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ABSTRACT. We use our descriptions of Borel Wadge classes from [DGHTTa] to
characterise those Borel Wadge classes that have the separation property, and
those that have the reduction property. Our analysis shows that both proper-
ties are equivalent to their effective versions. To do so, we give a characterisa-
tion of containment between Borel Wadge classes based on their descriptions,
and give a direct proof that all such classes admit admissible descriptions.

1. INTRODUCTION

In [LSR88a], Louveau and Saint Raymond gave a characterisation of those non-
self-dual Borel Wadge classes that have the separation property, and those that
have the reduction property. Their work is based on Louveau’s classification of
Borel Wadge classes ([Lou83]), which extends Wadge’s work ([Wad84]).

In [DGHTTa], together with Day and Harrison-Trainor, we defined a new system
of descriptions of Borel Wadge classes, which is effective in nature. It is based on
Montalban’s “true stage” method. This method was first applied in descriptive set
theory by Day, Downey and Westrick [DDW] and by Day and Marks [DM]. See
[DGHTTb], a survey, in which the authors use the technique to give a new proof
of Louveau’s separation theorem.

Here, we use the class descriptions from [DGHTTa] to give intuitive character-
isations of both the separation and reduction properties for Borel Wadge classes.
These characterisations flesh out the dynamic intuition behind these properties:
both rely on a “stage comparison” argument. The standard argument for the re-
duction property of the class of c.e. subsets of N is: run simultaneous enumerations
of two c.e. sets A and B. When a number n enters A u B, if it first enters A,
put it on the A-side (enumerate it into a c.e. Ag S A), otherwise put it on the
B-side. The result is a pair (Ag, By) reducing (A, B), meaning, Ay € A, By € B,
AUB:AouBo,aHdAoﬁB():@.

The same argument applies to open subsets of Baire space. Using the true stage
machinery, we can extend this argument to all classes X9, as follows. Let A, B € N
be X0. After relativising to an oracle, we may assume that o < w$k and that
A, B e Y. Let ¢ be the ordinal such that a = 1 + ¢. Then there are computable
sets U,V < w=%, upwards closed in <¢, such that A = [U]¢ and B = [V]¢, meaning
that A = {zx e N : (30 <¢ 2) 0 € U} (and similarly for B). Here <¢ is the &-true
stage relation given by a particular computable copy of £&. Now define computable
Up € U and Vy € V by letting o € Uy if the least 7 <¢ o with 7 € U u V' belongs
to U; we let 0 € Vp if the least 7 <¢ o with 7 € U U V belongs to VA\U. Then
Ay = [Uple and By = [Vpe are X2 sets that reduce (A4, B). In brief: By is the set
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of x € B such that = € B is witnessed before xz € A is; a witness is a £-true stage
for x that places x in B.

In this paper we show that an analysis of this kind can be carried out for all
non-self-dual Borel Wadge classes. Informally:

e A non-self-dual Borel Wadge class has the separation property if and only
if some (equivalently, every) description I" of the class has default outcome
“in” (we say it is of II-type, the dual of a 3-type).

e A non-self-dual Borel Wadge class has the reduction property if and only if
some description I' of the class is hereditarily of ¥-type, meaning that all
of the classes I's used in the construction of I' have Y-type.

Further, these characterisations show that the separation property is equivalent
to the effective separation property, which states that a separator can be obtained
effectively from the pair needing separation. Similarly, the reduction property for
a Borel Wadge class is equivalent to the effective reduction property, however in
this case, we may need to relativise to a Turing cone. The base of the cone can be
taken to be Al relative to any given description of the class.

Along the way, we describe clopen games that characterise containment between
non-self-dual Borel Wadge classes, and similarly, games that characterise the sep-
aration and reduction properties. An effective version of these games is used in
up-coming work on Selivanov’s fine hierarchy. Further, our game characterisation
of containment between classes allows us to give direct translations of class descrip-
tions into “admissible” class descriptions, which was hitherto done only indirectly.

Our characterisations are analogous to those provided by Louveau and Saint
Raymond in [LSR88a]. The methods are fundamentally different, though. In par-
ticular, their argument uses Borel determinacy, whereas as in [DGHTTa], ours can
be carried out in the system ATRy + IT3-IND.

2. CLASS DESCRIPTIONS

We shall use the true stage relations and class descriptions that were developed
in [DGHTTa]. Let us recall the main notions.

We work with Baire space N' = w®. A (concrete) computable ordinal is a com-
putable well-ordering of a computable subset of N, in which the successor relation
and collection of limit points are both computable. For concrete computable ordi-
nals a and 8 we write a < 8 if « is an initial segment of 3.

For every concrete computable ordinal o we obtain a partial ordering <, with
a variety of pleasing properties, (denoted TSP(1)-TSP(7) in [DGHTTa]). In par-
ticular, (WS¥,X,) is a tree, with root () (the empty sequence); < is usual string
extension <; the relations are nested: if 5 < o then <, implies <g. For all z € N,
{o € w<¥ : 0 <4 x} is the unique infinite path in ({o : 0 < 2},<,). And most
importantly: a set A <€ N is ¥¥,, if and only if there is a c.e. (or computable) set
U € w<¥ such that A = [U], = {z €N : (Jo0 <4 x) o € U}. These relations can
be relativised to oracles z, in which case we write <Z.

Informally, the idea is that we can associate with each finite sequence o, a guess
about finitely many entries of the o iterated Turing jump of reals extending o.
The relation o <, 7 for finite 7 means that the 7 guesses extend the o guesses;
the relation o <, x for infinite x means that o guesses correctly about the iterated
jump of x. While the true stage machinery is required for the definition of the
class descriptions, we will see that our game characterisations will free us from
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directly using this machinery when analysing containment between classes, and the
reduction and separation properties.

The presentation of ¢ +o sets (as those which are generated by computable
sets of strings using <,) extends to a characterisation of a corresponding class
of approximated functions. An «-approzimation of a function F: NN — N is a
function f: w<¥ — N such that for all x € N, the sequence {(f(c) : 0 <4 T) is
eventually constant with value F'(z). Generalizing the case o = 0, we have that
a function F: N — N is X9, . -measurable if and only if it has a computable
a-approximation (see [DGHTTa, Prop. 2.14] or [DGHTTh, Prop. 3.6]).

A class description is a labelled tree I satisfying the following:

(i) the underlying tree T € w=<* is well-founded;
(ii) for a leaf s of Tt, I'(s) € {0, 1};
(iii) for a non-leaf s € Tr, T'(s) is a pair (&s,ns) = (€L, L) of (concrete) ordinals,
with s > 1.

We require that £ < & if s < t. A class description I' is also equipped with an
oracle yI' that computes I' (including all the ordinals &5 and 75, uniformly in s).

A class description is a template for defining nested approximations, that give
decision procedures for sets in the described classes. A I'-name will determine, for
each real z, a leaf s of TT, and z will be an element of the named set if the I'-label
of sis 1. If t is a non-leaf of T, and it has been determined that ¢ is an initial
segment of the leaf corresponding to z, then the label (5, 7;) tells us that in order
to find which child of ¢ on Tr is an initial segment of the leaf, we apply & many
Turing jumps to x, and then computably approximate the choice of a child using
an 7,-c.e. process: we first need to choose the leftmost child of ¢, which is a default
child; we can then change our mind, but each time that we do, we need to decrease
the counter ordinal, which started at 7.

More formally, if T is a class description, then a I'-name N consists of an oracle
z = zN =1 yU computing N, and for each non-leaf s € Tr, a pair (fs, 3s) =
(fN,BN), such that f, is a £,-approximation of a function choosing children of ¢,
with 85 being a witness for the convergence of the approximation. That is:

(1) for all 0 € w=¥, fs(o) is a child of s on TT, and Bs(c) < nL;

(2) if o <, 7 then Bs(0) > Bs(7), and if in addition, fs(o) # fs(7), then
Bs(o) > Bs(7); and

(3) if Bs(0) = nL then f (o) is the leftmost child of s on Tt.

For each such s, for each xz € w*, the conditions above ensure that the sequence
(fs(o) + 0 <¢ z) stabilizes to some value, which we denote by fs(z) = ().
(Similarly, the sequence of ordinals (8(c) : o <§, ) stabilizes to a value denoted
by Bs(x) = BN(x).) For each z € w®”, we can then recursively define a sequence
S0, 81, - - . of nodes on Tr, starting with sg being the root, and letting si+1 = fs, (x).
This terminates in a leaf £(x) = ¢~ (z) of Tr; the set named by N is the collection
of x for which the I'-label of ¢(x) is 1.

Notation 2.1. To keep notation clean, for a I'-name N, we will occasionally let N
denote the set named by N, which we will also identify with its characteristic
function (this was denoted by F~ in [DGHTTal).
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Remark 2.2. In [DGHTTa] we needed to consider names of partial functions on
Baire space; these are not required in the current paper, and so we only defined
total ['-names.

For an oracle z =1 y', we let T'(z) be the collection of all sets named by TI'-
names N with z&¥ = z; we let

r= U{F(z) czzryl}.
The collection T is a non-self-dual Borel Wadge class, which has a universal set. This
can be seen by the fact that we can effectively list z-computable approximations
(fs,Bs) as above, much as we can give effective lists of all n-c.e. sets; the default
child allows us to convert partial approximations to total ones while preserving
the limit. That T is closed under taking continuous preimages follows from the
fact that we can effectively translate between true stage relations; this also shows
that if w =1 z =1 y' then I'(z) € I'(w), uniformly. For details, see [DGHTTa,
Prop. 3.10,3.14].
A T'(2)-name is a I-name N such that 2V = z.

The definitions so far may seem abstract, but examples can explain the intuition
behind them. Perhaps the simplest examples are the descriptions of the classes
0, and II9, , (Fig. 1). To approximate membership in a X9, set, we first take
« many jumps, start with the default value “out”, and are allowed to change our

mind once, to the value “in”. The dual class is similar, except that the default

value is “in”. We will encounter further examples below.
0 1 1 0
E=a,n=1 E=a,n=1

FIGURE 1. The simplest descriptions of 39, and II9_,.

Notation 2.3. The labels of nodes on 7T do not play any role in the determination
of the classes described; the only distinction is between the default child of a node,
and all the rest. It will be convenient to assume that for any class description and
any non-leaf s € T, the default child of s is s™0.

Associated with class descriptions are the following concepts.

e The ordinal level of a class description I', denoted by o(T'), is the &-ordinal
fg at the root of Tr. This is defined unless the root is also the leaf of Tt (in
which case the class described is either {f} or {NV'}); we then set o(T') = w;.

When o(T') < wy we let nt' = ng denote the n-ordinal specified by I' at
the root of Tr.

e The dual T of a class description I is obtained from I" by flipping the values
I'(s) at the leaves. The described class is indeed the dual of T'.

e If I is a class description and s € Tt then I'; is the class description obtained
by setting s to be the new root and taking I" above s: T's(t) = I'(s"t). The
various classes I'y are those which are used in a recursive construction of I
(starting with the leaves).
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We will use “definition by cases”. For sets A and X, a class description I', and
an oracle z =1 yU', we say that A X € T'(2) if there is some B € I'(z) such that
An X = Bn X. For sequences (A,) and (X,,), we say that A, | X,, € I'(2)
uniformly if with oracle z, given n, we can compute a I'(z)-name N,, for a set B,
with A, n X,, = B, n X,,.

Proposition 2.4. Let I" be a class description, and let z =1 y*'. Suppose that:
o (X,)new 18 a partition of N into sets which are uniformly A(1)+O(F)(z),' and
o AC N is a set such that A} X, € T'(2), uniformly.

Then AeT'(z).

This proposition follows from [DGHTTa, Prop. 3.17]. The proof, however, is
easy, so we give a direct one.

Proof. For simplicity of notation, assume that z is computable. Let o = o(T).
By the true stage properties mentioned above, there is a sequence of uniformly
computable sets U,, € w<* with X,, = [Up]a; we may assume that the sets U,
are pairwise incomparable under <., and that the union | JU, is also computable.
The nestedness of the true stage relations, together with the requirement that « is
an initial segment of &I for all non-leaf s € Tr, imply that for all such s, for all n,
[Unle. = [Unla = Xan.

Let N, be a uniformly computable sequence of I'names, with N,, naming a
set A, such that 4, n X,, = An X,,. Define a new I'(z)-name M by taking the
“disjoint union” of the names N, according to (U,): for each non-leaf s of Tp
we define fM and BM as follows: for each o0 € w=<“, if o has no predecessor in
any U, then we set M (o) = n, and fM (o) = 570 (the default); otherwise, for
some unique n, o has a predecessor in U,,, and then we set fM (o) = fN (o) and

B (o) = B (o). 0

We now introduce terminology that did not appear in [DGHTTa], but mentioned
in the introduction. If I' is a class description, then as Tt is well-founded, it has
a leftmost leaf. This leaf of T is in some sense the ultimate default outcome: the
default of the default of the default. ...

Definition 2.5. Let I' be a class description; let s be the leftmost leaf of Tr. We
say that I' is of II-type if I'(s) = 1, and T" is of X-type if T'(s) = 0.

Every description is either of Y-type or of Il-type. A class description I' has
Y-type if and only if its dual I" has I-type. If o(I") < w; (i.e., if Tt is not just the
root) then I and Ty have the same type. The natural descriptions of 3¢, , and
m +o (Fig. 1) are of X-type and II-type, respectively, justifying the name.

For Wadge classes T and A, we write I' < A when ' € A(A) = An A. For class
descriptions I and A we write I' € A if T' € A effectively: yI' >1 yA and uniformly,
given z > yI' and a I'(z)-name N, we can compute a A(z)-name M, equivalent
to N, in the sense that they name the same set.

Remark 2.6. Computability considerations are important for the definition of class
descriptions, as they rely on the true-stage relations, which are inherently “light-
face”. We will also be interested in the effective versions of the separation and
reduction properties, and there too we will need to keep track of which oracle we
are working with. However, if we are willing to increase the complexity of the oracle
as necessary, then boldface considerations suffice. For example, if I" and A are class



6 N. GREENBERG AND D. TURETSKY

descriptions, and I' € A, then I' € A on a cone: there is some oracle w =1 y', y*
such that after changing the I'-oracle to w we have I' € A. (This follows from
results in [DGHTTa], but will also follow from our game characterisation of con-
tainment in the next section.) Technically, changing the oracle means replacing I'
with a new class description I which is identical to I except that y'" = w. This
does not change the boldface class: I' = IV as for all z =1 w, I'(z) = T'(2).

Below, we will often assume that a sufficiently strong oracle is being used, and
ignore the difference between I' and I”. See Remark 3.3.

The main result we use from [DGHTTa] is:
Theorem 2.7. Every non-self-dual Borel Wadge class has a description.

See [DGHTTa, Thm. 6.8].

3. A CLOPEN GAME CHARACTERISATION OF CONTAINMENT

Wadge’s semi-linear-ordering principle says that for Borel Wadge classes I and A,
either I' € A or A < I'. In this section we attempt to answer the question: given
two class descriptions I' and A, how can we tell whether I' € A or not? An answer
of sorts is given by Lemma 6.1 of [DGHTTa]. There, we devise a closed game Gz
and show that I' € A if and only if player I has a winning strategy in the game
GA(Hp, Hr, Hy), where Hy is a universal set for I', and similarly for Hy. We now
devise a much simpler game that is: (i) clopen, rather than closed; and (ii) relies
only on the descriptions I" and A, and not on their universal sets.

The leaf selection game. The main ingredient in the containment game is an auxil-
iary “leaf selection game” that we describe first. We need the following definition.

Definition 3.1. For a class description I'" with o(T") < wy, let

Sr={0}v{teTr : & = o)},

where ¢t~ is the predecessor of ¢ on Tr. This is a subtree of 7. The non-leaves
of Sr are precisely those s € Tr with ¢&' = o(T"). Note that if s € Sr is not a leaf
of St, then all the children of s on Tt are also on Sr.
An Sr-position p consists of a choice, for each non-leaf s € Sr, of:

(i) a child ¢5 = ¢® of s on St; and

(ii) an ordinal n? < L,
subject to the following restriction:

o If n? =yl then & = 50 is the default child of s.

o Forsall but finitely many non-leaves s € St, n? = nl.
The second restriction is in place so that there are only countably many positions.
For two Sp-positions p and ¢, we let ¢ < p if for every non-leaf s of Sr,
(ii) n? < nP, and further, if ¢? # 2 then n? < n?.
The initial Sp-position is the position p determined by, for every non-leaf s of Sr,
n? = nl' (which forces ¢ = s°0).

Every Sp-position p determines a leaf tP of Sr, by following the choices from the
root, much like the definition of a leaf ¢V (x) of Tt used to compute the set named
by a I'-name N: for every non-leaf s < tP, ¢f < tP.
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Now let I and A be two class descriptions, and suppose that { = o(I") = o(A) <
wi. In the game Gieas (I, A), two players, 1 and 2, take turns choosing positions
p[—1],p[0], p[1],p[2], ..., satisfying:

(a) for odd k, p[k] (played by player 1) is an Sp-position, and for even k, p[k]
(played by player 2) is an Sy-position;
(b) p[—1] is the initial Sp-position, and p[0] is the initial Sy-position;
(c) For all k = 1, p[k] < p[k — 2].
For each k we write t[k] = tP¥],
o A choice p[k] (for k > 1) is called a pass if t[k] = t[k — 2].
Note that if no other legal move is possible, a player can always choose p[k] =
p[k — 2], which is, of course, a pass.
e The play ends when one player passes immediately after the other player
passed.
e The outcome of the play of the leaf selection game is the pair of leaves
(t[k1], t[k2]), where k; is the last round at which player j played.

Remark 3.2. Every play of the leaf selection game is finite: the child ¢4, [k] of the
root so of Spr must stabilise to some s1, and then the child ¢, [k] must stabilise,
and so on.

The containment game. For two class descriptions I' and A, the game Geont (T, A)
is played between two players, 1 and 2. During the game, player 1 traverses a path
up Tr, from the root to some leaf; player 2 does the same on .

For every round k of a play of the game, the players choose nodes s;1[k] € Tt
and sa[k] € Tp. We start with s1[0] = s2[0] = () being the roots of the respective
trees. Suppose that s1[k] and s3[k] have already been chosen. At round k + 1:

(1) 1f 551 K 7 Sg[k] then the player i with the smaller ordinal &, 5] chooses
si[k + 1] to be some child of s;[k] on the corresponding tree Tr or Th,
whereas the other player j does not move: s;[k + 1] = s;[k].

(2) If fgl ] = fs‘; (] = & < w1 then the two players play the leaf selection game
Greas(I's, (k15 As,[r])- The pair of nodes that are the outcome of the play of
the leaf selection game are then chosen as s1[k + 1] and so[k + 1].

(3) Henceforth, for a leaf s of Tr, we set &' = wy, and similarly for A. Hence,
(1) implies that once a player reaches a leaf, they stop moving, and the
other player must work their way up the tree until they get to a leaf.

The game ends with two leaves s; = s1[k] € Tr and sy = so[k] € Tx. Player 2
wins the play if
A(SQ) = F(Sl).
The containment game can be coded by a clopen subset of A/, and so is deter-
mined.

Remark 3.3. In the description of the games, we have implicitly identified concrete
ordinals (well-orderings of subsets of N) with their order-types (set theoretic, von-
Neumann ordinals). The games do not use the true stage relations, or involve any
computability for that matter, and so we didn’t need concrete ordinals. Below we
will use the game to define I'- or A-names, and these, of course, require the true
stage relations. We will work relative to an oracle that can compute the game (and
a winning strategy for one of the players). This means that the oracle can compare
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all the ordinals involved. By [DGHTTa, Prop. 2.20], when we work with such an
oracle, we may assume that the concrete ordinals appearing in both I' and A are all
initial segments of one long ordinal (they are all comparable as concrete ordinals).
The resulting true stage relations are then all nested. We can also unambiguously
speak of the concrete ordinal £ + 1, for any ordinal £ involved.

Note that since two hyperarithmetic ordinals are hyperarithmetically compa-
rable, and the containment game is clopen, we can find such an oracle which is
hyperarithmetic in y @ yA.

The following, together with clopen determinacy and the fact that every non-
self-dual Borel Wadge class has a description, implies Wadge’s semi-linear-ordering
principle for such classes.

Theorem 3.4. Let I" and A be class descriptions.
(a) Player 2 has a winning strategy in the game Geont(T', A) if and only if
'cA.
(b) Player 1 has a winning strategy in the game Geont (T, A) if and only if
AcCT.

To prove Theorem 3.4, it suffices to prove the following two propositions:

Proposition 3.5. If player 2 has a winning strategy in the game Geont (I, A) then
T'cA.

Proposition 3.6. If player 1 has a winning strategy in Geont (I', A), then player 2
has a winning strategy in Geons(A,T).

This suffices, since the game Geont(I', A) is determined, and the class T' has a
universal set (so T' ¢ I).
We start with the first proposition.

Proof of Proposition 3.5. Let & be a winning strategy for player 2 in the game
Geons (I, A). We show that T' € A effectively: let z be an oracle that computes &
and the game (as discussed in Remark 3.3); we show that I'(z) € A(z), uniformly.
This means that given any I'(z)-name N, we can, with the aid of z, compute a
A(z)-name M which is equivalent to N, meaning that they both name the same
set.

Roughly, the idea of transforming N into M is, for every x € N, to run the
approximation to N (z) as a play for player 1, and to let M (z) follow the strategy &.
We present this construction as the result of effective transfinite recursion on the
complexity of the pair (T, A).

There are four cases.

Case I: o(T) = o(A) = wy,s0 T, A € {{T}, {N}}. The game Geont (T, A) ends before
it even begins, and player 2 winning it means that I' = A.

Case II: o(T) > o(A). In this case, player 2 makes the first move in the game, and
so the strategy & selects an outcome n (a child of the root). After this first move,
the rest of the strategy is a winning strategy for player 2 in the game Geont (I, Ayy).
By induction, I'(z) € A, (z). The result follows from A, (z) € A(z).

Case III: o(T') < o(A). In this case, player 1 makes the first move in the game.
For each child n of the root on Tr, the strategy &,, for player 2 that is played by
following & after player 1 played n, is a winning strategy for player 2 in the game
Geont(Tny A). By induction, T',(2) € A(z), uniformly.
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Let N be a I'-name of a set A. For each n on Tr, let
H,={zeN : N(z) > n}.

For each n, H,, is AY (2): the function fg has a z-computable o(T")-approximation,

14+o(I)+1
and so is A?M(F)H(z)-measurable.l Since o(A) > o(T') + 1, H,, € AV (z). Each

1+o0(A)
name N,, shows that A | H,, € T'5(2), so A H, € A(z), uniformly. By Proposi-

tion 2.4, N € A(z).
Case IV: o(T) = o(A) = £ < wy. The game Geons (T, A) starts with the leaf selection
game Greas (', A), played on the trees St and Si.

Let N be a I'(z)-name of a set A; we will design an equivalent A(z)-name M.
For simplicity of notation, we omit mentioning the oracle z in true stage relations.
We assume that for all non-leaf s € Tr, Y (()) = nL' (redefining BN (()) = nL' and
IN(0) to be the default child s°0 of s on Tt does not violate the required properties
of T-names, and does not change the limit values f(x) for any = € ).

For each 0 € w<“ we will define a sequence of moves for player 1 in the game
Gheat (T, A). Player 2 will follow the strategy &. We let p(0)[—1], p(0)[0], ... denote
the resulting play. We write t(o)[k] for t?(D)F] and similarly write cs(o)[k] and
ns(0)[k]. Let k(o) be the last round of the play. We define a round number m(o):

e if k(o) is even (the play ends with a pass by player 2), let m(o) = k(o) — 2;

e if k(o) is odd (the play ends with a pass by player 1), let m(o) = k(o) — 1.
In other words, m(c) is the round preceding the last pass made by player 1. In
particular, by the end of this round, the play has not yet ended.

Let g(o) be the Sp-position defined by choosing, for all non-leaf s of Sr,

(1) &7 = N (o0);
2) 9 =8N (o).
The definition of I'-names implies that if ¢ <¢ 7 then ¢(7) < ¢(0). The assumption
on BN (()) implies that q({)) is the initial Sp-position.
The definition of the play for ¢ is done by induction on |o|¢, the number of
proper <¢-predecessors of ¢.
e If 0 = {) then player 1 keeps playing ¢({}).
Suppose that o # (}; let 0~ be the immediate <¢-predecessor of o.

e In the play for o, player 1 first follows all the moves p(c™)[k] for k < m(c™).
From round m(o~)+ 1 onwards, player 1 keeps playing ¢(o). (Since m(o™)
is even, we do not need to specify player 1’s play at that round.)

This play is legal for player 1 since g(o) < g(o~). Note that since ¢()) = p(())[—1]
is the initial Sp-position, every move by player 1 in the play for o = () is a pass.

Note that it is possible that o <¢ 7 but that m(o) = m(7): if £~ (o) and £V (07)
extend the same leaf of St, then the play p(o)[m(o) + 1] = ¢(0) is a pass.

We define, for non-leaf s € Sy, the functions fM and M. For 0 € w=¥,

e welet f2(0) = c,(0)[m(0)] and 5 () = n.(0)[m(o)]-

n fact, the associated “time-keeping” function Bg shows that the set Hp is D77(E?+0(F))(z)7

and DW(E(1)+O(F))(Z) for non-default childrenn. Here n = r]g. See the proof of Proposition 4.6

below.
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If 0 <¢ 7, then m(o) < m(7) and the play for 7 extends the play for o after m(o);
it follows that p(7)[m(7)] < p(r)[m(c)] = p(o)[m(s)]. This implies that fM
and M obey the rules for building a A-name M.

To define M, it suffices to define M, for every leaf r of Sj that is reached by
any o. Let r(0) = t(o)[m(c)] be the leaf of Sy which is the outcome of the play
for o; let u(o) denote the outcome on the I'-side, which is the leaf of St extended
by ¢N (o). Once we define the rest of M, we will have (M (o) > (o).

For z € N, define u(z) analogously, and let 2* be the shortest o <¢ = such that
for all s < u(z), BN (o) = BN (x). For each o € w=* let

Qs ={reN :z*=0}.
The sets @, are 1'1(1)_%(,2)7 and so A(13+5+1(z), uniformly. For each leaf r of Sy,
& > €, so these sets are AD, 1 (2) (when £} <wy).

For each o € w=¥, continﬁing with & after the play for o in Gieas(I',A) is
a winning strategy for player 2 in the game Geont(I'y(s), Ar(s)). By induction,
L) (2) € Ar(o)(2), uniformly.

For each leaf r of Sy, let

= J{Qq : r=r(0)}.

For each o, the name N, witnesses A | Q5 € I';(5)(2) (recall that A is the set
named by N), and so by induction, A | @, € A,(,)(2). By Proposition 2.4, for
each r we can find a A,-name M, witnessing A | P. € A,(z). This defines M. Now
for each r,

P={zeN : Mz)>r},
So M names the set A. O

Proof of Proposition 3.6. Let & be a winning strategy for player 1 in the game
Geont (T, A). We define a winning strategy & for player 2 in the game Geone (A, T)
by strategy stealing. In fact, we can almost let & = &. However, in a leaf selection
sub-game, we need to correct for the fact that player 1 moves first.

More formally, we will define a strategy & for player 2 in Geons (A, f‘) such that for
every sequence of moves for player 1 in that game, which will result in a sequence
(s1[k], s2[k]) of positions in the play of the game, there is a sequence of moves
for player 2 in the game Geont (I, A), such that if player 1 responds with S, the
resulting sequence of moves will be (sa[k], s1[k]).

Recall the two cases from the definition of the containment game, depending on
whether the relevant ordinals £ agree or disagree. In case (1) of the game, we let &
do exactly what & does in reaction to the same moves by the opponent.

In case (2), let Greas(As,,T's,) be a sub-game occuring when player 2 follows &.
The game Gieas(I's,, Ay, ) is played in the corresponding play of Geont(I', A) when
player 1 plays &. If the outcome of the latter is (82, 81), we want the outcome of the
former to be (s1, s3). It would seem that player 1 moving first would be even better
for us now; the strategy & could be one step ahead. The danger is that the play
may end prematurely. This only happens if the first move by S in Greas (Tty, Ay)
is a pass. Hence, we consider two cases. Let x1,x3,5,... be the play by player 1
in Greas(As,,I',). We let the reaction by & to be ya, 34, s, - . . defined as follows:

e If the first move of & in Grear (I't,, A¢,) is not a pass, then we ignore the
first move of player 1 in Gieas (At,,I't,). In Grear (T't,, At ), we let player 2
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play z3,x5,27,... and let y2,y4,96,... be player 1’s response according
to & (so the play in~Gleaf(I‘t2,At1) 1S Yo, T3, Y, T5, Y6, L7y - - - )-

e If the first move of & in Gieas(I't,, A¢,) is a pass, but z1 is not a pass, then
we let player 2 play 1,23, X5, ... in Greas([t,, Ay, ), and list the S response
as pass, Y2, Y4, Ye, - - . (SO the Gleaf (Ft27 Atl) play is pass, T1,Y2,23,Y4, - .- )

o If the first move of & in Geas (I'y,, Ay,) is a pass, and 1 is a pass, then yo
is a pass. O

We record corollaries of Theorem 3.4, which were essentially observed during its
proof.

Corollary 3.7. Let A and T be class descriptions.

(a) If o(T) > o(A), then T < A if and only if T < A,, for some n € Ty.

(b) If o(T') < o(A), then T < A if and only if for alln € Ty, T'), € A.

(¢) If o(T') = o(A) < wq, then T S A if and only if there is a strategy & for
player 2 in the game Gieas (T, A), such that for any play for player 1 that
ends in some leaf t1 of St, replying using & yields a leaf ta of Sp such that
Iy, € Ay,

Here is a simple example.

Lemma 3.8. Let I" be a class description of ¥-type; suppose that o(T') < w; and

that T' # {&}. Then 2(1)+0(F) cT.

Proof. Let £ = o(T') and let © be the simple description of 2(1)4-5 (Fig. 1). The
game Geont(©,T) begins with a leaf selection game Gieas(©,T). The strategy for
player 2 is to pass if player 1 passes. Since I' has Y-type, the leftmost leaf s of St
satisfies {#} < I's. If player 1 does not pass, their only possible move is to choose

the 1-child of the root of ©® and pass henceforth. In this case, player 2 chooses some
leaf ¢t of Sr such that A € I'y; there must be one since T' # {(}. O

It follows that if T’ # {&}, {N} then A?JFO(F) C T; this also follows from Propo-
sition 2.4.

The same argument shows: if I' has 3-type, o(I') < wy, and T' # {¢J}, then
Dnr(z(ﬁo(r)) c T, where ' = 77<F> is the n-ordinal at the root of TT; see Fig. 2.

0 1 1 0

NSNS

&n &n

FIGURE 2. The simplest descriptions of D, (2{ ) and D, (29,,).

Remark 3.9. Suppose that I' € A and that o(T") = o(A) < w;. Then player 2 has
a strategy & in the leaf selection game Gheas(I', A) which is prompt, meaning that
for any play p[—1], p[0], p[1], ... where player 2 follows &, for every odd k = 1 such
that p[k + 1] is defined, we have T'y;) S Ayr41]. The idea is that if this is not
the case, then instead of playing p[k + 1], player 2 can imagine that player 1 keeps
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passing, until such a stage at which & gives an adequate response, and then play
that response.

In greater detail, let ¥ be a strategy for player 2 as in Corollary 3.7(c). To
describe &, we consider a play p[—1],p[0],... of the game in which player 1’s
moves are given; we explain how player 2 responds. To do that, we run a (possibly)
different play ¢[—1], ¢[0], ¢[1], ... of the same game, in which we specify player 1’s
moves, and player 2 follows . To do so, to each even k for which p[k] is defined,
we will match a corresponding even round [(k) in the auxiliary game; [ will be
strictly increasing, and we will choose p[k] = ¢[I(k)]. We start with {(0) = 0. Now
suppose that k > 1 is odd, that I(k — 1) is defined, and player 1 is now playing
some p[k]. The auxiliary game has been played up to round [(k — 1). We set
q[l(k — 1)+ 1] = p[k]. Henceforth, we let player 1 pass in the auxiliary game, while
player 2 follows ¥, until some odd round n > I(k —1) +1 at which Tg[,,) S Agpnga]-
Such a round must occur by the assumption on T. We let I(k +1) = n + 1 and
plk + 1] = ¢q[n + 1]. Note that the move ¢[l(k — 1) + 1] = p[k] is legal for player 1
in the auxiliary game because q[l(k — 1) — 1] = ¢[l(k — 3) + 1] = p[k — 2], and
plk] < p[k — 2]. Similarly, p[k + 1] = ¢[l(k + 1)] is legal for player 2 in the main
game.

4. EFFICIENT, MONOTONE, AND ADMISSIBLE CLASS DESCRIPTIONS

Some class descriptions are wasteful. Suppose, for example, that T" is a class
description, £ < o(I'), and that © is a class description with o(©) = ¢, and ©,, =T
for every child n of the root on Tg. Then by Corollary 3.7, ® = I'; making extra
choices at the root of Tg does not help make more complicated sets, essentially
because these choices happen “at a lower level”, namely &; as the root of Tt operates
at a higher ordinal level, it can divine the result of these choices. It will be useful
to use names in which such a situation does not occur.

Recall that for a collection C of Borel Wadge classes, by the semi-linear-oredering
principle, the following are equivalent: (1) C does not contain a class maximal
under C; (2) for every T € C there is some A € C such that T' < A. The definition
of efficiency, below, states that at each step, the choice among classes at the next
step is non-trivial (there is no maximal choice), and that the containments in duals
that witness this fact are provided effectively.

Definition 4.1. A class description I' is efficient if:

e For all non-leaf s € Tt for every child ¢ of s, there is some child r of s such
that I'y = T',.
e For all s,t € Tr, either I'y € T'; or I'y € Iy, uniformly.

The second condition means that given any pair (s,t), the oracle yT' can tell
which containment I'y < ', or I'; < I’y holds, and that these containments are
effective.

Shortly, we will show that all non-self-dual Borel Wadge classes have efficient
descriptions (this also follows from the work in [DGHTTa]). Indeed, we will consider
a much stronger notion. For now, we note that efficient descriptions determine the
ordinal level of a class.

Proposition 4.2. Suppose that T' is an efficient class description, A is a class
description, and that T' = A. Then o(T") = o(A).
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Proof. Suppose that o(T') < o(A). Since A < T, by Corollary 3.7, A < T, for
some child n of the root on Tp. Since I' is efficient, there is another child m such
that I',, € I',,,. Since I',,, < T, it follows that A < I, but then we cannot have
A=T. O

This allows us to define the ordinal level of a non-self-dual Borel Wadge class,
as o(T") for any efficient description T' of the class; we write o(T"). Louveau and
Saint Raymond noted that this ordinal level can also be characterised in terms of
definitions by cases: Proposition 2.4 is optimal. Say that a Wadge class © is closed
under definition by cases at level £ if for all A € N, for every partition of A into
A(l)Jrg sets (X,,), if for all n, A} X,, € ©, then A € ©.

Proposition 4.3. A non-self-dual Borel Wadge class ® # {J},{N} is closed
under definition by cases at level £ if and only if £ < o(©®).

Of course if @ = {} or {N} then it is closed under definition by cases at every
level £ < wy = 0(O).

Proof. That © is closed under definition by cases at level o(®) follows from Propo-
sition 2.4, using any efficient description © of @. On the other hand, if © is such
a description, let N be a ©-name for a set A, universal for ®. For each child n of
the root on Te, let X, be the collection of 2 € A/ such that £©(z) > n. As above,

the sets X, are A(l)JrO(@)H. For each n, A} X,, € ©,, (as is witnessed by the name

N,,); efficiency implies that A X, € ©. If ® were closed under definition by cases
at level 0(@®) + 1, then we would have A € ©, and being universal, it is not. O

Definition 4.4. A class description I' is monotone if for all non-leaf s € T, for all
neN, s'n €Iy, and 'y, S 'y (41), uniformly in n and s.

These are the descriptions used in [DGHTTa]. Every monotone description is
efficient.

4.1. Admissible descriptions. The paper [DGHTTa] used the notion of an ac-
ceptable class description, which is a monotone class description in which every
1ns = 1. Unfortunately, to properly classify those classes with the reduction prop-
erty, we must move to a different sort of description.

Definition 4.5. A class description I' is admissible if it is efficient, and for all
non-leaf s € Tt, for every child t of s other than the default one, ¢! < &}

In general, descriptions only require £ < ¢F'; in admissible descriptions, equality
is permitted only for the default outcome. Acceptable descriptions are closer in
spirit to “type 2 descriptions” from [LSR88b]. Admissible descriptions are closer
to “type 1 descriptions” discussed in [Lou83].

4.2. The utility of admissible descriptions. One important common property
of both acceptable and admissible class descriptions is that non-default outcomes
t = s™n, in some sense, “know” the limit behaviour of f;. That is, for an acceptable
or admissible class description I" and a I'-name N, we may make the simplifying
assumption that for a non-default child ¢ of a node s € Tr, for all o, if 8N (o) < 7t
then fN (o) = t. In other words, f/¥ does not begin to act (possibly moving away
from its default outcome) until it is certain that f¥ has converged to t.



14 N. GREENBERG AND D. TURETSKY

For acceptable descriptions, this is because if fN (o) = t then 8N (s) = 0, so
fN(7) =t when o <¢, 7. Thus, f& can begin acting as soon as it sees N take the
value t.

For admissible descriptions, the fact that ¢ is working with a higher ordinal,
specifically that & > & + 1, allows it to comprehend the eventual behaviour of
N2 Specifically, there is a z-computable set X < w=<¥, <¢,-upwards closed, such
that: for o <Z, 7 with o € X, f¥(0) = fN(7); and [X]e, = V. Then f can defer

any action until it reaches a 0 € X with fN (o) = t.

Here is a related example. In [DGHTTa], we gave a class description for the class
BiSep(X¢ 4o A) of two-sided separated unions. Using admissible descriptions, we
can extend it to some classes BiSep(Dn(E(erg), T, A), as follows. Let £ be an ordinal;
let A and I be class descriptions, and suppose that:

e A< F;

e £ <o(A); and

o £ < o).

Let n be an ordinal. Define a new class description T by setting:

e o(T)=¢

o 0¥ =

e The children of the root are 0,1, and 2 (with 0 being the default), and:
- TO = A,
- Tl = F,
- Yy =T.

If A and T are efficient, then so is T; if A and I" are admissible, then so is T.

Proposition 4.6. ¥ = BiSep(Dn(E(l’+§), ' A) is the class of sets of the form
(C1 nAp) U (Cyn Ag) U ((C1 U Co)t N B), where Cy and Cy are disjoint Dn(2?+5)
sets, Ay eT', Ay e T, and B € A.

Proof. In the easier direction, let N be an YT-name of a set F'; let z = 2. For each
n=0,1,2, let
Cp ={z : N(z) > n}.

These sets form a partition of N, in particular, C; and Cy are disjoint. The
sets C1 and Cy are both D, (29, ,)(2). To see this, recall ([DGHTTD, Prop. 3.8])
that a set £ < N is DW(Z(I)Jrg)(z) if and only if there is a z-computable £-approximation
g: w<¥ — {0, 1} of the characteristic function 1, equipped with an ordinal func-
tion v: w<¥ — n + 1 witnessing the convergence of g, with default outcome 0, i.e.,
y(o) =n = g(o) = 0. Let g1(0) =1 «—= fN(o) =1 and g2(0) = 1 —
fN(0) = 2; then (g1, ") and (g, V) show that C; and Cy are both D, (29, ).
Here, as usual, fV = fg and BN = Bg.

The names N,, for n = 0, 1,2 define sets A, As and As; since T1 = I' we have
A; €T, and similarly, A; € I' and Ay € A. Finally, F n C,, = A, n C), so the sets
Al, AQ, Ao, Cl, CQ show that F' € BlSep(Dn(E?+£), T, A)

In the easier direction, we had an “excess of ordinals < 7”; it was easy to show
that Cy,Cs € Dn(2?+g)~ In the other direction we have to work harder. We are

given disjoint C,Cs € DW(E?H)(Z), Be A(z), Ay e '(z), Ay € I'(2), and we need

2This was already used in the proof of Proposition 3.5, in constructing the names M.
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to come up with an Y-name M for a set F' such that F = A; on C1, F' = Ay on O,
and F = B on (C; u Cy).

Fix approximations (gi,v1) and (g2,72) witnessing that C1,Cs € D, (Z?+€)(z).
Our opponent, in some sense, has double the “amount of ordinal space” to make
changes compared to us: they can change g1 (z) and pay by decreasing v1, and then
change g, and pay by decreasing ;. We define a single SM.

If the opponent makes changes and currently g; (o) = g2(0) = 1 then we can wait
for a further change, since we know that C; and Cs are disjoint. But consider the
following scenario: the opponent puts x into C1 (g1(0) = 1 for some o < z), then
takes it out (g1(7) = 0 for a longer 7 <¢ x, and note that o <¢ 7). The opponent
paid by decreasing v twice (v1(7) < 71(0) < n); but 72 still has maximal value 7.
If we followed the opponent, our ordinal M is now ;. The opponent now puts x
in and out of Cs. They have larger ordinals to play with, and so can defeat us.

The solution is: when the opponent makes the second change and takes x out
of C1, we do not follow them. From now on, we commit to play either outcome 1
or 2, and never return to the default outcome. We change the outcome when we
must: x goes out of C7 and into C3. Such a change, or a change back, must be
accompanied by a decrease of v;. If x goes into Cy before it goes into Cp, we
follow 5 instead. If the opponent takes x out of C; and does not place it into Cs,
we use the fact that A € I' to emulate the set B rather than A; on x. The fact that
o(T') = £ is greater than ¢ allows the outcome 1 to correctly determine whether
x € C7 or not, and so know which one of B or A; to evaluate on x.

In detail: since C7 and Cs are both A?JFO(F), and since A < T, there is a I'(z)-
name M; and a f(z)—name My such that M; = A; on C; and M; = B outside
Cy v Cy (Proposition 2.4). Let My be a A(z)-name for B. To define M, it remains
to define fM and M. Let 0 € w=¥. If y1(0) = y2(c) = n then let M (o) = n
and fM (o) = 0. Otherwise, let 7 <{ o be shortest such that either (1) <7 or
v2(T) < n; say v1(T) < m; the other case is symmetric. We let M (o) = ~1(0).
Let o~ be the longest proper <g-initial segment of o (the predecessor of o on the
tree (w=*,<§)). If y1(0) <71(07) then we set fM(o) = 1if gi(0) = 1, otherwise
M(o) = 2. If y1(0) = 71(07) then fM(o) = fM(c~). That is, we move only
when 7, allows us to. For x € C; U Co, fM(z) =i <= x € C; (consider the last
o < x at which 1 changed). If z ¢ C1 U Ca we may have fM(x) # 0, but in any
case, we still have M (z) = B(x). O

4.3. Containment in admissibly decribed classes. With admissible descrip-
tions, a leaf selection game is simplified: non-default children of the root are nec-
essarily leaves of the S-tree. We obtain useful criteria for containment.

Lemma 4.7. If T is admissible and o(T'g) = o(T") then there is some n with 'y < T,.

Proof. Since T is efficient, there is some n such that I'y < T',,. Since T is non-self-
dual, n # 0. Since I' is admissible, o(T';,) > o(T"). Since Ty is efficient, Proposi-
tion 4.2 implies that I'), # I'g, so 'y < I',,. ([

Proposition 4.8. Let I' and A be class descriptions. Suppose that:
o o(I') = o(A);
e For all n € Tt there is some m € T such that T'y, © A,;
oyl < nh;
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e A is admissible.
Then T < A.

Proof. The assumptions imply: for every n € Tt there is some m € T which is a
leaf of Sj and such that I';, € A,,. For if m € T is not a leaf of Sy then m = 0
and o(Ag) = o(A), so Lemma 4.7 applies.

We observe that since A is efficient, all the assumptions apply to the pair (', A)
as well, so it suffices to show that I' € A. We describe a strategy for player 2 in
the leaf selection game Gieas (I, A) as in Corollary 3.7(c).

In this game, write c[k] and n[k] for c.[k] and n¢[k]. We will ensure that for
all odd k > 1, if p[k + 1] is defined, then n[k + 1] = n[k], c[k + 1] is a leaf of Sy
(so t[k + 1] = c[k + 1]), and T';j5) S Agppsay- This suffices, since Ty S T (as
c[k] < t[k]).

Let k > 1 be odd; suppose that player 1 played p[k], and that the game has not
yet ended.

If k = 3 and c[k] = c[k — 2], then player 2 passes.

Suppose that k = 1, or that k > 3 and c[k] # c[k—2]. In this case, n[k] < n[k—1]:
this follows from p[k] < p[k — 2] and n[k — 1] = n[k — 2] when c[k] # c[k — 2];
otherwise, k = 1, and this follows from n[0] = n* <yt = n[—1].

In this case, therefore, we can set n[k + 1] = n[k] and choose c[k + 1] as we like;
as discussed, we choose c[k+ 1] to be some leaf of Sy satisfying T'cpp) S Acpry1)- O

Proposition 4.9. Let I' and A be class descriptions. Suppose that:
o(I') = o(A);

For all n € Tt there is some m € Ty such that Ty, € Ay,
nt < nh;

Ty< Ag

A is admissible.

ThenT < A.

Proof. This is similar to the proof of Proposition 4.8. The only difference is that as
long as player 1 plays ¢[k] = 0 and does not decrease n[k], player 2 cannot choose
some m > 0 with 'y € A,,, since she does not have the “ordinal space” to do so:
we only have n > nl'| not strict inequality. Instead, player 2 can set c[k + 1] =0
and play according to a winning strategy in Geont(To, Ag). If player 1 ever decreases
n[k], then player 2 can revert to the strategy above. (I

Corollary 4.10. Suppose thatT' and A are both admissible, and that o(T') = o(A) <
wy. Then IT' € A if and only if one of the following holds:

(1) For some m € Ty, UneTF T, < A.,;
(2) Unery T'n = Uper, Am, and either
o L <A or
o nI' =nh and Ty < Ay.

Proof. Suppose that (1) holds. By Lemma 4.7, we may assume that m > 0. In
Greas (T, A), player 2 immediately chooses c[k] = m (he can set n[k] = 0). Note
that in this case, I' < A. If (2) holds then I' € A follows from Propositions 4.8
and 4.9.

In the other direction, suppose that I' € A, and that (1) does not hold. By the
semi-linear ordering principle, and the fact that both I and A are efficient, we have
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UA,, € T, Since it is not the case that A < T', (1) fails in the other direction,
and so in fact [ JA,, = [JT',. Again, since A < T fails, we have n*" < nA. Suppose
that these ordinals are equal. If T'y & Ag then Ay < I, but then we get A < T,
which again is not the case. d

4.4. The ubiquity of admissible descriptions. Theorem 6.8 of [DGHTTa] states
that every non-self-dual Borel Wadge class has an acceptable description. We will
need the analogous result for admissible descriptions:

Theorem 4.11. Every non-self-dual Borel Wadge class has an admissible descrip-
tion.

In general, we do not expect a class to have a description which is simultaneously
acceptable and admissible.

Proof. The argument is an elaboration on that for [GQT, Prop. 4.1], which discusses
finite class descriptions. Given a class description ©, we examine the classes @
for the leaves s of Sg (recall the notation Sg from the leaf selection game). By
induction, they all have admissible descriptions. We know that these classes are
semi-linearly ordered. In the simpler case, among these classes there is one which is
maximal under containment; then © is equivalent to that class. Otherwise, we will
construct a description Z equivalent to © by setting o(Z) = 0(O) and the classes
=, where n is a non-default to be the various classes @, above; the assumption
that we are not in the easier case implies that Z will be efficient, and the fact that
we are taking classes @y for s a leaf of Sg implies that o(©;) > 0(©), so E will in
fact be admissible. The difficulty, though, is to identify the class B, and to find
the ordinal 5=, telling us how many times we can change our mind at the root.

The main idea is to look at possible collections of Sg-positions; these could be
used by a player in a game Gieas(0,Y) or Gieas(T,0) for some Y. With each
position we will associate an ordinal rank, which measures how much leeway a
player still has, after playing this position, to keep playing any class ©,. The
ordinal = will be the maximal rank occuring, which will correspond to the rank of
the starting position. The class Eg will be obtained by considering all Sg-positions
of this maximal rank; we will show that it is equivalent to an admissibly described
class.

As in [GQT], we need to extend the notation Seg. Let £ be a countable ordinal.
For a class description © with 0(©) > ¢ we define Se ¢ as follows:
o If 0(@) = ¢ then S@’g = Se;
o If 0(©) > £ then Sg ¢ consists only of the root of Te.

Note that both cases can be defined together as in the original definition of Sg,
replacing o(©) by €. Se ¢-positions are defined as in Definition 3.1; when o(©) > &,
there is just one Sg ¢ position p, determined by taking ¥ to be the root of Tg.
Note that these notions make sense even when o(0) = wy.

Fixing &, in this proof, we let P and Q denote nonempty collections of Sg ¢-
positions, for some ©, that are upwards closed: if p € P and ¢ > p then g € P.
(Recall the partial order defined on positions in Definition 3.1.)

Let © and = be class descriptions with ordinal levels > £; let P be a nonempty,
upwards closed collection of Sg ¢-positions, and let Q be such a collection of Sz ¢-
positions. The game G(P, Q) is defined as the game Giear (0, E), except that the
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trees used are Sg ¢ and Sz ¢, and further, player 1 is only allowed to choose positions
from P, while player 2 must choose positions from Q. We write

P<Q

if player 2 has a strategy in the game G(P, Q) which guarantees an outcome (s, t)
satisfying @, € E;. We write P = Q if P < Q and Q < P. Corollary 3.7 implies:

Claim 4.11.1. For a class © with o(©) > &, let Pg denote the collection of all
Se.¢-positions. If 0(©),0(Z) = ¢, then © € = if and only if Pe < P-=.

(Observe that Corollary 3.7 covers all cases, whether 0(©) = £ or 0(0) > ¢
similarly for =.) We therefore write © in place of Pg, and so write © < Q, P = Z,
etc.

Theorem 4.11 follows from:

Claim 4.11.2. Let © be a class description with £ = 0(®). For any nonempty, up-
wards closed collection P of Sg-positions, there is an admissible class description =
with P = =.

The notation implies that o(Z) > £.

For brevity, for an Seg-position p, let ©, = O. Claim 4.11.2 is proved by a
double induction: first on the complexity of ©, then on a S-upper bound on the
collection of classes ®,, for p € P: let

C(P)={0, : peP}.

the induction hypothesis for P is that Claim 4.11.2 holds for all sets Q of Se-
positions for which there is some I' € C(P) such that for all A € C(Q), A < T
This relation is well-founded.

Fix a class description O; let £ = 0(0), which we may assume is countable. By
induction, we assume that for evey leaf t of Sg, ©; is admissible. Proposition 4.2
implies that after replacing ©; be an admissible equivalent, the ordinal level cannot
decrease; this means that after such replacement, the tree Sg does not change. Fix
a nonempty, upwards closed collection P of Sg-positions. As usual, we assume that
we have relativised to a sufficiently strong oracle, so that all containments between
classes O; are effective, uniformly, and all ordinals involved are comparable; see
Remark 3.3.

We dispose of the easy case first.

Claim 4.11.3. Suppose that there is some maximal I' € C(P): for all I € C(P),
I"<T. Then P =T.

Proof. Player 2 easily wins both G(P,I") and G(T", P), using constant plays. O

For the rest of the proof, suppose that the hypothesis of Claim 4.11.3 fails. By
the semi-linear-ordering principle for described classes, this implies:

(¥): For every T' e C(P) there is some IV € C(P) with I < T".
We define an ordinal rank on Sg-positions p € P. As is often the case, by
induction on ordinals 8 we define when rk(p) > 3:
(i) For every p € P, rk(p) = 0.
(i) rk(p) = B+ 1 if for every I" € C(P) there is some g € P with ¢ < p, ' € O,
and rk(q) = 8.
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(iii) For a limit ordinal A, rk(p) = A if for all 5 < A, rk(p) = .
By induction on 8 we observe that if rk(p) = 8 + 1 then rk(p) = 3, so that the
collection of B such that rk(p) = g is an initial segment of the ordinals. We write

rk(p) = f if tk(p) = B but rk(p) * 5+ 1.
Claim 4.11.4. Every p € P has a countable rank.

Proof. If not, let p € P with rk(p) = wy. Since P is countable, this implies that
rk(p) = wy + 1. By (#), we can find some ¢ < p with rk(g) = w; and ©, € O,; in
particular, t? # t?. Proceeding, we obtain an inifnite sequence of positions, none
of which is a “pass” in the leaf selection game, contradicting Remark 3.2. g

By induction on 8 we observe that ¢ < p implies rk(¢q) < rk(p). In an ideal world,
this would be strict: if ¢ < p then rk(q) < rk(p). At least, this would be good to
have when ¢ makes a choice that cannot be covered by p, i.e., when 0, & O,.
Sadly, this may fail. The following will suffice:

Claim 4.11.5. For every p € P there is some I' € C(P) such that ©, < T, and for
all ¢ <p, if ©4 € T then rk(q) < rk(p).

Proof. Let TV € C(P) witness that rk(p) is not greater than it actually is: for all
q < p, if I' € ©, then rk(q) < rk(p). In particular, I & ©,; by SLO, ©, < I".
By (#), choose I' € C(P) with IV < I". Again by SLO, if ¢ < p and ©, & T then
I € ©, and then TV € ©,, so tk(q) < rk(p). O

Let pg be the initial Sg-position (all ordinals maximal and all choices are default);
then py = p for all p € P. By assumption on P, py € P, and so

n = 1k(po)

is maximal among all ranks of elements of p.
Claim 4.11.6. n > 1.

Proof. Let I' e C(P); so I' = ©,, for some p; since p < pg, this shows that rk(pg) >
1. O

We let
Q={peP :rk(p) =n}.
So @ is nonempty, and since the rank is monotone, Q is upwards closed.
Claim 4.11.7. There is some I € C(P) such that for all ' € C(Q), I < T..

Proof. Suppose not. By the semi-linear-ordering principle, for all T' € C(P) there
is some IV € C(Q) such that ' € TV, i.e., there is some p € P with rk(p) = n and
I' € ©,. But then rk(pyg) = n+ 1. O

By induction, there is some admissible A (with o(A) > &) such that A = Q.
Claim 4.11.8. Let T' be given by Claim 4.11.7; then A < T,

Proof. By Claim 4.11.1, it suffices to show that Q < T. Since o(I') > ¢ (as T’ = ©,
for some leaf ¢ of Sg), this is witnessed by constant plays. (Il

Since C(P) is countable, fix a list I';,T'g,... enumerating C'(P). We define a
class description = as follows:
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° 0(5) =¢

° N7 =1

e Forn>1,=, ="
L E()=A.

Then (*), together with Claim 4.11.8 (and the assumption that each T, is efficient)
ensure that E is efficient. Since each I, is ©; for some leaf t of Sg, o(T',,) > £ for all
n = 1. By the assumption that each I';, is admissible, we see that = is admissible
as well.

Claim 4.11.9. = =P.

Proof. We play the games for both directions. In G(P,Z), as long as player 1
keeps playing q € Q, player 2 chooses the default at the root of T=, and uses her
winning strategy in the game G(Q, A) (note that this covers both cases o(A) = &
and o(A) > £). Once player 1 leaves Q, playing some position p with rk(p) < 7,
player 2 chooses an outcome n with I',, witnessing Claim 4.11.5 for p; player 2
decreases the ordinal at the root to rk(p). From then on, player 2 moves only if
forced (if the current I',, does not contain O, for the current position ¢ played by
player 1). When forced to move, player 2 matches the ordinal rank of the position
chosen by player 1, and chooses a sufficiently large I, given by Claim 4.11.5. These
choices ensure that when forced to move, the ordinal indeed drops.

In G(E,P), as long as player 1 remains above the default outcome of the root,
player 2 plays their winning strategy in G(A, Q). Once player 1 moves off the
default outcome, and is currently presenting some ordinal 8 < 1 and outcome n,
player 2 can respond with some position p € P with I';, € ©,, and rk(p) > 5; the
definition of rank allows it to proceed. O

This completes the proof of Claim 4.11.2; and so of Theorem 4.11. (]

Remark 4.12. Proposition 3.34 of [DGHTTa] allows us to directly transform a
monotone class description into an equivalent acceptable class description. It does
not seem possible to mimick the same argument to transform monotone class de-
scriptions into admissible ones. Hence, we cannot use [DGHTTa, Thm. 6.8] to prove
Theorem 4.11.

However, the proof of [DGHTTa, Thm. 6.8] can be adapted to give another
proof of Theorem 4.11. An analogue of [DGHTTa, Thm. 4.4]: every admissible
class description is classified, holds. The main change in the proof is in [DGHTTa,
Prop. 4.12]; one has to consider three cases, depending on whether n = 1 (the
acceptable case), n > 1 is a successor, or 1 is a limit. Note that the proof of
[DGHTTa, Prop. 4.13] is naturally suited to admissible descriptions.

[DGHTTa, Prop. 3.34] allows us to use [DGHTTa, Thm. 5.1] to show its ana-
logue for admissible class descriptions. Then, following the work in Section 6 of
[DGHTTa] completes a proof of Theorem 4.11.

4.5. Admissible monotone descriptions. The proof of Theorem 4.11 can be
easily adjusted to show that every non-self-dual Borel Wadge class has a description
which is both admissible and monotone (Definition 4.4). In the definition of E,
instead of letting 'y, I's, . .. list all of C'(P), we let it list a cofinal sequence in C(P)
which is monotone (T',, € T',,41). Indeed, we can reduce to two cases: either C(P)
has a maximal pair ©,©, in which we can set I',, = © for odd n > 0 and I',, = ©
for even n > 0; or we can set I'y <T'p < ---.
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However, it is also easy to effectively transfrom any admissible description into
an equivalent description which is both admissible and monotone.

Proposition 4.13. For any admissible class description T' there is a monotone
admissible class description A with T' = A, effectively.

Proof. Let T' be admissible. By (effective transfinite) recursion, we may assume
that for all children n of the root on 1r, I',, is admissible and monotone. We define
a class description by letting o(A) = o(T'), n¥' = n?, and Ag = Tg. Then, by
recursion, having defined A, we let A, 11 be some I';, such that:

3 /v\n;

e if n e T, then either I',, € Ty, or I'yy < Ty

e o(T'),) > o(T).

Lemma 4.7 implies that such an m exists. Proposition 4.9 shows that I' = A. [

5. GAME CHARACTERISATIONS OF SEPARATION AND REDUCTION

While the containment game and Theorem 3.4 are interesting and useful in their
own right, they also serve as a simple version of more general games, that we use
to characterise the reduction and separation properties.

5.1. The reduction game. We will devise a game Gyeq(I") such that for any class
description I'; the class I' has the reduction property if and only if player 2 has a
winning strategy in the game. In the containment game Geons(I', A), the idea is
that player 1 plays a set A € I' and challenges player 2 to prove that this set is in A.
In the reduction game, player 1 plays two sets A%, A' € T' and challenges player 2 to
construct a pair of sets (BY, B'), both in T', that reduce the pair (A°, A'), meaning
that B* € A*, B°n B! = 4, and B U B! = A% U Al. In this game, the players will
each produce leaves on two copies of Tr, the labels of which represent the values
A%(x), AY(x) and B°(x), B'(z). The winning positions for player 2 will correspond
precisely to the requirements of reduction.

However, recall that the proof of Proposition 3.5 was inductive: it assumed the
proposition held for pairs such as (I',A,) or (I'y,A;). The same argument will
be applied for the reduction game, which means that we need to describe a more
general game and a more general property, ones which are not restricted to just
one class.

Definition 5.1.
(a) Let IO, T A° A! be pointclasses. The pair (A%, A') reduces (T°,T!) if
for every pair (A%, A') with A’ € T, there is a pair (B°, B!) with B € A‘
that reduces (A%, A1).
(b) We say that a pointclass A reduces a pointclass T' if (A, A) reduces (T',T).
A pointclass T has the reduction property if T' reduces I'.

We now describe the clopen game that captures the reduction relation between
pairs of classes.

The extended leaf selection game. We will make use of the leaf selection game de-
scribed above, except that now, each player may start with either one or two classes:
we could play Greas(T%, T A% AL)) or Greas(TY; A, AL), etc. At each round, the
player ¢ whose turn it is to play chooses positions on each of the trees that the
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player is playing on. For example, in Gieas (I'°,T'; A?), player 2 chooses an Spo-
position on every even round, while at each odd round, player 1 chooses both an
Sto-position and an Sri-position. A player has passed when all of their currently
chosen leaves are the same as in the previous round. The outcome of the game is
a choice of leaf on each tree involved in the game.

The reduction game. Let T°, T'', A and A' be class descriptions. The reduction
game Grea(I'?, T A9 AY) is played between two players 1 and 2. Player 1 devises
a path from the root to leaves on both Tro and Tr:; player 2 does the same on T)o
and Th1. At each round k > 1 of the game, player 1 defines nodes s/ [k] € Tr; and
player 2 nodes s[k] € Ty,;. We start with s?[0] being the root of the corresponding
tree. At round k + 1, let &J[k] = o(T7, ), and &[k] = o(A?, ); we let

sk s1[k]
¢[k] = min{¢/[k] : i=1,2; j =0,1}.

(1) If {[k] occurs for only one of the players: for some i € {1,2} we have ek] >
&[k] for both j, then the other player i’ = 3 — i selects a child s}, [k + 1] of
s1,[k] on the corresponding tree, for each j such that & [k] = [k].
(2) If £[k] occurs for both players, then the players play the extended leaf
selection game; player 1 plays with FZ e for all j € {0, 1} for which &[k] =
<1
&[k], and similarly for player 2.
The game ends with leaves s] on the respective trees. Player 2 wins if the labels
of the leaves agree with the requirements of reduction:
e for both j = 0,1, if A7(s}) = 1 then IV (s7) = 1;
o A%(s9) and Al(s}) are not both 1;
o If T9(sY) =1 or I''(s) = 1, then A%(s9) =1 or Al(s}) = 1.

Proposition 5.2. Player 2 has a winning strategy in the game Grea(T'°,T'1; A°, A1)
if and only if the pair (A°, AY) reduces the pair (T°,T').

Proof. Let & be a winning strategy for player 2 in the game Greq(I'?, Tt A%, AL);
suppose that an oracle z is sufficiently powerful, as in Remark 3.3. Given I'V(z)-
names N7 we devise AJ(z)-names M7 so that (M?, M?') reduces (NY, N1). This is
done by effective transfinite recursion on the complexity of the quadruple (I'°, T't; A9, A1).
The argument is almost identical to that of the proof of Proposition 3.5. For ex-
ample, in case III, suppose that & = o(I'°) is smaller than the other ordinals o(I'!),
o(A%) and o(A'). So at the first move of the game, player 1 chooses a child n of
the root on Tro. By induction, for each such n, the pair (A%(2), A(2)) reduces
(T9(2),T(2)), uniformly; so there are AJ(z)-names M} such that (M2, M}) re-
duces the pair (N2, N1). Since o(A7) > & for both j = 0,1, we can merge these
to AJ(z)-names M such that for all z, if /¥’ (z) > n then MJ(z) = MJ(z). If
o(I%) = o(T'!) = ¢ is smaller than both o(AJ) then player 1 chooses children on
both I'V, so we will have names M ,, for n € Tro and m € Tp:. The other cases of
the proof are modified in the same way.

In the other direction, though, we do not have such a neat dichotomy. Indeed,
it is not the case that if (Ag, A1) does not reduce (T'p,T';) then (f‘o,f‘l) reduces
(Ao, A1). To understand the situation in general, consider that both containment
and reduction can be viewed as specifying permissible lines in truth tables. In the
containment case, there are four lines in total, one for each possible value of the pair
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(A(x), B(x)), where A is player by player 1 and B by player 2. The two permissible
lines are (0,0) and (1,1). That is, B = A if for all z, either (A(x), B(x)) = (0,0) or
(A(z), B(z)) = (1,1). The “anti-containment” property that is given by a winning
strategy for player 1 in Gcont (T, A) is characterised by allowing the other possibilities
(0,1) and (1,0), which happens to characterise equality with the complement.

In the reduction case, we have 16 lines in the truth table, and the permissible

ones can be summarized by saying which values for (B%(x), B(x)) are permissible,
given (A%(x), Al(2)):

(1,1) — (0,1),(1,0).

Using the strategy-stealing method for the (extended) leaf selection game described
in the proof of Proposition 3.6, we see that if player 1 has a winning strategy in the
game Greq(T'?, T A% A), then player 2 has a winning strategy in the game whose
winning lines are the ones not permissible for reduction, however with exchanging
the roles of A7 and B?. By the version of Proposition 3.5 for this “anti-reduction”
game, we see that in this case, the pair (T'°,T'!) anti-reduces the pair (A% Al),
meaning that for any B® € A? and B! € A there are A° € T'? and A' € T'' such
that for all x € N,

o If (B°(x), B'(x)) = (0,0) then (A%(z), A'(x)) # (0,0);

e If (B°(z), B'(x)) = (1,0) then (A°(x), A(z)) # (1,0), (1, 1);

o 1f (BY(z), B! (x)) = (0, 1) then (4%(x), A}(x)) # (0,1), (1, 1).
The other direction of the current proposition is then proved by verifying:
(*): If (T° ') anti-reduces the pair (A% A') then (A% A') does not reduce the

pair (I'°,T1).

To show this, we use universal sets for pairs. There are sets A° and A!, universal
for TV x T'': this means that A’ € T'?, and for all pairs CY € TV and C! € T'! there
is some y € A such that

Ci = (A = {reN : (yz)e A}

for i = 0,1; here (y,x) — {y,x) is some computable “pairing function”, an isomor-
phism between A2 and N.

Suppose, for a contradiction, that (BY, B!) reduces (A%, A'), with Bi € A’. Let
Dt ={y : {y,yy € B'}; and let (C°,C") anti-reduce (D°, D'), with C* € T'. Then
y € N such that C* = (A")[¥] gives a contradiction, as no line in the truth table is
allowed for {(y,y). O

Ezample 5.3. Let a and n > 1 be ordinals. The class D, (X9, ) has the reduction
property. To see this, let T' be the simple description of this class (Fig. 2). The
game Grea (I, T; T, T) is the game Gieas (T°,T%; S0, S1) where T°, T, SY and S* are
all copies of Tr. To win, player 2, on the tree S7, copies the moves of player 1
on T7, except for when player 1 moves to two 1 outcomes; the move to the second
is not matched.

On the other hand, the class DW(E? +a) does not have the reduction property; in
fact, the class D,4+1(29, ) does not reduce the class D, (29, ) (whereas the class
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Dy41(2Y,,,) does reduce D, (29, ), as Dy 41(29,,) has the reduction property).
To see this, let A be the simple description of DUH(E?JFQ); we show how player 1
wins the game Gred(f‘, I;A, A). Again, this game is Geas (T°, 715 SY, S1) with 77 =
Tf and Sj = T[\.

Player 1 starts with a pass. We refer to children of the root by their labels, so
1 is the default child on both sides. To survive, player 2 must move at least one
of his leaves to 0, say on S°; he reduces his ordinal label 7787 ¢ to some value < 7.

Player 1 then moves to 0 on T (with ordinal 0, say; player 1 will not move on 7'
again). Henceforth, on T, player 1 plays the opposite of what player 2 does on S°,
with the same ordinal label.

5.2. The separation game. Like reduction, for a game characterisation of sepa-
ration, we need a more general property, involving more than one class.

Definition 5.4.
(a) Let A%, AY, B% B < N, with A° n A' = (#. The pair (B, B') separates
the pair (A%, A!) if A° € B°, A < B!, and B! = (B°)".
(b) Let T9 T, A% A! be pointclasses. The pair (A%, At) separates (T°,T'!) if
for every pair (A°, A1) of disjoint sets with A® € T', there is a pair (BY, B!)
with B? € A’ that separates (A%, A').
(c¢) A pointclass I' has the separation property if (I',I") separates (I',T").

The separation game Ggep(I?, T A%, A1) is played exactly like the reduction
game, except that the winning condition for player 2, upon producing leaves s; on
the respective trees, is:

o If (1%(s9),I'(s7)) = (0,1) then (A%(s3), A'(s3)) = (0,1);
o If (T(sY), T (s1)) = (1,0) then (A%(s3), A'(s3)) = (1,0);
o If (T9(s?),I'(s1)) = (0,0) then (A°(s3),Al(sd)) is either (0,1) or (1,0).

Note that if player 1 ends up with (T'°(s),T'!(s})) = (1,1) then player 2 wins
regardless of the leaves they chose.

Proposition 5.5. Player 2 has a winning strategy in the game Gsep(T'0, 1 A9, AY)
if and only if the pair (A°, AY) separates the pair (T°,T1).

Proof. The same as the proof of Proposition 5.2. Note that for the forward direc-
tion, the definition of the winning condition when player 1 plays the outcome (1,1)
does not affect the proof, since we only need to verify the separation property when
player 1 plays a pair of disjoint sets. However, this condition is important for the
other direction, when player 1 has a winning strategy. The game is stated as it
is because the resulting “anti-separation” property forces player 1 to play disjoint
sets. It is defined by the truth-table function:

(0,1) — (1,0);

(1,0) = (0,1);

(0,0) — (0,0),(0,1), (1,0);

(1,1) — (0,0),(0,1),(1,0).

This means that the argument above when player 1 wins the game applies in this
case as well. (]

If player 2 wins the separation game, this gives us some information even when
player 1 does not necessarily plays disjoint sets. We obtain the following strength-
ening of the separation property:
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Definition 5.6. A Wadge class T" has the generalized separation property if for any
two A%, A' € T, there are B?, B! € T which form a separation A® and A' off of
A% A A'. That is, for any = ¢ A% n A®:

e 2B~z ¢ B': and

e Fori < 2, if x € A%, then z € B".

Overall we see that a non-self-dual Borel Wadge class has the separation property
if and only if it has the generalised separation property.

5.3. Effective properties. We recall that the proof of Proposition 3.5 is effective:
if z computes both descriptions I' and A and a winning strategy for player 2 in
Geons(T', A), then uniformly in w >1 2 and a I'(w)-name N we can compute a
A(w)-name equivalent to N. Similarly, from the arguments for Propositions 5.2
and 5.5 we obtain:

e If z computes a description I' and a winning strategy for player 2 in the
game Greq(I',T';T,T'), then uniformly given w >t z and a pair N°, N! of
I'(w)-names, we can compute a pair M°, M of I'(w)-names for sets that
reduce (N9, N'1).

e If z computes a description I' and a winning strategy for player 2 in the
game Gsep(I,T;T,T), then uniformly given w >7 z and a pair N?, Nt of
I'(w)-names, we can compute a pair M°, M of T'(w)-names for sets that
separate (N°, N1) off of NY n N*.

6. THE SEPARATION PROPERTY

‘We now characterise the classes that have the separation property. Our strategies
will be computable in the descriptions, so we define:

Definition 6.1. A class description I' has the effective separation property if uni-
formly, given a pair of I'-names N° and N'! of disjoint sets in I, we can compute a
pair M? and M of I'-names such that N* € M? for i = 0,1, and M° = (M")C.

That is, if the separation can be performed effectively in the cone above yT',
where recall that yT is the designated oracle computing I". We can similarly define
the effective generalised separation property.

Proposition 6.2. If ' is a monotone class description of Il-type, then T' has the
effective generalised separation property.

Proof. We describe a y'-computable winning strategy for player 2 in the separation
game Ggep(I',T;T,T"). This is done by recursion on the length of the leftmost
(ultimate default) leaf of Tr. Note that this is finite recursion, not transfinite.

The base case is when o(T") = wq, that is, when Tr consists only of the root; by
assumption, this root is labelled 1. The game finishes before it even begins, with
player 2 winning.

Suppose that o(I') < w;. Since I’y has II-type (recall that 0 is the default child
of the root), by recursion, player 2 has a y'-computable winning strategy & in the
game Ggep(T'0,T0;T0,Tg). The strategy for player 2 in the game Gsep(I',I'; T, T) is
as follows. At each step of the game (including the rounds of leaf selection sub-
games, such as the one starting the separation game for I'), let the current leaves
played by player 1 be t; and t1, and the leaves played by player 2 be rq and 7.
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During the leaf selection game starting the separation game, let 7y and 7; denote
the n-ordinals played at the roots by player 1.

As long as player 1 chooses leaves tg, t; both extending 0, then player 2 also
lets o and r; extend 0. If o(T'g) > o(T") then this means that player 1 passes in the
first move of the game, so does player 2, and the leaf selection subgame ends with
outcome (0, 0;0,0). Henceforth, player 2 follows its winning strategy & in the rest
of the game. If o(Ty) = o(T") then Sr, is the restriction of Sr to leaves extending 0,
so as long as player 1 plays extensions of 0, player 2 can follow the strategy &. If
the leaf selection subgame ends within St,, then player 2 can continue with &.

Suppose that player 1 moves away from 0 at some step; say tp extends some
outcome m > 0 of the root of Tr. From now on, player 2 commits to eumulating ¢g
by 79, and emulating the opposite value by r;. Henceforth, ¢; is ignored. If ¢; is
the leaf moved, then the argument is symmetric, replacing ¢y by ¢; below.

The emulation is done as follows. During the leaf-slection subgame, the n-ordinal
played at the root for both ry and ry is the same as 79, the n-ordinal played by
player 1 for choosing ty. At a step at which this n-ordinal decreases (such as the
first step at which tp moved away from 0), player 2 observes the child m extended
by the new value of ¢, (after a second move, this can again be 0).

Since I" is monotone, at such a step we can choose a large n, not hitherto used,
of the same parity as m. So I';, € T, € I'ny1. As long as player 1 does not
decrease 19, we proceed as follows. Let Gy be a winning strategy for player 2 in
the game Geont (I, '), and let &1 be a winning strategy for player 2 in the game
Geont (T'ns f‘n+1). The general idea is to interpret ty as a move by player 1 in the
game Geont (I, '), and let 7o be the response by player 2 following &g; then,
we interpret 1y as a move by player 1 in the game Geons (', f‘n+1), and use &7 to
define ry.

In greater detail, while the leaf selection sub-game of Gsep(I',T'; T, T') continues
and the np-ordinal does not decrease, tg keeps extending m, and we let ry extend n
and r; extend n + 1. Depending on the &-ordinals involved, this either determines
ro or r1 (if o(T',) > o(T)) or o(T',,+1) > o(T'); or we can use the relevant strategy to
determine rg or r1. Once the leaf selection sub-game ends, we are left with leaves
to,ro,r1 of Sr such that I'yy < I'y, and 'y, < f‘rl — either by choice of n, or
since the relevant strategy produces such a leaf — and we then continue with the
strategies 69 and &;. Again, if player 1 decreases the ordinal 79 before the leaf
selection sub-game has ended, then we abort this process, choose a new large n
corresponding to the new m, and repeat. O

Proposition 6.3. IfT" is a monotone class description of X-type, then I does not
have the separation property.

Proof. We show that player 1 has a winning strategy in Geep(I',I;T,T"). Again,
this is done by induction on the length of the leftmost path. The base case is again
when o(I") = wy; this time, the labels of the outcome of the game are (0,0;0,0),
which is a win for player 1.

Suppose that o(I') < wy and that & is a winning strategy for player 1 in the game
Gsep(T0,T0; T, T'g). We use the notation to, t1, 7o, r1 as in the previous proof.

In the leaf selection sub-game that starts the game Ggep(I',I'; T, T), if o(Tg) >
o(T") then player 1 starts with a pass (so tg = t; = 0). If o(T'g) = o(T") then player 1
starts by following &, so it sets ty and ¢; both extending 0. As long as player 2
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keeps both r; extending the default outcome 0, player 1 either passes or follows &,
depending on o(T'y). Suppose that at some step, player 2 moves away from 0 on
at least one of its trees, again, say by moving ro. Player 1 now matches in both of
their trees, the ordinal 1y played by player 2 at the root as part of the choice of rg.
Just as the argument above, player 1 now can arrange for t; to emulate ro, and ¢
to emulate 1 — 1, by choosing a new large n whenever 7y decreases. O

Proposition 6.2 and Proposition 6.3, together with immediate implications, and
the fact that every non-self-dual Borel Wadge class has a monotone description,
gives the following:

Theorem 6.4. Let X be a non-self-dual Borel Wadge class. The following are
equivalent:

(1) X has the separation property.

(2) Y has the generalized separation property.

(3) Ewvery monotone description of X is of I-type.

(4) Some monotone description of Y is of Il-type.

(5) Some / every monotone description of X has the effective separation prop-

erty.

(6) Some / every monotone description of X has the effective generalized sep-
aration property.

As a result, we see that the type of a monotone class description is invariant: if
I', A are monotone and A = I' then A and I" have the same type. We thus talk
about the type of a class.

7. CHARACTERISING THE REDUCTION PROPERTY

7.1. Characterising reduction. Armed with the game criterion for reduction, we
can now characterise the Borel Wadge classes with the reduction property as those
which have a description which is hereditarily Y. First, we observe that a Borel
Wadge class with the reduction property has to have X type: the reduction property
for T' easily implies the separation property for I'. Not every class of S-type has
the reduction property though.

Ezample 7.1. The class BiSep(X{, 29, {F}) is a S-type class that does not have
the reduction property. Let " be the simplest description of this class (Fig. 3). The
game Greq(I',T;T',T) starts with a leaf selection game on the subtree consisting of
the root and its three children. Call the rightmost child “7” and the middle one
“g”. To win, player 1 chooses the child 7 in both of their trees. If player 2 responds
in kind, in the next leaf selection game, player 2 must move to outcome 0 on one
of his trees; when he does so, player 1 moves to 0 on the opposite tree. If, on the
other hand, player 2 chooses 0 or ¢ on one of his trees, player 1 will move to 0 on
the opposite tree, forcing player 2 to move to the child 1 of o (the choice of the
child 0 of the root is terminal); player 1 then moves his other tree to 0.

Using our results of the first part, we can give a quick proof of a result that
follows from work of van Wesep’s [VW78]:

Proposition 7.2. IfT is a non-self-dual Borel Wadge class of X-type and is also
closed under finite intersections, then it has the reduction property.
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FIGURE 3. BiSep(X9, %9, {})

van Wesep showed, under AD, that if a non-self-dual T' is closed under taking
finite intersections, and I' has the separation property, then I' has the reduction
property. The result for Borel Wadge classes follows from Borel determinacy.

Proof. Let Ay, Ay € T'. Since I' has the generalized separation property, there are
Go, Gy € T such that (Gg m (Ag U A1),G1 n (Ag U A)) reduces (Ag, A1). Let
B, = Gi N Az O

Definition 7.3. A class description I' is hereditarily X-type if for every non-leaf
s € Tr, I's has X-type.

What this means is that whenever the default outcome of some s € Tt is a leaf,
then this leaf must be labelled 0. Unlike having Y-type, being hereditarily >-type
is not invariant for all descriptions of a given class (even restricting to accept-
able or admissible descriptions). To see this, consider that SU(X1,¥9,X3,...) =
SU()(ZhHl, 22, HQ, e ) = SUo(El, Hg, 1_13,1_147 e )

Definition 7.4. A class description I' has the effective reduction property if I' has
the reduction property, uniformly: given any pair of I'-names NY and N, we can
compute a pair of -names MY and M*' which reduce (N°, N1).

The proof of Proposition 5.2 shows that if T' has the reduction property, then
there is some z € Al(y") such that after relativising to z, I' has the effective
reduction property. Our main result is:

Theorem 7.5. The following are equivalent for a non-self-dual Borel Wadge classT':
(1) T has a description which is hereditarily S-type.
(2) T has a description with the effective reduction property.
(3) T has the reduction property.

Moreover, we will see that for any admissible T", if T' has the reduction property,
then there is some A with the effective reduction property such that A = I" and
yA = yT.

One implication is easy, given Proposition 5.2.

Proposition 7.6. If ' is hereditarily X-type, then I' has the effective reduction
property.

Proof. We describe a winning strategy for player 2 in the game Gyeq(I, T; T, T). In
general, player 2 copies the moves of player 1, so that s][k] = s3[k] for j = 0,1. The
exception is when player 1 chooses (either within a leaf selection game, or outside
it) two leaves of T that are labelled 1. If player 1 just selected the second such
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leaf, then on the corresponding tree, player 2 does not change their selection, and
can continue taking the default outcome from their location to get to a 0-labelled
leaf. If this is part of a leaf selection game, then player 2 will match player 1’s move
if and when she moves away from a 1-labelled leaf of Tt. O

For the remaining implication (3) = (1), we analyse the reducer of a class T
This will be the smallest class containing I" that can reduce any pair of sets from I'
(the actual definition will be a bit different). It will turn out (as has been observed
in [LSR88a]) that the reducer has the reduction property. Given an admissible class
description I', we can easily describe the reducer of I': we replace each 1-labelled
default leaf by an appropriate 2(1) +¢- This is the “minimum action” required to
turn I" into a hereditarily 3 class.

Definition 7.7. Let I" be a class description.

(a) We let b(T") be the collection of 1-labelled leaves s of Tr such that either
s =) (when o(I") = wy) or s is the leftmost child of its parent s~ on Tt.

(b) We let R(T") be the class description obtained from T" by attaching, to every
s € b(T"), two children s"0 and s"1, which are leaves of Tr(r labelled 0 and 1,

respectively. We set ff(r) = 55, and nf(r) = 1. If s = () then 55(1“) = 0.

Note that even if T' is efficient, R(T') may fail to be efficient. The following is
verified easily:

Lemma 7.8. Let I' be a class description.
(a) R(T) is hereditarily X-type.
(b) If o(T") < wy then o(R(T")) = o(T").

Let R(T') be the class described by R(T).? Similarly, if s € Tr, then we let R(T),
denote the class described by R(T')s. Note that R(I")s = R(Ty) if s € Tr\b(T),
but when s € b(T") (and is not the root), R(T'), is the description of 2(1)+£ where
¢ = o(T'y), whereas R(T'y) is the description of X.

By Proposition 7.6 and Lemma 7.8(a), R(T') has the reduction property.

Ezample 7.9. Let T be the simplest description of D, (29, ) (Fig. 2); it is admissi-
ble. Then R(T') (see Fig. 4) equals D, 4+1(X}, ). Let A be the simple description of
Dyi1(29,4)- In Geone (R(T), A), suppose that at a given round, the ordinal at the
root played by player 1 is { < 7. If player 1 has already shifted to the outcome 1
of the leftmost child of the root, then player 2 matches the ordinal (; otherwise,
player 2’s ordinal is ¢ + 1. The other containment is easier.

Lemma 7.10. For all T, for all se€ T, I'; € R(T)s.

Proof. Let N be a I's-name. An equivalent R(I")s-name M is defined by setting
M = fN and BM = BN for all non-leaf t € Tr_; if t € b(I'y) then we set fM (o) = t'1
and BM (o) = 0 for all 0. O

3For now, this is abuse of notation; shortly we will see that restricted to admissible descriptions,
the operation R induces a function on the described classes.

4Alternatively7 a winning strategy for player 2 in the game Gcont (I's, R(I")s) has player 2 match
the moves of player 1, except that if it is player 2’s move and player 1 reached some t € b(I's) then
player 2 then chooses t"1. Similar steps need to be taken during a leaf selection sub-game.
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a, T a, 1
FIGURE 4. The admissible description of D, (£, ,) and its R.

Lemma 7.11. Let T" and A be admissible class descriptions. Let t € Tr\b(T") and
reTy. If Ty € A, then R(T'); € R(A),..°

Proof. We prove the lemma by induction on the pair of ranks of ¢ in T and r in Ty .
We separate into a number of cases.

Case I: £ = wy. In this case, since t ¢ b(T"), R(T); = Ty < A, < R(A),, using
Lemma 7.10 for the last containment.

Case II: £ > ¢A. By Corollary 3.7(a), there is some n such that T'y € A,~,. By
induction, R(T"); € R(A),; and R(A),~, S R(A),.

Case II: & < &A. For all n with t'n € Tr, Ty, < A,. By induction R(T)s, S
R(A), for all non-default n, and for the default outcome n* of ¢, if t"n* ¢ b(T").
If t'n* € b(T") then R(T)ppx = E?Jrfp. Since T is efficient and & < wi, we have

I, N €Ty, and so &, N € A,.. Since & < &N, E?HF c A, € R(A), (Lemma 3.8
and again Lemma 7.10). Hence, for all n, R(T");~, € R(A),. By Corollary 3.7(b),

R(T), = R(A),.

Case IV: & = €M < wy. Since in this case R(T;) = R(T'); and R(A,) = R(A),, we
may simplify notation by assuming that r = ¢ = {) are the roots of Tt and of T}.

Let: Ty = Sr, Ta = Sx, U1 = Spr); and Uz = Sg(a). Below, we write
Greas (T1,To) for Greas (T', A) and Gieas (U1, Us) for Greas (R(T), R(A)).

By assumption, there is a strategy & for player 2 in the game Gieas (17, 7%) that
brings every play to an outcome (¢,7) such that T’y € A,.. In fact, we may take &
to be prompt, in the sense of Remark 3.9. By Corollary 3.7(c), it suffices to show
that there is a strategy for player 2 in the game Giear(Uz,Uz) that brings every
play to an outcome (t,r) such that R(I'), € R(A),. By induction, for any pair of
leaves t € Ty and r € Ty, if I'y € A, and ¢ ¢ b(T") then R(T"); € R(A),.

Since I" and A are admissible, we know that for all non-leaf s € T}, for all n > 0
such that s'n € T;, s'n is a leaf of T;, so the trees T; have a very particular shape;
other than the leaves, they only grow via the 0-outcome. Let ¢; be the leftmost
leaf of T;; so the non-leaves of T; are precisely the prefixes s < ¢g;. There are two
possibilities for each i:

e If g; is a 1-labelled leaf of the respective Tt or Ty, i.e., if i = 1 and ¢; € b(T'),
or i =2 and g2 € b(A), then U; = T; u {¢;"0, ¢;"1}.
e Otherwise, U; = T;.

For the construction of the strategy, there are five sub-cases. In each, given a

sequence of moves for player 1 in Gieas(Ur, Us), we define an auxiliary play in the

S5Note, not R(I't) € R(A.), though these are close.
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game Greas (11, T2). To keep things clear, we will refer to the players in Geas (11, T2)
as player 3 and player 4. Given moves by player 1, we define a sequence of moves
for player 3. We let player 4 follow &, and then explain how to use these moves to
tell player 2 how to respond.

We write (p[l]) for the sequence of positions in the play of Gieas (U1, Us); we will

let, as above, t[l] = t*4, ¢,[I] = AU and n, [1] = . We will let (p'[k]) denote

the sequence of positions in the play of Gieas(Th,72), and will let ¢'[k] = tP' Ik

k] = £ amd ni[k] = ™.

Sub-case IV(a): Uy = T1 and Us = Ty. In this case, the games are identical: for
odd k we let p'[k] = p[k]; after player 4 responds with &, we let p[k] = p/[k] for
even k. Thus, the outcome (¢,7) of the play in Gieas(U1,Us) is the same as the
outcome of the play in Gieas(T1,T2). To show that this is a successful strategy, we
need to show that R(I'); € R(A),. By the assumption on &, we have I'y < T,
The desired conclusion follows from the induction assumption if ¢ ¢ b(I"). However,
no leaf of T} is in b(T"): since Uy = T4, ¢1 ¢ b(T"); no other leaf of T} can be in b(T'),
as no other leaf of T is the default child of its parent.

Sub-case IV(b): Uy =T and Uy # Th.

Again, since Uy = T1, player 3 can simply copy the positions played by player 1.
In response, player 2 can copy the position played by player 4, unless the leaf ¢'[k]
played equals g2, which is a leaf of T, but not of U;. In this case we will set
t[k] = g2"1 (and this will necessitate setting 74, [k] = 0, since ¢2"1 is not the default
child of g3 on Usy). More formally, for odd k we set p/[k] = p[k]; for even k > 2
such that p/[k] is defined we set p[k] to be p'[k], except that we also set ¢, [k] = 1
and 74,[k] = 0.

We need to check that this strategy is successful, but before that, we need to
check that the auxiliary game does not terminate too quickly. We can imagine
that there would be a problem. Suppose, for example, that ¢/[1] = t[1] = ¢1 (so
player 3’s first move is a pass), and that the G-response to that is ¢'[2] = go.
This is a pass for player 4, and this ends the game Gieas(T1,T2). However, the
response with ¢[2] = ¢2"1 is not a pass by player 2, and this means that the game
G1ear (U1, Uz) has not ended; now player 1 is free to make various moves, and we
do not have & to guide player 2’s responses.

However, this imagined sequence of events does not actually happen. If it did,
then the auxiliary play of Gieas (71, T2) would end with the outcome (g1, g2). This
is not possible because I'y, & Ag,: since Uy # 15, qo is a 1-labelled leaf of T, so
Ay, = {N}. On the other hand, since U; = Ti, ¢; is not a 1-labelled leaf of Tt
(either it is not a leaf of T, or it is a 0-labelled leaf of TT). Since I is efficient, this
implies that T';, # {N7}.

We also note that the only time that a pass played by player 4 can translate to a
move by player 2 which is not a pass, is when k = 2, i.e., the first move by players 4
and 2, in which case we have ¢'[2] = t'[0] = ¢o. At all other stages k, t'[k—2] = ¢'[k]
implies t[k — 2] = t[k]: either t'[k] # go, in which case t[k] = t[k — 2] = ¢'[k]; or
t'[k] = ¢2, in which case t[k] = t[k — 2] = ¢2"1. The only problem was that
t[0] = ¢270, since p[0] is the default position.

Hence, the only time that the play of Giear(T7,72) may end prematurely is if
player 1 (and so player 3) does not pass at their first move, player 4 passes, and
then player 1 passes. In this case, player 2 can finish the game by passing.
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Overall, we see that we can always carry both games to completion; if the out-
come of Gieas(T1,T2) is (t,r), then the outcome of Gieas (U, Uz) is also (¢,7), un-
less 7 = ¢o, in which case the outcome is (¢,g2"1). Since player 2 followed &, we
have Ty € A,. Since U; = Ti, no leaf of T} is in b(T"). Hence, by induction,
R(T): € R(A),. If r # g2 we are done. If r = ¢o then we need to show that
R(T); € R(A)g,~1. However, as observed, Ay, = {N'}, and so I'y = {N}; since I is
efficient, this means that ¢ is a 1-labelled leaf of 7. However, again, since U; = 717,
t ¢ b(I") (this means that ¢ is not the default child of its parent). Hence ¢ is also a
leaf of R(T"), and so R(I"); = {N} as well. Since the R(A)-label of ¢>"1 is 1 (this
was the whole point), we have R(A)g,~1 = {N}.

Sub-case IV(c): Uy # Ty and ¢ is not a leaf of T (in this case, Uy = T3).

Before going into the details, let us mention the main issues. Since U; # Tj,
we need to translate player 1’s moves on U; to moves for player 3 on Tj. It is not
completely clear how to do this: what should ¢'[k] be (for k£ odd) when t[k] = ¢1°0
or t[k] = ¢1"17 It seems that it should be g, but then, a move by player 1 from
q170 to ¢q1"1 is just a pass for player 3. Further, the label of ¢; in Tt is 1, whereas
the label of ;"0 in R(T") is 0, so if the outcome of the Gieas (U1, U2) game is (¢170,7)
(and so, presumably, the outcome of Gieas(T1,T3) is (q1,7)) it may be difficult to
argue that R(I")4,~0 S R(A), based on the assumption I'y, € A,.

Thus, the moves for player 3 will not be in exact 1-1 correspondence with the
moves for player 1. In the beginning, while player 1 plays leaves such as ¢;°0 or
q1"1, or any leaf of Tr(r), for that matter, player 2 can pass: since g2 is not a leaf
of A, Ag,, and so R(A)g,, contains both ¢ and N, and so is an adequate response.
Only once player 1 plays some ¢ = t[k] which is not a leaf of T ), do we copy
this to be the first move #'[1] of player 3. We let player 2 copy player 4’s response,
which is possible, since U = T5. Since t is not a leaf of Tr(r), we have ¢ ¢ b(I'), and
so copying the response gives player 2 a winning position. After this, if player 1
returns to playing leaves of Tr(ry, then player 2 can pass, as its current response is
an adequate response to a class containing both & and N. Hence, we only need to
define #'[3] if player 1 eventually plays some t[k’] which is not a leaf of Ty, and
one different from ¢'[1].

Now to the details. Since we will sometimes skip moves in Gieas(Uz, Uz), for
every round k of the auxiliary game Gieas(T1,72), we will define a corrsponding
round [(k) in the main game Gieas (U1, Usz). The map k — I(k) is strictly increasing
and preserves parity (moves of player 3 correspond to moves of player 1, moves
of player 4 correspond to moves of player 2), but may not be the identity: some
rounds of the main game are not in the range of [. For every odd k& we will have
I(k+ 1) =Il(k) + 1; but we may have I(k + 2) > I(k) + 2.

We will always have, for even k, p[l(k)] = p'[k]: player 4’s response by & at
round k is copied over to be a move by player 2 at round I(k). For odd k we
will have p'[k] = p[l(k)] | T1; that is, for all non-leaf s € Ty, c,[k] = ¢s[l(k)] and
n.[k] = ns[l(k)]. In other words, player 1’s move at round (k) is copied over to
player 3’s move at round k, except that we do not copy cq, [I(k)] and 7,4, [I(k)], since
q1 is a leaf of T7.

We start with {(—1) = —1 and [(0) = 0. Note that since all positions at these
stages are the default positions, we indeed have p[0] = p'[0] and p/[—1] = p[—-1] I T1.

Let k = 1 be odd, and suppose that {(k—2) and I[(k—1) = I(k—2) + 1 have been
defined; we have also described the moves for player 2 in Gieas (U1, Uz2) up to and
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including round I(k — 1). If the main game has not yet terminated, then player 1
plays p[l(k — 1) + 1]. We then let player 2 pass, and let player 1 keep playing, until
we encounter some odd m > [(k — 1) + 1 at which one of the following holds:

e player 1 passes at m; or

e t[m] is not a leaf of Ty, and t[m] # t[i(k — 2)].
When such an m is encountered, if the play does not end at round m:

e If player 1 passes at m, then player 2 passes at m + 1 and halts the play.
e Otherwise, we set [(k) = m.

In the latter case, as promised, we set p'[k] = p[m] | T1. We then let player 2
respond according to &, set I(k+ 1) =m + 1, and p[m + 1] = p'[k + 1].

Before we verify that this strategy for player 2 is successful, we quickly check
that the various plays can be performed as described. That is:

(1) for odd k, the move p'[k] is legal for player 3.

(2) for even k, the move p[l(k)] is legal for player 2.

(3) The auxiliary play does not terminate prematurely.
For (1), for odd k > 1, we see that p'[k] < p/[k — 2] because p'[k] = p[l(k)] | T3,
[k —2] = p[i(k —2)] | Th, and p[l(k)] < p[l(k — 2)], since player 1 plays legally.
Similarly, for (2), for even k > 2, p[l(k)] = p'[k], p[i(k — 2)] = p/[k — 2] and
p'[k] < p'[k — 2] since player 4 plays legally; but since player 2 is instructed to
pass in the rounds between [(k — 2) and I(k), we have p[i(k) — 2] = p[i(k — 2)],
so p[i(k)] < p[l(k) — 2]. For (3), we show that ¢'[k] # ¢'[k — 2]. This is because
t[l(k)] is not a leaf of Tx(ry, in particular, ¢[I(k)] does not extend ¢, and so setting
p'[k] = p[l(k)] I T1 results in t'[k] = t[l(k)]. For k = 1, we have t'[1] # ¢; = t'[-1].
For k = 3, since in the search for m = I(k) we required t[m] # t[I(k — 2)], we have
t'[k] = t[i(k)] # t[l(k — 2)] = t'[k — 2]. Hence, no move by player 3 is a pass, so
the play of Gieas(T7,7T2) does not terminate.

Now we check that the strategy is successful. Let (u,r) be the outcome of the
play of Gieas (U, Us); we show that R(T), S R(A),.

First, suppose that /(1) is undefined. This means that player 1 only chooses
leaves of Tr(ry until he passes; player 2 only passes. So u is a leaf of Tr(r) and
r = @o; as discussed, J,N € Ay, € R(A)y, (using Lemma 7.10), and R(T), is
either {Zf} or {N}.

Otherwise, let k be the greatest number such that (k) is defined; k > 2 is even.
This means that after round I(k), player 2 only passes; so r = t[l(k)] = t/[k].
However, both u = t[l(k — 1)] and u # t[l(k — 1)] are possible, since player 1 is
allowed to move about after playing ¢[I(k — 1)], and only then pass.

Suppose first that u = ¢[I(k — 1)]. By our instructions, t[I(k — 1)] is not a leaf of
Tr(ry. As discussed, t'[k — 1] = t[I(k — 1)] is a leaf of T}, different from ¢;. Hence,
u ¢ b(T'). The auxiliary Gieas(T1,72) play does not end, but since & is assumed
to be prompt (see Remark 3.9 again), T'y,_1] S Aypy). That is, Ty © A, Since
u ¢ b(T), by induction, R(T"),, < R(A),, as required.

Next, suppose that u # t[I(k — 1)]. Then it must be that v is a leaf of T
(otherwise, we would have defined I(k + 1), contradicting the maximality of k).
As in the first case, T'yr_1) S A,. Since t'[k — 1] = t[I(k — 1)] is not a leaf of
Trry, and T is efficient, we have §, N € Typ_13; so &, N € A,. By Lemma 7.10,
&, N € R(A),. Since u is a leaf of Tg(ry, R(T'), = {@} or R(T), = {N}. In either
case, R(T"),, € R(A),, as required.
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Sub-case IV(d): Uy # Ty and Us # Ts (so q1 € b(T') and ¢o € b(A)). This is a little
more complicated than the previous sub-case. In this case, player 2 cannot just
rest until player 1 plays a non-leaf; the default outcome for player 2 is g2"0, which
is not an adequate response to a 1-labelled leaf of Tr(r).

Now it would seem that this should not be a problem. When player 1 plays ¢;"7,
then player 2 can play ¢2"j, and otherwise, we will play an auxiliary Gieas(T1,7T2)
game as above. However, player 1 can thwart us by first moving away from ¢, then
coming back to ¢;°0, and later moving to ¢;"1. If player 2 responded by moving
away from ¢ when player 1 moved away from ¢;, starting the auxiliary game, then
there is no guarantee that player 2 can later return to go when player 1 returns
to g1, and so player 2 cannot respond to the move from ¢;°0 to ¢;"1 by moving from
q270 to g2"1.

The solution is for us to delay the start of the auxiliary game, and to “spend” the
move from ¢2"0 to g2"1 first, even if player 1 moves to other leaves of Trry. In the
beginning, while player 1 plays O-labelled leaves of Tr(r), whether ¢;"0 or others
(which are 0-labelled leaves of 1T), player 2 has no problems with just passing.
If then player 1 plays a 1-labelled leaf, regardless of whether it is ¢;"1 or not,
player 2 can respond by moving to ¢2"1. Suppose that then, player 1 returns to
q170. Player 3 has an advantage over player 1: the latter spent already two moves
elsewhere, moving away from ¢; and then back, but player 3 has not.

Let w be the parent of ¢; on T, and suppose that all of player 1’s moves so far
are children of w. Thus, after two moves, n,,[m] +2 < nl, (with m odd). Since I is
efficient, there is some child w™n of w with J € I'~,; player 3 can choose such w™n
and still have an advantage over player 1, by setting 1!, = n,[m] + 1. If player 1
then moves from ¢;°0 to ¢;°1, then this extra ordinal now allows player 3 to move
again (say to ¢; itself), now matching 7,, and 7.,.

A slight complication is if player 1 chooses a leaf of Tt that is not a sibling
of g1 (a child of w). That is, player 1 can cycle between 0 and 1-labelled leaves
without decreasing any single ordinal more than once. The ordinal book-keeping
gets complicated.

But in this case, we can use “heavy artillery”. This move of player 1 allows us
to move away from s°0 for some s < w. This position of s implies o(I's-g) = o(T").
Since I' is admissible, by Lemma 4.7, there is a child s™n of s such that I's~g < I's~,.
Player 3 can choose such a child s'n that adequately mimics player 1’s move, and
never needs to move to any extension of s"0 ever again.

Let us give the details. As in the previous sub-case, we match rounds k of the
auxiliary game with rounds I(k) of the main game. However, as discussed, we will
not always have p'[k] = p[i(k)] | Ty for odd k. To make sure that the moves we
make are legal, we inductively ensure the following, for all odd k > 1:

(i) If t[I(k)] is a leaf of Tr(ry then R(I')i)) S Typry- Otherwise, Tyry S
Ft’[k]-
(if) For all s < w, ni[k] = ns[l(k)].
i) If ¢'[k] = s"n (for any s < w) then for all r < s, n,[I[(k)] = nL.
iv) If t'[k] = s"n where s < w, then ['y:g < Typp.
(v) If ¢'[k] is a leaf of Tr and ¢, [I(k)] = ¢1°0 then 0, [k] > nw[l(k)].

We run the plays as follows. We start with {(—1) = —1 and [(0) = 0. Suppose
that k& > 1 is odd and that [(k — 1) has been defined. We search for an odd round
m = l(k — 1) + 1 such that one of the following holds:

1ii

)
(iif)
(iv)

)
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e player 1 passes at round m.

e t[m] is not a leaf of Tr(ry, and L'y E Tprpp—g)-

o t[m] is a leaf of Tr(r), k = 3, and R(I")ym) & Ty p—21-

e k=1, t[m] is a O-labelled leaf of Tg(r), and t[m — 2] is a 1-labelled leaf of

If £ > 3, then until we find such m, player 2 just passes. However, if k = 1,
then for any even round n < m, if t[n — 1] is a 1-labelled leaf of Tr(r) then we set
cg[n] = ¢2"1 (s0 ng,[n] = 0; and ns[n] = nl for all s < ¢go). Otherwise, player 2
passes.

If player 1 passes at round m (and this does not end the play), then we let
player 2 pass at round m + 1 and end the play. Otherwise, we set (k) = m. We
then define p'[k]. Let s be the longest s < w such that ns[m] < nL. [There is
such an s since otherwise, t[n] > ¢ for all odd n < m, implying that & = 1 and
contradicting the choice of m.]

(1) If s < w, we set n.[k] = ns[m] and c,[k] = t'[k] to be some non-default
child of s such that T'; ) € T'ypx) and T'yg < Typy. (For all other r < w,
we leave nL.[k] = n.[k — 2] so c.[k] = c.[k — 2].)

(2) If s = w and either ¢4, [m] = ¢1"1 or ¢[m] is not a leaf of Tz(r), then we set
p'[k] = p[m] 1 T1.

(3) If s = w, cq,[m] = ¢:°0, and t[m] is a leaf of T, then we set n;,[k] =
nw[m] + 1 and ¢, [k] = t'[k] to be some child of w such that R(T');[,) <
Ty For all s < w we leave n.[k] = nT (and so c|[k] = 5°0).

We let p/[k + 1] be player 4’s response by &, I(k+ 1) =m + 1, and p[m + 1] =
p'[k + 1], extended with cg,[m + 1] = ¢2"1 (and ng,[m + 1] = 0).

Let us verify that this is all legal. First, we note that the described moves for
player 2 while we are waiting to define [(1) are all legal: as long as player 1 plays
O-labelled leaves of Tg(ry, player 2 passes; if player 1 then switches to 1-labelled
leaves of Tr(r), then player 2 changes the position once and then passes; then, if
player 1 returns to a O-labelled leaf of Tx(r), or to a non-leaf of Trry, then that
stage is {(1).

Suppose that k£ > 1 is odd, and everything has been verified up to round k& — 1.
We check that it is possible and legal to define p[k] as we did, and that (i)—(v) hold
at k. We consider which of the three cases of defining ¢'[k] applies. For simplicity of
notation, for all odd m, let ©,, = R(I')[p,) if t[m] is a leaf of Tr(ry, and ©,, = Ty
otherwise.

Suppose that (1) applied. We claim that ns[l(k)] < n[k — 2], so setting n}[k] =
ns[l(k)] allows us to redefine c,[k] as we like. If n’[k — 2] = nL then this is by the
choice of s. Otherwise, k — 2 > 1, and by (iii) (and (ii)) at k — 2, [k — 2] is some
child of s (necessarily non-default, as s < w). By (i), ©;x—2) S T'y[r—2). By the
choice of [(k), ©yr) E Tyr—2), s0 t[I(k)] # t[I(k—2)]. By (iv), I'sxo < Ty[r—gp, s0 it
must be that ¢[I(k)] as well is a child of s. This implies that cs[l(k)] # cs[l(k —2)],
whence 7,[1(k)] < ns[l(k = 2)]. By (ii), ns[l(k = 2)] < [k — 2].

Next, we check that a child c,[k] as described in (1) indeed exists. If T'yy <
L. [i(k)] then we can choose ¢ [k] = c;[I(k)]. Otherwise, I'; k)] € T'sr0 or ' )] S
['s0. As discussed above, since s < w, we can choose c4[k] be some child of s such
that T'srp < Fc; [k]-
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(i) holds at k: if t[I(k)] is a leaf of Trr) then R(T')ky =
but Iyo < Ty so &N € Ty Otherwise, as ¢[l(k)] < t[I(k)], we have
Ft[l(k)] c ch[l(k)ﬁ and we ensured that ch[l(k)] o Ft’[k]~

(ii), (iii) and (iv) hold at k by design. (v) holds vacuously.

Suppose that (2) applied at round k. We check that p'[k] < p/[k — 2].

Suppose that k& > 3 and that (2) applied at round k —2 as well. Then p/[k—2] =
pli(k = 2)] 1Ty, p'[k] = p[l(K)] I T1, and p[I(k)] < p[I(k — 2)], so p'[k] < p'[k —2].

Suppose that k& > 3 and that (3) applied at round k& — 2. Then 7| [k — 2] >
Nw[L(k — 2)]; since ny,[I(k — 2)] = nw[l(k)] we have n.,[k] < n,[k — 2], as required.

If £k = 1 then any Sp-position is legal for player 3 at round k.

(i) holds at k if t'[k] = t[l(k)]. Otherwise, t[l(k)] > ¢1, so t'[k] = ¢1 and by
assumption, t[l(k)] = ¢i"1. Hence R(T);yk) = {N} and Typy = {N} as well
(recall that g1 € b(T")). So (i) holds in this case as well. (ii) and (iii) hold at &k by
design; (iv) and (v) hold vacuously (if ¢[/(k)] is not a leaf of Tr(ry then by (i), t'[k]
is not a leaf of 11.)

Suppose that (3) applied at round k. We check that 7/ [k] < n,,[k —2]. Suppose
first that k& = 1. The choice of [(1), and the fact that (1) does not hold at k = 1,
imply that 7,,[I(1)] + 2 < nL: player 1 had to make at least two changes, and
neither of them is the change from ¢;°0 to ¢1"1 (recall that nﬁ(r) = 1). Hence, the
choice 1), [1] = nw[l(1)] + 1 is legal, and 7/,[1] < n. This allows us to choose ¢/, [1]
as we like.

Suppose that k > 3. Then c,, [[(k—2)] = ¢10. By the choice of I(k), R(T');x)] &
Lyk—2); this means that t'[k — 2] is a leaf of Tr. Hence, (v) applies at k — 2, so
[k — 2] > nw[l(k — 2)]. Now (i) at k — 2 implies that t[l(k)] # t[I(k — 2)], so
1k — 2)] > nu[1(k)). Hence, 1, [k] < 1, [ — 2.

Because T is efficient, we can choose ¢, [k] = '[k] with the desired property
R(D)iry) € Lorry-

Hence, p'[k] is well-defined and is a legal move for player 1.

(i), (ii), (iii), and (v) hold at k by our definitions. (iv) holds vacuously. This
concludes the verification that p’[k] is legal and that (i)—(v) hold at k.

We verified that ¢'[k] # ¢'[k—2] in some of the situations above, but the argument
holds in general. By choice of I(k), ©;) & 'yr—g); (i) now implies that ¢'[k] #
t'[k — 2]. So the move ¢'[k] is not a pass for player 3, and the auxiliary game does
not end prematurely.

We verify that the described strategy is successful. Let (u,r) be the outcome of
the play of the main game Gieas (U, Uz). If (1) is never defined then u is ¢;"j for
some j € {0, 1}, and we ensured that in this case, r = ¢2"j, so R(T"),, = R(A),.

Suppose that [(1) is defined; let k be the greatest such that [(k) is defined;
k = 2 is even. As in the previous sub-case, r = t[I(k)]. Let m be the last stage at
which player 1 makes a move. So u = t[I(m)]. The maximality of k ensures that
O, S Tyr—1); promptuess of the strategy & ensures that T'yp_1) © Ay By
the definition of our strategy, r = t'[k] if ¢/[k] # g2, and r = ¢2"1 if t'[k] = ¢1. In
the latter case, Ay = R(A), = {N}.

If u is a leaf of Tr(r), then ®, = R(T'),, and the string of containments just
discussed shows that R(T'), < I';, so Lemma 7.10 shows that R(T), € R(A),.
Otherwise, ®,,, = T, so we get I';, € A,.. In this case u ¢ b(T'), so the indutive
hypothesis applies, and we get R(T), < I, as required.
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Sub-case IV(e): Uy # Ty and ¢ is a 0-labelled leaf of Ty (so Us = T»). This case
is almost identical to the previous one, with one difference: at the beginning, if
player 1 moves from 0-labelled leaves to a 1-labelled leaf, player 2 cannot respond
with ¢2"1. Instead, we start the auxiliary game, and choose ¢'[1] = ¢; (as it is a
1-labelled leaf of Tr). Note that this is a pass for player 3, while the corresponding
move was not a pass for player 1. Nonetheless, this is not a problem, because
in this case player 4 cannot pass, as N' ¢ A,,. So the auxiliary play does not
end prematurely. The fact that this is a pass for player 3 means that no ordinal
was spent, so the ordinal advantage over player 1 is the same as in the previous
sub-case. O

Definition 7.12. For a Borel Wadge class Y, let C(Y) be the collection of all
non—sielf—dual Borel Wadge classes © of X-type such X € ©, and for some @°, ®! ¢
{©, ©}, the pair (@°, ©') reduces (Y, Y).

If ¥ < © and O has the reduction property, then ® € C(Y). In particular, for
all T, R(T") € C(T'). If T has the reduction property, then I is the C-least element
of C(T).

Lemma 7.13. Suppose that (A% A!) reduces (I'°,T'!), and that & € T'!. Then
Y c A°

Proof. Let A € T°. The only pair that reduces (4, ) is (A, ) itself, so A €
A°. ([

Corollary 7.14. Suppose that T # {N}, © has S-type, and that for some @°, O! €
{©, 0}, the pair (B°,®") reduces (T,T). ThenT < O (so ©® € C(T)).

Proof. By Lemma 7.13, T < ®° and T' < ®'.

By the semi-linear-ordering principle, we need to exclude the case that I' has
I-type and ® = I". In this case, @ = ®! = T', but then T has the reduction
property, which is impossible. O

The following proposition, together with Theorem 4.11, then finishes the proof
of Theorem 7.5.

Proposition 7.15. If T is admissible, then R(T") is the S-least element of C(T').

Proof. By Proposition 4.13, it suffices to show that for all monotone admissible A
with A € C(T") we have R(T") € A. By Proposition 4.13 (and Lemma 7.11), we may
assume that T' is both admissible and monotone. [Monotony is not fundamental to
the proof; it only makes notation a little cleaner.]

In fact, we show:

(*): For all t € Tt such that ¢t ¢ b(T") or ¢t = {), for all monotone admissible A with
A € C(T), we have R(I'); € A.

We prove this by induction on the rank of ¢ in Tr. For a fixed ¢, we prove (x)r; by
induction on the complexity of A.

Case I: & = wy. There are two sub-cases:
o If T'; = {J} then R(T"); = {J} and J € A since A has E-type.
o If Ty = {N} then XY < A; the assumption ¢ ¢ b(T") or ¢ = () implies that
R(T); = {N} or R(T), = =9,
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In the remaining cases, £f < w1, so R(T); = R(I'}); to save ink, we assume that
t=0.

Case II: o(T') > o(A). By Proposition 5.2, there are n and m such that for some
©0 € {A,,A,} and ©; € {A,,, A}, the pair (@, ®;) reduces (T',T). Since A
is monotone, for k = max{n,m} we have ®,©®; € {Ay, A.}; without loss of
generality, Ay has X-type. By Corollary 7.14, Ay € C(T') (and this is why we
defined C(T) the way we did). By induction, R(T') € Ay, and Ay, < A. [If Ay, has
Y-type then we use Ay, < A, since A is monotone. |

Case III: o(T') < o(A). By Corollary 3.7(b), it suffices to show that for all n,
R(T'),, € A. For all n, since I';, € T', A € C(T',,). If n ¢ b(I') then by induction,
R(T), € A. If n € b(T') then n = 0. In this case, R(T)y = 2(1)+0(F). However,
for any n > 0, o(T',) > o(I'), showing that X9, ) < T’y (Lemma 3.8); as T';, <

R(T,,) = R(T'),, (Lemma 7.10, and n ¢ b(T")) and R(T),, < A; so E?Jro(r) C A.

In the remaining cases, let £ = o(I') = o(A) < wy. For all n, the classes R(T),,
have ¥-type, and so they are all ©-comparable. Note that by Lemma 7.11, if n > 0
then R(T'),, € R(T'),+2, however equality may hold even if I';, < T'),;2. Further, it
is not clear what the relationship is between R(T),, and R(T"),,41 when I',,;; = I,,.
Also, it is possible that R(I")g is larger than each R(T'),, for n > 0.

Case IV: For all n, o(T';,) = wy. Since I' is monotone, either T' = Dnr(2?+€) or
T = D,r(29,¢). If the former, then R(T') =T, so R(T') < A. If the latter, then by
Example 7.9, R(T") = Dnr+1(2(1)+5). By Example 5.3 (and the semi-linear-ordering
principle), R(T) is the S-least element of C(T").

Suppose that case IV does not apply. Then there is some n such that R(I')g <
R(T),,. For otherwise, since I'y  I'y, by Lemma 7.11 we must have 0 € b(T"). So
o(Ty) = wy and R(T)y = 2(1)4—5' Let n > 0. Since o(T,,) > &, and by assumption,
2(1)+€ ¢TI, (as T, € R(I"),, (Lemma 7.10)), by Proposition 2.4 (or Lemma 3.8),
o(T';,) = wy; so case IV applies.

In the remaining cases, let ¥ = | J,,~( R(T'),. Note that if n > 0 and o(I',) = w;
then R(T"), =T',. Since case IV does not hold,

Y = J{R@)n : n>0 & o(T,) <wr}.
Further, we observe that

TgUAm.

To see this, let n > 0. Since I';, € T, A € C(T',,), so by induction, R(T"),, < A.
Since o(R(T"),) = o(T'y,) > & and o(A) = &, by Corollary 3.7, there is some m such
that R(T'),, < A,.

Case V: For some n, ¥ = R(T),. We may assume that n > 0. In this case
o(R(T)y) = o(T'y) > &. Since o(R(I")) = &, by Corollary 3.7(b), R(I') = R(I"),;
and we just cheked that T < A.

Case VI: For some n, ¥ < A,. Since A is monotone, we may assume n > 0.
Since A is admissible, o(A,) > £. By Corollary 3.7(b), R(T') € A,, and A,, € A.

Case VII: n™ > nb. In this case, R(T") € A follows from Proposition 4.8.
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Case VIII: None of the above. We claim that
T=UM=UH

and that (T',,) and (A,) do not settle to be a dual pair: for all n there is some m
such that I'), < I, and A,, < A,,. For the first equality, observe that Y is the
union of the X-classes R(T),, and that case VI does not apply. If the second fails
then there is some m* with | J,, T'y, € R(T'),,,* (as by Lemma 7.10, [ J,, T, < Y); we
may assume that m* > 0 and o(T',,,x) < wy. This implies that R(T"),,« = R(T,x)
has the reduction property. By induction, for all n, R(T), € R(T),,; so case V
applies.

Also observe that n® = n'. Otherwise, since case VII does not apply, n < nl.
Then | JA,, € T, and T being admissible would impliy A < I' (Proposition 4.8),
contradicting I" € A.

Fix ©,Y € {A, A} such that (®,Y) reduces (T',T).
Claim 7.15.1. If 0 € b(I") then 0 is not a leaf of Tj.

Proof. Suppose that 0 € b(I') and that 0 is a leaf of T). We show how player 1
wins the game Greq(I',T; 0, T), contradicting the assumption that (@, Y) reduces
(T, I).

Let Ty and T; be the two copies of St used by player 1 in the game Gieas (I, T'; ©, T);
let Sp and S be the two copies of Sy = Sg = Sy used by player 2 in that game.

We show that there is a move p[1] for player 1 in which he does not move on Ty,
that forces player 2 to move on Sy (or it is an easy win for player 1). This depends
on the labels of the leaf 0 in the classes © and Y.

e If ©® = T, so the labels are either (0,0) or (1,1): player 1 can pass, since
the quadruples (1,1;0,0) and (1,1;1,1) are winning for player 1.

e © = T: by exchanging © and Y (as (Y, ®) also reduces (T',T)), we may
assume that the label of 0 on © is 0. On Tj, player 1 moves to some
outcome m such that ¢f € T',,, (and sets the n-ordinal at the root of T
to 0); the tree Ty remains in default position. Now player 1 passes until
player 2 moves on Sy. If this never happens, then player 1 can ensure that
the outcome is (1, 0;0, #), which is winning for player 1.

After player 2 moves on Sy, player 1 now moves on T and matches the n-ordinal
at the root; if the current outcome on Sy is n, player 1 can choose an outcome m such
that ©,, < T',,,. Further, if p[1] is a pass, then player 1 also moves on 77 to some
outcome k such that ¢§ € T'. At the end of the play of Gieas (I',T'; O, ), we obtain
an outcome (m,a;n,k) with ®,, < T, and & € I'y,. By Lemma 7.13, (©,,Y,)
does not reduce (T',,,T'k), so player 1 has a winning strategy in the corresponding
reduction game. O

Claim 7.15.2. (©g, Yg) reduces (T, o).

Proof. To devise a strategy for player 2 in Grea(I'o,T0; ©0, To), we play an auxiliary
play of Grea(T',T;0,7T). Call the players in the auxiliary play, players 3 and 4.
Let & be a winning strategy for player 4 in the auxiliary game. As above, let
Ty, 171 and Sy, S1 denote the trees for players 3 and 4, respectively, in the game
Greas (I, T; 0, T). There are three cases.
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IfO(Fo) = O(Ao) = f the game Gred(ro, Fo; @0, To) starts with Gleaf (Fo, Fo; @0, TQ),
where the corresponding trees are the restrictions of the trees 7; and S; to exten-
sions of 0. Player 3 copies player 1’s moves. We argue that player 4 also only
plays extensions of 0 on both Sy and S7, so player 2 can copy player 4’s moves.
Otherwise, suppose that at some round, player 4 moves away from 0, say on Sp.
Then player 3 can abandon copying player 1, rather, player 3 can behave as in the
proof of the previous claim: on 77, player 3 moves to an outcome k with ¢J € T'y;
on Ty, player 3 reacts to a choice n € Sy by some m € Ty with ®,, < I';,,. This
gives player 3 a winning position in Gyeq(T',T;©, 1), defeating &.

Hence, Gieas (I',T;0, T) ends with leaves all extending 0, the same leaves being
therefore the outcome of Gieas(To, To; ©p, Yo); in the rest of Greqa(To, To; GO0, To),
player 2 can continue following &.

If o(Ty) > &: in Greas (I, T;0,7), player 3 only passes. Again, player 4 cannot
move away from 0 on either Sy or Sp, or he exposes himself to defeat. Hence,
the auxiliary leaf selection game ends with leaves extending 0. These leaves can be
chosen by player 2 as the result of their first moves in Gyeq(I'o, I'o; ©9, To). Player 2
can then follow &.

If o(Tg) = € and o(Ag) > &: in Grea(To,To; ©0, o), player 2 is instructed to wait,
while player 1 chooses some leaves tg,t; of St,; we identify these with the leaves of
St extending 0. Then, we start the auxiliary play of Gieas(T0,7T1;S0,51). In that
play, player 3 first chooses (to,t1) (setting all of their n-ordinals above 0 to 0) and
then passes. As in the other cases, player 4 must respond with extensions of 0. Say
the outcome for player 4 of the auxiliary game is a pair of leaves (sp,s1) on Si. In
the main game Grea(I'o, I'o; ©9, Yo), since o(I'y, ), o(T's,) > &, player 1 is instructed
to wait, and player 2 can walk up to (sg, s1), and then follow &. O

As a result:
Claim 7.15.3. R(T")o S Ay.

Proof. Suppose that 0 ¢ b(I'). So &J € I'g. Since Ay has ¥-type, Claim 7.15.2 and
Corollary 7.14 imply that Ay € C(Ty). Since 0 ¢ b(T"), the claim follows from the
induction hypothesis (#)r .

Suppose that 0 € b(T"). Then R(T')y = X¢, .. By Claim 7.15.1, 0 is not a leaf of

1+¢
Tp, so by Lemma 3.8 (as Ag has Y-type), E?Jrf < Ayp. O
Putting it all together, we see that |, R(T), < (,, Am, that R(I')g < A,
and that o(R(I')) = o(A) and nf(I) = pA. By Proposition 4.9, R(T') < A, as
required. [l
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