Proposition 4.6

below.
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If σ ăξ τ , thenmpσq ď mpτq and the play for τ extends the play for σ aftermpσq;
it follows that ppτqrmpτqs ď ppτqrmpσqs “ ppσqrmpσqs. This implies that fM

s

and βM
s obey the rules for building a Λ-name M .

To define M , it suffices to define Mr for every leaf r of SΛ that is reached by
any σ. Let rpσq “ tpσqrmpσqs be the leaf of SΛ which is the outcome of the play
for σ; let upσq denote the outcome on the Γ-side, which is the leaf of SΓ extended
by ℓN pσq. Once we define the rest of M , we will have ℓM pσq ě rpσq.

For x P N , define upxq analogously, and let x˚ be the shortest σ ăξ x such that
for all s ă upxq, βN

s pσq “ βN
s pxq. For each σ P ωăω let

Qσ “ tx P N : x˚ “ σu .

The sets Qσ are Π0
1`ξpzq, and so ∆0

1`ξ`1pzq, uniformly. For each leaf r of SΛ,

ξΛr ą ξ, so these sets are ∆0
1`ξΛr

pzq (when ξΛr ă ω1).

For each σ P ωăω, continuing with S after the play for σ in GleafpΓ,Λq is
a winning strategy for player 2 in the game GcontpΓupσq,Λrpσqq. By induction,
Γupσqpzq Ď Λrpσqpzq, uniformly.

For each leaf r of SΛ, let

Pr “
ď

tQσ : r “ rpσqu .

For each σ, the name Nupσq witnesses A æ Qσ P Γupσqpzq (recall that A is the set
named by N), and so by induction, A æ Qσ P Λrpσqpzq. By Proposition 2.4, for
each r we can find a Λr-name Mr witnessing AæPr P Λrpzq. This defines M . Now
for each r,

Pr “
␣

x P N : ℓM pxq ě r
(

,

So M names the set A. □

Proof of Proposition 3.6. Let S̃ be a winning strategy for player 1 in the game
GcontpΓ,Λq. We define a winning strategy S for player 2 in the game GcontpΛ, Γ̌q

by strategy stealing. In fact, we can almost let S “ S̃. However, in a leaf selection
sub-game, we need to correct for the fact that player 1 moves first.

More formally, we will define a strategyS for player 2 in GcontpΛ, Γ̌q such that for
every sequence of moves for player 1 in that game, which will result in a sequence
xs1rks, s2rksy of positions in the play of the game, there is a sequence of moves

for player 2 in the game GcontpΓ,Λq, such that if player 1 responds with S̃, the
resulting sequence of moves will be xs2rks, s1rksy.

Recall the two cases from the definition of the containment game, depending on
whether the relevant ordinals ξ agree or disagree. In case (1) of the game, we let S

do exactly what S̃ does in reaction to the same moves by the opponent.
In case (2), let GleafpΛt1 , Γ̌t2q be a sub-game occuring when player 2 follows S.

The game GleafpΓt2 ,Λt1q is played in the corresponding play of GcontpΓ,Λq when

player 1 plays S̃. If the outcome of the latter is ps2, s1q, we want the outcome of the
former to be ps1, s2q. It would seem that player 1 moving first would be even better
for us now; the strategy S could be one step ahead. The danger is that the play
may end prematurely. This only happens if the first move by S̃ in GleafpΓt2 ,Λt1q

is a pass. Hence, we consider two cases. Let x1, x3, x5, . . . be the play by player 1
in GleafpΛt1 , Γ̌t2q. We let the reaction by S to be y2, y4, y6, . . . defined as follows:

‚ If the first move of S̃ in GleafpΓt2 ,Λt1q is not a pass, then we ignore the
first move of player 1 in GleafpΛt1 , Γ̌t2q. In GleafpΓt2 ,Λt1q, we let player 2
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play x3, x5, x7, . . . and let y2, y4, y6, . . . be player 1’s response according
to S̃ (so the play in GleafpΓt2 ,Λt1q is y2, x3, y4, x5, y6, x7, . . . ).

‚ If the first move of S̃ in GleafpΓt2 ,Λt1q is a pass, but x1 is not a pass, then

we let player 2 play x1, x3, x5, . . . in GleafpΓt2 ,Λt1q, and list the S̃ response
as pass, y2, y4, y6, . . . (so the GleafpΓt2 ,Λt1q play is pass, x1, y2, x3, y4, . . . ).

‚ If the first move of S̃ in GleafpΓt2 ,Λt1q is a pass, and x1 is a pass, then y2
is a pass. □

We record corollaries of Theorem 3.4, which were essentially observed during its
proof.

Corollary 3.7. Let Λ and Γ be class descriptions.

(a) If opΓq ą opΛq, then Γ Ď Λ if and only if Γ Ď Λn for some n P TΛ.
(b) If opΓq ă opΛq, then Γ Ď Λ if and only if for all n P TΓ, Γn Ď Λ.
(c) If opΓq “ opΛq ă ω1, then Γ Ď Λ if and only if there is a strategy S for

player 2 in the game GleafpΓ,Λq, such that for any play for player 1 that
ends in some leaf t1 of SΓ, replying using S yields a leaf t2 of SΛ such that
Γt1 Ď Λt2 .

Here is a simple example.

Lemma 3.8. Let Γ be a class description of Σ-type; suppose that opΓq ă ω1 and
that Γ ‰ tHu. Then Σ0

1`opΓq
Ď Γ.

Proof. Let ξ “ opΓq and let Θ be the simple description of Σ0
1`ξ (Fig. 1). The

game GcontpΘ,Γq begins with a leaf selection game GleafpΘ,Γq. The strategy for
player 2 is to pass if player 1 passes. Since Γ has Σ-type, the leftmost leaf s of SΓ

satisfies tHu Ď Γs. If player 1 does not pass, their only possible move is to choose
the 1-child of the root of Θ and pass henceforth. In this case, player 2 chooses some
leaf t of SΓ such that N P Γt; there must be one since Γ ‰ tHu. □

It follows that if Γ ‰ tHu, tN u then ∆0
1`opΓq

Ď Γ; this also follows from Propo-

sition 2.4.
The same argument shows: if Γ has Σ-type, opΓq ă ω1, and Γ ‰ tHu, then

DηΓpΣ0
1`opΓq

q Ď Γ, where ηΓ “ ηΓ
xy

is the η-ordinal at the root of TΓ; see Fig. 2.

ξ, η

10

ξ, η

01

Figure 2. The simplest descriptions of DηpΣ0
1`ξq and ĎηpΣ0

1`ξq.

Remark 3.9. Suppose that Γ Ď Λ and that opΓq “ opΛq ă ω1. Then player 2 has
a strategy S in the leaf selection game GleafpΓ,Λq which is prompt, meaning that
for any play pr´1s, pr0s, pr1s, . . . where player 2 follows S, for every odd k ě 1 such
that prk ` 1s is defined, we have Γtrks Ď Λtrk`1s. The idea is that if this is not
the case, then instead of playing prk ` 1s, player 2 can imagine that player 1 keeps
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passing, until such a stage at which S gives an adequate response, and then play
that response.

In greater detail, let T be a strategy for player 2 as in Corollary 3.7(c). To
describe S, we consider a play pr´1s, pr0s, . . . of the game in which player 1’s
moves are given; we explain how player 2 responds. To do that, we run a (possibly)
different play qr´1s, qr0s, qr1s, . . . of the same game, in which we specify player 1’s
moves, and player 2 follows T. To do so, to each even k for which prks is defined,
we will match a corresponding even round lpkq in the auxiliary game; l will be
strictly increasing, and we will choose prks “ qrlpkqs. We start with lp0q “ 0. Now
suppose that k ě 1 is odd, that lpk ´ 1q is defined, and player 1 is now playing
some prks. The auxiliary game has been played up to round lpk ´ 1q. We set
qrlpk ´ 1q ` 1s “ prks. Henceforth, we let player 1 pass in the auxiliary game, while
player 2 follows T, until some odd round n ě lpk´ 1q ` 1 at which Γqrns Ď Λqrn`1s.
Such a round must occur by the assumption on T. We let lpk ` 1q “ n ` 1 and
prk ` 1s “ qrn ` 1s. Note that the move qrlpk ´ 1q ` 1s “ prks is legal for player 1
in the auxiliary game because qrlpk ´ 1q ´ 1s “ qrlpk ´ 3q ` 1s “ prk ´ 2s, and
prks ď prk ´ 2s. Similarly, prk ` 1s “ qrlpk ` 1qs is legal for player 2 in the main
game.

4. Efficient, monotone, and admissible class descriptions

Some class descriptions are wasteful. Suppose, for example, that Γ is a class
description, ξ ă opΓq, and that Θ is a class description with opΘq “ ξ, and Θn “ Γ
for every child n of the root on TΘ. Then by Corollary 3.7, Θ “ Γ; making extra
choices at the root of TΘ does not help make more complicated sets, essentially
because these choices happen “at a lower level”, namely ξ; as the root of TΓ operates
at a higher ordinal level, it can divine the result of these choices. It will be useful
to use names in which such a situation does not occur.

Recall that for a collection C of Borel Wadge classes, by the semi-linear-oredering
principle, the following are equivalent: (1) C does not contain a class maximal
under Ď; (2) for every Γ P C there is some Λ P C such that Γ Ď Λ̌. The definition
of efficiency, below, states that at each step, the choice among classes at the next
step is non-trivial (there is no maximal choice), and that the containments in duals
that witness this fact are provided effectively.

Definition 4.1. A class description Γ is efficient if:

‚ For all non-leaf s P TΓ, for every child t of s, there is some child r of s such
that Γt Ď Γ̌r.

‚ For all s, t P TΓ, either Γs Ď Γt or Γt Ď Γ̌s, uniformly.

The second condition means that given any pair ps, tq, the oracle yΓ can tell
which containment Γs Ď Γt or Γt Ď Γ̌s holds, and that these containments are
effective.

Shortly, we will show that all non-self-dual Borel Wadge classes have efficient
descriptions (this also follows from the work in [DGHTTa]). Indeed, we will consider
a much stronger notion. For now, we note that efficient descriptions determine the
ordinal level of a class.

Proposition 4.2. Suppose that Γ is an efficient class description, Λ is a class
description, and that Γ “ Λ. Then opΓq ě opΛq.
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Proof. Suppose that opΓq ă opΛq. Since Λ Ď Γ, by Corollary 3.7, Λ Ď Γn for
some child n of the root on TΓ. Since Γ is efficient, there is another child m such
that Γn Ď Γ̌m. Since Γm Ď Γ, it follows that Λ Ď Γ̌, but then we cannot have
Λ “ Γ. □

This allows us to define the ordinal level of a non-self-dual Borel Wadge class,
as opΓq for any efficient description Γ of the class; we write opΓq. Louveau and
Saint Raymond noted that this ordinal level can also be characterised in terms of
definitions by cases: Proposition 2.4 is optimal. Say that a Wadge class Θ is closed
under definition by cases at level ξ if for all A Ď N , for every partition of N into
∆0

1`ξ sets pXnq, if for all n, AæXn P Θ, then A P Θ.

Proposition 4.3. A non-self-dual Borel Wadge class Θ ‰ tHu, tN u is closed
under definition by cases at level ξ if and only if ξ ď opΘq.

Of course if Θ “ tHu or tN u then it is closed under definition by cases at every
level ξ ă ω1 “ opΘq.

Proof. That Θ is closed under definition by cases at level opΘq follows from Propo-
sition 2.4, using any efficient description Θ of Θ. On the other hand, if Θ is such
a description, let N be a Θ-name for a set A, universal for Θ. For each child n of
the root on TΘ, let Xn be the collection of x P N such that ℓΘpxq ě n. As above,
the sets Xn are ∆0

1`opΘq`1. For each n, AæXn P Θn (as is witnessed by the name

Nn); efficiency implies that AæXn P Θ̌. If Θ were closed under definition by cases
at level opΘq ` 1, then we would have A P Θ̌, and being universal, it is not. □

Definition 4.4. A class description Γ is monotone if for all non-leaf s P TΓ, for all
n P N, ŝ n P TΓ, and Γŝ n Ď Γ̌ŝ pn`1q, uniformly in n and s.

These are the descriptions used in [DGHTTa]. Every monotone description is
efficient.

4.1. Admissible descriptions. The paper [DGHTTa] used the notion of an ac-
ceptable class description, which is a monotone class description in which every
ηs “ 1. Unfortunately, to properly classify those classes with the reduction prop-
erty, we must move to a different sort of description.

Definition 4.5. A class description Γ is admissible if it is efficient, and for all
non-leaf s P TΓ, for every child t of s other than the default one, ξΓs ă ξΓt .

In general, descriptions only require ξΓs ď ξΓt ; in admissible descriptions, equality
is permitted only for the default outcome. Acceptable descriptions are closer in
spirit to “type 2 descriptions” from [LSR88b]. Admissible descriptions are closer
to “type 1 descriptions” discussed in [Lou83].

4.2. The utility of admissible descriptions. One important common property
of both acceptable and admissible class descriptions is that non-default outcomes
t “ ŝ n, in some sense, “know” the limit behaviour of fs. That is, for an acceptable
or admissible class description Γ and a Γ-name N , we may make the simplifying
assumption that for a non-default child t of a node s P TΓ, for all σ, if β

N
t pσq ă ηΓt

then fN
s pσq “ t. In other words, fN

t does not begin to act (possibly moving away
from its default outcome) until it is certain that fN

s has converged to t.
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For acceptable descriptions, this is because if fN
s pσq “ t then βN

s pσq “ 0, so
fN
s pτq “ t when σ ďz

ξs
τ . Thus, fN

t can begin acting as soon as it sees fN
s take the

value t.
For admissible descriptions, the fact that t is working with a higher ordinal,

specifically that ξt ě ξs ` 1, allows it to comprehend the eventual behaviour of
fN
s .2 Specifically, there is a z-computable set X Ď ωăω, ăz

ξt
-upwards closed, such

that: for σ ďz
ξt

τ with σ P X, fN
s pσq “ fN

s pτq; and rXsξt “ N . Then fN
t can defer

any action until it reaches a σ P X with fN
s pσq “ t.

Here is a related example. In [DGHTTa], we gave a class description for the class
BiSeppΣ0

1`ξ,Γ,Λq of two-sided separated unions. Using admissible descriptions, we

can extend it to some classes BiSeppDηpΣ0
1`ξq,Γ,Λq, as follows. Let ξ be an ordinal;

let Λ and Γ be class descriptions, and suppose that:

‚ Λ ă Γ;
‚ ξ ď opΛq; and
‚ ξ ă opΓq.

Let η be an ordinal. Define a new class description Υ by setting:

‚ opΥq “ ξ;
‚ ηΥ “ η;
‚ The children of the root are 0,1, and 2 (with 0 being the default), and:

– Υ0 “ Λ;
– Υ1 “ Γ;
– Υ2 “ Γ̌.

If Λ and Γ are efficient, then so is Υ; if Λ and Γ are admissible, then so is Υ.

Proposition 4.6. Υ “ BiSeppDηpΣ0
1`ξq,Γ,Λq is the class of sets of the form

pC1 XA1q Y pC2 XA2q Y ppC1 YC2qA XBq, where C1 and C2 are disjoint DηpΣ0
1`ξq

sets, A1 P Γ, A2 P Γ̌, and B P Λ.

Proof. In the easier direction, let N be an Υ-name of a set F ; let z “ zN . For each
n “ 0, 1, 2, let

Cn “
␣

x : ℓN pxq ě n
(

.

These sets form a partition of N , in particular, C1 and C2 are disjoint. The
sets C1 and C2 are both DηpΣ0

1`ξqpzq. To see this, recall ([DGHTTb, Prop. 3.8])

that a set E Ď N isDηpΣ0
1`ξqpzq if and only if there is a z-computable ξ-approximation

g : ωăω Ñ t0, 1u of the characteristic function 1E , equipped with an ordinal func-
tion γ : ωăω Ñ η ` 1 witnessing the convergence of g, with default outcome 0, i.e.,
γpσq “ η ùñ gpσq “ 0. Let g1pσq “ 1 ðñ fN pσq “ 1 and g2pσq “ 1 ðñ

fN pσq “ 2; then pg1, β
N q and pg2, β

N q show that C1 and C2 are both DηpΣ0
1`ξq.

Here, as usual, fN “ fN
xy

and βN “ βN
xy
.

The names Nn for n “ 0, 1, 2 define sets A1, A2 and A3; since Υ1 “ Γ we have
A1 P Γ, and similarly, A2 P Γ̌ and A0 P Λ. Finally, F X Cn “ An X Cn, so the sets
A1, A2, A0, C1, C2 show that F P BiSeppDηpΣ0

1`ξq,Υ,Λq.

In the easier direction, we had an “excess of ordinals ă η”; it was easy to show
that C1, C2 P DηpΣ0

1`ξq. In the other direction we have to work harder. We are

given disjoint C1, C2 P DηpΣ0
1`ξqpzq, B P Λpzq, A1 P Γpzq, A2 P Γ̌pzq, and we need

2This was already used in the proof of Proposition 3.5, in constructing the names Mr.
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to come up with an Υ-name M for a set F such that F “ A1 on C1, F “ A2 on C2,
and F “ B on pC1 Y C2qA.

Fix approximations pg1, γ1q and pg2, γ2q witnessing that C1, C2 P DηpΣ0
1`ξqpzq.

Our opponent, in some sense, has double the “amount of ordinal space” to make
changes compared to us: they can change g1pxq and pay by decreasing γ1, and then
change g2 and pay by decreasing γ2. We define a single βM .

If the opponent makes changes and currently g1pσq “ g2pσq “ 1 then we can wait
for a further change, since we know that C1 and C2 are disjoint. But consider the
following scenario: the opponent puts x into C1 (g1pσq “ 1 for some σ ăz

ξ x), then

takes it out (g1pτq “ 0 for a longer τ ăz
ξ x, and note that σ ăz

ξ τ). The opponent

paid by decreasing γ1 twice (γ1pτq ă γ1pσq ă η); but γ2 still has maximal value η.
If we followed the opponent, our ordinal βM is now γ1. The opponent now puts x
in and out of C2. They have larger ordinals to play with, and so can defeat us.

The solution is: when the opponent makes the second change and takes x out
of C1, we do not follow them. From now on, we commit to play either outcome 1
or 2, and never return to the default outcome. We change the outcome when we
must: x goes out of C1 and into C2. Such a change, or a change back, must be
accompanied by a decrease of γ1. If x goes into C2 before it goes into C1, we
follow γ2 instead. If the opponent takes x out of C1 and does not place it into C2,
we use the fact that Λ Ď Γ to emulate the set B rather than A1 on x. The fact that
opΓq “ ξΥ1 is greater than ξ allows the outcome 1 to correctly determine whether
x P C1 or not, and so know which one of B or A1 to evaluate on x.

In detail: since C1 and C2 are both ∆0
1`opΓq

, and since Λ ă Γ, there is a Γpzq-

name M1 and a Γ̌pzq-name M2 such that Mi “ Ai on Ci and Mi “ B outside
C1 Y C2 (Proposition 2.4). Let M0 be a Λpzq-name for B. To define M , it remains
to define fM and βM . Let σ P ωăω. If γ1pσq “ γ2pσq “ η then let βM pσq “ η
and fM pσq “ 0. Otherwise, let τ ďz

ξ σ be shortest such that either γ1pτq ă η or

γ2pτq ă η; say γ1pτq ă η; the other case is symmetric. We let βM pσq “ γ1pσq.
Let σ´ be the longest proper ăz

ξ-initial segment of σ (the predecessor of σ on the

tree pωăω,ďz
ξq). If γ1pσq ă γ1pσ´q then we set fM pσq “ 1 if g1pσq “ 1, otherwise

fM pσq “ 2. If γ1pσq “ γ1pσ´q then fM pσq “ fM pσ´q. That is, we move only
when γ1 allows us to. For x P C1 Y C2, f

M pxq “ i ðñ x P Ci (consider the last
σ ăz

ξ x at which γ1 changed). If x R C1 Y C2 we may have fM pxq ‰ 0, but in any

case, we still have Mpxq “ Bpxq. □

4.3. Containment in admissibly decribed classes. With admissible descrip-
tions, a leaf selection game is simplified: non-default children of the root are nec-
essarily leaves of the S-tree. We obtain useful criteria for containment.

Lemma 4.7. If Γ is admissible and opΓ0q “ opΓq then there is some n with Γ0 ă Γn.

Proof. Since Γ is efficient, there is some n such that Γ0 Ď Γ̌n. Since Γ0 is non-self-
dual, n ‰ 0. Since Γ is admissible, opΓnq ą opΓq. Since Γ0 is efficient, Proposi-
tion 4.2 implies that Γn ‰ Γ̌0, so Γ0 ă Γn. □

Proposition 4.8. Let Γ and Λ be class descriptions. Suppose that:

‚ opΓq “ opΛq;
‚ For all n P TΓ there is some m P TΛ such that Γn Ď Λm;
‚ ηΓ ă ηΛ;
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‚ Λ is admissible.

Then Γ ă Λ.

Proof. The assumptions imply: for every n P TΓ there is some m P TΛ which is a
leaf of SΛ and such that Γn Ď Λm. For if m P TΛ is not a leaf of SΛ then m “ 0
and opΛ0q “ opΛq, so Lemma 4.7 applies.

We observe that since Λ is efficient, all the assumptions apply to the pair pΓ, Λ̌q

as well, so it suffices to show that Γ Ď Λ. We describe a strategy for player 2 in
the leaf selection game GleafpΓ,Λq as in Corollary 3.7(c).

In this game, write crks and ηrks for cxyrks and ηxyrks. We will ensure that for
all odd k ě 1, if prk ` 1s is defined, then ηrk ` 1s ě ηrks, crk ` 1s is a leaf of SΛ

(so trk ` 1s “ crk ` 1s), and Γcrks Ď Λcrk`1s. This suffices, since Γtrks Ď Γcrks (as
crks ď trks).

Let k ě 1 be odd; suppose that player 1 played prks, and that the game has not
yet ended.

If k ě 3 and crks “ crk ´ 2s, then player 2 passes.
Suppose that k “ 1, or that k ě 3 and crks ‰ crk´2s. In this case, ηrks ă ηrk´1s:

this follows from prks ď prk ´ 2s and ηrk ´ 1s ě ηrk ´ 2s when crks ‰ crk ´ 2s;
otherwise, k “ 1, and this follows from ηr0s “ ηΛ ă ηΓ “ ηr´1s.

In this case, therefore, we can set ηrk ` 1s “ ηrks and choose crk ` 1s as we like;
as discussed, we choose crk`1s to be some leaf of SΛ satisfying Γcrks Ď Λcrk`1s. □

Proposition 4.9. Let Γ and Λ be class descriptions. Suppose that:

‚ opΓq “ opΛq;
‚ For all n P TΓ there is some m P TΛ such that Γn Ď Λm;
‚ ηΓ ď ηΛ;
‚ Γ0 Ď Λ0

‚ Λ is admissible.

Then Γ Ď Λ.

Proof. This is similar to the proof of Proposition 4.8. The only difference is that as
long as player 1 plays crks “ 0 and does not decrease ηrks, player 2 cannot choose
some m ą 0 with Γ0 Ď Λm, since she does not have the “ordinal space” to do so:
we only have ηΛ ě ηΓ, not strict inequality. Instead, player 2 can set crk ` 1s “ 0
and play according to a winning strategy in GcontpΓ0,Λ0q. If player 1 ever decreases
ηrks, then player 2 can revert to the strategy above. □

Corollary 4.10. Suppose that Γ and Λ are both admissible, and that opΓq “ opΛq ă

ω1. Then Γ Ď Λ if and only if one of the following holds:

(1) For some m P TΛ,
Ť

nPTΓ
Γn Ď Λm;

(2)
Ť

nPTΓ
Γn “

Ť

mPTΛ
Λm, and either

‚ ηΓ ă ηΛ; or
‚ ηΓ “ ηΛ and Γ0 Ď Λ0.

Proof. Suppose that (1) holds. By Lemma 4.7, we may assume that m ą 0. In
GleafpΓ,Λq, player 2 immediately chooses crks “ m (he can set ηrks “ 0). Note
that in this case, Γ ă Λ. If (2) holds then Γ Ď Λ follows from Propositions 4.8
and 4.9.

In the other direction, suppose that Γ Ď Λ, and that (1) does not hold. By the
semi-linear ordering principle, and the fact that both Γ and Λ are efficient, we have
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Ť

Λm Ď
Ť

Γn. Since it is not the case that Λ ă Γ, (1) fails in the other direction,
and so in fact

Ť

Λm “
Ť

Γn. Again, since Λ ă Γ fails, we have ηΓ ď ηΛ. Suppose
that these ordinals are equal. If Γ0 Ę Λ0 then Λ0 Ď Γ̌0, but then we get Λ Ď Γ̌,
which again is not the case. □

4.4. The ubiquity of admissible descriptions. Theorem 6.8 of [DGHTTa] states
that every non-self-dual Borel Wadge class has an acceptable description. We will
need the analogous result for admissible descriptions:

Theorem 4.11. Every non-self-dual Borel Wadge class has an admissible descrip-
tion.

In general, we do not expect a class to have a description which is simultaneously
acceptable and admissible.

Proof. The argument is an elaboration on that for [GQT, Prop. 4.1], which discusses
finite class descriptions. Given a class description Θ, we examine the classes Θs

for the leaves s of SΘ (recall the notation SΘ from the leaf selection game). By
induction, they all have admissible descriptions. We know that these classes are
semi-linearly ordered. In the simpler case, among these classes there is one which is
maximal under containment; then Θ is equivalent to that class. Otherwise, we will
construct a description Ξ equivalent to Θ by setting opΞq “ opΘq and the classes
Ξn where n is a non-default to be the various classes Θs above; the assumption
that we are not in the easier case implies that Ξ will be efficient, and the fact that
we are taking classes Θs for s a leaf of SΘ implies that opΘsq ą opΘq, so Ξ will in
fact be admissible. The difficulty, though, is to identify the class Ξ0, and to find
the ordinal ηΞ, telling us how many times we can change our mind at the root.

The main idea is to look at possible collections of SΘ-positions; these could be
used by a player in a game GleafpΘ,Υq or GleafpΥ,Θq for some Υ. With each
position we will associate an ordinal rank, which measures how much leeway a
player still has, after playing this position, to keep playing any class Θs. The
ordinal ηΞ will be the maximal rank occuring, which will correspond to the rank of
the starting position. The class Ξ0 will be obtained by considering all SΘ-positions
of this maximal rank; we will show that it is equivalent to an admissibly described
class.

As in [GQT], we need to extend the notation SΘ. Let ξ be a countable ordinal.
For a class description Θ with opΘq ě ξ we define SΘ,ξ as follows:

‚ If opΘq “ ξ then SΘ,ξ “ SΘ;
‚ If opΘq ą ξ then SΘ,ξ consists only of the root of TΘ.

Note that both cases can be defined together as in the original definition of SΘ,
replacing opΘq by ξ. SΘ,ξ-positions are defined as in Definition 3.1; when opΘq ą ξ,
there is just one SΘ,ξ position p, determined by taking tp to be the root of TΘ.
Note that these notions make sense even when opΘq “ ω1.

Fixing ξ, in this proof, we let P and Q denote nonempty collections of SΘ,ξ-
positions, for some Θ, that are upwards closed: if p P P and q ě p then q P P.
(Recall the partial order defined on positions in Definition 3.1.)

Let Θ and Ξ be class descriptions with ordinal levels ě ξ; let P be a nonempty,
upwards closed collection of SΘ,ξ-positions, and let Q be such a collection of SΞ,ξ-
positions. The game GpP,Qq is defined as the game GleafpΘ,Ξq, except that the
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trees used are SΘ,ξ and SΞ,ξ, and further, player 1 is only allowed to choose positions
from P, while player 2 must choose positions from Q. We write

P ď Q
if player 2 has a strategy in the game GpP,Qq which guarantees an outcome ps, tq
satisfying Θs Ď Ξt. We write P ” Q if P ď Q and Q ď P. Corollary 3.7 implies:

Claim 4.11.1. For a class Θ with opΘq ě ξ, let PΘ denote the collection of all
SΘ,ξ-positions. If opΘq, opΞq ě ξ, then Θ Ď Ξ if and only if PΘ ď PΞ.

(Observe that Corollary 3.7 covers all cases, whether opΘq “ ξ or opΘq ą ξ, and
similarly for Ξ.) We therefore write Θ in place of PΘ, and so write Θ ď Q, P ” Ξ,
etc.

Theorem 4.11 follows from:

Claim 4.11.2. Let Θ be a class description with ξ “ opΘq. For any nonempty, up-
wards closed collection P of SΘ-positions, there is an admissible class description Ξ
with P ” Ξ.

The notation implies that opΞq ě ξ.
For brevity, for an SΘ-position p, let Θp “ Θtp . Claim 4.11.2 is proved by a

double induction: first on the complexity of Θ, then on a Ď-upper bound on the
collection of classes Θp for p P P: let

CpPq “ tΘp : p P Pu .

the induction hypothesis for P is that Claim 4.11.2 holds for all sets Q of SΘ-
positions for which there is some Γ P CpPq such that for all Λ P CpQq, Λ Ď Γ̌.
This relation is well-founded.

Fix a class description Θ; let ξ “ opΘq, which we may assume is countable. By
induction, we assume that for evey leaf t of SΘ, Θt is admissible. Proposition 4.2
implies that after replacing Θt be an admissible equivalent, the ordinal level cannot
decrease; this means that after such replacement, the tree SΘ does not change. Fix
a nonempty, upwards closed collection P of SΘ-positions. As usual, we assume that
we have relativised to a sufficiently strong oracle, so that all containments between
classes Θt are effective, uniformly, and all ordinals involved are comparable; see
Remark 3.3.

We dispose of the easy case first.

Claim 4.11.3. Suppose that there is some maximal Γ P CpPq: for all Γ1 P CpPq,
Γ1 Ď Γ. Then P ” Γ.

Proof. Player 2 easily wins both GpP,Γq and GpΓ,Pq, using constant plays. □

For the rest of the proof, suppose that the hypothesis of Claim 4.11.3 fails. By
the semi-linear-ordering principle for described classes, this implies:

p˚q: For every Γ P CpPq there is some Γ1 P CpPq with Γ̌ Ď Γ1.

We define an ordinal rank on SΘ-positions p P P. As is often the case, by
induction on ordinals β we define when rkppq ě β:

(i) For every p P P, rkppq ě 0.
(ii) rkppq ě β `1 if for every Γ P CpPq there is some q P P with q ď p, Γ Ď Θq,

and rkpqq ě β.
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(iii) For a limit ordinal λ, rkppq ě λ if for all β ă λ, rkppq ě β.

By induction on β we observe that if rkppq ě β ` 1 then rkppq ě β, so that the
collection of β such that rkppq ě β is an initial segment of the ordinals. We write
rkppq “ β if rkppq ě β but rkppq ğ β ` 1.

Claim 4.11.4. Every p P P has a countable rank.

Proof. If not, let p P P with rkppq ě ω1. Since P is countable, this implies that
rkppq ě ω1 ` 1. By p˚q, we can find some q ď p with rkpqq ě ω1 and Θ̌p Ď Θq; in
particular, tp ‰ tq. Proceeding, we obtain an inifnite sequence of positions, none
of which is a “pass” in the leaf selection game, contradicting Remark 3.2. □

By induction on β we observe that q ď p implies rkpqq ď rkppq. In an ideal world,
this would be strict: if q ă p then rkpqq ă rkppq. At least, this would be good to
have when q makes a choice that cannot be covered by p, i.e., when Θq Ę Θp.
Sadly, this may fail. The following will suffice:

Claim 4.11.5. For every p P P there is some Γ P CpPq such that Θp Ď Γ, and for
all q ď p, if Θq Ę Γ then rkpqq ă rkppq.

Proof. Let Γ1 P CpPq witness that rkppq is not greater than it actually is: for all
q ď p, if Γ1 Ď Θq then rkpqq ă rkppq. In particular, Γ1 Ę Θp; by SLO, Θp Ď Γ̌1.

By p˚q, choose Γ P CpPq with Γ̌1 Ď Γ. Again by SLO, if q ď p and Θq Ę Γ then

Γ̌ Ď Θq and then Γ1 Ď Θq, so rkpqq ă rkppq. □

Let p0 be the initial SΘ-position (all ordinals maximal and all choices are default);
then p0 ě p for all p P P. By assumption on P, p0 P P, and so

η “ rkpp0q

is maximal among all ranks of elements of p.

Claim 4.11.6. η ě 1.

Proof. Let Γ P CpPq; so Γ “ Θp for some p; since p ď p0, this shows that rkpp0q ě

1. □

We let

Q “ tp P P : rkppq “ ηu .

So Q is nonempty, and since the rank is monotone, Q is upwards closed.

Claim 4.11.7. There is some Γ P CpPq such that for all Γ1 P CpQq, Γ1 Ď Γ̌.

Proof. Suppose not. By the semi-linear-ordering principle, for all Γ P CpPq there
is some Γ1 P CpQq such that Γ Ď Γ1, i.e., there is some p P P with rkppq “ η and
Γ Ď Θp. But then rkpp0q ě η ` 1. □

By induction, there is some admissible Λ (with opΛq ě ξ) such that Λ ” Q.

Claim 4.11.8. Let Γ be given by Claim 4.11.7; then Λ̌ Ď Γ.

Proof. By Claim 4.11.1, it suffices to show that Q ď Γ̌. Since opΓq ą ξ (as Γ “ Θt

for some leaf t of SΘ), this is witnessed by constant plays. □

Since CpPq is countable, fix a list Γ1,Γ2, . . . enumerating CpPq. We define a
class description Ξ as follows:
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‚ opΞq “ ξ;
‚ ηΞ “ η;
‚ For n ě 1, Ξn “ Γn;
‚ Ξ0 “ Λ.

Then p˚q, together with Claim 4.11.8 (and the assumption that each Γn is efficient)
ensure that Ξ is efficient. Since each Γn is Θt for some leaf t of SΘ, opΓnq ą ξ for all
n ě 1. By the assumption that each Γn is admissible, we see that Ξ is admissible
as well.

Claim 4.11.9. Ξ ” P.

Proof. We play the games for both directions. In GpP,Ξq, as long as player 1
keeps playing q P Q, player 2 chooses the default at the root of TΞ, and uses her
winning strategy in the game GpQ,Λq (note that this covers both cases opΛq “ ξ
and opΛq ą ξ). Once player 1 leaves Q, playing some position p with rkppq ă η,
player 2 chooses an outcome n with Γn witnessing Claim 4.11.5 for p; player 2
decreases the ordinal at the root to rkppq. From then on, player 2 moves only if
forced (if the current Γn does not contain Θq for the current position q played by
player 1). When forced to move, player 2 matches the ordinal rank of the position
chosen by player 1, and chooses a sufficiently large Γn given by Claim 4.11.5. These
choices ensure that when forced to move, the ordinal indeed drops.

In GpΞ,Pq, as long as player 1 remains above the default outcome of the root,
player 2 plays their winning strategy in GpΛ,Qq. Once player 1 moves off the
default outcome, and is currently presenting some ordinal β ă η and outcome n,
player 2 can respond with some position p P P with Γn Ď Θp and rkppq ě β; the
definition of rank allows it to proceed. □

This completes the proof of Claim 4.11.2, and so of Theorem 4.11. □

Remark 4.12. Proposition 3.34 of [DGHTTa] allows us to directly transform a
monotone class description into an equivalent acceptable class description. It does
not seem possible to mimick the same argument to transform monotone class de-
scriptions into admissible ones. Hence, we cannot use [DGHTTa, Thm. 6.8] to prove
Theorem 4.11.

However, the proof of [DGHTTa, Thm. 6.8] can be adapted to give another
proof of Theorem 4.11. An analogue of [DGHTTa, Thm. 4.4]: every admissible
class description is classified, holds. The main change in the proof is in [DGHTTa,
Prop. 4.12]; one has to consider three cases, depending on whether η “ 1 (the
acceptable case), η ą 1 is a successor, or η is a limit. Note that the proof of
[DGHTTa, Prop. 4.13] is naturally suited to admissible descriptions.

[DGHTTa, Prop. 3.34] allows us to use [DGHTTa, Thm. 5.1] to show its ana-
logue for admissible class descriptions. Then, following the work in Section 6 of
[DGHTTa] completes a proof of Theorem 4.11.

4.5. Admissible monotone descriptions. The proof of Theorem 4.11 can be
easily adjusted to show that every non-self-dual Borel Wadge class has a description
which is both admissible and monotone (Definition 4.4). In the definition of Ξ,
instead of letting Γ1,Γ2, . . . list all of CpPq, we let it list a cofinal sequence in CpPq

which is monotone (Γn Ď Γ̌n`1). Indeed, we can reduce to two cases: either CpPq

has a maximal pair Θ, Θ̌, in which we can set Γn “ Θ for odd n ą 0 and Γn “ Θ̌
for even n ą 0; or we can set Γ1 ă Γ2 ă ¨ ¨ ¨ .
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However, it is also easy to effectively transfrom any admissible description into
an equivalent description which is both admissible and monotone.

Proposition 4.13. For any admissible class description Γ there is a monotone
admissible class description Λ with Γ “ Λ, effectively.

Proof. Let Γ be admissible. By (effective transfinite) recursion, we may assume
that for all children n of the root on TΓ, Γn is admissible and monotone. We define
a class description by letting opΛq “ opΓq, ηΓ “ ηΛ, and Λ0 “ Γ0. Then, by
recursion, having defined Λn, we let Λn`1 be some Γm such that:

‚ Γm Ě Λ̌n;
‚ if n P TΓ, then either Γn Ď Γm or Γn Ď Γ̌m;
‚ opΓmq ą opΓq.

Lemma 4.7 implies that such an m exists. Proposition 4.9 shows that Γ “ Λ. □

5. Game characterisations of separation and reduction

While the containment game and Theorem 3.4 are interesting and useful in their
own right, they also serve as a simple version of more general games, that we use
to characterise the reduction and separation properties.

5.1. The reduction game. We will devise a game GredpΓq such that for any class
description Γ, the class Γ has the reduction property if and only if player 2 has a
winning strategy in the game. In the containment game GcontpΓ,Λq, the idea is
that player 1 plays a set A P Γ and challenges player 2 to prove that this set is in Λ.
In the reduction game, player 1 plays two sets A0, A1 P Γ and challenges player 2 to
construct a pair of sets pB0, B1q, both in Γ, that reduce the pair pA0, A1q, meaning
that Bi Ď Ai, B0 XB1 “ H, and B0 YB1 “ A0 YA1. In this game, the players will
each produce leaves on two copies of TΓ, the labels of which represent the values
A0pxq, A1pxq and B0pxq, B1pxq. The winning positions for player 2 will correspond
precisely to the requirements of reduction.

However, recall that the proof of Proposition 3.5 was inductive: it assumed the
proposition held for pairs such as pΓ,Λnq or pΓt,Λrq. The same argument will
be applied for the reduction game, which means that we need to describe a more
general game and a more general property, ones which are not restricted to just
one class.

Definition 5.1.

(a) Let Γ0,Γ1,Λ0,Λ1 be pointclasses. The pair pΛ0,Λ1q reduces pΓ0,Γ1q if
for every pair pA0, A1q with Ai P Γi, there is a pair pB0, B1q with Bi P Λi

that reduces pA0, A1q.
(b) We say that a pointclass Λ reduces a pointclass Γ if pΛ,Λq reduces pΓ,Γq.

A pointclass Γ has the reduction property if Γ reduces Γ.

We now describe the clopen game that captures the reduction relation between
pairs of classes.

The extended leaf selection game. We will make use of the leaf selection game de-
scribed above, except that now, each player may start with either one or two classes:
we could play GleafpΓ0,Γ1; Λ0,Λ1q, or GleafpΓ0; Λ0,Λ1q, etc. At each round, the
player i whose turn it is to play chooses positions on each of the trees that the
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player is playing on. For example, in GleafpΓ0,Γ1; Λ0q, player 2 chooses an SΛ0 -
position on every even round, while at each odd round, player 1 chooses both an
SΓ0 -position and an SΓ1-position. A player has passed when all of their currently
chosen leaves are the same as in the previous round. The outcome of the game is
a choice of leaf on each tree involved in the game.

The reduction game. Let Γ0,Γ1,Λ0 and Λ1 be class descriptions. The reduction
game GredpΓ0,Γ1; Λ0,Λ1q is played between two players 1 and 2. Player 1 devises
a path from the root to leaves on both TΓ0 and TΓ1 ; player 2 does the same on TΛ0

and TΛ1 . At each round k ě 1 of the game, player 1 defines nodes sj1rks P TΓj and

player 2 nodes sj2rks P TΛj . We start with sji r0s being the root of the corresponding

tree. At round k ` 1, let ξj1rks “ opΓj

sj1rks
q, and ξj2rks “ opΛj

sj1rks
q; we let

ξrks “ mintξji rks : i “ 1, 2; j “ 0, 1u.

(1) If ξrks occurs for only one of the players: for some i P t1, 2u we have ξji rks ą

ξrks for both j, then the other player i1 “ 3 ´ i selects a child sji1 rk ` 1s of

sji1 rks on the corresponding tree, for each j such that ξji1 rks “ ξrks.
(2) If ξrks occurs for both players, then the players play the extended leaf

selection game; player 1 plays with Γj

sj1rks
for all j P t0, 1u for which ξj1rks “

ξrks, and similarly for player 2.

The game ends with leaves sji on the respective trees. Player 2 wins if the labels
of the leaves agree with the requirements of reduction:

‚ for both j “ 0, 1, if Λjpsj2q “ 1 then Γjpsj1q “ 1;
‚ Λ0ps02q and Λ1ps12q are not both 1;
‚ If Γ0ps01q “ 1 or Γ1ps11q “ 1, then Λ0ps02q “ 1 or Λ1ps12q “ 1.

Proposition 5.2. Player 2 has a winning strategy in the game GredpΓ0,Γ1; Λ0,Λ1q

if and only if the pair pΛ0,Λ1q reduces the pair pΓ0,Γ1q.

Proof. Let S be a winning strategy for player 2 in the game GredpΓ0,Γ1; Λ0,Λ1q;
suppose that an oracle z is sufficiently powerful, as in Remark 3.3. Given Γjpzq-
names N j we devise Λjpzq-names M j so that pM0,M1q reduces pN0, N1q. This is
done by effective transfinite recursion on the complexity of the quadruple pΓ0,Γ1; Λ0,Λ1q.
The argument is almost identical to that of the proof of Proposition 3.5. For ex-
ample, in case III, suppose that ξ “ opΓ0q is smaller than the other ordinals opΓ1q,
opΛ0q and opΛ1q. So at the first move of the game, player 1 chooses a child n of
the root on TΓ0 . By induction, for each such n, the pair pΛ0pzq,Λ1pzqq reduces
pΓ0

npzq,Γ1pzqq, uniformly; so there are Λjpzq-names M j
n such that pM0

n,M
1
nq re-

duces the pair pN0
n, N

1q. Since opΛjq ą ξ for both j “ 0, 1, we can merge these

to Λjpzq-names M j such that for all x, if ℓN
0

pxq ě n then M jpxq “ M j
npxq. If

opΓ0q “ opΓ1q “ ξ is smaller than both opΛjq then player 1 chooses children on
both Γj , so we will have names M j

n,m for n P TΓ0 and m P TΓ1 . The other cases of
the proof are modified in the same way.

In the other direction, though, we do not have such a neat dichotomy. Indeed,
it is not the case that if pΛ0,Λ1q does not reduce pΓ0,Γ1q then pΓ̌0, Γ̌1q reduces
pΛ0,Λ1q. To understand the situation in general, consider that both containment
and reduction can be viewed as specifying permissible lines in truth tables. In the
containment case, there are four lines in total, one for each possible value of the pair
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pApxq, Bpxqq, where A is player by player 1 and B by player 2. The two permissible
lines are p0, 0q and p1, 1q. That is, B “ A if for all x, either pApxq, Bpxqq “ p0, 0q or
pApxq, Bpxqq “ p1, 1q. The “anti-containment” property that is given by a winning
strategy for player 1 inGcontpΓ,Λq is characterised by allowing the other possibilities
p0, 1q and p1, 0q, which happens to characterise equality with the complement.

In the reduction case, we have 16 lines in the truth table, and the permissible
ones can be summarized by saying which values for pB0pxq, B1pxqq are permissible,
given pA0pxq, A1pxqq:

p0, 0q ÞÑ p0, 0q;

p1, 0q ÞÑ p1, 0q;

p0, 1q ÞÑ p0, 1q;

p1, 1q ÞÑ p0, 1q, p1, 0q.

Using the strategy-stealing method for the (extended) leaf selection game described
in the proof of Proposition 3.6, we see that if player 1 has a winning strategy in the
game GredpΓ0,Γ1; Λ0,Λ1q, then player 2 has a winning strategy in the game whose
winning lines are the ones not permissible for reduction, however with exchanging
the roles of Aj and Bj . By the version of Proposition 3.5 for this “anti-reduction”
game, we see that in this case, the pair pΓ0,Γ1q anti-reduces the pair pΛ0,Λ1q,
meaning that for any B0 P Λ0 and B1 P Λ1 there are A0 P Γ0 and A1 P Γ1 such
that for all x P N ,

‚ If pB0pxq, B1pxqq “ p0, 0q then pA0pxq, A1pxqq ‰ p0, 0q;
‚ If pB0pxq, B1pxqq “ p1, 0q then pA0pxq, A1pxqq ‰ p1, 0q, p1, 1q;
‚ If pB0pxq, B1pxqq “ p0, 1q then pA0pxq, A1pxqq ‰ p0, 1q, p1, 1q.

The other direction of the current proposition is then proved by verifying:

(˚): If pΓ0,Γ1q anti-reduces the pair pΛ0,Λ1q then pΛ0,Λ1q does not reduce the
pair pΓ0,Γ1q.

To show this, we use universal sets for pairs. There are sets A0 and A1, universal
for Γ0 ˆ Γ1: this means that Ai P Γi, and for all pairs C0 P Γ0 and C1 P Γ1 there
is some y P N such that

Ci “ pAiqrys “
␣

x P N : xy, xy P Ai
(

for i “ 0, 1; here py, xq ÞÑ xy, xy is some computable “pairing function”, an isomor-
phism between N 2 and N .

Suppose, for a contradiction, that pB0, B1q reduces pA0, A1q, with Bi P Λi. Let
Di “

␣

y : xy, yy P Bi
(

; and let pC0, C1q anti-reduce pD0, D1q, with Ci P Γi. Then

y P N such that Ci “ pAiqrys gives a contradiction, as no line in the truth table is
allowed for xy, yy. □

Example 5.3. Let α and η ě 1 be ordinals. The class DηpΣ0
1`αq has the reduction

property. To see this, let Γ be the simple description of this class (Fig. 2). The
game GredpΓ,Γ; Γ,Γq is the game GleafpT 0, T 1;S0, S1q where T 0, T 1, S0 and S1 are
all copies of TΓ. To win, player 2, on the tree Sj , copies the moves of player 1
on T j , except for when player 1 moves to two 1 outcomes; the move to the second
is not matched.

On the other hand, the class ĎηpΣ0
1`αq does not have the reduction property; in

fact, the class Ďη`1pΣ0
1`αq does not reduce the class ĎηpΣ0

1`αq (whereas the class
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Dη`1pΣ0
1`αq does reduce ĎηpΣ0

1`αq, as Dη`1pΣ0
1`αq has the reduction property).

To see this, let Λ be the simple description of Dη`1pΣ0
1`αq; we show how player 1

wins the game GredpΓ̌, Γ̌; Λ̌, Λ̌q. Again, this game is GleafpT 0, T 1;S0, S1q with T j “

TΓ̌ and Sj “ TΛ̌.
Player 1 starts with a pass. We refer to children of the root by their labels, so

1 is the default child on both sides. To survive, player 2 must move at least one
of his leaves to 0, say on S0; he reduces his ordinal label η02,xy

to some value ď η.

Player 1 then moves to 0 on T 1 (with ordinal 0, say; player 1 will not move on T 1

again). Henceforth, on T 0, player 1 plays the opposite of what player 2 does on S0,
with the same ordinal label.

5.2. The separation game. Like reduction, for a game characterisation of sepa-
ration, we need a more general property, involving more than one class.

Definition 5.4.

(a) Let A0, A1, B0, B1 Ď N , with A0 X A1 “ H. The pair pB0, B1q separates
the pair pA0, A1q if A0 Ď B0, A1 Ď B1, and B1 “ pB0qA.

(b) Let Γ0,Γ1,Λ0,Λ1 be pointclasses. The pair pΛ0,Λ1q separates pΓ0,Γ1q if
for every pair pA0, A1q of disjoint sets with Ai P Γi, there is a pair pB0, B1q

with Bi P Λi that separates pA0, A1q.
(c) A pointclass Γ has the separation property if pΓ,Γq separates pΓ,Γq.

The separation game GseppΓ0,Γ1; Λ0,Λ1q is played exactly like the reduction
game, except that the winning condition for player 2, upon producing leaves sij on
the respective trees, is:

‚ If pΓ0ps01q,Γ1ps11qq “ p0, 1q then pΛ0ps02q,Λ1ps12qq “ p0, 1q;
‚ If pΓ0ps01q,Γ1ps11qq “ p1, 0q then pΛ0ps02q,Λ1ps12qq “ p1, 0q;
‚ If pΓ0ps01q,Γ1ps11qq “ p0, 0q then pΛ0ps02q,Λ1ps12qq is either p0, 1q or p1, 0q.

Note that if player 1 ends up with pΓ0ps01q,Γ1ps11qq “ p1, 1q then player 2 wins
regardless of the leaves they chose.

Proposition 5.5. Player 2 has a winning strategy in the game GseppΓ0,Γ1; Λ0,Λ1q

if and only if the pair pΛ0,Λ1q separates the pair pΓ0,Γ1q.

Proof. The same as the proof of Proposition 5.2. Note that for the forward direc-
tion, the definition of the winning condition when player 1 plays the outcome p1, 1q

does not affect the proof, since we only need to verify the separation property when
player 1 plays a pair of disjoint sets. However, this condition is important for the
other direction, when player 1 has a winning strategy. The game is stated as it
is because the resulting “anti-separation” property forces player 1 to play disjoint
sets. It is defined by the truth-table function:

‚ p0, 1q ÞÑ p1, 0q;
‚ p1, 0q ÞÑ p0, 1q;
‚ p0, 0q ÞÑ p0, 0q, p0, 1q, p1, 0q;
‚ p1, 1q ÞÑ p0, 0q, p0, 1q, p1, 0q.

This means that the argument above when player 1 wins the game applies in this
case as well. □

If player 2 wins the separation game, this gives us some information even when
player 1 does not necessarily plays disjoint sets. We obtain the following strength-
ening of the separation property:
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Definition 5.6. A Wadge class Γ has the generalized separation property if for any
two A0, A1 P Γ, there are B0, B1 P Γ which form a separation A0 and A1 off of
A0 X A1. That is, for any x R A0 X A1:

‚ x P B0 Ø x R B1; and
‚ For i ă 2, if x P Ai, then x P Bi.

Overall we see that a non-self-dual Borel Wadge class has the separation property
if and only if it has the generalised separation property.

5.3. Effective properties. We recall that the proof of Proposition 3.5 is effective:
if z computes both descriptions Γ and Λ and a winning strategy for player 2 in
GcontpΓ,Λq, then uniformly in w ěT z and a Γpwq-name N we can compute a
Λpwq-name equivalent to N . Similarly, from the arguments for Propositions 5.2
and 5.5 we obtain:

‚ If z computes a description Γ and a winning strategy for player 2 in the
game GredpΓ,Γ; Γ,Γq, then uniformly given w ěT z and a pair N0, N1 of
Γpwq-names, we can compute a pair M0, M1 of Γpwq-names for sets that
reduce pN0, N1q.

‚ If z computes a description Γ and a winning strategy for player 2 in the
game GseppΓ,Γ; Γ,Γq, then uniformly given w ěT z and a pair N0, N1 of
Γpwq-names, we can compute a pair M0, M1 of Γpwq-names for sets that
separate pN0, N1q off of N0 X N1.

6. The separation property

We now characterise the classes that have the separation property. Our strategies
will be computable in the descriptions, so we define:

Definition 6.1. A class description Γ has the effective separation property if uni-
formly, given a pair of Γ-names N0 and N1 of disjoint sets in Γ, we can compute a
pair M0 and M1 of Γ-names such that N i Ď M i for i “ 0, 1, and M0 “ pM1qA.

That is, if the separation can be performed effectively in the cone above yΓ,
where recall that yΓ is the designated oracle computing Γ. We can similarly define
the effective generalised separation property.

Proposition 6.2. If Γ is a monotone class description of Π-type, then Γ has the
effective generalised separation property.

Proof. We describe a yΓ-computable winning strategy for player 2 in the separation
game GseppΓ,Γ; Γ,Γq. This is done by recursion on the length of the leftmost
(ultimate default) leaf of TΓ. Note that this is finite recursion, not transfinite.

The base case is when opΓq “ ω1, that is, when TΓ consists only of the root; by
assumption, this root is labelled 1. The game finishes before it even begins, with
player 2 winning.

Suppose that opΓq ă ω1. Since Γ0 has Π-type (recall that 0 is the default child
of the root), by recursion, player 2 has a yΓ-computable winning strategy S in the
game GseppΓ0,Γ0; Γ0,Γ0q. The strategy for player 2 in the game GseppΓ,Γ; Γ,Γq is
as follows. At each step of the game (including the rounds of leaf selection sub-
games, such as the one starting the separation game for Γ), let the current leaves
played by player 1 be t0 and t1, and the leaves played by player 2 be r0 and r1.
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During the leaf selection game starting the separation game, let η0 and η1 denote
the η-ordinals played at the roots by player 1.

As long as player 1 chooses leaves t0, t1 both extending 0, then player 2 also
lets r0 and r1 extend 0. If opΓ0q ą opΓq then this means that player 1 passes in the
first move of the game, so does player 2, and the leaf selection subgame ends with
outcome p0, 0; 0, 0q. Henceforth, player 2 follows its winning strategy S in the rest
of the game. If opΓ0q “ opΓq then SΓ0 is the restriction of SΓ to leaves extending 0,
so as long as player 1 plays extensions of 0, player 2 can follow the strategy S. If
the leaf selection subgame ends within SΓ0

, then player 2 can continue with S.
Suppose that player 1 moves away from 0 at some step; say t0 extends some

outcome m ą 0 of the root of TΓ. From now on, player 2 commits to eumulating t0
by r0, and emulating the opposite value by r1. Henceforth, t1 is ignored. If t1 is
the leaf moved, then the argument is symmetric, replacing t0 by t1 below.

The emulation is done as follows. During the leaf-slection subgame, the η-ordinal
played at the root for both r0 and r1 is the same as η0, the η-ordinal played by
player 1 for choosing t0. At a step at which this η-ordinal decreases (such as the
first step at which t0 moved away from 0), player 2 observes the child m extended
by the new value of t0 (after a second move, this can again be 0).

Since Γ is monotone, at such a step we can choose a large n, not hitherto used,
of the same parity as m. So Γm Ď Γn Ď Γ̌n`1. As long as player 1 does not
decrease η0, we proceed as follows. Let S0 be a winning strategy for player 2 in
the game GcontpΓm,Γnq, and let S1 be a winning strategy for player 2 in the game
GcontpΓn, Γ̌n`1q. The general idea is to interpret t0 as a move by player 1 in the
game GcontpΓm,Γnq, and let r0 be the response by player 2 following S0; then,
we interpret r0 as a move by player 1 in the game GcontpΓn, Γ̌n`1q, and use S1 to
define r1.

In greater detail, while the leaf selection sub-game of GseppΓ,Γ; Γ,Γq continues
and the η0-ordinal does not decrease, t0 keeps extending m, and we let r0 extend n
and r1 extend n ` 1. Depending on the ξ-ordinals involved, this either determines
r0 or r1 (if opΓnq ą opΓq) or opΓn`1q ą opΓq; or we can use the relevant strategy to
determine r0 or r1. Once the leaf selection sub-game ends, we are left with leaves
t0, r0, r1 of SΓ such that Γt0 Ď Γr0 and Γr0 Ď Γ̌r1 — either by choice of n, or
since the relevant strategy produces such a leaf — and we then continue with the
strategies S0 and S1. Again, if player 1 decreases the ordinal η0 before the leaf
selection sub-game has ended, then we abort this process, choose a new large n
corresponding to the new m, and repeat. □

Proposition 6.3. If Γ is a monotone class description of Σ-type, then Γ does not
have the separation property.

Proof. We show that player 1 has a winning strategy in GseppΓ,Γ; Γ,Γq. Again,
this is done by induction on the length of the leftmost path. The base case is again
when opΓq “ ω1; this time, the labels of the outcome of the game are p0, 0; 0, 0q,
which is a win for player 1.

Suppose that opΓq ă ω1 and that S is a winning strategy for player 1 in the game
GseppΓ0,Γ0; Γ0,Γ0q. We use the notation t0, t1, r0, r1 as in the previous proof.

In the leaf selection sub-game that starts the game GseppΓ,Γ; Γ,Γq, if opΓ0q ą

opΓq then player 1 starts with a pass (so t0 “ t1 “ 0). If opΓ0q “ opΓq then player 1
starts by following S, so it sets t0 and t1 both extending 0. As long as player 2
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keeps both ri extending the default outcome 0, player 1 either passes or follows S,
depending on opΓ0q. Suppose that at some step, player 2 moves away from 0 on
at least one of its trees, again, say by moving r0. Player 1 now matches in both of
their trees, the ordinal η0 played by player 2 at the root as part of the choice of r0.
Just as the argument above, player 1 now can arrange for t1 to emulate r0, and t0
to emulate 1 ´ t1, by choosing a new large n whenever η0 decreases. □

Proposition 6.2 and Proposition 6.3, together with immediate implications, and
the fact that every non-self-dual Borel Wadge class has a monotone description,
gives the following:

Theorem 6.4. Let Υ be a non-self-dual Borel Wadge class. The following are
equivalent:

(1) Υ has the separation property.
(2) Υ has the generalized separation property.
(3) Every monotone description of Υ is of Π-type.
(4) Some monotone description of Υ is of Π-type.
(5) Some / every monotone description of Υ has the effective separation prop-

erty.
(6) Some / every monotone description of Υ has the effective generalized sep-

aration property.

As a result, we see that the type of a monotone class description is invariant: if
Γ, Λ are monotone and Λ “ Γ then Λ and Γ have the same type. We thus talk
about the type of a class.

7. Characterising the reduction property

7.1. Characterising reduction. Armed with the game criterion for reduction, we
can now characterise the Borel Wadge classes with the reduction property as those
which have a description which is hereditarily Σ. First, we observe that a Borel
Wadge class with the reduction property has to have Σ type: the reduction property
for Γ easily implies the separation property for Γ̌. Not every class of Σ-type has
the reduction property though.

Example 7.1. The class BiSeppΣ0
1,Σ

0
2, tHuq is a Σ-type class that does not have

the reduction property. Let Γ be the simplest description of this class (Fig. 3). The
game GredpΓ,Γ; Γ,Γq starts with a leaf selection game on the subtree consisting of
the root and its three children. Call the rightmost child “π” and the middle one
“σ”. To win, player 1 chooses the child π in both of their trees. If player 2 responds
in kind, in the next leaf selection game, player 2 must move to outcome 0 on one
of his trees; when he does so, player 1 moves to 0 on the opposite tree. If, on the
other hand, player 2 chooses 0 or σ on one of his trees, player 1 will move to 0 on
the opposite tree, forcing player 2 to move to the child 1 of σ (the choice of the
child 0 of the root is terminal); player 1 then moves his other tree to 0.

Using our results of the first part, we can give a quick proof of a result that
follows from work of van Wesep’s [VW78]:

Proposition 7.2. If Γ is a non-self-dual Borel Wadge class of Σ-type and is also
closed under finite intersections, then it has the reduction property.
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ξ “ 0, η “ 1

ξ “ 1, η “ 1

01

ξ “ 1, η “ 1

10

0

Figure 3. BiSeppΣ0
1,Σ

0
2, tHuq

van Wesep showed, under AD, that if a non-self-dual Γ is closed under taking
finite intersections, and Γ̌ has the separation property, then Γ has the reduction
property. The result for Borel Wadge classes follows from Borel determinacy.

Proof. Let A0, A1 P Γ. Since Γ̌ has the generalized separation property, there are
G0, G1 P Γ such that pG0 X pA0 Y A1q, G1 X pA0 Y A1qq reduces pA0, A1q. Let
Bi “ Gi X Ai. □

Definition 7.3. A class description Γ is hereditarily Σ-type if for every non-leaf
s P TΓ, Γs has Σ-type.

What this means is that whenever the default outcome of some s P TΓ is a leaf,
then this leaf must be labelled 0. Unlike having Σ-type, being hereditarily Σ-type
is not invariant for all descriptions of a given class (even restricting to accept-
able or admissible descriptions). To see this, consider that SU0pΣ1,Σ2,Σ3, . . . q ”

SU0pΣ1,Π1,Σ2,Π2, . . . q ” SU0pΣ1,Π2,Π3,Π4, . . . q.

Definition 7.4. A class description Γ has the effective reduction property if Γ has
the reduction property, uniformly: given any pair of Γ-names N0 and N1, we can
compute a pair of Γ-names M0 and M1 which reduce pN0, N1q.

The proof of Proposition 5.2 shows that if Γ has the reduction property, then
there is some z P ∆1

1pyΓq such that after relativising to z, Γ has the effective
reduction property. Our main result is:

Theorem 7.5. The following are equivalent for a non-self-dual Borel Wadge class Γ:

(1) Γ has a description which is hereditarily Σ-type.
(2) Γ has a description with the effective reduction property.
(3) Γ has the reduction property.

Moreover, we will see that for any admissible Γ, if Γ has the reduction property,
then there is some Λ with the effective reduction property such that Λ “ Γ and
yΛ “ yΓ.

One implication is easy, given Proposition 5.2.

Proposition 7.6. If Γ is hereditarily Σ-type, then Γ has the effective reduction
property.

Proof. We describe a winning strategy for player 2 in the game GredpΓ,Γ; Γ,Γq. In

general, player 2 copies the moves of player 1, so that sj1rks “ sj2rks for j “ 0, 1. The
exception is when player 1 chooses (either within a leaf selection game, or outside
it) two leaves of TΓ that are labelled 1. If player 1 just selected the second such
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leaf, then on the corresponding tree, player 2 does not change their selection, and
can continue taking the default outcome from their location to get to a 0-labelled
leaf. If this is part of a leaf selection game, then player 2 will match player 1’s move
if and when she moves away from a 1-labelled leaf of TΓ. □

For the remaining implication (3)ùñ (1), we analyse the reducer of a class Γ.
This will be the smallest class containing Γ that can reduce any pair of sets from Γ
(the actual definition will be a bit different). It will turn out (as has been observed
in [LSR88a]) that the reducer has the reduction property. Given an admissible class
description Γ, we can easily describe the reducer of Γ: we replace each 1-labelled
default leaf by an appropriate Σ0

1`ξ. This is the “minimum action” required to
turn Γ into a hereditarily Σ class.

Definition 7.7. Let Γ be a class description.

(a) We let bpΓq be the collection of 1-labelled leaves s of TΓ such that either
s “ xy (when opΓq “ ω1) or s is the leftmost child of its parent s´ on TΓ.

(b) We let RpΓq be the class description obtained from Γ by attaching, to every
s P bpΓq, two children ŝ 0 and ŝ 1, which are leaves of TRpΓq labelled 0 and 1,

respectively. We set ξ
RpΓq
s “ ξΓ

s´ and η
RpΓq
s “ 1. If s “ xy then ξ

RpΓq
s “ 0.

Note that even if Γ is efficient, RpΓq may fail to be efficient. The following is
verified easily:

Lemma 7.8. Let Γ be a class description.

(a) RpΓq is hereditarily Σ-type.
(b) If opΓq ă ω1 then opRpΓqq “ opΓq.

Let RpΓq be the class described by RpΓq.3 Similarly, if s P TΓ, then we let RpΓqs

denote the class described by RpΓqs. Note that RpΓqs “ RpΓsq if s P TΓzbpΓq,
but when s P bpΓq (and is not the root), RpΓqs is the description of Σ0

1`ξ where

ξ “ opΓsq, whereas RpΓsq is the description of Σ0
1.

By Proposition 7.6 and Lemma 7.8(a), RpΓq has the reduction property.

Example 7.9. Let Γ be the simplest description of ĎηpΣ0
1`αq (Fig. 2); it is admissi-

ble. Then RpΓq (see Fig. 4) equals Dη`1pΣ0
1`αq. Let Λ be the simple description of

Dη`1pΣ0
1`αq. In GcontpRpΓq,Λq, suppose that at a given round, the ordinal at the

root played by player 1 is ζ ď η. If player 1 has already shifted to the outcome 1
of the leftmost child of the root, then player 2 matches the ordinal ζ; otherwise,
player 2’s ordinal is ζ ` 1. The other containment is easier.

Lemma 7.10. For all Γ, for all s P TΓ, Γs Ď RpΓqs.

Proof. Let N be a Γs-name. An equivalent RpΓqs-name M is defined by setting
fM
t “ fN

t and βM
t “ βN

t for all non-leaf t P TΓs
; if t P bpΓsq then we set fM

t pσq “ t̂ 1
and βM

t pσq “ 0 for all σ.4 □

3For now, this is abuse of notation; shortly we will see that restricted to admissible descriptions,
the operation R induces a function on the described classes.

4Alternatively, a winning strategy for player 2 in the game GcontpΓs, RpΓqsq has player 2 match
the moves of player 1, except that if it is player 2’s move and player 1 reached some t P bpΓsq then

player 2 then chooses t̂ 1. Similar steps need to be taken during a leaf selection sub-game.
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α, η

01

α, η

α, 1

0 1

0

Figure 4. The admissible description of ĎηpΣ0
1`αq and its R.

Lemma 7.11. Let Γ and Λ be admissible class descriptions. Let t P TΓzbpΓq and
r P TΛ. If Γt Ď Λr then RpΓqt Ď RpΛqr.

5

Proof. We prove the lemma by induction on the pair of ranks of t in TΓ and r in TΛ.
We separate into a number of cases.

Case I: ξΓt “ ω1. In this case, since t R bpΓq, RpΓqt “ Γt Ď Λr Ď RpΛqr, using
Lemma 7.10 for the last containment.

Case II: ξΓt ą ξΛr . By Corollary 3.7(a), there is some n such that Γt Ď Λrˆn. By
induction, RpΓqt Ď RpΛqrˆn; and RpΛqrˆn Ď RpΛqr.

Case III: ξΓt ă ξΛr . For all n with t̂ n P TΓ, Γt̂ n Ď Λr. By induction RpΓqt̂ n Ď

RpΛqr for all non-default n, and for the default outcome n˚ of t, if t̂ n˚ R bpΓq.
If t̂ n˚ P bpΓq then RpΓqt̂ n˚ “ Σ0

1`ξΓt
. Since Γ is efficient and ξΓt ă ω1, we have

H,N P Γt, and so H,N P Λr. Since ξΓt ă ξΛr , Σ
0
1`ξΓt

Ď Λr Ď RpΛqr (Lemma 3.8

and again Lemma 7.10). Hence, for all n, RpΓqt̂ n Ď RpΛqr. By Corollary 3.7(b),
RpΓqt Ď RpΛqr.

Case IV: ξΓt “ ξΛr ă ω1. Since in this case RpΓtq “ RpΓqt and RpΛrq “ RpΛqr, we
may simplify notation by assuming that r “ t “ xy are the roots of TΓ and of TΛ.

Let: T1 “ SΓ, T2 “ SΛ, U1 “ SRpΓq; and U2 “ SRpΛq. Below, we write
GleafpT1, T2q for GleafpΓ,Λq and GleafpU1, U2q for GleafpRpΓq, RpΛqq.

By assumption, there is a strategy S for player 2 in the game GleafpT1, T2q that
brings every play to an outcome pt, rq such that Γt Ď Λr. In fact, we may take S
to be prompt, in the sense of Remark 3.9. By Corollary 3.7(c), it suffices to show
that there is a strategy for player 2 in the game GleafpU1, U2q that brings every
play to an outcome pt, rq such that RpΓqt Ď RpΛqr. By induction, for any pair of
leaves t P T1 and r P T2, if Γt Ď Λr and t R bpΓq then RpΓqt Ď RpΛqr.

Since Γ and Λ are admissible, we know that for all non-leaf s P Ti, for all n ą 0
such that ŝ n P Ti, ŝ n is a leaf of Ti, so the trees Ti have a very particular shape;
other than the leaves, they only grow via the 0-outcome. Let qi be the leftmost
leaf of Ti; so the non-leaves of Ti are precisely the prefixes s ă qi. There are two
possibilities for each i:

‚ If qi is a 1-labelled leaf of the respective TΓ or TΛ, i.e., if i “ 1 and q1 P bpΓq,
or i “ 2 and q2 P bpΛq, then Ui “ Ti Y tqi 0̂, qi 1̂u.

‚ Otherwise, Ui “ Ti.

For the construction of the strategy, there are five sub-cases. In each, given a
sequence of moves for player 1 in GleafpU1, U2q, we define an auxiliary play in the

5Note, not RpΓtq Ď RpΛrq, though these are close.
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game GleafpT1, T2q. To keep things clear, we will refer to the players in GleafpT1, T2q

as player 3 and player 4. Given moves by player 1, we define a sequence of moves
for player 3. We let player 4 follow S, and then explain how to use these moves to
tell player 2 how to respond.

We write pprlsq for the sequence of positions in the play of GleafpU1, U2q; we will

let, as above, trls “ tprls, csrls “ c
prls
s and ηsrls “ η

prls
s . We will let pp1rksq denote

the sequence of positions in the play of GleafpT1, T2q, and will let t1rks “ tp
1
rks,

c1
srks “ c

p1
rks

s and η1
srks “ η

p1
rks

s .

Sub-case IV(a): U1 “ T1 and U2 “ T2. In this case, the games are identical: for
odd k we let p1rks “ prks; after player 4 responds with S, we let prks “ p1rks for
even k. Thus, the outcome pt, rq of the play in GleafpU1, U2q is the same as the
outcome of the play in GleafpT1, T2q. To show that this is a successful strategy, we
need to show that RpΓqt Ď RpΛqr. By the assumption on S, we have Γt Ď Γr.
The desired conclusion follows from the induction assumption if t R bpΓq. However,
no leaf of T1 is in bpΓq: since U1 “ T1, q1 R bpΓq; no other leaf of T1 can be in bpΓq,
as no other leaf of T1 is the default child of its parent.

Sub-case IV(b): U1 “ T1 and U2 ‰ T2.
Again, since U1 “ T1, player 3 can simply copy the positions played by player 1.

In response, player 2 can copy the position played by player 4, unless the leaf t1rks

played equals q2, which is a leaf of T2 but not of U2. In this case we will set
trks “ q2 1̂ (and this will necessitate setting ηq2rks “ 0, since q2 1̂ is not the default
child of q2 on U2). More formally, for odd k we set p1rks “ prks; for even k ě 2
such that p1rks is defined we set prks to be p1rks, except that we also set cq2rks “ 1
and ηq2rks “ 0.

We need to check that this strategy is successful, but before that, we need to
check that the auxiliary game does not terminate too quickly. We can imagine
that there would be a problem. Suppose, for example, that t1r1s “ tr1s “ q1 (so
player 3’s first move is a pass), and that the S-response to that is t1r2s “ q2.
This is a pass for player 4, and this ends the game GleafpT1, T2q. However, the
response with tr2s “ q2 1̂ is not a pass by player 2, and this means that the game
GleafpU1, U2q has not ended; now player 1 is free to make various moves, and we
do not have S to guide player 2’s responses.

However, this imagined sequence of events does not actually happen. If it did,
then the auxiliary play of GleafpT1, T2q would end with the outcome pq1, q2q. This
is not possible because Γq1 Ę Λq2 : since U2 ‰ T2, q2 is a 1-labelled leaf of TΛ, so
Λq2 “ tN u. On the other hand, since U1 “ T1, q1 is not a 1-labelled leaf of TΓ

(either it is not a leaf of TΓ, or it is a 0-labelled leaf of TΓ). Since Γ is efficient, this
implies that Γq1 ‰ tN u.

We also note that the only time that a pass played by player 4 can translate to a
move by player 2 which is not a pass, is when k “ 2, i.e., the first move by players 4
and 2, in which case we have t1r2s “ t1r0s “ q2. At all other stages k, t

1rk´2s “ t1rks

implies trk ´ 2s “ trks: either t1rks ‰ q2, in which case trks “ trk ´ 2s “ t1rks; or
t1rks “ q2, in which case trks “ trk ´ 2s “ q2 1̂. The only problem was that
tr0s “ q2 0̂, since pr0s is the default position.

Hence, the only time that the play of GleafpT1, T2q may end prematurely is if
player 1 (and so player 3) does not pass at their first move, player 4 passes, and
then player 1 passes. In this case, player 2 can finish the game by passing.
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Overall, we see that we can always carry both games to completion; if the out-
come of GleafpT1, T2q is pt, rq, then the outcome of GleafpU1, U2q is also pt, rq, un-
less r “ q2, in which case the outcome is pt, q2 1̂q. Since player 2 followed S, we
have Γt Ď Λr. Since U1 “ T1, no leaf of T1 is in bpΓq. Hence, by induction,
RpΓqt Ď RpΛqr. If r ‰ q2 we are done. If r “ q2 then we need to show that
RpΓqt Ď RpΛqq2 1̂. However, as observed, Λq2 “ tN u, and so Γt “ tN u; since Γ is
efficient, this means that t is a 1-labelled leaf of TΓ. However, again, since U1 “ T1,
t R bpΓq (this means that t is not the default child of its parent). Hence t is also a
leaf of RpΓq, and so RpΓqt “ tN u as well. Since the RpΛq-label of q2 1̂ is 1 (this
was the whole point), we have RpΛqq2 1̂ “ tN u.

Sub-case IV(c): U1 ‰ T1 and q2 is not a leaf of TΛ (in this case, U2 “ T2).
Before going into the details, let us mention the main issues. Since U1 ‰ T1,

we need to translate player 1’s moves on U1 to moves for player 3 on T1. It is not
completely clear how to do this: what should t1rks be (for k odd) when trks “ q1 0̂
or trks “ q1 1̂? It seems that it should be q1, but then, a move by player 1 from
q1 0̂ to q1 1̂ is just a pass for player 3. Further, the label of q1 in TΓ is 1, whereas
the label of q1 0̂ in RpΓq is 0, so if the outcome of the GleafpU1, U2q game is pq1 0̂, rq

(and so, presumably, the outcome of GleafpT1, T2q is pq1, rq) it may be difficult to
argue that RpΓqq1 0̂ Ď RpΛqr based on the assumption Γq1 Ď Λr.

Thus, the moves for player 3 will not be in exact 1-1 correspondence with the
moves for player 1. In the beginning, while player 1 plays leaves such as q1 0̂ or
q1 1̂, or any leaf of TRpΓq, for that matter, player 2 can pass: since q2 is not a leaf
of Λ, Λq2 , and so RpΛqq2 , contains both H and N , and so is an adequate response.
Only once player 1 plays some t “ trks which is not a leaf of TRpΓq, do we copy
this to be the first move t1r1s of player 3. We let player 2 copy player 4’s response,
which is possible, since U2 “ T2. Since t is not a leaf of TRpΓq, we have t R bpΓq, and
so copying the response gives player 2 a winning position. After this, if player 1
returns to playing leaves of TRpΓq, then player 2 can pass, as its current response is
an adequate response to a class containing both H and N . Hence, we only need to
define t1r3s if player 1 eventually plays some trk1s which is not a leaf of TRpΓq, and
one different from t1r1s.

Now to the details. Since we will sometimes skip moves in GleafpU1, U2q, for
every round k of the auxiliary game GleafpT1, T2q, we will define a corrsponding
round lpkq in the main game GleafpU1, U2q. The map k ÞÑ lpkq is strictly increasing
and preserves parity (moves of player 3 correspond to moves of player 1, moves
of player 4 correspond to moves of player 2), but may not be the identity: some
rounds of the main game are not in the range of l. For every odd k we will have
lpk ` 1q “ lpkq ` 1; but we may have lpk ` 2q ą lpkq ` 2.

We will always have, for even k, prlpkqs “ p1rks: player 4’s response by S at
round k is copied over to be a move by player 2 at round lpkq. For odd k we
will have p1rks “ prlpkqs æ T1; that is, for all non-leaf s P T1, c

1
srks “ csrlpkqs and

η1
srks “ ηsrlpkqs. In other words, player 1’s move at round lpkq is copied over to
player 3’s move at round k, except that we do not copy cq1rlpkqs and ηq1rlpkqs, since
q1 is a leaf of T1.

We start with lp´1q “ ´1 and lp0q “ 0. Note that since all positions at these
stages are the default positions, we indeed have pr0s “ p1r0s and p1r´1s “ pr´1sæT1.

Let k ě 1 be odd, and suppose that lpk´2q and lpk´1q “ lpk´2q`1 have been
defined; we have also described the moves for player 2 in GleafpU1, U2q up to and
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including round lpk ´ 1q. If the main game has not yet terminated, then player 1
plays prlpk ´ 1q ` 1s. We then let player 2 pass, and let player 1 keep playing, until
we encounter some odd m ě lpk ´ 1q ` 1 at which one of the following holds:

‚ player 1 passes at m; or
‚ trms is not a leaf of TRpΓq, and trms ‰ trlpk ´ 2qs.

When such an m is encountered, if the play does not end at round m:

‚ If player 1 passes at m, then player 2 passes at m ` 1 and halts the play.
‚ Otherwise, we set lpkq “ m.

In the latter case, as promised, we set p1rks “ prms æ T1. We then let player 2
respond according to S, set lpk ` 1q “ m ` 1, and prm ` 1s “ p1rk ` 1s.

Before we verify that this strategy for player 2 is successful, we quickly check
that the various plays can be performed as described. That is:

(1) for odd k, the move p1rks is legal for player 3.
(2) for even k, the move prlpkqs is legal for player 2.
(3) The auxiliary play does not terminate prematurely.

For (1), for odd k ě 1, we see that p1rks ď p1rk ´ 2s because p1rks “ prlpkqs æ T1,
p1rk ´ 2s “ prlpk ´ 2qs æ T1, and prlpkqs ď prlpk ´ 2qs, since player 1 plays legally.
Similarly, for (2), for even k ě 2, prlpkqs “ p1rks, prlpk ´ 2qs “ p1rk ´ 2s and
p1rks ď p1rk ´ 2s since player 4 plays legally; but since player 2 is instructed to
pass in the rounds between lpk ´ 2q and lpkq, we have prlpkq ´ 2s “ prlpk ´ 2qs,
so prlpkqs ď prlpkq ´ 2s. For (3), we show that t1rks ‰ t1rk ´ 2s. This is because
trlpkqs is not a leaf of TRpΓq, in particular, trlpkqs does not extend q1, and so setting
p1rks “ prlpkqsæT1 results in t1rks “ trlpkqs. For k “ 1, we have t1r1s ‰ q1 “ t1r´1s.
For k ě 3, since in the search for m “ lpkq we required trms ‰ trlpk ´ 2qs, we have
t1rks “ trlpkqs ‰ trlpk ´ 2qs “ t1rk ´ 2s. Hence, no move by player 3 is a pass, so
the play of GleafpT1, T2q does not terminate.

Now we check that the strategy is successful. Let pu, rq be the outcome of the
play of GleafpU1, U2q; we show that RpΓqu Ď RpΛqr.

First, suppose that lp1q is undefined. This means that player 1 only chooses
leaves of TRpΓq until he passes; player 2 only passes. So u is a leaf of TRpΓq and
r “ q2; as discussed, H,N P Λq2 Ď RpΛqq2 (using Lemma 7.10), and RpΓqu is
either tHu or tN u.

Otherwise, let k be the greatest number such that lpkq is defined; k ě 2 is even.
This means that after round lpkq, player 2 only passes; so r “ trlpkqs “ t1rks.
However, both u “ trlpk ´ 1qs and u ‰ trlpk ´ 1qs are possible, since player 1 is
allowed to move about after playing trlpk ´ 1qs, and only then pass.

Suppose first that u “ trlpk ´ 1qs. By our instructions, trlpk ´ 1qs is not a leaf of
TRpΓq. As discussed, t1rk ´ 1s “ trlpk ´ 1qs is a leaf of T1, different from q1. Hence,
u R bpΓq. The auxiliary GleafpT1, T2q play does not end, but since S is assumed
to be prompt (see Remark 3.9 again), Γt1rk´1s Ď Λt1rks. That is, Γu Ď Λr. Since
u R bpΓq, by induction, RpΓqu Ď RpΛqr, as required.

Next, suppose that u ‰ trlpk ´ 1qs. Then it must be that u is a leaf of TRpΓq

(otherwise, we would have defined lpk ` 1q, contradicting the maximality of k).
As in the first case, Γt1rk´1s Ď Λr. Since t1rk ´ 1s “ trlpk ´ 1qs is not a leaf of
TRpΓq, and Γ is efficient, we have H,N P Γt1rk´1s; so H,N P Λr. By Lemma 7.10,
H,N P RpΛqr. Since u is a leaf of TRpΓq, RpΓqu “ tHu or RpΓqu “ tN u. In either
case, RpΓqu Ă RpΛqr, as required.
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Sub-case IV(d): U1 ‰ T1 and U2 ‰ T2 (so q1 P bpΓq and q2 P bpΛq). This is a little
more complicated than the previous sub-case. In this case, player 2 cannot just
rest until player 1 plays a non-leaf; the default outcome for player 2 is q2 0̂, which
is not an adequate response to a 1-labelled leaf of TRpΓq.

Now it would seem that this should not be a problem. When player 1 plays q1 ĵ,
then player 2 can play q2 ĵ, and otherwise, we will play an auxiliary GleafpT1, T2q

game as above. However, player 1 can thwart us by first moving away from q1, then
coming back to q1 0̂, and later moving to q1 1̂. If player 2 responded by moving
away from q2 when player 1 moved away from q1, starting the auxiliary game, then
there is no guarantee that player 2 can later return to q2 when player 1 returns
to q1, and so player 2 cannot respond to the move from q1 0̂ to q1 1̂ by moving from
q2 0̂ to q2 1̂.

The solution is for us to delay the start of the auxiliary game, and to “spend” the
move from q2 0̂ to q2 1̂ first, even if player 1 moves to other leaves of TRpΓq. In the
beginning, while player 1 plays 0-labelled leaves of TRpΓq, whether q1 0̂ or others
(which are 0-labelled leaves of TΓ), player 2 has no problems with just passing.
If then player 1 plays a 1-labelled leaf, regardless of whether it is q1 1̂ or not,
player 2 can respond by moving to q2 1̂. Suppose that then, player 1 returns to
q1 0̂. Player 3 has an advantage over player 1: the latter spent already two moves
elsewhere, moving away from q1 and then back, but player 3 has not.

Let w be the parent of q1 on TΓ, and suppose that all of player 1’s moves so far
are children of w. Thus, after two moves, ηwrms ` 2 ď ηΓw (with m odd). Since Γ is
efficient, there is some child wˆn of w with H P Γwˆn; player 3 can choose such wˆn
and still have an advantage over player 1, by setting η1

w “ ηwrms ` 1. If player 1
then moves from q1 0̂ to q1 1̂, then this extra ordinal now allows player 3 to move
again (say to q1 itself), now matching ηw and η1

w.
A slight complication is if player 1 chooses a leaf of TΓ that is not a sibling

of q1 (a child of w). That is, player 1 can cycle between 0 and 1-labelled leaves
without decreasing any single ordinal more than once. The ordinal book-keeping
gets complicated.

But in this case, we can use “heavy artillery”. This move of player 1 allows us
to move away from ŝ 0 for some s ă w. This position of s implies opΓŝ 0q “ opΓq.
Since Γ is admissible, by Lemma 4.7, there is a child ŝ n of s such that Γŝ 0 ă Γŝ n.
Player 3 can choose such a child ŝ n that adequately mimics player 1’s move, and
never needs to move to any extension of ŝ 0 ever again.

Let us give the details. As in the previous sub-case, we match rounds k of the
auxiliary game with rounds lpkq of the main game. However, as discussed, we will
not always have p1rks “ prlpkqs æ T1 for odd k. To make sure that the moves we
make are legal, we inductively ensure the following, for all odd k ě 1:

(i) If trlpkqs is a leaf of TRpΓq then RpΓqtrlpkqs Ď Γt1rks. Otherwise, Γtrlpkqs Ď

Γt1rks.
(ii) For all s ď w, η1

srks ě ηsrlpkqs.
(iii) If t1rks “ ŝ n (for any s ď w) then for all r ă s, ηrrlpkqs “ ηΓr .
(iv) If t1rks “ ŝ n where s ă w, then Γŝ 0 ă Γt1rks.
(v) If t1rks is a leaf of TΓ and cq1rlpkqs “ q1 0̂ then η1

wrks ą ηwrlpkqs.

We run the plays as follows. We start with lp´1q “ ´1 and lp0q “ 0. Suppose
that k ě 1 is odd and that lpk ´ 1q has been defined. We search for an odd round
m ě lpk ´ 1q ` 1 such that one of the following holds:
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‚ player 1 passes at round m.
‚ trms is not a leaf of TRpΓq, and Γtrms Ę Γt1rk´2s.
‚ trms is a leaf of TRpΓq, k ě 3, and RpΓqtrms Ę Γt1rk´2s.
‚ k “ 1, trms is a 0-labelled leaf of TRpΓq, and trm ´ 2s is a 1-labelled leaf of
TRpΓq.

If k ě 3, then until we find such m, player 2 just passes. However, if k “ 1,
then for any even round n ă m, if trn ´ 1s is a 1-labelled leaf of TRpΓq then we set
cq2rns “ q2 1̂ (so ηq2rns “ 0; and ηsrns “ ηΓs for all s ă q2). Otherwise, player 2
passes.

If player 1 passes at round m (and this does not end the play), then we let
player 2 pass at round m ` 1 and end the play. Otherwise, we set lpkq “ m. We
then define p1rks. Let s be the longest s ď w such that ηsrms ă ηΓs . [There is
such an s since otherwise, trns ą q1 for all odd n ď m, implying that k “ 1 and
contradicting the choice of m.]

(1) If s ă w, we set η1
srks “ ηsrms and c1

srks “ t1rks to be some non-default
child of s such that Γcsrms Ď Γt1rks and Γŝ 0 ă Γt1rks. (For all other r ď w,
we leave η1

rrks “ η1
rrk ´ 2s so c1

rrks “ c1
rrk ´ 2s.)

(2) If s “ w and either cq1rms “ q1 1̂ or trms is not a leaf of TRpΓq, then we set
p1rks “ prmsæT1.

(3) If s “ w, cq1rms “ q1 0̂, and trms is a leaf of TRpΓq, then we set η1
wrks “

ηwrms ` 1 and c1
wrks “ t1rks to be some child of w such that RpΓqtrms Ď

Γt1rks. For all s ă w we leave η1
srks “ ηΓ (and so c1

srks “ ŝ 0).

We let p1rk ` 1s be player 4’s response by S, lpk ` 1q “ m ` 1, and prm ` 1s “

p1rk ` 1s, extended with cq2rm ` 1s “ q2 1̂ (and ηq2rm ` 1s “ 0).

Let us verify that this is all legal. First, we note that the described moves for
player 2 while we are waiting to define lp1q are all legal: as long as player 1 plays
0-labelled leaves of TRpΓq, player 2 passes; if player 1 then switches to 1-labelled
leaves of TRpΓq, then player 2 changes the position once and then passes; then, if
player 1 returns to a 0-labelled leaf of TRpΓq, or to a non-leaf of TRpΓq, then that
stage is lp1q.

Suppose that k ě 1 is odd, and everything has been verified up to round k ´ 1.
We check that it is possible and legal to define p1rks as we did, and that (i)–(v) hold
at k. We consider which of the three cases of defining t1rks applies. For simplicity of
notation, for all odd m, let Θm “ RpΓqtrms if trms is a leaf of TRpΓq, and Θm “ Γtrms

otherwise.

Suppose that (1) applied. We claim that ηsrlpkqs ă η1
srk ´ 2s, so setting η1

srks “

ηsrlpkqs allows us to redefine c1
srks as we like. If η1

srk ´ 2s “ ηΓs then this is by the
choice of s. Otherwise, k ´ 2 ě 1, and by (iii) (and (ii)) at k ´ 2, t1rk ´ 2s is some
child of s (necessarily non-default, as s ă w). By (i), Θlpk´2q Ď Γt1rk´2s. By the
choice of lpkq, Θlpkq Ę Γt1rk´2s, so trlpkqs ‰ trlpk´2qs. By (iv), Γŝ 0 ă Γt1rk´2s, so it
must be that trlpkqs as well is a child of s. This implies that csrlpkqs ‰ csrlpk ´ 2qs,
whence ηsrlpkqs ă ηsrlpk ´ 2qs. By (ii), ηsrlpk ´ 2qs ď η1

srk ´ 2s.
Next, we check that a child c1

srks as described in (1) indeed exists. If Γŝ 0 ă

Γcsrlpkqs then we can choose c1
srks “ csrlpkqs. Otherwise, Γcsrlpkqs Ď Γŝ 0 or Γcsrlpkqs Ď

Γ̌ŝ 0. As discussed above, since s ă w, we can choose c1
srks be some child of s such

that Γŝ 0 ă Γc1
srks.
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(i) holds at k: if trlpkqs is a leaf of TRpΓq then RpΓqtrlpkqs “ tHu or “ tN u;
but Γŝ 0 ă Γt1rks so H,N P Γt1rks. Otherwise, as csrlpkqs ď trlpkqs, we have
Γtrlpkqs Ď Γcsrlpkqs; and we ensured that Γcsrlpkqs Ď Γt1rks.

(ii), (iii) and (iv) hold at k by design. (v) holds vacuously.

Suppose that (2) applied at round k. We check that p1rks ď p1rk ´ 2s.
Suppose that k ě 3 and that (2) applied at round k´2 as well. Then p1rk´2s “

prlpk ´ 2qsæT1, p
1rks “ prlpkqsæT1, and prlpkqs ď prlpk ´ 2qs, so p1rks ď p1rk ´ 2s.

Suppose that k ě 3 and that (3) applied at round k ´ 2. Then η1
wrk ´ 2s ą

ηwrlpk ´ 2qs; since ηwrlpk ´ 2qs ě ηwrlpkqs we have η1
wrks ă η1

wrk ´ 2s, as required.
If k “ 1 then any SΓ-position is legal for player 3 at round k.
(i) holds at k if t1rks “ trlpkqs. Otherwise, trlpkqs ą q1, so t1rks “ q1 and by

assumption, trlpkqs “ q1 1̂. Hence RpΓqtrlpkqs “ tN u and Γt1rks “ tN u as well
(recall that q1 P bpΓq). So (i) holds in this case as well. (ii) and (iii) hold at k by
design; (iv) and (v) hold vacuously (if trlpkqs is not a leaf of TRpΓq then by (i), t1rks

is not a leaf of TΓ.)

Suppose that (3) applied at round k. We check that η1
wrks ă η1

wrk´2s. Suppose
first that k “ 1. The choice of lp1q, and the fact that (1) does not hold at k “ 1,
imply that ηwrlp1qs ` 2 ď ηΓw: player 1 had to make at least two changes, and

neither of them is the change from q1 0̂ to q1 1̂ (recall that η
RpΓq
q1 “ 1). Hence, the

choice η1
wr1s “ ηwrlp1qs ` 1 is legal, and η1

wr1s ă ηΓ1 . This allows us to choose c1
wr1s

as we like.
Suppose that k ě 3. Then cq1rlpk´2qs “ q1 0̂. By the choice of lpkq, RpΓqtrlpkqs Ę

Γt1rk´2s; this means that t1rk ´ 2s is a leaf of TΓ. Hence, (v) applies at k ´ 2, so
η1
wrk ´ 2s ą ηwrlpk ´ 2qs. Now (i) at k ´ 2 implies that trlpkqs ‰ trlpk ´ 2qs, so
ηwrlpk ´ 2qs ą ηwrlpkqs. Hence, η1

wrks ă η1
wrk ´ 2s.

Because Γ is efficient, we can choose c1
wrks “ t1rks with the desired property

RpΓqtrlpkqs Ď Γt1rks.
Hence, p1rks is well-defined and is a legal move for player 1.
(i), (ii), (iii), and (v) hold at k by our definitions. (iv) holds vacuously. This

concludes the verification that p1rks is legal and that (i)–(v) hold at k.

We verified that t1rks ‰ t1rk´2s in some of the situations above, but the argument
holds in general. By choice of lpkq, Θlpkq Ę Γt1rk´2s; (i) now implies that t1rks ‰

t1rk ´ 2s. So the move t1rks is not a pass for player 3, and the auxiliary game does
not end prematurely.

We verify that the described strategy is successful. Let pu, rq be the outcome of
the play of the main game GleafpU1, U2q. If lp1q is never defined then u is q1 ĵ for
some j P t0, 1u, and we ensured that in this case, r “ q2 ĵ, so RpΓqu “ RpΛqr.

Suppose that lp1q is defined; let k be the greatest such that lpkq is defined;
k ě 2 is even. As in the previous sub-case, r “ trlpkqs. Let m be the last stage at
which player 1 makes a move. So u “ trlpmqs. The maximality of k ensures that
Θm Ď Γt1rk´1s; promptness of the strategy S ensures that Γt1rk´1s Ă Λt1rks. By
the definition of our strategy, r “ t1rks if t1rks ‰ q2, and r “ q2 1̂ if t1rks “ q1. In
the latter case, Λt1rks “ RpΛqr “ tN u.

If u is a leaf of TRpΓq, then Θu “ RpΓqr, and the string of containments just
discussed shows that RpΓqu Ď Γr, so Lemma 7.10 shows that RpΓqu Ď RpΛqr.
Otherwise, Θm “ Γu so we get Γu Ď Λr. In this case u R bpΓq, so the indutive
hypothesis applies, and we get RpΓqu Ď Γr as required.
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Sub-case IV(e): U1 ‰ T1 and q2 is a 0-labelled leaf of TΛ (so U2 “ T2). This case
is almost identical to the previous one, with one difference: at the beginning, if
player 1 moves from 0-labelled leaves to a 1-labelled leaf, player 2 cannot respond
with q2 1̂. Instead, we start the auxiliary game, and choose t1r1s “ q1 (as it is a
1-labelled leaf of TΓ). Note that this is a pass for player 3, while the corresponding
move was not a pass for player 1. Nonetheless, this is not a problem, because
in this case player 4 cannot pass, as N R Λq2 . So the auxiliary play does not
end prematurely. The fact that this is a pass for player 3 means that no ordinal
was spent, so the ordinal advantage over player 1 is the same as in the previous
sub-case. □

Definition 7.12. For a Borel Wadge class Υ, let CpΥq be the collection of all
non-self-dual Borel Wadge classes Θ of Σ-type such Υ Ď Θ, and for some Θ0,Θ1 P

tΘ, Θ̌u, the pair pΘ0,Θ1q reduces pΥ,Υq.

If Υ Ď Θ and Θ has the reduction property, then Θ P CpΥq. In particular, for
all Γ, RpΓq P CpΓq. If Γ has the reduction property, then Γ is the Ď-least element
of CpΓq.

Lemma 7.13. Suppose that pΛ0,Λ1q reduces pΓ0,Γ1q, and that H P Γ1. Then
Γ0 Ď Λ0.

Proof. Let A P Γ0. The only pair that reduces pA,Hq is pA,Hq itself, so A P

Λ0. □

Corollary 7.14. Suppose that Γ ‰ tN u, Θ has Σ-type, and that for some Θ0,Θ1 P

tΘ, Θ̌u, the pair pΘ0,Θ1q reduces pΓ,Γq. Then Γ Ď Θ (so Θ P CpΓq).

Proof. By Lemma 7.13, Γ Ď Θ0 and Γ Ď Θ1.
By the semi-linear-ordering principle, we need to exclude the case that Γ has

Π-type and Θ “ Γ̌. In this case, Θ0 “ Θ1 “ Γ, but then Γ has the reduction
property, which is impossible. □

The following proposition, together with Theorem 4.11, then finishes the proof
of Theorem 7.5.

Proposition 7.15. If Γ is admissible, then RpΓq is the Ď-least element of CpΓq.

Proof. By Proposition 4.13, it suffices to show that for all monotone admissible Λ
with Λ P CpΓq we have RpΓq Ď Λ. By Proposition 4.13 (and Lemma 7.11), we may
assume that Γ is both admissible and monotone. [Monotony is not fundamental to
the proof; it only makes notation a little cleaner.]

In fact, we show:

(˚): For all t P TΓ such that t R bpΓq or t “ xy, for all monotone admissible Λ with
Λ P CpΓtq, we have RpΓqt Ď Λ.

We prove this by induction on the rank of t in TΓ. For a fixed t, we prove p˚qΓ,t by
induction on the complexity of Λ.

Case I: ξΓt “ ω1. There are two sub-cases:

‚ If Γt “ tHu then RpΓqt “ tHu and H P Λ since Λ has Σ-type.
‚ If Γt “ tN u then Σ0

1 Ď Λ; the assumption t R bpΓq or t “ xy implies that
RpΓqt “ tN u or RpΓqt “ Σ0

1.
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In the remaining cases, ξΓt ă ω1, so RpΓqt “ RpΓtq; to save ink, we assume that
t “ xy.

Case II: opΓq ą opΛq. By Proposition 5.2, there are n and m such that for some
Θ0 P tΛn, Λ̌nu and Θ1 P tΛm, Λ̌mu, the pair pΘ0,Θ1q reduces pΓ,Γq. Since Λ
is monotone, for k “ maxtn,mu we have Θ0,Θ1 P tΛk, Λ̌ku; without loss of
generality, Λk has Σ-type. By Corollary 7.14, Λk P CpΓq (and this is why we
defined CpΓq the way we did). By induction, RpΓq Ď Λk, and Λk Ď Λ. [If Λ̌k has
Σ-type then we use Λ̌k Ď Λ, since Λ is monotone.]

Case III: opΓq ă opΛq. By Corollary 3.7(b), it suffices to show that for all n,
RpΓqn Ď Λ. For all n, since Γn Ď Γ, Λ P CpΓnq. If n R bpΓq then by induction,
RpΓqn Ď Λ. If n P bpΓq then n “ 0. In this case, RpΓq0 “ Σ0

1`opΓq
. However,

for any n ą 0, opΓnq ą opΓq, showing that Σ0
1`opΓq

Ď Γn (Lemma 3.8); as Γn Ď

RpΓnq “ RpΓqn (Lemma 7.10, and n R bpΓq) and RpΓqn Ď Λ; so Σ0
1`opΓq

Ď Λ.

In the remaining cases, let ξ “ opΓq “ opΛq ă ω1. For all n, the classes RpΓqn

have Σ-type, and so they are all Ď-comparable. Note that by Lemma 7.11, if n ą 0
then RpΓqn Ď RpΓqn`2, however equality may hold even if Γn ă Γn`2. Further, it
is not clear what the relationship is between RpΓqn and RpΓqn`1 when Γn`1 “ Γ̌n.
Also, it is possible that RpΓq0 is larger than each RpΓqn for n ą 0.

Case IV: For all n, opΓnq “ ω1. Since Γ is monotone, either Γ “ DηΓpΣ0
1`ξq or

Γ “ ĎηΓpΣ0
1`ξq. If the former, then RpΓq “ Γ, so RpΓq Ď Λ. If the latter, then by

Example 7.9, RpΓq “ DηΓ`1pΣ0
1`ξq. By Example 5.3 (and the semi-linear-ordering

principle), RpΓq is the Ď-least element of CpΓq.

Suppose that case IV does not apply. Then there is some n such that RpΓq0 Ď

RpΓqn. For otherwise, since Γ0 Ď Γ2, by Lemma 7.11 we must have 0 P bpΓq. So
opΓ0q “ ω1 and RpΓq0 “ Σ0

1`ξ. Let n ą 0. Since opΓnq ą ξ, and by assumption,

Σ0
1`ξ Ę Γn (as Γn Ď RpΓqn (Lemma 7.10)), by Proposition 2.4 (or Lemma 3.8),

opΓnq “ ω1; so case IV applies.

In the remaining cases, let Υ “
Ť

ně0 RpΓqn. Note that if n ą 0 and opΓnq “ ω1

then RpΓqn “ Γn. Since case IV does not hold,

Υ “
ď

tRpΓqn : n ą 0 & opΓnq ă ω1u .

Further, we observe that

Υ Ď
ď

m

Λm.

To see this, let n ą 0. Since Γn Ď Γ, Λ P CpΓnq, so by induction, RpΓqn Ď Λ.
Since opRpΓqnq “ opΓnq ą ξ and opΛq “ ξ, by Corollary 3.7, there is some m such
that RpΓqn Ď Λm.

Case V: For some n, Υ “ RpΓqn. We may assume that n ą 0. In this case
opRpΓqnq “ opΓnq ą ξ. Since opRpΓqq “ ξ, by Corollary 3.7(b), RpΓq “ RpΓqn;
and we just cheked that Υ Ď Λ.

Case VI: For some n, Υ Ď Λn. Since Λ is monotone, we may assume n ą 0.
Since Λ is admissible, opΛnq ą ξ. By Corollary 3.7(b), RpΓq Ď Λn, and Λn Ď Λ.

Case VII: ηΛ ą ηΓ. In this case, RpΓq Ď Λ follows from Proposition 4.8.
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Case VIII: None of the above. We claim that

Υ “
ď

n

Λn “
ď

n

Γn

and that pΓnq and pΛnq do not settle to be a dual pair: for all n there is some m
such that Γn ă Γm and Λn ă Λm. For the first equality, observe that Υ is the
union of the Σ-classes RpΓqn, and that case VI does not apply. If the second fails
then there is some m˚ with

Ť

n Γn Ď RpΓqm˚ (as by Lemma 7.10,
Ť

n Γn Ď Υ); we
may assume that m˚ ą 0 and opΓm˚ q ă ω1. This implies that RpΓqm˚ “ RpΓm˚ q

has the reduction property. By induction, for all n, RpΓqn Ď RpΓqm; so case V
applies.

Also observe that ηΛ “ ηΓ. Otherwise, since case VII does not apply, ηΛ ă ηΓ.
Then

Ť

Λn Ď
Ť

Γn and Γ being admissible would impliy Λ ă Γ (Proposition 4.8),
contradicting Γ Ď Λ.

Fix Θ,Υ P tΛ, Λ̌u such that pΘ,Υq reduces pΓ,Γq.

Claim 7.15.1. If 0 P bpΓq then 0 is not a leaf of TΛ.

Proof. Suppose that 0 P bpΓq and that 0 is a leaf of TΛ. We show how player 1
wins the game GredpΓ,Γ;Θ,Υq, contradicting the assumption that pΘ,Υq reduces
pΓ,Γq.

Let T0 and T1 be the two copies of SΓ used by player 1 in the gameGleafpΓ,Γ;Θ,Υq;
let S0 and S1 be the two copies of SΛ “ SΘ “ SΥ used by player 2 in that game.

We show that there is a move pr1s for player 1 in which he does not move on T0,
that forces player 2 to move on S0 (or it is an easy win for player 1). This depends
on the labels of the leaf 0 in the classes Θ and Υ.

‚ If Θ “ Υ, so the labels are either p0, 0q or p1, 1q: player 1 can pass, since
the quadruples p1, 1; 0, 0q and p1, 1; 1, 1q are winning for player 1.

‚ Θ “ Υ̌: by exchanging Θ and Υ (as pΥ,Θq also reduces pΓ,Γq), we may
assume that the label of 0 on Θ is 0. On T1, player 1 moves to some
outcome m such that H P Γm (and sets the η-ordinal at the root of T1

to 0); the tree T0 remains in default position. Now player 1 passes until
player 2 moves on S0. If this never happens, then player 1 can ensure that
the outcome is p1, 0; 0, ˚q, which is winning for player 1.

After player 2 moves on S0, player 1 now moves on T0 and matches the η-ordinal
at the root; if the current outcome on S0 is n, player 1 can choose an outcomem such
that Θn ă Γm. Further, if pr1s is a pass, then player 1 also moves on T1 to some
outcome k such that H P Γk. At the end of the play of GleafpΓ,Γ;Θ,Υq, we obtain
an outcome pm, a;n, kq with Θn ă Γm and H P Γk. By Lemma 7.13, pΘn,Υaq

does not reduce pΓm,Γkq, so player 1 has a winning strategy in the corresponding
reduction game. □

Claim 7.15.2. pΘ0,Υ0q reduces pΓ0,Γ0q.

Proof. To devise a strategy for player 2 in GredpΓ0,Γ0; Θ0,Υ0q, we play an auxiliary
play of GredpΓ,Γ;Θ,Υq. Call the players in the auxiliary play, players 3 and 4.
Let S be a winning strategy for player 4 in the auxiliary game. As above, let
T0, T1 and S0, S1 denote the trees for players 3 and 4, respectively, in the game
GleafpΓ,Γ;Θ,Υq. There are three cases.
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If opΓ0q “ opΛ0q “ ξ: the gameGredpΓ0,Γ0; Θ0,Υ0q starts withGleafpΓ0,Γ0; Θ0,Υ0q,
where the corresponding trees are the restrictions of the trees Ti and Si to exten-
sions of 0. Player 3 copies player 1’s moves. We argue that player 4 also only
plays extensions of 0 on both S0 and S1, so player 2 can copy player 4’s moves.
Otherwise, suppose that at some round, player 4 moves away from 0, say on S0.
Then player 3 can abandon copying player 1, rather, player 3 can behave as in the
proof of the previous claim: on T1, player 3 moves to an outcome k with H P Γk;
on T0, player 3 reacts to a choice n P S0 by some m P T0 with Θn ă Γm. This
gives player 3 a winning position in GredpΓ,Γ;Θ,Υq, defeating S.

Hence, GleafpΓ,Γ;Θ,Υq ends with leaves all extending 0, the same leaves being
therefore the outcome of GleafpΓ0,Γ0; Θ0,Υ0q; in the rest of GredpΓ0,Γ0; Θ0,Υ0q,
player 2 can continue following S.

If opΓ0q ą ξ: in GleafpΓ,Γ;Θ,Υq, player 3 only passes. Again, player 4 cannot
move away from 0 on either S0 or S1, or he exposes himself to defeat. Hence,
the auxiliary leaf selection game ends with leaves extending 0. These leaves can be
chosen by player 2 as the result of their first moves in GredpΓ0,Γ0; Θ0,Υ0q. Player 2
can then follow S.

If opΓ0q “ ξ and opΛ0q ą ξ: in GredpΓ0,Γ0; Θ0,Υ0q, player 2 is instructed to wait,
while player 1 chooses some leaves t0, t1 of SΓ0 ; we identify these with the leaves of
SΓ extending 0. Then, we start the auxiliary play of GleafpT0, T1;S0, S1q. In that
play, player 3 first chooses pt0, t1q (setting all of their η-ordinals above 0 to 0) and
then passes. As in the other cases, player 4 must respond with extensions of 0. Say
the outcome for player 4 of the auxiliary game is a pair of leaves ps0, s1q on SΛ. In
the main game GredpΓ0,Γ0; Θ0,Υ0q, since opΓt0q, opΓt1q ą ξ, player 1 is instructed
to wait, and player 2 can walk up to ps0, s1q, and then follow S. □

As a result:

Claim 7.15.3. RpΓq0 Ď Λ0.

Proof. Suppose that 0 R bpΓq. So H P Γ0. Since Λ0 has Σ-type, Claim 7.15.2 and
Corollary 7.14 imply that Λ0 P CpΓ0q. Since 0 R bpΓq, the claim follows from the
induction hypothesis (˚)Γ,0.

Suppose that 0 P bpΓq. Then RpΓq0 “ Σ0
1`ξ. By Claim 7.15.1, 0 is not a leaf of

TΛ, so by Lemma 3.8 (as Λ0 has Σ-type), Σ0
1`ξ Ď Λ0. □

Putting it all together, we see that
Ť

n RpΓqn Ď
Ť

m Λm, that RpΓq0 Ď Λ0,
and that opRpΓqq “ opΛq and ηRpΓq “ ηΛ. By Proposition 4.9, RpΓq Ď Λ, as
required. □
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