
BAD ORACLES IN HIGHER COMPUTABILITY AND

RANDOMNESS

LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

Abstract. Many constructions in computability theory rely on “time tricks”.

In the higher setting, relativising to some oracles shows the necessity of these.
We construct an oracle A and a set X, higher Turing reducible to X, but

for which ΨpAq ‰ X for any higher functional Ψ which is consistent on all

oracles. We construct an oracle A relative to which there is no universal
higher ML-test. On the other hand, we show that badness has its limits: there

are no higher self-PA oracles, and for no A can we construct a higher A-c.e. set

which is also higher A-ML-random. We study various classes of bad oracles
and differentiate between them using other familiar classes. For example,

bad oracles for consistent reductions can be higher ML-random, whereas bad

oracles for universal tests cannot.

Contents

1. Introduction 1
2. Background, notation, and treesh-bones 3
3. Self-PA oracles 10
4. Higher Turing consistent computations 14
5. Relativising higher randomness 20
6. Universal higher A-ML tests 23
7. Summary and questions 32
References 33

1. Introduction

“If Croesus goes to war he will
destroy a great empire.”

Herodotus I.92

Computability theorists are wont to say that “Everything relativises”. This is
not, strictly speaking, true: Shore, for example, showed [Sho82] that upper cones
in the Turing degrees are not, in general, isomorphic, or even elementarily equiva-
lent. However all “natural” results (compared with techniques of coding models of
arithmetic) do remain true if one adds any real parameter, and usually in a uniform

We would like to thank Joe Miller and Denis Hirschfeldt for useful conversations. Bienvenu was

supported by the ANR grant RaCAF ANR-15-CE40-0016-01. Greenberg was supported by the

Marsden Fund, by a Rutherford Discovery Fellowship from the Royal Society of New Zealand, and
by a Turing research fellowship from the Templeton Foundation. Monin was partially supported

by the Marsden Fund.

1

2 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

way. For example, the construction of a universal Martin-Löf test relativises to give
a uniform oracle test which is universal for every oracle.

In this paper we show that higher computability does differentiate between
classes of oracles, at least when we consider continuous relativisations. Contin-
uous reductions in the higher setting were used by Hjorth and Nies [HN07] when
they set up the basic framework for higher ML-randomness. Similarly, Chong and
Yu [CY15] used continuous enumeration operators to define tests for randomness.
In [BGM17], we argued that a good theory of higher randomness requires using
continuous relativisation: from basic results such as van Lambalgen’s theorem, to
more elaborate, such as the equivalent characterisations of K-triviality, continuous
relativisations are the ones that give the desired higher analogues.

However, using continuous relativisations in the higher setting means giving up
on time tricks. In classical computability, we sometimes use the fact that the time
of computation lies in the same space as the lengths of the sequences we use: ω. We
call any use of this equality a time trick. Also sometimes, the use of a time trick is
just done because it is convenient, but can actually be avoided. An example can be
found in the proof that no ∆0

2 sequence Y is weakly 2-random. In the usual proof
we observe that Y belongs to the null Π0

2 set
Ş

t,năω

Ť

tąstX | X ě Yt ænu. This
proof clearly uses a time trick, and in this case it is possible to remove it: instead
we can consider the set A “

Ş

n

Ť

săωtX | X ě Ys ænu. To see that this is null,
we note that tYsusăω Y tY u is a closed set and as any point in A is at distance 0
of this closed set, we then have A Ď tYsusăω Y tY u which, as a countable set, has
measure 0.

Sometimes, time tricks cannot be avoided. We show that many straightforward
properties of relativisations, which in lower computability rely on time tricks, be-
come false in the higher settings. Like the Pythia misleading the king of Lydia,
there are “bad oracles” such as:

‚ An oracle which higher computes a set, but cannot compute it using con-
sistent functionals (Theorem 4.1).

‚ An oracle relative to which there is no universal higher ML-test (Theo-
rem 6.2)

We also put limits on how bad oracles can be, for example we show that there
are no higher “self-PA” oracles (Definition 3.2); also, for every oracle A, there is
a higher left A-c.e. sequence which is higher A-ML-random (Theorem 5.6). Both
directions involve novel techniques. To show that oracles cannot be very bad, we
sometimes need non-uniform arguments which do exhibit the distinct behaviour of
different classes of oracles. In the other direction, the construction of a variety of
bad oracles uses a new technique, using “treesh-bones”, which we introduce in this
paper. Finally we compare different classes of bad oracles and their properties with
respect to classes such as higher Turing complete oracles, or higher random oracles.

We remark that J. Miller and M. Soskova (unpublished) have recently studied
bad oracles in a different setting, namely the enumeration degrees, in which for
example there are self-PA degrees. It seems however that “the symptoms are similar
but the disease is different.” In particular in their setting it is not the failure of
time tricks which is the origin of badness, but rather the lack of a canonical form
(enumeration) of the oracle.

In a planned sequel to this paper, with J. Miller, we show that like in the enu-
meration degree setting, some bad oracles can differentiate between different forms

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 3

of higher ML-randomness.

2. Background, notation, and treesh-bones

We assume that the reader is familiar with the basics of higher computability.
A standard references is [Sac90].

2.1. Higher effective topology and continuous computation. We recall the
notions of higher effective topology which were introduced in [BGM17]. Recall
that the inspiration for the study of higher computability is the analogy between
the classes Σ0

1 and Π1
1, most lucidly exhibited by the fact that Π1

1 subsets of ω
are preciesly the subsets of ω which are Σ1-definable in the structure pLωck

1
; Pq; in

the language of higher computability, they are ωck
1 -c.e. sets. Informally, they are

enumerated by effective processes which run in ωck
1 -many steps.

This analogy extends to defining sets of reals, inspired by the following equiva-
lence for open sets W Ď 2ω:

(1) W is Π1
1;

(2) W “ rW să for a Π1
1 set W Ď 2ăω.

Here rW să “ tX P 2ω : pDσ ă Xq σ PW u is the set of reals generated or described
by the set of strings W . Continuing the terminology used in [BGM17], the Π1

1 open
sets are the higher effectively open sets or higher c.e. open sets.

When we come to discuss relativisations, there are two options for defining, for
an oracle A P 2ω, the notions of higher c.e. sets and higher c.e. open sets relative
to A:

‚ sets which are Π1
1pAq;

‚ A-sections of Π1
1 open sets.

These notions are very different. One of the main points of [BGM17] is that the
latter notion is the one which is useful for us when studying higher randomness and
genericity. Here we see that it also allows us to distinguish between different kinds
of oracles. For a set W Ď 2ăω ˆ ω and A P 2ω let

WA “ tn : pDτ ă Aq pτ, nq PW u .

Definition 2.1. Let A P 2ω.

(a) A subset of ω is higher A-c.e. if it is of the form WA for some Π1
1 set

W Ď 2ăω ˆ ω
(b) A subset of 2ω is higher A-c.e. open if it is of the form rV să for some higher

A-c.e. set V Ď 2ăω.

Observe that the higher A-c.e. sets are the A-sections of higher c.e. open subsets
of 2ω ˆ ω, and the higher A-c.e. open sets are the A-sections of higher c.e. open
subsets of 2ω ˆ 2ω. A Π1

1 set W Ď 2ăω ˆ ω is called a higher enumeration operator
or a higher oracle c.e. set. Similarly, If W Ď 2ω ˆ 2ω is higher effectively open
then we also think of it as a higher oracle c.e. open set ; we sometimes use the same
terminology to describe a Π1

1 set W Ď 2ăω ˆ 2ăω generating W. For such a set we
write WA for the A-section of W.

Using open sets, we can extend higher continuous relativisation up the arithmetic
hierarchy. In this paper though we will restrict ourselves to relativising higher
effectively open sets and their complements, the higher effectively closed (or co-
c.e.) sets.

4 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

Having tackled open sets, we can now deal with partial continuous maps. A code
for a partial continuous function F : 2ω Ñ 2ω is a set Φ Ď 2ăω ˆ 2ăω such that for
X P domF ,

F pXq “
ď

tσ : pDτ ă Xq pτ, σq P Φu .

The set Φ is often called a functional, and we usually abuse notation by using Φ to
denote both the functional and the induced partial continuous function F . When Φ
is Π1

1, this gives us a higher reduction procedure, so we make the following definition:

Definition 2.2. Let X,Y P 2ω. We say that Y is higher X-computable, and write
Y ďωck

1 T X, if Y “ ΦpXq for some Π1
1 functional Φ.

Note that Y ďωck
1 T X if and only if the set of final initial segments of Y is higher

X-c.e. With this definition, familiar facts about relative computability hold in the
higher setting, for example: Y ďωck

1 T X if and only if both Y and its complement

are higher X-c.e. When we think of them as codes for higher partial continuous
functions, we refer to Π1

1 sets Φ Ď 2ăω ˆ 2ăω as higher Turing functionals.

2.2. Consistency and uniformity. Let Φ be a higher Turing functional, and let
X P 2ω. There are two possible reasons that ΦpXq may fail to be an element of 2ω:

(i) Partiality: ΦpXq is finite, i.e. an element of 2ăω; or
(ii) Inconsistency: ΦpXq is not a function, which happens if there are τ, τ 1, finite

initial segments of X, and incompatible σ, σ1 such that pτ, σq, pτ 1, σ1q P Φ.

It is of course possible that Φ is consistent and total on some oracles but not on
others. Definition 2.2 allows all possible functionals. We could define a stronger
reducibility, for which we require the functional Φ to be consistent. The distinction
between the two does not occur when considering c.e. functionals: using a time
trick, one can easily uniformly transform any c.e. functional Φ into another c.e.
functional Ψ which is consistent everywhere and such that whenever ΦpXq “ Y , we
also have ΨpXq “ Y . This construction uses a time trick, and fails when considering
Π1

1 functionals. In [BGM17] we argued that requiring consistent functionals was in
most cases too restrictive. We will show (in Section 4) that there is no way around
that: there exists some oracle X which higher Turing computes some Y , but which
does not compute it via any functional which is consistent everywhere.

2.3. Failure of time tricks: an easy example. We shall now see a first example
where the use of a time trick cannot be removed. Any open set with a Σ0

1 description
also has a ∆0

1 description. Indeed, for any Σ0
1 set of strings W , we can define a

∆0
1 set V generating W by enumerating σ in V at stage |σ| if some prefix of σ is

enumerated in W at stage σ.
The proof of the previous paragraph clearly uses a time trick. We shall now

see that there are some open sets with a Π1
1 description that do not have a ∆1

1

description. We start by proving the following:

Proposition 2.3. There is a Π1
1 open set which is not generated by any Π1

1 prefix-
free set of strings.

Proof. Let tWeuePω be a list of all Π1
1 set of strings. Let tσeuePω be an infinite

sequence of pairwise incomparable strings (for example let σe “ 0e1). Working in
Lωck

1
, we enumerate a Π1

1 set of strings V such that for all e, if We is prefix-free,

then rV să ‰ rWes
ă.

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 5

For each e we let Ae be a set of strings extending σe which is dense along σep08

but which contains no prefix of σep08, for example Ae “ tσep0n1 : n ă ωu. At
stage 0 of our construction we start with V0 “

Ť

eAe. Then for any stage s, and
substage e, we check if both rAes

ă Ď rWe,ss
ă and σep08 R rWe,ss

ă. If so, then we
enumerate σe into V at stage s.

We now claim that if We is prefix-free, then rV să ‰ rWes
ă. If rV să “ rWes

ă,
in particular we have rAes

ă Ď rWes
ă. If so, then by compactness, for each string

τ in Ae, there are only finitely many strings in We whose union of corresponding
cylinders covers rτ s. Also by admissibility of ωck

1 (equivalently, the Σ1
1-bounding

principle), as Ae is computable, there is a stage s ă ωck
1 at which we already have

rAes
ă Ď rWe,ss

ă; let s be the least such stage. By construction, if σep08 P rWe,ss
ă

then σep08 R rV s, in which case the point σep08 shows that rV să ‰ rWes
ă.

On the other hand, if at stage s we have σep08 R rWe,ss
ă, then σe is enumerated

in V at stage s. If σep08 R rWes
ă then again we get rV să ‰ rWes

ă. Otherwise, a
prefix τ of σep08 will be enumerated into We after stage s. But then, as already
at stage s we have that rWes

ă covers rAes
ă without containing σep08, and as Ae

is dense along σep08, there is necessarily an extension of τ which is already in We

at stage s. Therefore We is not prefix-free. �

Corollary 2.4. There is a Π1
1-open set which is not generated by any ∆1

1 set of
strings.

Proof. For any ∆1
1 set of strings W there is a prefix-free ∆1

1 set of strings V with
rW să “ rV să, namely the set of minimal strings in W . �

2.4. Treesh-bones: motivation. To motivate the construction framework that
we will soon describe, we consider, informally, how we would go about showing
that there are Y ďωck

1 T X such that for no everywhere consistent functional do we

have ΦpXq “ Y . The idea is similar to the proof of Proposition 2.3. Let Φ be a
consistent functional that we want to defeat. Consider the standard “fish-bone”
with spine 08 and ribs 0n1 for n ă ω. We design our functional Ψ. To start, we
let Ψ map the string 1 to 1, and declare that currently, X extends 1. Now we wait
for the opponent, playing Φ, to respond. There are three possibilities:

(1) The opponent never responds: there is no τ , compatible with 1, which is
mapped by Φ to 1 (or some extension of 1). In this case we declare that X
and Y both extend 1, and win against Φ. We can proceed to defeat other
consistent functionals.

(2) The opponent responds by mapping the empty string to 1: in this case we
win by declaring that both X and Y extend 0.

(3) The opponent maps some extension of 1 to 1. In this case we declare that
for now, X extends the string 01, and map 01 to 1; we repeat.

If the third outcome keeps occurring, then we successivley map each 0n1 to 1, and
the opponent maps 0n1 (or some extension) to 1. The opponent’s response is a Σ1

event; admissibility of ωck
1 implies that some stage s ă ωck

1 bounds the time of
all these responses. When we get to that stage – when we see that for all n, the
opponent mapped some extension of 0n1 to 1 – we can declare that X “ 08 and
that Y extends 0. We get to map the empty string to 0, because Ψ is not required to
be conistent, only consistent on X. The opponent has no such recourse; he cannot
map any initial segment 0n to 0, as each has an extension which is mapped to 1.
Thus we defeat Φ.

6 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

The problem, of course, is that by that stage we have commited to X “ 08 and
have no room to move to defeat the next functional. The idea of the treesh-bone
is to make sure that we can carry out this construction, but when the interesting
outcome occurs, we are left not with just a spine but with a full binary tree on
which we can play the same game with the next functional.

2.5. The perfect treesh-bone. We now present a general framework, that will
be used for several of this paper’s constructions.

For a tree T Ď 2ăω, recall that σ P T is a branching node of T if σp0 and σp1
are both in T , and recall that the stem of T , denoted by stempT q, is the shortest
branching node of T . Given T , we want to obtain both a prefect subtree, which
we call NarpT q, together with countably many nodes tσiuiPω of T which do not
belong to NarpT q, but which are dense along any path of NarpT q. We now formally
describe how we achieve this.

Let T Ď 2ăω be perfect. Let ψT : 2ăω Ñ T be the order-preserving map whose
range is the collection of branching nodes of T . That is, ψT pεq “ stempT q (the
shortest branching node of T) and for all σ P 2ăω and i P t0, 1u, ψT pσpiq is the
next branching node in T above ψT pσqpi.

Let σ0pT q, σ1pT q, . . . be an enumeration of all strings of the form ψT pσp1q for
strings σ of odd length such that for all even k ă |σ|, σpkq “ 0. That is, the nodes
σkpT q are the minimal nodes on T of the form ψT pσp1q for σ of odd length. We
let NarpT q (the narrow subtree of T) be the result of removing the strings σkpT q
from T (and keeping a perfect subtree with no dead ends). Also for any k we let
T vkw denote T æσkpT q, that is, the collection of strings of T comparable with σkpT q
(also known as the full subtree of T issuing from σkpT q). Figure 1 illustrate these
definitions.

Figure 1. The treeshbone. The blue nodes correspond to nodes
σkpT q. The red subtree corresponds to NarpT q.

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 7

Let us make a few remarks which will be widely used without explicit mention
in what follows.

(a) For any tree T and any k we have σkpT q “ stempT vkwq;
(b) For any tree T and any k we have stempT q ă stempT vkwq;
(c) For any tree T we have stempT q “ stempNarpT qq.

The tree of trees. For constructions in this paper, we will work within what can be
considered a “tree of trees”. We define a subset T of the set of computable trees
T Ď 2ăω. This is the set generated by starting with the full tree 2ăω and closing
under taking narrow subtrees and the full subtrees T vkw for k ă ω. For two trees
T1, T2 in T , we say that T2 extends T1 (and write T1 ď T2) if T2 Ď T1. In addition
if T1 ‰ T2 we write T1 ă T2. We illustrate the tree of trees by the following picture:

T

NarpT q T viw...

Narpq viw... Narpq viw...

Narpq viw... Narpq viw... Narpq viw... Narpq viw...

Figure 2. The tree of trees.

Note that T2 extends T1 exactly when T2 is obtained from T1 by applying finitely
many operations of taking the narrow subtree or a full subtree T vkw. If T1 and T2

are incomparable in T , then the closed sets rT1s and rT2s are disjoint. Indeed, for
any T P T , the collection of rSs for the immediate successors S of T on T forms a
partition of rT s.

A path in the tree of trees is a sequence xTny such that T0 “ 2ăω and for all n,
Tn`1 is an immediate successor of Tn on T . If from some point onwards, the path
only takes narrow subtrees – for some n, for all m ą n, Tm`1 “ NarpTmq – then
Ş

n Tn is a hyperarithmetic perfect set. Otherwise,
Ş

nrTns is a singleton tAu and
A “

Ť

n stempTnq. In this case we call the path xTny shrinking.

2.6. Approximating a sequence of trees. A bad oracle we construct will be in
the intersection

Ş

rTns determined by a path xTny in T . The path xTny will usually
be O-computable, where by O we denote any complete Π1

1 set of natural numbers
(usually referred to as Kleene’s O). To show that A computes some objects, we will
need to build higher functionals, which means that we will need to perform some
ωck

1 -computable construction, rather than directly appeal to the oracle O. Thus in
our construction we will approximate the sequence xTny.

Here we rely on the following characterisation of O-computable sets – the higher
analogue of Shoenfield’s limit lemma, which was investigated in [BGM17]. The
following are equivalent for X P 2ω:

(1) X ďT O;

8 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

(2) X ďωck
1 T O;

(3) X has a ωck
1 -computable approximation: a ωck

1 -computable sequence
xXsysăωck

1
which converges to X in the sense that for all k ă ω,

s ă ωck
1 : Xspkq ‰ Xpkq

(

is bounded below ωck
1 .

We call such reals X higher ∆0
2.

Thus, during our construction we will, at every stage s ă ωck
1 , build a sequence

xTn,synăω – a path through the tree of trees – and we will ensure that for each n,
the sequence xTn,sysăωck

1
will eventually stabilise.

The question, though, is why the sequence of trees will indeed stabilise to a
desired sequence xTny. Here the dynamics of the construction matter, and we will
use the admissibility of ωck

1 . A typical argument will go as follows. Suppose that
for all s ě s0 we have Tn,s “ Tn. Then we ensure that for t ą s ě s0,

‚ if Tn`1,t “ Tnvkw for some k ă ω, then Tn`1,s “ Tnvmw for some m ď k;
and

‚ if Tn`1,s “ NarpTnq then Tn`1,t “ NarpTnq as well.

So once we choose NarpTnq, we are guaranteed stabilisation. Admissibility ensures
that if for unboundedly many k we at some point choose Tn`1,s “ Tnvkw, then there
will be some t ă ωck

1 by which we will have already seen the unboundedly many k
chosen; we are then forced to choose Tn`1,t “ NarpTnq.

2.7. Left-c.e. strategies. We describe a way to formalise and generalise this ar-
gument. This generalisation will have two parts:

‚ Defining a mapping from strategies to trees; and
‚ Approximating a higher left-c.e. path of strategies.

Mapping strategies to trees. In most of our constructions we will fix some α˚ ă ωck
1 ,

usually α˚ “ ω ` 1 and sometimes α˚ “ ω ` 2. A strategy will be an element
of pα˚q

ăω. We will then assign strategies to trees. For example, in the simpler
constructions, we will have α˚ “ ω ` 1; the outcome k will corrspond to the
operation T ÞÑ T vkw, while the outcome ω will correspond to the operation T ÞÑ
NarpT q. We will then define Tα P T for a strategy T by induction on |α|: Tε “ 2ăω,
Tαpk “ Tαvkw, and Tαpω “ NarpTαq.

Then, at every stage s of the construction, we will define a path ξs P pα˚q
ω of

strategies; tξs æn : n ă ωu will be the collection of strategies accessible at stage s.
Then of course we define Tn,s “ Tξsæn .

The space pωck
1 q

ω. The oracles we deal with are elements of Cantor space 2ω. In
standard computability though we often extend our notions of computability to
elements of Baire space ωω. In the same way that we handle functionals which
define maps from Cantor space to itself, we can have c.e. functionals which contain
pairs pσ, τq of finite sequences of natural numbers. These functionals define partial
maps from Baire space to itself.

In higher computability, exactly the same idea can be extended to the space
pωck

1 q
ω. In our definitions of higher Turing functionals, for the sake of continuity, it

is important that the maps are determined by finite initial segments, and so that the
objects on which the continuous maps are defined must have length ω. However
it is not that important that the entries of these objects are binary digits, or
natural numbers. We can allow functionals which are ωck

1 -c.e. subsets of pωck
1 q

ăω ˆ

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 9

pωck
1 q

ăω, and they define partial maps from pωck
1 q

ω to itself. Thus, we extend the
relation ďωck

1 T to ω-sequences of computable ordinals. This was done in [BGM17]

when analysing the notion MLRrOs, the partial relativisation of ML-randomness to
Kleene’s O.

Higher left-c.e. sequences. The higher limit lemma extends to show that for
X P pωck

1 q
ω, X ďωck

1 T O if and only if there is a ωck
1 -computable sequence

xXsysăωck
1

with each Xs P pω
ck
1 q

ω and xXsy converging to X in that for all n,

s ă ωck
1 : Xspnq ‰ Xpnq

(

is bounded below ωck
1 ; so we call such sequences

higher ∆0
2 as well.

In [BGM17], several subclasses of the higher ∆0
2 reals have been analysed. Each

subclass is determined by putting restrictions on the type of ωck
1 -computable ap-

proximations for elements in the subclass. For example, we can require that on each
input there are only finitely many mind-changes. A prominent subclass is that of
the higher left-c.e. sequences. Just like Cantor space and Baire space, the natural
ordering on ωck

1 induces the lexicographic ordering on pωck
1 q

ω. The following are
equivalent for X P pωck

1 q
ω:

(1)

σ P pωck
1 q

ăω : σ ă X
(

is ωck
1 -c.e.;

(2) X has a ωck
1 -computable approximation xXsy with Xs ď Xt when s ă t.

Such sequences are called higher left-c.e. The implication (1)Ñ(2) uses admissi-
bility, namely, for all n, all σ ă X of length n are enumerated by some stage.
Generally, if we are given a lexicographically increasing sequence xXsy there is no
guarantee that it converges to some sequence; but if the Xs are uniformly bounded
then we do get convergence. Namely:

(*) if α˚ ă ωck
1 , and xXsysăωck

1
is a ωck

1 -computable sequence with each Xs P

pα˚q
ω and Xs ď Xt (lexicographically) when s ă t, then the sequence xXsy

converges to some X P pα˚q
ω.

The proof, as in the argument above that the trees Tn,s stabilise, is by admissibility;
once xXs æny has stabilised, xXspnqy is a non-decreasing sequence of ordinals ă α˚,
and so must stabilise.

Thus, when conducting a bad oracle construction, we will choose paths xξsy of
strategies with ξs ď ξt for s ď t; as a result, we will be guaranteed that these paths
converge to a “true path” ξ “ ξωck

1
. In turn, this will mean that for each n, the

sequence of trees Tn,s “ Tξsæn will converge to Tn “ Tξæn .

2.8. Computing with the bad oracles. As mentioned, in our construction we
will choose A P

Ş

nrTns (which will usually be unique). We will then sometimes
want to show that A computes some object X. The natural way to do this will be
to define a higher Turing functional Ψ mapping, for each n and s, stempTn,sq to
some finite initial segment, say Xs æn for example, where xXsy is an approximation
for X. To show that ΨpAq “ X, the main task will be showing that ΨpAq is
consistent. In this simple example, this amounts to showing that if stempTn,sq ă A
then Xs ænă X.

Now the mapping of strategies to trees will usually preserve order and non-order;
for strategies α and β, if α ă β then Tα ă Tβ but if α and β are incomparable then
Tα and Tβ will be incomparable in T . Recall that this means that rTαs and rTβs
are disjoint, and so if α ć ξ then A R rTαs. It seems that this is enough to ensure

10 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

consistency of ΨpAq: all we need to ensure is that if α ă ξ then Xα ă X (where
Xα is the initial segment of X determined by the strategy α).

However, we need to remember that we are dealing with continuous reductions,
which is why we used stempTαq (rather than the paths of Tα) as sufficient infor-
mation to compute Xα. While we have α ď β implying stempTαq ď stempTβq, it
is not the case that if α and β are incomparable then stempTαq and stempTβq are
incomparable. This is mostly the case, but stempNarpT qq “ stempT q, which causes
complications.

The argument that Ψ is consistent will therefore be more delicate. It will rely
on the following simple fact:

Fact 2.5. Let S, T P T . If S ě T vkw for some k then stempSq R NarpT q (and so
stempSq ę σ for all σ P NarpT q).

The reason, of course, is that σkpT q “ stempT vkwq ď stempSq and σkpT q R
NarpT q. The argument will also rely on the fact that we enumerate as axioms of Ψ
only pairs pstempTαq, Xαq for α which is accessible at some stage of the construction,
rather than all possible strategies α; in particular, we will use the fact that if αpω
is never accessible, then we don’t map stempTαq “ stempTαpωq to Xαpω (which
may be longer than Xα). We will now show how this is done.

3. Self-PA oracles

It is not difficult to design a c.e. open set U ‰ 2ω containing all the computable
points; equivalently, to exhibit a nonempty Π0

1 class with no computable paths. In
fact the computational power needed to compute a point in any non-empty effec-
tively closed set is well known and characterized as the PA degrees, i.e., the Turing
degrees which can compute a complete and consistent extention of Peano arith-
metic. This has many other combinatorial characterizations which easily relativize
and even in a uniform way. Namely, there is an effectively closed subset P of the
plane such that for all A P 2ω, the section PA is nonempty and does not contain
any A-computable points, in fact, contains only points which are PA relative to A.

Our first construction shows that such uniformity cannot be achieved in the
higher setting.

3.1. A warm up example: a bad oracles for an effectively closed set.

Theorem 3.1. Let P be a higher oracle effectively closed set such that for all
B P 2ω, PB is nonempty. Then there is some A P 2ω such that PA contains a
higher A-computable point (a point X ďωck

1 T A).

Further, A can be taken to be higher ∆0
2.

Proof. The construction follows the simple scheme described above assigning strate-
gies α P pω ` 1qăω to trees Tα P T :

‚ Tε “ 2ăω;
‚ Tαpk “ Tαvkw;
‚ Tαpω “ NarpTαq.

We also define a mapping from strategies α P pω`1qăω to finite binary sequences
Xα, with |Xα| “ |α|, by letting, for n ă |α|, Xαpnq “ 0 if and only if αpnq ă ω.

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 11

At stage s we define the path of strategies ξs by recursion on their length. That
is, the empty strategy ε is always accessible, and given an accessible α ă ξs, we
determine an immediate successor αpo ă ξs.

Suppose that α ă ξs. There are two possibilities, depending on whether there is
some k ă ω such that for all σ P Tαvkw we have rXαp0s X Pσs ‰ H.

(i) If there is such, we choose k to be the least, and declare that αpk ă ξs.
(ii) If no such k exists, we declare that αpω ă ξs.

This defines the construction.

Convergence. We show that if s ă t then ξs ď ξt (in the lexicographic ordering of
pω ` 1qω). For let α be a finite common initial segment of ξs and ξt. For all σ,
Pσs Ě Pσt ; it follows that if αpk ă ξt for some k ă ω then for all σ P Tαvkw,
Pσs X rXαs ‰ H; therefore αpm ă ξs for some m ď k. On the other hand, if
αpω ă ξs, then for all k, Pσt X rXαs “ H for some σ P Tαvkw, which implies that
αpω ă ξt as well.

Thus xξsy converges to some ξ P pω` 1qω. Now choose any A P
Ş

tTα : α ă ξu.
We also let X “

Ť

αăξXα.

Verifying that X P PA. By induction on the length of α ă ξ, we show that:

rXαs X PB ‰ H for all B P rTαs (*)

The base case |α| “ 0 holds by the assumption that PB is nonempty for all B.
Suppose that this has been shown for α and let us show it for αpo, where αpo ă ξ
for o ă ω ` 1. If o “ k ă ω then Xαpo “ Xαp0; Tαpo “ Tαvkw, and for all
B P rTαpos, rXαp0s X PB ‰ H. This is by compactness: for all σ P Tαpo, for all s,
rXαp0s X Pσs ‰ H.

Suppose then that o “ ω; so Xαpo “ Xαp1. By construction, for every k there is
σ P Tαvkw such that rXαp0s XPσ “ H. Suppose, for a contradiction, that there is
some C P rTαpos “ rNarpTαqs such that rXαposXPC “ H. By compactness, there is
some σ P Tαpo such that rXαp1sXPσ “ H. There is some k ă ω such that σkpTαq
extends σ, and there is some B P rTαvkws Ď rTαs such that rXαp0s X PB “ H.
Since σ ă B we get rXαs XPB “ H, contradicting the induction hypothesis for α.

Now X P PA follows from the fact that PA is closed.

Verifying that X ďωck
1 T A. It is immediate that X ďωck

1 T ξ: use the functional

tpα,Xαq : α P pω ` 1qăωu. We show that ξ ďωck
1 T A. We define the higher Turing

functional

Φ “

pstempTαq, αq : pDs ă ωck
1 qα ă ξs

(

.

For all α ă ξ we have stempTαq ă A and α ă ξs for some s, so α ă ΦpAq. So to
show that ΦpAq “ ξ, it remains to show that Φ is consistent on A. That is, to show
that for all s, if α ă ξs and stempTαq ă A, then α ă ξ. This is done by induction
on the length of α.

So fix some α P pω ` 1qăω and some s ă ωck
1 , and suppose that α ă ξs, ξ, but

that αpm ă ξs and αpo ă ξ, where m ‰ o. We necessarily have m ă o, so m ă ω.
Thus stempTαpmq “ σmpTαq. We need to show that stempTαpmq ć A. There are
two cases:

‚ If o ă ω, then stempTαpoq “ σopTαq ă A, and σmpTαq and σopTαq are
incomparable.

12 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

‚ If o “ ω then A P rTαpos “ NarpTαq, while σmpTαq R NarpTαq (recall
Fact 2.5), so again σmpTαq ć A.

The complexity of A. If there are infinitely many n such that ξpnq ă ω, then
xTny is a shrinking path, so

Ş

nrTns is a singleton, and x
Ť

αăξs
stempTαqysăωck

1

converges to A, so A is higher ∆0
2. Otherwise, the leftmost element of

Ş

nrTns is
hyperarithmetic. The latter option is possible, for example consider when PB “
t18u for all B. �

3.2. Self-PA oracles. Theorem 3.1 shows that the uniform construction of uni-
form PA-complete effectively closed sets fails in the higher setting. One can wonder
what happens if we drop the uniformity requirement.

Definition 3.2. An oracle A is higher self-PA if every nonempty higher A-co-c.e.
closed set contains some higher A-computable point.

In this section we show that for computing points in closed sets, the situation in
the higher setting does not deviate too much from the standard one:

Theorem 3.3. There is no higher self-PA oracle.

In contrast, Miller and Soskova showed that there are self-PA enumeration de-
grees.

The proof of Theorem 3.3, necessarily non-uniform by Theorem 3.1, splits into
two cases, which we treat separately, for the first stating a slightly stronger result:

Proposition 3.4. There is a higher oracle effectively closed set P such that:

(a) For all B P 2ω, PB ‰ H; and
(b) If A ğωck

1 T O then PA contains no higher A-computable points.

Proof. Let p : ωck
1 Ñ ω be a ωck

1 -computable (injective) enumeration of O.

We define a higher oracle effectively closed set P as follows. At every stage
s ă ωck

1 , for every e ă ω, for every string τ P 2ăω, minimal with respect to the
property:

Φe,spτq is consistent, and |Φe,spτq| ą ppsq2 ` e2

remove rΦe,spτqs from Pτ .

First we observe that for all B, PB is nonempty. Indeed, for each n, fewer
than n many strings of length ď n are ever removed from PB . For suppose that
rσs is removed from PB , and |σ| ď n. Then σ “ Φe,spτq for some τ ă B and is
removed at some stage s; note that at each stage we act for at most one τ ă B.
We have |σ| ą ppsq2 ` e2 so ppsq, e ă

?
n; as p is injective, there are fewer than n

many such pairs pe, sq.

Next, let A P 2ω, e ă ω, and suppose that ΦepAq is total, consistent, and an
element of PA. Suppose that τ ă A, s ă ωck

1 and |Φe,spτq| ą n2 ` e2; then Os æn“
O æn: otherwise there is some t ą s with pptq ă n, and as |Φe,tpτq| ě |Φe,spτq|, we
would remove ΦepAq from PA at stage t. So the functional

Ψ “

pτ,Os ænq : s ă ωck
1 ,Φe,spτq is consistent, and |Φe,spτq| ą n2 ` e2

(

gives ΨpAq “ O. �

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 13

Proof of Theorem 3.3. In light of Proposition 3.4, it remains to show that if
A ěωck

1 T O then there is a higher A-effectively closed set containing no higher

A-computable points.

Let

C “ tpe, σq : Φepσq is consistentu .

Then C ďT O. Let Ψ be a higher functional such that ΨpAq “ C. We define a
higher oracle effectively closed set P: for any τ and e, if there is some σ ď τ such
that Ψpτ, e, σq “ yes,1 and some s ă ωck

1 such that Φe,spσq is consistent and has
length at least e` 1, then we remove rΦe,spσqs from Pτ .

If ρ “ Φe,spσq is removed from PA then pe, σq P C. It follows that if Φe,spσq
and Φe,s1pσ1q are removed from PA then these removed strings are comparable;
the losses on behalf of e thus amount to no more than a single string of length at
least e` 1. It follows that PA is nonempty.

If ΦepAq is total and consistent then for sufficiently long σ ă A and sufficiently
late s we have |Φe,spσq| ą e; and for sufficiently long τ ă A we have Ψpτ, e, σq “ yes;
so ΦepAq R PA.

Note that it is quite possible that if ΨpBq ‰ C then PB is empty. �

3.3. Bad oracles for uniform self-PA. In light of Theorem 3.3, the best we can
hope for is badness for uniform failure of self-PA-ness.

Definition 3.5. An oracle A is bad for uniform self-PA if for every higher oracle
effectively closed set P, if for every B, PB ‰ H, then PA contains some higher
A-computable point.

Theorem 3.6. There is an oracle which is bad for uniform self-PA.

In fact, there is a higher ∆0
2 such oracle.

Proof. Not much needs to be added to the construction of Theorem 3.1. We tackle
all higher oracle effectively closed sets and interleave the constructions.

Fix a computable pairing function pe, dq ÞÑ xe, dy satisfying xe, dy ă xe, d` 1y for
all e and d; for example, the standard Cantor pairing function will do. Let xPey be
an effective list of all higher oracle effectively closed sets. We again let the collection
of srategies be pω`1qăω, with the same scheme α ÞÑ Tα. We now approximate sets
Xe for all e ă ω, with the intention that Xe P PAe is higher A-computable unless
PBe is empty for some B. For every strategy α and every e ă ω we define Xe,α by
induction on |α|:

‚ For every e, Xe,ε “ ε;
‚ If |α| “ xe, dy then Xe,αpk “ Xe,αp0 for k ă ω, and Xe,αpω “ Xe,αp1. For

all e1 ‰ e, Xe1,αpo “ Xe1,α for all o ď ω.

So Xe,αpdq is defined if and only if xe, dy ă |α|.
The construction is as expected: suppose that α ă ξs; let |α| “ xe, dy. If there

is some k such that for all σ P Tαvkw, rXe,αp0s X Pσe,s ‰ H, then we let αpk ă ξs
for the least such k; otherwise we let αpω ă ξs.

For the verification, by induction on α ă ξ we prove that for all e, if for all B,
PBe ‰ H, then rXe,αs X PBe ‰ H for all B P rTαs. The proof that ξ ďωck

1 T A is the
same.

1Meaning that τ thinks that pe, σq P C.

14 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

Note that if e is such that for all B, PB “ 2ω, then for all d, ξpxe, dyq “ 0.
It follows that xTαyαăξ is a shrinking path, i.e.,

Ş

αăξrTαs is a singleton (and the

same holds at every s ă ωck
1). �

Note that Proposition 3.4 implies that any oracle which is bad for uniform self-PA
must higher compute O.

4. Higher Turing consistent computations

4.1. A bad oracle for consistent functionals. The following result justifies
the use in [BGM17] of the general form of higher Turing reductions, rather than
everywhere consistent reductions.

Theorem 4.1. There is an oracle A and some X ďωck
1 T A such that for no every-

where consistent higher functional Φ do we have ΦpAq “ X.

Again we can make A higher ∆0
2. We give a direct construction first.

Proof. The construction is similar to that of Theorem 3.1. Note that we have an
effective enumeration of all consistent higher functionals xΦey. We can copy the
axioms of a functional and stop right before we see an inconsistency creep in.

We use the same scheme for mapping strategies to trees as the two constructions
above; and the same mapping α ÞÑ Xα as in the proof of Theorem 3.1.

At stage s, if we have already determined that α ă ξs, and |α| “ e, then we let
αpk ă ξs if k is least such that for no τ P Tαvkw do we have Φe,spτq ě Xαp0. If
there is no such k we let αpω ă ξs.

Note that if Φe is the empty functional, then αp0 ă ξ, so xTαyαăξ is a shrinking

path; as usual let tAu “
Ş

αăξrTαs. We claim that for all e ă ω, ΦepAq ‰ X: let

α ă ξ have length e. If αpk ă ξ, then ΦepAq does not extend Xαp0 “ X æe`1.
Otherwise, A P NarpTαq and densely along A, Φe maps strings to Xαp0 which is
incomparable with X, so Φe cannot map any initial segment of A to X æe`1. The
proof that ξ ďωck

1 T A is the same. �

The construction above is almost identical to the one given for Theorem 3.1; in
fact we can derive the result from that construction, by applying it to the higher
oracle effectively closed set given by the following proposition.

Proposition 4.2. There is a higher oracle effectively closed set P such that for
all B, PB is nonempty but contains no X which is higher B-computable by a con-
sistent functional.

Proof. Let xΦey list all consistent higher functionals. For each τ and e, if |Φepτq| ą
e, remove Φepτq from Pτ . �

An oracle satisfying Theorem 4.1 is called bad for consistent functionals. Propo-
sition 4.2 implies that an oracle which is bad for uniform self-PA is also bad for
consistent functionals. It is not clear if these notions are equivalent; it seems possi-
ble that the former is stronger, because it deals with all higher oracle co-c.e. closed
sets, rather than just the one built in Proposition 4.2. We do not even know whether

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 15

a bad oracle for consistent functionals must higher compute O.2 Note that we do
know that if A is bad for consistent functionals then ωA1 ą ωck

1 [BGM17, Prop.2.3].
We now introduce another “highness property” about which we can say some-

thing, and will be useful in what comes next.

4.2. Tree-collapsing oracles. An oracle A collapses ωck
1 if ωA1 ą ωck

1 , equivalently,
if O ďh A. In [BGM17] we examined a variety of stronger properties of oracles
within the higher ∆0

2 sets, again based on properties of their approxmations. In
particular, we used the notion of a collapsing approximation.

Let tXsusăωck
1

be a ωck
1 -computable approximation of a set X. For n ă ω let

spnq be the least stage s ă ωck
1 such that Xs æn“ X æn. The approximation xXsy

is collapsing if supn spnq “ ωck
1 . Equivalently, if for all s ă ωck

1 , X does not belong
to the closure of the set tXt : t ă su.

Definition 4.3. An oracle A is tree-collapsing if there is a Π1
1 tree T Ď 2ăω such

that A P rT s but for every ∆1
1 subtree S Ď T , A R rSs.

If xTsy is a ωck
1 -computable enumeration of a Π1

1 tree T , then we may assume that
each Ts is a tree. An admissibility argument shows that

Ť

srTss is the collection
of all A P rT s which lie on some ∆1

1 subtree of T . Thus T witnesses that A is
tree-collapsing if and only if letting spnq be the least s such that AænP Ts, we have
supn spnq “ ωck

1 . This shows that if A is tree-collapsing then A collapses ωck
1 .

Proposition 4.4. If A is higher ∆0
2, then A is tree-collapsing if and only if it has

a collapsing approximation.

Proof. If xAsy is a collapsing approximation of A, we let

T “

As æn : n ă ω & s ă ωck
1

(

.

In the other direction, let xAsy be a ωck
1 -computable approximation of A and let T

witness that A is tree-collapsing. For each s let σs P 2ďω be the longest initial
segment of As on Ts. Let Bs “ σs if σs is infinite, otherwise let Bs “ σs 0̂8. Then
xBsy is a collapsing approximation of A (using the fact that A is not computable,
so does not end with a string of zeros). �

In some sense, tree-collapsing oracles are better than having no oracle at all:
they allow us to replace processes of length ωck

1 by processes of length ω, thereby
allowing us to revert to some time tricks. Compare the following to Proposition 2.3.

Proposition 4.5. If A is tree collapsible then every higher A-c.e. open set is gen-
erated by a higher A-computable prefix-free set.

Proof. Let T witness that A is tree-collapsing, and let W generate an oracle c.e.
open set. We assume that for all pairs pτ, σq PW we have |τ | ě |σ|.

Define an enumeration xVsysăωck
1

as follows. Start with V0 “ H, and at limit

stages take unions. Suppose that Vs has been defined. We enumerate a new pair
pτ, σq into Vs`1 if τ P Ts`1 ´ Ts, |σ| “ |τ |, rσs ĎWτ

s and rσs X Vτs “ H.
For all B we have VB ĎWB , and V B is a higher B-computable prefix-free set.

On the other hand, if rσs Ď WA then by compactness, there is some τ ă A and

2Note that a higher ∆0
2 oracle which is bad for consistent Turing functionals cannot compute O

via a consistent functional; this is because X is computable from O via a consistent functional,

being higher ∆0
2.

16 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

some s ă ωck
1 such that rσs Ď Wτ

s . There is some τ 1 ă A, extending τ , which

is enumerated into Tt`1 for some t ě s. Then rσs Ď Vτ 1

t`1, which shows that

WA “ VA. �

An oracle is good if it is not bad.

Proposition 4.6. If A is tree-collapsing then it is good for consistent functionals.

Proof. Similar to the proof of [BGM17, Prop.2.2], which proves the same for oracles
with collapsing approximations. Letting Φ be a higher Turing functional, we copy
some Φ-computations into a consistent functional Ψ; if τ P Ts`1´Ts, and σ “ Φspτq
is consistent, then we add the axiom pτ, σq to Ψs`1. �

We can pay a debt made in [BGM17]:

Corollary 4.7. There exists a higher ∆0
2 oracle A such that ωA1 ą ωck

1 and such
that A does not have a collapsing approximation.

Proof. Take A to be higher ∆0
2 and bad for consistent functionals; by Proposi-

tions 4.4 and 4.6, A does not have a collapsing approximation, but we know that
ωA1 ą ωck

1 . �

4.3. fin-h reduction. The first notion of higher continuous reductions was intro-
duced by Hjorth and Nies in [HN07]. They defined a fin-h functional to be a higher
functional Φ which (a) as a set of pairs, is a monotone function from strings to
strings; and (b) dom Φ is a subtree of 2ăω. This means that for all τ , when we
see τ P dom Φ, we will have seen all proper initial segments of τ in dom Φ as well,
and Φpτq is fixed from that time onwards. Hjorth and Nies write Y ďfin-h X if
ΦpXq “ Y for some fin-h functional Φ.

Certainly every fin-h functional is consistent, but a consistent functional may
allow axioms to be added in reverse order some times. We may expect then that a
bad oracle construction could separate fin-h from general reductions by consistent
functionals. This is not so.

Theorem 4.8. Suppose that Y “ ΦpXq for a consistent functional Φ. Then
Y ďfin-h X.

The proof is non-uniform, and this non-uniformity is necessary; it is not difficult
to meet a single requirement when trying to separate between consistent and fin-h
reductions.

Proof. If X is tree-collapsing, then the construction of Proposition 4.6 actually
gives a fin-h functional.

Suppose that X is not tree-collapsing. For s ă ωck
1 let

Ts “ tσ P 2ăω : p@n ă ωqpDτ ě σq |Φspτq| ě nu

and let T “
Ť

s Ts. We first note that X P rT s; for all σ ă X, for all n, we know
that there is some τ ě σ with |Φpτq| ě n; by admissibility, for each n such τ
appears by some bounded stage, i.e., σ P Ts for some s. The assumption that X is
not tree-collapsing means that X P rTss for some s; fix such s.

We define a fin-h functional Ψ with dom Ψ “ Ts. For σ P Ts we let Ψpσq be the
longest string ρ with |ρ| ď |σ| and ρ comparable with Φspτq for all τ ě σ. Because
σ P Ts, there is some τ ě σ with |Φspτq| ě |σ|, so we cannot have two incomparable

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 17

strings ρ which are candidates for Ψpσq. It is not difficult to see that Ψ is a fin-h
functional. We argue that ΨpXq “ ΦpXq.

We show that ΨpXq ď ΦpXq. For σ ă X find τ ě σ with |Φspτq| ě |σ|, so
Ψpσq ď Φspτq. Since Φ is consistent, Φpσq is comparable with Φspτq; so Ψpσq is
comparable with Φpσq.

It remains to show that ΨpXq is total. Let n ă ω; find σ ă X, |σ| ě n, such
that |Φpσq| ě n. For all τ ě σ, Φpσq is comparable with Φspτq; so |Ψpσq| ě n. �

Remark 4.9. The proof above shows that if X is not tree-collapsible and Y ďfin-h X
then there is some hyperarithmetic H such that Y ďT X ‘H.

4.4. Bad random oracles for Turing functionals. We now investigate proper-
ties of bad oracles in a different direction: we show that an oracle bad for consistent
functionals can be higher Martin-Löf-random. Recall that a higher ML-test is a
sequence xUny of uniformly Π1

1-open sets with λpUnq ď 2´n; here λ denotes the fair-
coin measure on Cantor space. The intersection

Ş

n Un is called higher ML-null,
and a sequence X P 2ω is higher ML-random if it is not an element of any higher
ML-null set. In this subsection we prove:

Theorem 4.10. There is a higher ML-random oracle A which is bad for consistent
functionals.

Further, we can make A higher ∆0
2.

Uniform splitting levels. There is a nonempty Σ1
1 closed set consisting only of higher

ML-random sequences. This set is the collection of paths through a Σ1
1 tree T Ă

2ăω; this tree has a co-enumeration: a ωck
1 -computable sequence xTsysăωck

1
of trees

such that T “
Ş

s Ts.
Since T does not contain a hyperarithmetic path, it is perfect. The general

idea of the construction is to mimic our previous constructions of bad oracles, but
instead of starting with 2ăω, to start with T . Thus we will approximate during the
construction both the path of strategies and the initial tree, which at stage s will
be Ts.

However, we cannot naively just perform the same construction with the only
modification being Tε,s “ Ts. This is because under the standard definitions, our
operations are not monotone. For example, there may be s ă t, so Ts Ě Tt, but
NarpTsq Ğ NarpTtq: this is because the disappearance of nodes from Ts may cause
branching nodes of odd level to become branching nodes of even level. This would
completely mess up the construction.

However, with a little cost, we can avoid this problem by making sure that we
only take splittings at uniform levels across all trees. This is done as follows.

For a measurable set A and a non-null measurable set B we let λpA |Bq denote
the conditional measure λpAX Bq{λpBq. For a string σ P 2ăω we write λpA |σq for
λpA | rσsq. The following is well-known, and follows from additivity of measure.

Lemma 4.11. Let σ be a string and A a measurable set such that λpA |σq ě 2´n.
Then there are at least two extensions τ1, τ2 of σ of length |σ| ` n ` 1 so that for
both i P t1, 2u we have λpA | τiq ě 2´n´1.

Now let fp1q “ 0 and fpn ` 1q “ fpnq ` n ` 1. Let A Ď 2ω with λpAq ě 1{2.
Then for all n ě 1, every string τ of length fpnq for which λpA | τq ě 2´n has at
least two extensions σ of length fpn` 1q for which λpA |σq ě 2´n´1.

18 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

Consider again the higher co-c.e. tree T whose paths are all higher ML-random;
as mentioned, it has a co-enumeration xTsy, with s ă t implying Ts Ě Tt, and
each Ts a tree. We may assume that λprT sq ě 1{2. By further removing strings,
we may assume that for every s, every σ P Ts of length fpnq has at least two
extensions on Ts of length fpn` 1q. We simply remove strings σ of length fpnq for
which λprTss |σq ă 2´n.

Our plan now is to use the levels fpnq as locations for splittings. The price to
pay, we shall see, is that the splittings are now no longer binary; a string on Ts
of length fpnq may have more than two extensions on Ts of length fpn` 1q. This
will require some light modifications to the construction and the verification of
convergence. For now, we define the new version of narrow subtrees; these will have
an extra parameter, for which we will use the length of the associating strategy.
Let xAkykăω be a computable partition of ω into infinite sets. For k ă ω and a tree
R Ď 2ăω we let

NarkpRq

be the tree obtained from R by removing from R, for each n P Ak such that
fpnq ą | stempRq| and each σ P R of length fpnq, the rightmost extension of σ on R
of length fpn` 1q.

We will use the following:

Fact 4.12.

(a) If R Ď S then for all k, NarkpRq Ď NarkpSq.
(b) If R “

Ş

săωck
1
Rs then NarkpRq “

Ş

săωck
1
NarkpRsq.

For (b), the point is that every τ of length fpnq has only finitely many extensions
of length fpn` 1q, so the rightmost such extension eventually stabilises.

The moving tree of trees. Let xτkykăω be a computable enumeration of all finite
binary strings which have length fpnq for some n. Ensure that k ď m implies
|τk| ď |τm|. For each n, for each string τ of length fpnq, let σ0pτq, σ1pτq, . . . , be an
enumeration of all extensions of τ of length fpn`1q, enumerated from right to left.

Our collection of strategies is a sub-collection of pω2 ` 1qăω. The outcomes of a
strategy α are:

‚ For each k and each i such that σipτkq is defined, the outcome ωk ` i;
‚ The outcome ω2.

Note that ωk ` i is an outcome exactly for i ă 2fpn`1q´fpnq (where |τk| “ fpnq).
Thus the order-type of all outcomes is ω`1. For clarity, we choose not to renumber
them.

In what follows, let Tωck
1
“ T “

Ş

săωck
1
Ts. For a strategy α and a stage s ď ωck

1

we define a tree Tα,s. We do this by recursion on the length of α.

‚ Tε,s “ Ts.
‚ Given Tα,s, we let Tαppωk`iq,s “ Tα,s æσipτkq (the full subtree issuing from

the string σipτkq);
‚ and we let Tαpω2,s “ Nar|α|pTα,sq.

Note that it is possible for Tα,s to be finite; for example if α ě βppωk` iq where
σipτkq R Tβ,s. We will make sure that such a strategy α will never be accessible at
stage s.

The following is not difficult to verify.

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 19

Lemma 4.13. Let α be a strategy and let s ď ωck
1 .

(a) For all t ě s, Tα,s Ě Tα,t.
(b) Tα,ωck

1
“
Ş

tăωck
1
Tα,t.

(c) For all β ě α, Tα,s Ě Tβ,s.
(d) Suppose that Tα,s is infinite. Let n ě 1 and let σ P Tα,s have length fpnq.

(i) σ has an extension on Tα,s of length fpn` 1q.
(ii) If fpnq ą | stempTα,sq| and n R

Ť

kă|α|Ak then σ has at least two

extensions on Tα,s of length fpn` 1q.
(e) If Tα,s is infinite, then so is Nar|α|pTα,sq.

Also, for a strategy α we define Xα. We declare that |Xα| “ |α|; Xαpnq “ 0 if
αpnq ă ω2, otherwise Xαpnq “ 1.

Bad random oracle. We now use our settings to give the desired proof.

Proof of Theorem 4.10. Let P be the higher oracle effectively closed set given by
Proposition 4.2: for every A, PA is nonempty and contains no setX higher reducible
to A by a consistent functional. So our aim is to find some A P rT s and some
X ďωck

1 T A such that X P PA. Let xPsy be a co-enumeration of P; we let Pωck
1
“ P.

Let s ď ωck
1 . At stage s we define the path ξs of strategies accessible at stage s.

Of course ε ă ξs. Suppose that we have already determined that α ă ξs. Let

Bα,s “ tσ P 2ăω : pDτ ě σq Pτs X rXαp0s “ Hu .

We choose as follows.

(1) If Nar|α|pTα,sq Ď Bα,s then we let αpω2 ă ξs.
(2) Otherwise, let k be least such that:

(i) τk P Nar|α|pTα,sq ´Bα,s;
(ii) |τk| “ fpnq ą | stempTα,sq| and n P A|α|.
Let i be such that σipτkq is the rightmost extension of τk on Tα,s of length
fpn` 1q. We let αppωk ` iq ă ξs.

This concludes the construction. Note that we have defined ξs for s “ ωck
1 as

well (starting with Tωck
1
“ T , and using Pωck

1
“ P). This is of course not part of

the ωck
1 -computable construction; only the sequence xξsysăωck

1
is ωck

1 -computable.

We will show that xξsy converges to ξωck
1

. We now start the verification.

Trees are infinite. For all s ď ωck
1 and α ă ξs, Tα,s is infinite: this is because when

we choose αppωk ` iq ă ξs then σipτkq P Tα,s. This shows that the instruction in
case (2) can be carried out. Note that if αppωk ` iq ă ξs then σipτkq P Tα,s ´
Nar|α|pTα,sq.

Convergence. We show that for all s ď t ď ωck
1 , ξs ď ξt. Suppose that α ă ξs and

α ă ξt.
First suppose that αpω2 ă ξs. Since Bα,s Ď Bα,t and Nar|α|pTα,sq Ě

Nar|α|pTα,tq, we get αpω2 ă ξt as well.
Next suppose that αppωk ` iq ă ξt. The inclusions in the previous case show

that τk P Nar|α|pTα,sq ´Bα,s as well; and |τk| ą | stempTα,tq| ě | stempTα,sq| (again
because Tα,s Ě Tα,t). Also, σipτkq P Tα,s. Hence αppωk1` i1q ă ξs for some k1 ď k,
and if k1 “ k, for i1 ď i; this means ωk1 ` i1 ď ωk ` i.

20 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

It follows that xξsysăωck
1

converges to some ξ ď ξωck
1

. However, ξ “ ξωck
1

. To

see this suppose that α ă ξωck
1
, ξ. If αpω2 ă ξωck

1
, that is, if Nar|α|pTα,ωck

1
q Ď

Bα,ωck
1

, then as Bα,ωck
1
“
Ť

săωck
1
Bα,s and Nar|α|pTα,ωck

1
q “

Ş

săωck
1
Nar|α|pTα,sq, by

admissibility of ωck
1 , there is some s such that Nar|α|pTα,sq Ď Bα,s. Hence αpω2 ă ξ.

Suppose that αppωk` iq ă ξ. So for all s ă ωck
1 , τk P Nar|α|pTα,sq´Bα,s; so τk P

Nar|α|pTα,ωck
1
q ´ Bα,ωck

1
. Also, for all s, |τk| ą | stempTα,sq| and as stempTα,ωck

1
q “

limsÑωck
1

stempTα,sq, we get |τk| ą | stempTα,ωck
1
q|. A similar argument shows that

σipτkq is the rightmost extension of τk on Tα,ωck
1

at the next level fpn ` 1q. Thus

the outcome of α in ξωck
1

is at most ωk ` i; but we know that ξ ď ξωck
1

, so we must

have αppωk ` iq ă ξωck
1

.

It follows that Xωck
1
“ limsÑωck

1
Xs, where Xs “

Ť

αăξs
Xα for all s ď ωck

1 . Let

A P
Ş

αăξ
ωck
1

rTα,ωck
1
s.

Hitting the closed set. Let ξ “ ξωck
1

and write Tα for Tα,ωck
1

. For all α ă ξ, for

all B P rTαs, PB X rXαs ‰ H. The argument is as in previous constructions. By
induction; if αppωk ` iq ă ξ then Xαppωk`iq “ Xαp0, and as τk R Bα,ωck

1
, there is

no σ extending τk, thus no σ P Tαppωk`iq such that PσXrXαp0s “ H. If αpω2 ă ξ
then Nar|α|pTαq Ď Bα,ωck

1
, so every τ P Nar|α|pTαq “ Tαpω2 can be extended to some

B such that PB XrXαp0s “ H; by induction, for all τ P Tαpω2 , Pτ XrXαp1s ‰ H.
We conclude that X “ Xωck

1
P PA.

Computing ξ. As in previous constructions, we show that ξ ďωck
1 T A (and it is

immediate that X ďωck
1 T ξ). As above, this amounts to showing that if o ă p ď ω2,

αpo ă ξs and αpp ă ξ, then stempTαpo,sq ć A. Let k, i such that o “ ωk ` i. We
know that stempTαpo,sq ě σipτkq, so we show that σipτkq ć A.

If p “ ω2 then we chose σipτkq R Tαpω2,s; and A P rTαpω2s and Tαpω2 Ď Tαpω2,s.

Suppose that p “ ωm ` j. We show that σjpτmq K σipτkq. We cannot have
τm ă τk because k ď m and so |τk| ď |τm|. We cannot have τm ě σipτkq, because
τm P Tαpω2 and σipτkq R Tαpω2,s. If τm K σipτkq we are done. If not, then
τm ă σipτkq and so τm “ τk, that is, m “ k. In this case we have i ‰ j, and σjpτkq
and σipτkq are distinct strings of the same length, and so are incomparable. (Also,
because i ă j, σipτkq R Tα, whence σipτkq ć A.) �

A modification of the proof above along the lines of the construction giving
Theorem 3.6 also gives:

Theorem 4.14. There is a higher ML-random oracle which is bad for uniform
self-PA.

5. Relativising higher randomness

Continuous relativisation of higher Martin-Löf randomness were considered in
[BGM17] when studying bases for higher ML-randomness and the van Lambalgen
theorem. As expected, a higher A-ML-test is a sequence xUny of uniformly higher
A-c.e. open sets Un with λpUnq ď 2´n; we analgously define higher A-ML null sets
and higher A-ML random sequences.

In this section we focus on some positive results: ways in which relativised higher
randomness mimics standard randomness.

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 21

5.1. ML and Kurtz randomness.

Definition 5.1. Let A P 2ω. A sequence is higher A-Kurtz random if it is an
element of no null higher A-effectively closed set.

Proposition 5.2. For any A, every higher A-ML random sequence is higher A-
Kurtz random.

Proof. We need to cover a higher A-effectively closed and null set by a higher A-ML
null set. We are given a higher oracle effectively closed P such that PA is null. Let
ε ą 0; we show how (uniformly in ε) we can find a higher A-c.e. open set UA such
that λpUAq ď ε and PA Ď UA. We mimic the proof that there is no higher self-PA
degree, now throwing in measure into the mix.

First, we tackle the incomplete case, which is an elaboration on Proposition 3.4.
Again let p : ωck

1 Ñ ω be an injective enumeration of O. At stage s, for each τ , if
λpPτs q ă ε ¨ 2´ppsq, then we find a hyperarithmetic open set V Ě Pτs with λpV q ď
ε2´ppsq and add it to Uτs`1. Thus, for all τ ,

λpUτ q ď ε
ÿ

săωck
1

2´ppsq ă ε,

so for all B, λpUBq ď ε. Now suppose that PA Ę UA. This means that for all s, m,
and τ ă A, if λpPτs q ă ε2´m then Os æm“ Oæm. It follows that A ěωck

1 T O.

In that case let

Mε “ tσ P 2ăω : λpPσq ă ε and σ is minimal suchu .

Note that Mε is higher c.e., uniformly in ε, and so is higher A-computable, again
uniformly. As in the proof of Theorem 3.3, when we see that τ believes that some
σ ď τ is in Mε, we wait for the least s such that λpPσs q ă ε, and if found, we find
a hyperarithmetic open set V Ě Pσs of measure ď ε and enumerate it into Wτ .
Measure will go into WA on behalf of exactly one σ ă A (the one in Mε) and one
s ă ωck

1 , so λpWAq ď ε, and PA Ď Pσ Ď Pσs ĎWA. �

Remark 5.3. The first part of the proof above can be extended to show that uni-
formly in ε we can obtain a higher oracle-c.e. open set U such that for all B,
λpUBq ď ε; and for any A ğωck

1 T O, UA contains every higher A-Kurtz null set.

5.2. Relatively c.e. sets are not random. It is not difficult to show that higher
A-computable points cannot be higher A-random, indeed not higher A-Kurtz ran-
dom. In fact, we show:

Theorem 5.4. For all A, no higher A-c.e. set is higher A-Kurtz random.

Hirschfeldt first showed that higher A-c.e. sets cannot be higher A-ML random.
His argument used Besicovitch density (the law of large numbers).

Proof. Let X Ď ω be higher A-c.e. If X is finite then certainly it is not any kind of
random. Suppose that X is infinite; then the collection of supersets of X is closed
and null, and in fact is higher A-effectively closed. �

22 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

5.3. There are relative higher left-c.e. randoms. As discussed in the intro-
duction, in the next section we will show that for some very bad oracle A, there is
no universal higher A-ML test. One of the implications is that it is not clear that
there will be a (nonempty) higher A-effectively closed set containing only higher A-
ML random sequences. As a result, the standard proof that for every A, there is an
A-left c.e., A-ML random sequence, does not work in the higher setting: the proof
takes the leftmost point in an A-effectively closed set of A-ML random sequences.

Nonetheless, we can prove that for all A, there are indeed higher A-left c.e.,
higher A-ML random sequences. To prove this, we first need to clarify the notion
of higher A-left c.e. Recall that the higher left-c.e. sequences were defined by the
following equivalent conditions:

(1) tσ P 2ăω : σ ă Xu is higher c.e.;
(2) X has a lexicographically non-decreasing ωck

1 -computable approximation.

It is not clear that this equivalence relativises to all oracles, indeed that the sec-
ond condition is meaningful to relativse for all oracles: for example, if A is tree-
collapsing, then it seems that the correct notion of approximation would have
length ω, rather than ωck

1 . Thus we define:

Definition 5.5. LetA P 2ω. A sequenceX is higher A-left-c.e. if tσ P 2ăω : σ ă Xu
is higher A-c.e.

Note that for all A, a sequence X is higher A-left-c.e. if and only if there is a
higher A-effectively closed set P whose leftmost element is X. The standard proof
applies.

Working in the unit interval. The next proof will work better in the unit interval
r0, 1s – its connectedness will be convenient. The standard computable map from
Cantor space onto the unit interval: X ÞÑ

ř

Xpnq2´pn`1q – is not bijective but
omitting the binary rationals, gives an isomorphism of effective measure spaces.
Call this map Θ.

That is, we can define higher oracle effectively open sets U Ď 2ω ˆ r0, 1s as
those generated by Π1

1 sets of pairs pσ, Iq where I Ď r0, 1s is a rational interval,
open in r0, 1s (so we allow r0, qq and pq, 1s for rational q P p0, 1q, as well as pairs
pp, qq for rational p ă q in r0, 1s), where for such a set W , the open set generated
by W is

Ť

trσs ˆ I : pσ, Iq PW u. We can then take sections and for A P 2ω talk
about higher A-c.e. open subsets of the unit interval, and using the usual Lebesgue
measure on the unit interval (which we also denote by λ), define higher A-ML tests
and thus randomness. The almost isomorphism Θ is computable, and this shows
that for all X P 2ω and A, X is higher A-ML random if and only if ΘpXq is higher
A-ML random.

Similarly, we say that r P r0, 1s is higher A-left-c.e. if tq P QX r0, 1s : q ă ru is
higher A-c.e. Then for all X P 2ω, X is higher A-left-c.e. if and only if ΘpXq is
higher A-left-c.e.

Building a higher A-left-c.e. random.

Theorem 5.6. For every A, there is a higher A-left-c.e., higher A-ML-random
sequence. Such a sequence can be found uniformly in A.

Proof. As mentioned above, it suffices to show that for all A, there is a higher A-left
c.e., higher A-ML random real in r0, 1s. As such a real r is never a binary rational,
from r we can effectively find its binary expansion X P 2ω.

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 23

Fix an effective and acceptable list W1,W2, . . . of all oracle c.e. open subsets of
r0, 1s. Given a string σ, we let rσ be the supremum of all rational q P r0, 1s such
that for some n ě 1 and some sequence C1, C2, . . . , Cn, we have:

(1) each Ck is the union of finitely many rational open subintervals of r0, 1s;
(2) Ck ĎWσ

k for all k “ 1, . . . , n;
(3) λpCkq ď 2´k{2 for all k “ 1, . . . , n; and
(4) r0, qq Ď

Ťn
k“1 Ck.

Note that λpCkq ď 2´k{2 (and k ě 1) implies that rσ ď 1{2 for all σ. Now

tpq, σq : q P QX r0, 1s & q ă rσu

is Π1
1. Thus, for all A P 2ω,

rA “ sup
σăA

rσ

is higher A-left-c.e., uniformly in A; and rA ď 1{2 (what is important is that
rA ă 1). We show that for all A, rA is higher A-ML random.

Fix A P 2ω, and suppose that rA is not higher A-ML random. Let xVny be a
uniform sequence of higher oracle A-c.e. open sets such that

@

VAn
D

is a higher A-ML

test which captures rA.

Claim 5.6.1. There are some k ă m such that Wk “ Vm.

Proof. Let
@

B0
e

D

eăω
,
@

B1
e

D

eăω
, . . . be a list of all lists of uniform higher oracle-c.e.

open sets. There is a computable function f such that for all n and e, Wfpn,eq “ Bne .
Let g be a computable function such that gpeq ą fpe, nq for all n ď e. Fix n such
that Bne “ Vgpeq. Choose m “ gpeq for any e ě n, and k “ fpn, eq ă gpeq. �

Fix some k ă m given by Claim 5.6.1. Since rA P VAm, find some rational
interval pp, qq Ď VAm such that p ă rA ă q. Fix some σ ă A such that rσ ą p.
Find C1, C2, . . . , Cn which witness that rσ ą p. Now Wσ

k ĎWA
k “ VAm so λpWσ

k q ď

2´m ď 2´k{2; so λpCk Y pp, qqq ď 2´k{2. Thus replacing Ck by Ck Y pp, qq in the
list C1, . . . , Cn witnesses that rσ ě q, which is impossible. �

6. Universal higher A-ML tests

A higher A-ML test xVny is universal if
Ş

n Vn contains every higher A-ML non-
random sequence. An oracle A is bad for universal tests if there is no universal
higher A-ML test. Below we construct an oracle bad for universal tests. Before we
do so, we exhibit some classes of good oracles.

6.1. Uniform higher ML-tests. We remark that we have already constructed a
weak version of a bad oracle. If xVny is a higher A-ML test then there is a uniform
list xUny of higher oracle c.e. open sets such that Vn “ UAn . For other oracles B,
the sequence

@

UBn
D

may fail to be a higher B-ML test, because for some n we may

have λpUBn q ą 2´n. We say that xUny is a (uniform) higher oracle ML-test if for
all B,

@

UBn
D

is a higher B-ML test.
Theorem 3.1 (together with the fact that higher A-computable sets are not higher

A-ML random) implies that for some A, for no higher uniform test xUny is
@

UAn
D

universal for higher A-ML randomness. That is, unlike the lower setting, there
is no oracle ML-test which is universal for every oracle. This is strengthened by
Theorem 6.2.

24 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

6.2. Good oracles for universal tests.

Theorem 6.1. Suppose that one of the following holds for A:

(a) A ěωck
1 T O;

(b) A is tree-collapsing; or
(c) A is higher ML-random.

Then there is a universal higher A-ML test.

Proof. We consider each class in turn. In all three cases, the key for constructing
a universal test for A is the ability to uniformly in e and ε ą 0 produce a higher
A-c.e. open set UAe,ε such that λpUAe,εq ď ε and if λpWA

e q ď ε then UAe,ε “WA
e . Here

of course xWey is an efective listing of all higher oracle c.e. open sets.

When A ěωck
1 T O. We elaborate on the previous proofs using higher complete

oracles (Theorem 3.3 and Proposition 5.2). Fix e and ε. We let

Me,ε “ tσ P 2ăω : λpWσ
e q ď εu .

Then informally we let, for all τ P 2ăω,

Uτe,ε “
ď

tWσ
e : σ ă τ & τ says that σ PMe,εu .

When A is tree-collapsing. Let T witness that A is tree-collapsing. At stage s, if
τ P Ts`1 ´ Ts, and further, λpWτ

e,sq ď ε, we enumerate all of Wτ
e,s into Uτe,ε.

Note that in this case, the universal higher A-ML test is a uniform higher ML-
test.

When A is ML-random. This relies on the fact that unrelativsed higher ML-
randomness does have a universal test, indeed one constructed using the usual
approach. This means it is effectively universal ; what it means for us is that for
any higher ML-random Z there is a computable function fZ such that given an
index e for a higher ML-test xVny, we have Z R VfZpeq.

So now for each e, ε and n, we enumerate a higher oracle-c.e. open set Ue,ε,n
such that for all B P 2ω, if λpWB

e q ď ε, then UBe,ε,n “WB
e , and such that

λ
`

B P 2ω : λpUBe,ε,nq ą ε
(˘

ď 2´n;

note that the set of such B’s is higher c.e. open, uniformly. Thus a random Z will
satisfy λpUZe,ε,nq ď ε for all but finitely many n, and further, we can find such n
effectively from e and ε.

The construction of Ue,ε,n follows similar constructions in [BGM17]. At stage s
let

Qs “

B P 2ω : λpWB
e,sq ď ε

(

.

This is a ∆1
1 closed set, uniformly in s. We find a ∆1

1 open set Vs Ě Qs such that
λpVs ´Qsq ă 2´n2´ppsq where again p : ωck

1 Ñ ω is injective. We let

UBe,ε,n “
ď

WB
e,s : s ă ωck

1 & B P Vs
(

. �

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 25

6.3. A bad oracle for universal tests. Finally:

Theorem 6.2. There exists an oracle A for which there is no universal higher
ML-test. Such A can be made higher ∆0

2 and such that ωA1 ą ωck
1 .

Indeed, we construct an oracle which is “self-PA for randomness”:

Theorem 6.3. There is an oracle A such that every nonempty higher A-effectively
closed set contains some sequence which is not higher A-ML random.

Again, the A constructed is higher ∆0
2 and collapses ωck

1 . Further, every higher
A-effectively closed set contains some higher ∆0

2 sequence which is not higher A-ML
random. The rest of this section is dedicated to the proof of Theorem 6.3.

6.4. Informal discussion and basic ingredients. How would we modify the
construction of Theorem 3.6 to prove Theorem 6.3? Let P be a higher oracle
effectively closed set. Consider the first step toward dealing with P, and suppose
that we are working above some tree T P T . As above, we would set Xp0q “ 0
and try the various subtrees T vkw until we get, for each such k, some σ P T vkw
such that Pσ X r0s “ H. We then switch to setting Xp0q “ 1 and take the narrow
subtree NarpT q. However, it is now possible that there is some τ P NarpT q such that
Pτ Xr1s “ H. In the previous construction, this proved that for some B, PB “ H,
in which case we didn’t need to worry about P at all. Now we cannot dismiss P
out of hand; but an obvious solution would be to ensure that PA is empty. This
is done by first choosing τ P NarpT q such that Pτ X r1s “ H, and some k large
enough so that σkpT q ą τ ; then choosing some σ P T vkw for which Pσ X r0s “ H
(we may assume σ ą τ). We make sure that A extends this σ by finding some m,
sufficiently large, so that σmpT vkwq ě σ and routing the construction to work in
the tree T vkwvmw.

This extra step – going back to extend some σkpT q – creates serious difficulties
for the part of the agrument that above gives ξ ďωck

1 T A; and indeed by Theorem 3.3

we know that an attempt to get X ďωck
1 T A must fail. Instead, we make X not

random relative to A, which amounts to enumerating, with oracle A, for each n,
relatively few possibilities for X æn. Of course for P itself there is nothing left to do,
as we ensure that PA “ H; however, the effect of this action on other requirements
which handle other effectively closed sets can be, if we are not careful, disastrous.

We cannot get X ďωck
1 T A because there will be instances in which stempTn,sq ă

A but Xs ænć X. The main driver of this construction is minimising the number
of times this happens.

Mapping strategies to trees. Let xPey be an effective list of all higher oracle effec-
tively closed sets. We will approximate an oracle A and for each e, a sequence Xe

and ensure that the eth requirement is met:

‚ If PAe is nonempty, then Xe P PAe , and Xe is not higher A-ML random.

The collection of strategies is now pω ` 2qăω (with the new outcome ω ` 1
indicating that we are going back to make PAe empty). For each e and each strategy
we will define Xe,α, again managing lengths so that Xe,αpdq is defined if and only
if xe, dy ă |α|; for n “ xe, dy, Xe,αpdq “ 0 if αpnq ă ω, and Xe,αpdq “ 1 otherwise.

However, we will shortly show that we need to be judicious about the choice of
pairing function pe, dq ÞÑ xe, dy.

26 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

A new ascpect of our mapping of strategies to trees will be that Tα will not
be defined for all strategies α; rather, it will be defined for all strategies that are
accessible during some stage of the construction. The issue is with assigning a tree
to the outcome ω`1, which we can only do only once we found strings on previous
trees that allow us to make some PAe empty. In the meantime, we define:

‚ Tε “ 2ăω;
‚ If Tα is defined, then Tαpk “ NarpTαvkwq;
‚ If Tα is defined, then Tαpω “ NarpTαq;
‚ If αppω` 1q is ever accessible then we will define Tαppω`1q “ Tαvkwvmw for

some k,m ă ω.

Note that we let Tαpk “ NarpTαvkwq rather than Tαvkw. This ensures that in all
cases, if Tα and Tβ are defined and α K β then rTαs X rTβs “ H.

Counting and bounding. Suppose that stempTαq ă A. Then there are at most three
outcomes o ă ω ` 2 such that stempTαpoq ă A, namely because k ‰ l ă ω implies
stempTαpkq K stempTαplq. However, for some fixed e, Xe,αpo extends Xe,α by at
most one bit, so this bound on the number of outcomes will give us no bound at
all on the number of possible versions of Xe æn that get enumerated by A.

The main aim of the construction, Lemma 6.9, is to ensure that if PAe is
nonempty, α is an e-strategy, which means that |α| “ xe, dy for some e, α is
accessible at some stage, and stempTαq ă A, then there is at most one possible
outcome o such that αpo is accessible at some stage and stempTαpoq ă A. Note
that if α is an e-strategy then |Xe,αpo| “ |Xe,α| ` 1.

This informs us how to choose the pairing function pe, dq ÞÑ xe, dy. What we need
is a long stretch of e-strategies, which would not be disturbed by other strategies
in their midst. For suppose that n ą m, and that every k in the interval rm,nq is
of the form xe, dy for some d. By induction, there are at most 3m many strategies
β of length m such that stempTβq ă A. However, if we achieve Lemma 6.9, then
there will be at most 3m many strategies α of length n such that stempTαq ă A;
and for each such strategy we have |Xe,α| ě n ´m. So if we take n much larger
than m this will allow us to capture Xe in a set of small measure.

We thus partition the natural numbers into the intervals r4n, 4n`1q, and assign
each interval a number e, in such a way that every number is assigned infinitely
many intervals. We then let xe, dy be the dth element of the union of all intervals
assigned to e. Note that we preserve the requirement

‚ xe, dy ă xe, d` 1y for all e and d.

Noise cancelling. The question remains, how do we achieve the “noise-cancelling”
Lemma 6.9? Here our construction starts to deviate significantly from those we had
above. Suppose that α is an e-strategy, and that PAe is nonempty. We also assume
that we are working after the stage at which the shortest e-strategy has stabilised.
Our first mission is to ensure:

‚ αppω ` 1q ć ξ.

The basic idea is that if αppω ` 1q ă ξ then we can make PAe X rXαs “ H; but
then, by induction, we either would have moved away from α, or had the means to
erase the last bit of Xα and get an even larger chunk taken out of PAe ; eventually,
by induction, we would get PAe “ H.

The next step is to show:

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 27

‚ If k ă ω, αpk is accessible at some stage, but also αpo is accessible at some
stage with o ą k, then stempTαspkq ć A.

This will give us what we want: at most one accessible outcome o of α would
give a stem comparable with A. How do we achieve this? The difficulty is with
some β ă α taking the outcome ω`1, and instructing us to take a string extending
σkpTαq in order to make PAe1 empty for some e1 ‰ e.

This would be quite bad, and so we see that β cannot immediately take the
outcome ω ` 1 when it sees any string τ P NarpTβq with Pτe1 X r1s “ H. On
the other hand, it does not actually need to: even if β ă ξ, we only care about
whether PAe1 is empty or not, not whether PBe1 is empty for some other B P rTβs.
At every stage s, xTαyαăξ (induces) a shrinking path in T , and so determines an
approximation As to A; we only need to act when we see some τ ă As making
Pτe1 Xr1s empty. If As has already moved away from σkpTαq, then τ will not extend
that string. That is the main idea of how to achieve noise cancelling. It does mean
that our construction looks quite different from previous ones, as at each stage we
only investigate what happens along As, not on an entire tree.

In turn, this creates some difficulties. Consider, for example, the second step of
determining Tβpω, namely, after we found k, we need to find σ P NarpTβvkwq such
that Pσe1 X r0s “ H and some m such that σmpTβvkwq extends σ. And again, we do
not want to extend some string σlpTαq; we need to find such σ which is an initial
segment of some historical version At of A. So that we have such a version to point
to, we need, for example, at times, to let A pass through strings we know at the
time are not going to be actual initial segments of A. This is quite counter-intuitive
compared to most constructions in computability, but appears to be neccessary in
this one.

6.5. The construction.

Construction claims. Before starting the construction we make a few claims which
we will make use of during the construction; we will verify them after we state the
construction.

Claim 1. For all t ă s ă ωck
1 , ξt ď ξs.

Claim 2. For every α, s and outcomes p ă o ď ω ` 1, if αpo ă ξs then there is
some t ă s such that αpp ă ξt.

Claim 3. For each stage s, the sequence tTαuαăξs induces a shrinking path of T ,
and so

Ş

αăξs
rTαs is a singleton tAsu.

Claim 4. For each α,

s ă ωck
1 : α ă ξs

(

is a closed interval of ωck
1 .

Claim 5. For each e-strategy α and k ă ω, if αpk ă ξs, α ă ξs`1 but αpk ć ξs`1,
then PAs

e,s X rXe,αp0s “ H.
Claim 6. For each e-strategy α and s, if αppω ` 1q ă ξs then Pρe,s X rXe,αs “ H

for ρ “ stempTαppω`1qq.

By induction on s ă ωck
1 we define ξs P pω ` 1qω, and for all α which is ever

accessible, a tree Tα P T , following the scheme described above.

The construction: At stage s “ 0 we set ξ0 “ 08.

Suppose that s ă ωck
1 is a limit stage. Let n be the largest ordinal n ď ω such that

xξt ænytăs is stable on some final segment of s. Determine that this stable version
limtÑs ξt æn is an initial segment of ξs. If n ă ω, let ξspnq “ ω “ suptăs ξtpnq, and

28 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

for m ą n let ξspmq “ 0. Note that Tα is defined for all α ă ξs, as no new value
ω ` 1 is introduced at this stage.

Now, let s ă ωck
1 , and suppose that ξs has already been defined, along with Tα

for all α ă ξs. We define ξs`1.
For each e ă ω let αe,s “ ξs æxe,0y be the shortest e-strategy ă ξs. An e-strategy

α ă ξs has a problem at stage s if αe,sppω`1q ć ξs, and one of the following holds:

(1) αpk ă ξs for some k ă ω, and PAs
e,s X rXe,αp0s “ H.

(2) αpω ă ξs, and PAs
e,s X rXe,αp1s “ H.

(3) αppω ` 1q ă ξs.

If no initial segment of ξs has a problem at stage s then we let ξs`1 “ ξs. Suppose
otherwise. Our instructions are not quite to deal with the shortest initial segment
of ξs which has a problem at stage s. Rather, we prioritse case (3). That is, we
choose α ă ξs which has a problem at stage s, and among all α̃ ă ξs which have a
problem at stage s,

‚ α is the shortest with αppω ` 1q ă ξs; or,
‚ if there is no α̃ which has a problem at stage s and α̃ppω ` 1q ă ξs, then

we let α be the shortest which has a problem at stage s.

We act according to the cases above.

In case (1), we let αppk ` 1q ă ξs`1, and for all m ą |α| we let ξspmq “ 0.

In case (2), we let αppω ` 1q ă ξs`1, and for all m ą |α|, we let ξspmq “ 0.

In case (3), we know that α is a proper extension of αe. Let β ă α be the longest
e-strategy before α. That is, β “ αæxe,d´1y, where |α| “ xe, dy. Let o be such that
βpo ă ξs; by minimality of α, we know that o ‰ ω ` 1. We let βppo ` 1q ă ξs`1,
and for m ą |β|, we let ξs`1pmq “ 0.

In case (2) and in case (3) when βpω ă ξs, the new outcome chosen is ω ` 1.
Let γ “ α in case (2), and γ “ β in case (3) when βpω ă ξs. By Claim 1, the
strategy γppω ` 1q was not accessible at any stage t ď s. Hence we now need to
define Tγppω`1q. In either case (2) or (3), γpω ă ξs. Also, PAs

e,s X rXe,γp1s “ H; in
case (2) by choice of γ “ α, in case (3) by applying Claim 6 to α, and noting that
βpω ď α means that Xe,α “ Xe,βp1.

We need to find k,m ă ω to let Tγppω`1q “ Tγvkwvmw. This is done in two similar
steps. At the first step, we find some τ ă As such that Pτe,sXrXe,γp1s “ H. Recall
that each σkpTγq extends an odd level branching node of Tγ , and that these are
dense in Tγ ; so we find some τ 1 ě τ , τ 1 ă As, which is an odd-level branching
node of Tγ . Note that As P rNarpTγqs “ rTγpωs; so τ 1p0 ă As, while for some k,
τ 1p1 ď σkpTγq, and τ 1p1 R NarpTγq. The property we are after is:

‚ For all ρ P Tγpω, ρ ă σkpTγq ùñ ρ ă As.

So this determines k. Now, as k ă ω and γpω ă ξs, by Claim 2, there is some
stage t ă s such that γpk ă ξt; by Claim 4, we can choose the last such t. Note
that t ă s and that γ ă ξt`1 (follows from γ ă ξs and Claim 1); by Claim 5,

PAt
e,t X rXe,γp0s “ H. Note that σkpTγq “ stempTγpkq ă At; we find some σ ă At,

σ ě σkpTγq, such that Pσe,t X rXe,γp0s “ H. We then repeat the same method to
find m: we note that At P rTγpks “ NarpTγvkwq. We find m such that σmpTγvkwq
extends an odd-level branching point of Tγvkw which is an initial segment of At
which extends σ. Thus,

‚ For all ρ P Tγpk, ρ ă σmpTγvkwq ùñ ρ ă At.

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 29

We let Tγppω`1q “ Tγvkwvmw.

This concludes the construction.

6.6. Verification.

Construction claims. Of the six construction claims above, most are immediate by
induction on stages and examining the construction. For Claim 3, as in a previous
construction, for each e such that PBe “ 2ω for all B, by induction on s, we see
that for every e-strategy α, αp0 ă ξs. For Claim 6, we chose stempTγppω`1qq “

σmpTγvkwq which extended both σ ă At such that Pσe,t X rXe,γp0s “ H and some
τ ă As such that Pτe,s X rXe,γp1s “ H.

The only claim which may need a bit more arguing is Claim 5. Let α and k
be as in the claim. If case (1) holds at stage s, then the claim is clear from our
instructions. However, it is possible that case (3) holds for the next e-strategy
δ ą α: so δppω ` 1q ă ξs, and αpk ď δ. In this case Xe,δ “ Xe,αp0. By Claim 6,
Pρe,s X rXe,δs “ H for ρ “ stempTδppω`1qq, and as δppω ` 1q ă ξs, we have ρ ă As.

Convergence. Claim 1 implies that xξsysăωck
1

converges to some ξ P pω`2qω, and so

that xAsy converges to A P
Ş

αăξrTαs and that each xXe,sy converges to some Xe,
computed from ξ.

On the outcome ω ` 1. As we mentioned above, during the construction we some-
times chose αppω`1q ă ξs for some e-strategy α which is not the shortest e-strategy.
This was done so that we could point at As at some later stage; but in the limit,
this will not happen, unless PAe is empty.

For e ă ω, let αe “ αe,ωck
1
“ ξ æxe,0y be the shortest e-strategy α ă ξ.

Lemma 6.4. Suppose that there is an e-strategy α such that αppω ` 1q ă ξ. Then
αeppω ` 1q ă ξ, and PAe “ H.

Proof. We first show that αeppω`1q ă ξ. For let β be the shortest e-strategy such
that βppω ` 1q ă ξ. Suppose that β ‰ αe. By Claim 1, for all s, αeppω ` 1q ć ξs.
By Claim 6, as stempTβppω`1qq ă As for sufficiently late s, for such s we have

PAs
e,s X rXe,βs “ H; eventually, this β will receive attention and cause ξs`1 to move

to the right of β, which contradicts Claim 1.
That PAe “ H follows from Xe,αe

“ ε and Claim 6. �

For the next lemma, note that if αppω` 1q ă ξs and α has a problem at stage s
(that is, if αe,sppω`1q ć ξs), then α lies to the left of ξs`1. This is because such α
have priority at that stage.

Lemma 6.5. At each stage s there is at most one α ă ξs which has a problem at
stage s and αppω ` 1q ă ξs.

Proof. At a limit stage s there is no such α. Suppose that α ă ξs shows otherwise.
There is some t ă s such that αppω`1q ă ξt. Then αe,s “ αe,t, and αe,tppω`1q ć

ξt (as it is ć ξs), so α has a problem at stage t and we would route ξt`1 to the
right of α.

Let s be a stage and suppose that αppω ` 1q ă ξs`1, and has a problem at
stage s` 1. Then αpω ă ξs (or α would have a problem at stage s and we would
route ξs`1 to the right of α). No δ ă α has δppω ` 1q ă ξs and has a problem
at stage s, or again we would have α ă ξs`1. Hence there is no such δ ă α at

30 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

stage s ` 1 as well. Also, for all m ě |α|, ξs`1pmq ‰ ω ` 1, which shows the
uniqueness of α at stage s. �

The sequences Xe.

Lemma 6.6. For all e, if PAe ‰ H then Xe P PAe .

Proof. By Lemma 6.4, for every e-strategy α ă ξ, α’s outcome o (that is, αpo ă ξ)
satisfies o ď ω.

If o “ k ă ω then by our construction, PAe X rXe,αp0s ‰ H: otherwise, for some
σ ă A we have Pσe X rXe,αp0s “ H and eventually σ ă As, which would prompt
us to move away from αpk.

If o “ ω then similarly, PAe X rXe,αp1s ‰ H. In either case, PAe X rXe,αs ‰ H.
Further, Xe “

Ť

tXe,α : α ă ξ is an e-strategyu, so the result follows by closure.
�

The noise canceling lemma. Toward capturing Xe in a higher A-ML test, we prove
a “noise cancelling” lemma. For brevity, let S be the collection of strategies which
are ever accessible:

S “

α P pω ` 2qăω : pDs ă ωck
1 q α ă ξs

(

.

Lemma 6.7. Let α be a strategy, and let o ď ω. Suppose that:

(1) αpo P S; and
(2) αppω ` 1q R S.

Then for all k ă o, A č stempTαpkq.

Proof. First let us emphasize that the only “bad” case is that when for some m ă n,
the bit ξpmq takes the value ω` 1 at some stage; this will be observed in the proof.

Let t be a stage such that αpo ă ξt, and let k ă o. We prove by induction on
s ě t that As č stempTαpkq “ σkpTαq.

This holds for s “ t: either o ă ω, in which case σopTαq ă At, and σopTαq K
σkpTαq; or o “ ω, in which case At P NarpTαq and σkpTαq R NarpTαq (see Fact 2.5).
In fact, since αppω ` 1q is never accessible, this argument shows that for all s ě t,
if α ă ξs then σkpTαq ć As.

Let s ą t, and suppose that for all r P rt, sq, σkpTαq ć Ar. We show that
σkpTαq ć As.

Let β “ α ^ ξs be the longest common initial segment of α and ξs. By the
argument above, we may assume that β ‰ α. Let p ă q ď ω` 1 such that βpp ď α
and βpq ă ξs.

Suppose that q ď ω; so p ă ω. In this case we have σkpTαq ą σppTβq. As above,
if q ă ω then σqpTβq ă As (and σppTβq and σqpTβq are incomparable); if q “ ω
then As P NarpTβq so again σppTβq ć As.

So as discussed, the interesting case is when q “ ω`1. So p ď ω. Let c, d ă ω be
such that Tβppω`1q “ Tβvcwvdw, and let r be the least stage such that βppω ` 1q ă

ξr`1. So r ă s but r ě t. Of course stempTβppω`1qq ă As; so we show that
stempTβppω`1qq K σkpTαq.

There are two cases. First, suppose that p “ ω, that is, βpω ď α; so Tα ě

NarpTβq. At stage r ` 1, we choose c such that σcpTβq branches off NarpTβq along
Ar; namely, for all ρ P NarpTβq, ρ ă σcpTβq Ñ ρ ă Ar. Apply this to ρ “

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 31

σkpTαq: by induction, as r ě t, we know that ρ ć Ar; so σkpTαq ć σcpTβq. Also
σkpTαq ğ σcpTβq as the latter is not on NarpTβq. Hence σkpTαq K σcpTβq; and
σcpTβq ă stempTβppw`1qq.

Next, suppose that p ă ω. The only case we worry about is p “ c; otherwise,
σkpTαq ą σppTβq which is incomparable with σcpTβq. So suppose that p “ c. Then
Tα ě Tβpc “ NarpTβvcwq. Let w be the last stage at which βpc ă ξw. Since α
extends βpc, it follows that the last stage at which α is accessible is ď w. We
conclude that w ě t, and so that σkpTαq K Aw. Now we follow a similar argument:
At stage r ` 1 we choose d so that σdpTβvcwq branches off Aw, so that for all
ρ P NarpTβvcwq, if ρ ă σdpTβvcwq then ρ ă Aw. Applying this to ρ “ σkpTαq, we
conclude that σkpTαq ć σdpTβvcwq “ stempTβppω`1qq. And σkpTαq P NarpTβvcwq,
whereas σdpTβvcwq R NarpTβvcwq, so σkpTαq ğ stempTβppω`1qq; overall we conclude
that σkpTαq K stempTβppω`1qq as required. �

The Martin-Löf test. Fix some e ă ω such that PAe ‰ H; recall that we let αe “
ξ æxe,0y be the shortest e-strategy ă ξ. We show how to enumerate a higher A-ML
test capturing Xe. Note that what follows is not uniform in e; the extra bit of
information is the identity of αe.

Lemma 6.8. Let α ě αe be an e-strategy. Suppose that stempTαq ă A; then
αppω ` 1q R S.

Proof. By induction on the length of α. We know that αeppω`1q ć ξ (Lemma 6.4),
and as the approximation xξsy is non-decreasing, this means that αeppω ` 1q R S.

Suppose this has been verified for all e-strategies β ă α; suppose that stempTαq ă

A. Suppose, for a contradiction, that αppω ` 1q P S; let s be the stage at which
αppω ` 1q ă ξs. By Lemma 6.5, at stage s we act for α: let β be the previous
e-strategy below α; at stage s we let βppo ` 1q ă ξs`1, while βpo ă ξs. As
stempTβq ď stempTαq ă A, by induction, βppω ` 1q R S, so o ‰ ω, so o ă ω.
Now Lemma 6.7 applies to β and to o` 1, which shows that stempTβpoq ć A; but
stempTαq ě stempTβpoq, which is a contradiction. �

We can then deduce:

Lemma 6.9. For any e-strategy α ě αe there is at most one outcome o ď ω ` 1
such that αpo P S and stempTαpoq ă A.

Proof. We only need worry if stempTαq ă A. The lemma then follows from com-
bining Lemma 6.8 and Lemma 6.7. �

Lemma 6.10. For any n, there are at most 3n many strategies α P S of length n
such that stempTαq ă A.

Proof. Given some α such that stempTαq ă A, we may have stempTαpωq ă A,
stempTαppω`1qq ă A, but stempTαpkq ă A for at most a single k. �

Recall now that the pairing function we used relied on a partition of ω into blocks
r4n, 4n`1q. For each such interval I we have |I| “ 3 min I. If I is an e-block, and
m “ min I, let

CI “ tα : α ě αe, |α| “ 4m,α P S & stempTαq ă Au .

32 LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

Then by Lemma 6.10 and Lemma 6.9, |CI | ď 3m. For each α P CI , we have
|Xe,α| ě 3m. Hence, letting

UI “
ď

trXe,αs : α P CIu ,

we have

λ pUIq ď 3m2´3m ă 2´m.

Also, UI is higher A-c.e. open, uniformly in I, and Xe P UI . Thus, to define a
higher A-ML-test capturing Xe, for each n, we find an e-block I with min I ě n,
and let Vn “ UI . We conclude that Xe is not higher A-ML random.

ωA1 ą ωck
1 . This is the last thing that remains to be proved: ωA1 ą ωck

1 . It is
enough to see that A hyperarithmetically computes ξ, because xξsy is a collapsing
approximation of ξ (or else A is hyperarithmetic). Note that the computation is is
not continuous, since we need to check every prefix of A to know where it lies in the
tree of trees and thus retrive ξ. So in fact, ξ is higher Turing computable from A1

(the usual Turing jump of A). Also as ξ is higher left-c.e. and not hyperarithmetic,

we have ωξ1 ą ωck
1 and thus ωA1 ą ωck

1 .

7. Summary and questions

We sum up here most of what is known about the three classes of bad oracles
studied in this paper.

Bad oracles for ML-random ěωck
1
O ěh O

Uniform self-PA
may be 1 /

must be 3 must be 4

may not be 2

Turing functionals
may be 5/ may be 7 /

must be 8

may not be 6 may not be?

Universal ML-test cannot be 9 cannot be10
may be 11 /

may not be ?

(1) By Theorem 4.14.
(2) It is easy to ensure that the direct construction (Theorem 3.6) produces a

non-random sequence.
(3) By Proposition 3.4.
(4) By (4) and Proposition 4.2.
(5) By Theorem 4.10.
(6) It is easy to ensure that the direct construction (Theorem 4.1) produces a

non-random sequence.
(7) Because a bad oracle for uniform self-PA is also bad for consistent func-

tionals (Proposition 4.2) and each such is ěωck
1 T O (see (3)).

(8) By [BGM17, Prop.2.3].
(9) By Theorem 6.1(c).

(10) By Theorem 6.1(a).
(11) By Theorem 6.2.

BAD ORACLES IN HIGHER COMPUTABILITY AND RANDOMNESS 33

We believe that the two folowing questions are of particular interest:

Question 7.1. Must bad oracles for Turing functionals higher compute O? Are
they all bad for uniform self-PA?

Question 7.2. Must bad oracles for universal ML-tests collapse ωck
1 ?

References

[BGM17] Laurent Bienvenu, Noam Greenberg, and Benoit Monin. Continuous higher randomness.

J. Math. Log., 17(1):1750004, 53, 2017.
[CY15] C. T. Chong and Liang Yu. Randomness in the higher setting. J. Symb. Log.,

80(4):1131–1148, 2015.

[HN07] Greg Hjorth and André Nies. Randomness via effective descriptive set theory. J. Lond.
Math. Soc. (2), 75(2):495–508, 2007.

[Sac90] Gerald E. Sacks. Higher recursion theory. Perspectives in Mathematical Logic. Springer-

Verlag, Berlin, 1990.
[Sho82] Richard A. Shore. On homogeneity and definability in the first-order theory of the

Turing degrees. J. Symbolic Logic, 47(1):8–16, 1982.

LaBRI, 351, cours de la Libération, 33405 Talence Cedex France
E-mail address: laurent.bienvenu@computability.fr

URL: http://www.labri.fr/perso/lbienvenu/

School of Mathematics and Statistics, Victoria University of Wellington, Welling-
ton, New Zealand

E-mail address: greenberg@sms.vuw.ac.nz

URL: http://homepages.ecs.vuw.ac.nz/~greenberg/

LACL, Créteil University, Créteil, France

E-mail address: benoit.monin@computability.fr

URL: https://www.lacl.fr/~benoit.monin

http://www.labri.fr/perso/lbienvenu/
http://homepages.ecs.vuw.ac.nz/~greenberg/
https://www.lacl.fr/~benoit.monin

	1. Introduction
	2. Background, notation, and treesh-bones
	3. Self-PA oracles
	4. Higher Turing consistent computations
	5. Relativising higher randomness
	6. Universal higher A-ML tests
	7. Summary and questions
	References

