
January 14, 2011

STRONG JUMP-TRACEABILITY II : K-TRIVIALITY

ROD DOWNEY AND NOAM GREENBERG

Abstract. We show that every strongly jump-traceable set is K-trivial. Un-

like other results, we do not assume that the sets in question are computably

enumerable.

1. Introduction

The last decade has seen an explosion of research connecting fundamental notions
of algorithmic randomness to computational power. One of the most remarkable
series of results concerns classes of reals which are close to being computable, as by
various measures they have very low complexity. The main example is the notion
of K-triviality, which originates in the work of Solovay [25], and was more recently
developed starting with Downey, Hirschfeldt, Nies and Stephan [8]. Although this
notion is defined in terms of initial-segment complexity (A is K-trivial if for all
n, K(A�n) 6+ K(n)1), the celebrated work of Nies, Hirschfeldt and others shows
that K triviality coincides with notions such as lowness for K, lowness for Martin-
Löf randomness, lowness for weak 2-randomness, and being a base for randomness.
All of these notions express feebleness of an oracle with respect to some notion of
algorithmic randomness: for example, a real A is low for Martin-Löf randomness if
every real which is Martin-Löf random remains Martin-Löf random relative to A;
in other words, A cannot detect patterns in Martin-Löf random sets. We refer the
reader to [6, 7, 20, 21, 23] for details of such results.

Terwijn [26], and then Terwijn and Zambella [28], found a new direction in this
investigation. They introduced tracing as a key concept that clarifies and calibrates
lowness notions.

Definition 1.1. A trace for a partial function ψ : ω → ω is a sequence 〈Sn〉 of
finite sets such that for all n ∈ domψ, ψ(n) ∈ Sn.

Thus, a trace for a partial function ψ indirectly specifies the values of ψ by
providing finitely many possibilities for each value; it provides a way of “guessing”
the values of the function ψ. Such a trace will be useful if it is easier to compute
than the function ψ. In general, ψ will not be computable, but the trace 〈Sx〉 will
be computable or uniformly c.e.:

Definition 1.2. Let 〈Sn〉 be a trace for a partial function ψ.

Both authors are supported by the Marsden Fund of New Zealand. Additionally the first
author was supported by a James Cook Fellowship.

1Here K denotes prefix-free Kolmogorov complexity. A set, or a real, is an element of Cantor
space 2ω . If S is any set and h, g : S → ω, we say that h 6+ g if there is some d < ω such that for
all n, h(n) 6 g(n) + d. We assume that the reader is familiar with the rudiments of algorithmic

randomness as described in initial segments of Downey and Hirschfeldt [6], Nies [23], or Li-Vitanyi
[16]. We will be following the notation of Downey and Hirschfeldt [6].

1



2 ROD DOWNEY AND NOAM GREENBERG

(1) The trace is computable if the function n 7→ Sn is computable, that is, if
there is a computable function g such that for all n, Sn = Dg(n), where
〈Dm〉 is an effective enumeration of all finite sets of numbers.

(2) The trace is c.e. if the sequence 〈Sn〉 is uniformly c.e., that is, if there is a
computable function g such that for all n, Sn = Wg(n), where 〈Wm〉 is an
effective enumeration of all computably enumerable sets of numbers.

We can, for example, recast classical concepts in the language of traces: a Turing
degree a is hyperimmune-free if and only if every (total) function g computable
from a has a computable trace. Terwijn and Zambella used a uniform version of
hyperimmunity to characterise a notion of lowness.

Definition 1.3. An order function is a nondecreasing, computable and unbounded
function h such that h(0) > 0. If h is an order function and 〈Sn〉 is a trace, then we
say that 〈Sn〉 is an h-trace (or that 〈Sn〉 is bounded by h) if for all n, |Sn| 6 h(n).

Terwijn and Zambella showed that a real A is low for Schnorr null tests if and
only if there is some order function h such that every (total) function computable
from A has a computable h-trace. This was later extended by Kjos-Hanssen, Nies
and Stephan[14] to show that such reals are exactly those that are low for Schnorr
randomness.

Zambella (see Terwijn [26]) observed that if A is low for Martin-Löf randomness
then there is an order function h such that every function computable from A has a
c.e. h-trace. This was improved by Nies [20], who showed that one can replace total
by partial functions. In some sense it is natural to expect a connection between
uniform traceability and lowness notions such as K-triviality; if every function
computable (or partial computable) from A has a c.e. h-trace, for some slow-growing
order function h, then the value of such a function on input n can be described by
a little more than log n+ log h(n) many bits.

The question arises: is all of this merely an interesting footnote to the study of
algorithmic randomness? Or might it be possible to understand lowness and more
generally randomness using purely computability-theoretic tools such as tracing?

A test question is whether K-triviality could be characterised by traceability, in
a similar way to the characterisation of lowness for Schnorr randomness which was
discussed above. In particular, is there a set F of order functions such that a set
A is K-trivial if and only if for all h ∈ F , every A-computable function has a c.e.
h-trace?

This problem remains open. However, an attempt toward a solution lead to the
introduction of what seems now a fairly fundamental concept, which is not only
interesting in its own right, but now has been shown to have deep connections with
randomness.

Definition 1.4 (Figueira, Nies and Stephan [9]). Let h be an order function. A
real A is h-jump-traceable if every A-partial computable function has a c.e. h-trace.
A real is strongly jump-traceable if it is h-jump-traceable for every order function
h.

Figueira, Nies and Stephan gave a “cost function” construction of a strongly
jump-traceable c.e. set. Answering a question from Miller and Nies [17], together
with Peter Cholak, in part I of this paper [2], the authors showed that the strongly
jump-traceable c.e. sets form a proper subclass of the c.e. K-trivial reals. They



STRONG JUMP-TRACEABILITY II : K-TRIVIALITY 3

also showed that the class forms an ideal in the c.e. degrees. This ideal was later
shown to be Π0

4 complete by Ng [18, 19], giving an alternative proof of the proper
containment, as the K-trivial c.e. sets form a Σ0

3 ideal. The paper [2] introduced
new combinatorial tools for dealing with the class of c.e., strongly jump-traceable
sets, collectively known as the “box-promotion” technique.

Subsequently, the class of c.e., strongly jump-traceable sets has been shown to
have remarkable connections with randomness. Greenberg, Hirschfeldt, and Nies
[10] proved that a c.e. set is strongly jump-traceable if and only if it is computable
from every superlow random sets, if and only if it is computable from every su-
perhigh random set. Kučera and Nies [15] showed that every c.e. set which is
computable from a Demuth random set is strongly jump-traceable, relating such
random sets with the “benign cost functions” which by work of Greenberg and
Nies [11] characterise c.e., strong jump-traceability. Other attractive spin-offs in
the arena of randomness include Nies’s new work on the calculus of cost functions
[22]. This material is only just beginning to work itself out and we expect a lot
more to grow from these ideas.

Additionally, strongly jump-traceable sets have proven to have applications in
classical computability. To illustrate, relativising the construction of Figueira, Nies
and Stephan of a noncomputable, strongly jump-traceable c.e. set yields a pseudo-
jump operator, which when inverted (Jockusch and Shore [12, 13]) yields an in-
complete c.e. set A relative to which ∅′ is strongly jump-traceable. Such sets are
very high, in that they resemble ∅′: they are all almost everywhere dominating
in the sense of Dobrinen and Simpson2 [4], and so are superhigh [24]. In [5], the
authors have recently solved a question of Coles, Downey, Jockusch and LaForte
[3] implicitly going back to Jockusch and Shore [12], by showing that the pseudo-
jump operator which constructs a relative strongly jump-traceable set cannot be
inverted with avoiding upper cones in the c.e. Turing degrees. Indeed, there is a
noncomputable c.e. set which is computable from all c.e. sets relative to which ∅′
is strongly jump-traceable.

All of this brings us to the present paper. Notable is the lack in all of this
material of anything about non-c.e. strongly jump-traceable reals. In fact, Nies has
shown that there is some order function h such that there are continuum many
h-jump-traceable reals. This result could discourage attempts to show that all
strongly jump-traceable sets are K-trivial.

Up to now, no adaptation of the box-promotion technique for non-c.e. sets has
been developed. This is a combinatorial technique that allows utilisation of the
assumption that a c.e. set A is h-jump-traceable for some slow-growing order func-
tion h; the gist of it is that while trying to ascertain that some string is an initial
segment of A, any mistake is beneficial as it allows us to limit the number of future
mistakes on a large number of future tests. In the c.e. case, the constructions make
heavy usage of the fact that a computation from a c.e. oracle, once destroyed, can
never come back, clearing the deck for future computations; this is not so in the
∆0

2 case. Translated to box-promotion, the problem is that in the c.e. case, when
boxes are promoted, they remain promoted for ever, while in the ∆0

2 case, boxes
can be demoted, introducing seemingly unsurpassable problems. Moreover, in the
general case we do not even assume that the given strongly jump-traceable set is

2A is almost everywhere dominating if for almost all reals X, every function computable from
X is dominated by some function computable from A.



4 ROD DOWNEY AND NOAM GREENBERG

∆0
2, so no approximation to the set is given, so it is not at all clear what it is that

we trace.
In this paper we show how to overcome these difficulties, and prove the following

theorem.

Theorem 1.5. There is a computable order function h such that every h-jump-
traceable set is K-trivial.

The order function h grows fairly slowly, at a rate similar to the double logarithm.

Beyond this result, much is unknown. Do the strongly jump-traceable sets form
an ideal? Can they be characterised by randomness? The strongest conjecture is
the following:

Conjecture 1.6. Every strongly jump-traceable set is computable from some c.e.,
strongly jump-traceable set.3

Despite removing the assumption of computable enumerability, the construction
in the current paper is similar to the earlier box-promotion constructions in that it is
“adaptive”, that is, definition of the A-partial computable function depends on what
values show up in the trace of the function. This severely restricts the applicability
of this proof to an oracle version which is obtained by partial relativisation. Nies
(see [23]) defined a weak reducibility associated with strong jump-traceability: for
reals A and B, A 6SJT B if for every order function h, every A-partial computable
function has a B-c.e. h-trace. This partial relativisation (A instead of A ⊕ B,
computable order functions instead of B-computable order functions) is necessary
to make this relation transitive. Similarly, the weak reducibility associated with
K-triviality (really, with lowness for randomness / for K) is LR-reducibility, where
A 6LR B if every B-random set is A-random, or equivalently, if KB 6+ KA. The
difficulty in partially relativising an adaptive construction means that we still do
not know the answer to the following question, a strengthening of Theorem 1.5:

Question 1.7. Does A 6SJT B imply A 6LR B?

2. Solovay functions and k-trees

The rest of the paper is devoted to the proof of Theorem 1.5.

Recall that a real A is K-trivial if K(A�n) 6+ K(n). To simplify our presenta-
tion, we replace the right hand side by a computable function. Recall that by the
minimality of K, if g is any computable function, then K 6+ g if and only if the
sum

∑
n 2−g(n) is finite.

Definition 2.1. A Solovay function is a computable function g such that K 6+ g
and there is an infinite set S such that g�S 6+ K�S . 4

Solovay [25] showed the existence of a Solovay function. More recently, Downey
and Bienvenu gave a systematic study of these functions.

3This conjecture would imply that every strongly jump-traceable set obeys every benign cost
function, which is also an open problem.

4Recall again that this means that for some constant d, for all n < ω we have K(n) 6 g(n)+d,
but that |K(n)− g(n)| is bounded on S.



STRONG JUMP-TRACEABILITY II : K-TRIVIALITY 5

Theorem 2.2.

(1) Let g be a computable function such that K 6+ g. Then g is a Solovay
function if and only if the number

∑
n 2−g(n) is Martin-Löf random.

(2) There is a Solovay function g such that for all reals A, A is K-trivial if and
only if K(A�n) 6+ g(n).

We remark that in recent research, Bienvenu, Merkle and Nies extended part (2)
of Theorem 2.2 and showed the equivalence holds for any Solovay function.

We fix, therefore, a Solovay function g, so Theorem 2.2(2) holds for g. By
changing g by an additive constant, we assume that

∑
n 2−g(n) < 1.

Definition 2.3. For n < ω, let c(n) =
∑
m6n 2−g(m).

The idea is that if we believe that a string σ is an initial segment of A, then we
believe that every initial segment of σ is also an initial segment of A, and so the
“cost” of asking for short descriptions of σ and all of its initial segments is c(|σ|).
We let c(ω) =

∑
n 2−g(n). This is a left-c.e. real: the collection of rational numbers

q < c(ω) is computably enumerable.
The general plan is to enumerate a tree T which consists of strings which have

short descriptions and which contains every initial segment of A. To ensure that
indeed every string on T has a short description, we use a KC (bounded request)
set; so we need to show that the total cost of all strings on T is finite. This will
be obtained by limiting the size of finite subsets of T which are determined by
granularity of cost: for each k, the restriction of T to strings of lengths whose cost
passes an integer multiple of 2−k.

Definition 2.4. Let q < c(ω) be a binary rational number. We let nq be the least
natural number n such that c(n) > q.

Thus the function n 7→ nq is partial computable, as its domain is c.e. (and not
computable). Note that n0 = 0.

For k < ω, let

Qk =
{

0, 2−k, 2 · 2−k, 3 · 2−k, . . . , 2k−1 · 2−k, 1
}

;

so the set of binary rationals in the interval [0, 1] is
⋃
kQk. We let

Nk = {nq : q ∈ Qk, q < c(ω)}.

Definition 2.5. Let k < ω. A k-tree is a set of strings T such that:

(1) For all σ ∈ T , |σ| ∈ Nk.
(2) If σ ∈ T , n ∈ Nk and n < |σ|, then σ�n ∈ T .

Note that for all k, Nk is finite, and so every k-tree is finite.

Ordered by extension, a k-tree is a graph-theoretic tree, and so we call an element
of such a tree T with no proper extension in T a leaf of T .

Proposition 2.6. Let A be strongly jump-traceable. Then there is some e < ω and
a uniformly c.e. sequence 〈Tk〉k>e such that:

(1) every Tk is a k-tree;
(2) for all k > e, if σ ∈ Tk and |σ| ∈ Nk−1 then σ ∈ Tk−1;
(3) for all k, Tk has at most k many nonempty leaves; and



6 ROD DOWNEY AND NOAM GREENBERG

(4) for all k, for all n ∈ Nk, A�n ∈ Tk.

Proposition 2.6 details the combinatorial heart of the proof. It will be proved
in the next section, using a “generalised” box-promotion argument. We now show
that it is sufficient to prove the main theorem.

Proof of Theorem 1.5, given Proposition 2.6. Let T =
⋃
k>e Tk. Our goal is to

show that ∑
σ∈T

2−g(|σ|)

is finite, for then we could issue short descriptions for all strings on T , and so for
all initial segments of A.

Lemma 2.7. For all n < ω, A�n ∈ T .

Proof. This follows from the fact that
⋃
k>eNk = ω. Let n > 0. Since

c(n) > c(n− 1), the interval (c(n− 1), c(n)] contains some binary rational number
q. Then n = nq. Since q 6 c(n) we have q < c(ω). There is some k > e such that
q ∈ Qk, so n ∈ Nk. �

Fix k > e. For every σ ∈ Tk, we let qk(σ) be the least q ∈ Qk such that |σ| = nq.
If σ is nonempty, then qk(σ) > 0, and qk(σ) is the unique q ∈ Qk such that |σ| = nq
and nq 6= nq−2−k . For nonempty σ ∈ Tk, we let

Sk(σ) =
{
τ : σ�n

qk(σ)−2−k
⊂ τ ⊆ σ

}
;

note that σ�n
qk(σ)−2−k

is σ’s immediate predecessor on Tk. For the empty string λ

we let Sk(λ) = {λ}.
For k > e, let Lk be the collection of nonempty leaves σ of Tk such that

|σ| ∈ Nk \Nk−1; by property (2), Lk is the set of leaves σ of Tk such that σ /∈ Tk−1.
We let Le = Te.

Lemma 2.8. Let k > e. For any σ ∈ Lk,∑
τ∈Sk(σ)

2−g(|τ |) < 2−k+1.

Proof. Let q = qk(σ); since σ is nonempty, q > 0. The sum is∑
τ∈Sk(σ)

2−g(|τ |) =
∑{

2−g(l) : nq−2−k < l 6 nq
}

= c(nq)− c(nq−2−k).

Now by definition, we have c(nq−2−k) > q−2−k. We also assumed that nq /∈ Nk−1.

Hence q /∈ Qk−1. This implies that q + 2−k ∈ Qk; so either q + 2−k > q(ω)
or nq+2−k > nq. In the former case, we have c(nq) < c(ω) < q + 2−k; in

the latter case, we have, by minimality of nq+2−k , c(nq) < q + 2−k. In either

case we see that c(nq) < q + 2−k. Together with c(nq−2−k) > q − 2−k we get

c(nq)− c(nq−2−k) < 2 · 2−k as required. �

For k > e, let

Gk =
⋃
σ∈Lk

Sk(σ).



STRONG JUMP-TRACEABILITY II : K-TRIVIALITY 7

Lemma 2.8 and property (3) imply that for k > e,∑
τ∈Gk

2−g(|τ |) 6 k2−k+1.

Let G =
⋃
k>eGk. Then∑

τ∈G
2−g(|τ |) 6

∑
τ∈Ge

2−g(|τ |) +
∑
k>e

2k2−k

which is finite because Ge is finite.

Lemma 2.9. T ⊆ G.

(In fact, T = G; the argument of Lemma 2.7 can be used to show that T is
closed under taking initial segments.)

Proof. By induction on k > e, we show that for all σ ∈ Tk, Sk(σ) ⊂ G. The lemma
follows, since for all σ and k, σ ∈ Sk(σ).

For k = e, we defined Le = Te so for all σ ∈ Te, Se(σ) ⊆ Ge.
Let k > e, and let σ ∈ Tk be nonempty. Let q = qk(σ). There are three cases:

• If nq ∈ Nk−1, then by property (2), σ ∈ Tk−1. Certainly

σ�n
q−2−(k−1)

⊆ σ�n
q−2−k

,

so Sk(σ) ⊆ Sk−1(σ). By induction, Sk−1(σ) ⊂ G, so Sk(σ) ⊂ G.
• If nq /∈ Nk−1 and σ is a leaf of Tk, then σ ∈ Lk, in which case by definition

of Gk, we have Sk(σ) ⊂ G.
• If nq /∈ Nk−1 and σ is not a leaf of Tk, then there is some ρ ∈ Tk ex-

tending σ such that |ρ| = q + 2−k. Since nq /∈ Nk−1 we have q /∈ Qk−1,
so q + 2−k ∈ Qk−1; since nq+2−k is defined, we have nq+2−k ∈ Nk−1.
By property (2), ρ ∈ Tk−1. We have ρ�n

q+2−k−2−(k−1)
= ρ�n

q−2−k
, so

Sk(σ) ⊂ Sk−1(ρ), so by induction, Sk(σ) ⊂ G. �

It follows that indeed ∑
σ∈T

2−g(|σ|)

is finite. Since T is c.e., by the KC Theorem, there is a constant d such that for all
σ ∈ T , K(σ) 6 g(|σ|)+d. By Lemma 2.7, for all n, K(A�n) 6 g(n)+d. The choice
of g shows that A is K-trivial. This completes the proof of Theorem 1.5. �

3. A non-c.e. box-promotion argument

It remains to prove Proposition 2.6. As promised, this is done by a box-promotion
argument. Let A be strongly jump-traceable.

3.1. The overhead of the Recursion Theorem. As standard in a box-
promotion argument, we define a partial computable functional Ψ, and by the
Recursion (fixed point) Theorem, we obtain a c.e. trace 〈Sz〉 for ΨA. The trace
will be bounded by a computable function f that we define ahead of time, except
for finitely many inputs due to “overhead” from the Recursion Theorem: the
Recursion Theorem tells us that essentially, we control a column of the jump of A,
but we do not choose the index of this column; because of this, we cannot expect
to bound the size of 〈Sz〉 as we wish for all inputs z, but only for almost all of
them.



8 ROD DOWNEY AND NOAM GREENBERG

Formally, this is done as follows. Let 〈Ψe〉 be an enumeration of all partial
computable functionals; recall that J is a partial computable functional such that
for all X ∈ 2ω, JX is a universal A-partial computable function.

Lemma 3.1 (Lemma 1.5 of Cholak, Downey, and Greenberg [2]). Let f be an
order function. There is an order function h such that for all A, from a (c.e. index
for a) c.e. h-trace for JA we can obtain, uniformly in e, a (c.e. index for a) c.e.
max{e, f}-trace for ΨA

e .

By the Recursion Theorem we obtain an index e such that Ψ = Ψe; this e is fixed
for the rest of the construction. We also fix, ahead of time, a c.e. h-trace for JA.
Lemma 3.1 then yields a c.e. trace 〈Sz〉 for ΨA, which is bounded by max{e, f(n)}.

Also ahead of time, we define a partition 〈Ik〉 of ω into intervals, which is of
course determined by specifying |Ik| for each k. This defines f since we let, for all
k, for all z ∈ Ik, f(z) = k. Thus, for all k > e, for all z ∈ Ik, we have |Sz| 6 k.

3.2. The general idea. As in other constructions, we use Ψ and the trace 〈Sz〉
to test possible initial segments of A. Recall that the purpose is to enumerate the
sequence of k-trees 〈Tk〉 of Proposition 2.6. If A were computable, we could have
of course let Tk be the single branch consisting of initial segments of A. Since A is
not computable, we need to enumerate several strings into Tk. With an associated
degree of confidence, we believe they may be initial segments of A. We need to
ensure that the correct initial segments are enumerated, but that not too many
strings are enumerated.

To test a string σ on input z, we let Ψσ(z) = σ. The test is successful if σ ∈ Sz.
If σ is an initial segment of A, then the test will be successful. Note that consistency
of Ψ means that we cannot test comparable strings on the same input.

Unlike the c.e. case, we do not have an approximation for A, and so we need to
test arbitrary strings. The combinatorial heart of the argument is the mechanism
for deciding which strings are tested on which inputs. The general aim is to “make
the opponent pay dearly” for successful tests of wrong initial segments. To ensure
that each Tk has at most k many leaves, we will guess the sets of leaves of each
level of Tk, and in that way amplify (or promote) boxes.

3.3. Simplified versions. To give a better idea of how the construction works,
we first describe unrealistically easy cases.

One level. Let k = 0, so Qk = {0, 1}; and for convenience, make the false assump-
tion that c(ω) > 1. Let n = n1; so T0 should contain the empty string, and strings
of length n. Of course it is impossible to have both A�n ∈ T0 and have T0 have at
most 0 leaves. But we show how to get A�n ∈ T0 and make the number of leaves of
T0 bounded by e, where again e, defined above, is the “overhead” charged by the
Recursion Theorem. Without knowing A at all, we simply test all strings of length
n on an input z ∈ Ie, so |Sz| 6 e. We then enumerate all the strings of length
n that show up in Sz to T0. Since 〈Sz〉 traces ΨA, and ΨA(z) = A�n, we get the
desired tree.

Two levels. Now let k = 1, soQk = {0, 1/2, 1}; and again make the false assumption
that c(ω) > 1. For abbreviation, let n = n1/2 and m = n1; we assume that n < m.
Our aim is to define T1 so that A�n, A�m ∈ T1, but that T1 has at most e many
leaves.



STRONG JUMP-TRACEABILITY II : K-TRIVIALITY 9

We can easily ensure that T1 contains at most e many strings of length n, and
at e many strings of length m; we adopt the technique of the case k = 0, this time
using two inputs z, w ∈ Ie, test all strings of length n at z and all strings of length m
at w. Indeed we do so, and so get two lists of strings, say σ1, σ2, . . . and τ1, τ2, . . . ,
of strings of lengths n and m respectively; both lists comprise of at most e strings,
and A�n appears on the first list, A�m on the second list. From these two lists we
need to winnow sublists, which would make up T1, so that the initial segments of
A are not omitted, but overall we get at most e many leaves altogether.

First of all, we need to ensure that T1 is a tree. For this, we may assume that
for every τi on the second list, τi�n appears on the first list as some σj . This is
easily done by holding off enumerating τi until we see τi�n enumerated as some σj .
Below, we will say that τi has been preapproved (Definition 3.2) to appear on the
list of τ ’s. Hence, for all i such that τi is defined, there is some j(i) such that σj(i)
is defined and σj(i) ⊂ τi. Since the collection of all strings of length n forms an
antichain, for all j 6= j(i), σj is incomparable with τi; the importance of this is that
for j 6= j(i), τi and σj can be both tested on the same input, whereas τi and σj(i)
cannot.

The idea now is to amplify the evidence that each σj is potentially an initial
segment of A. We assign a large set M ⊂ Ie of inputs z for the task of defining
T1 (below it is denoted by M1(λ)). For each j, we test σj on exactly half of the
inputs in M . These are distributed independently, so for any finite subset B of
{σ1, σ2, . . . }, the collection of all inputs z ∈ M on which exactly the elements of
B are tested has size |M |/2e. Each such set B represents a guess as to what the
leaves of T1 of length n are going to be. We enumerate σj into T1 if all tests of
σj are successful, that is, if for all z ∈ M such that σj is tested on z, we see that
σj ∈ Sz.

From the point of view of a string τi, any set B as above that contains σj(i)
cannot be a correct guess for a set of leaves of T1. However, any such set that omits
σj(i) is possibly correct. Hence we can be maximal: we test τi on every z ∈ M
on which σj(i) is not tested. This ensures that Ψ is consistent. We enumerate
successful τi’s into T2. Now let B be the collection of leaves of T1 of length n, and
C be the collection of leaves of T1 of length m. The distribution of testing inputs
in M ensures that there is some z ∈ M on which all the strings of B and C are
tested. Since z ∈ Ie, this ensures that |B ∪ C| 6 e as required.

The actual construction is a generalisation, to more levels of the case of two
levels; the main ideas are the same. These ideas are also sufficient to show that the
trees Tk cohere with each other (Property (2) of Proposition 2.6).

Where is the promotion? While this construction is not as dynamic as a c.e.-box-
promotion argument, we can think of it as follows. Again let B be the collection of
leaves of T1 of length n. The elements of T1 are not initial segments of A, since they
have no extension on T1 of length m. Let M1(B) be the collection of inputs z ∈M
at which exactly strings in B (among all the σj ’s) are tested. The fact that each
σj ∈ B is enumerated into T1 means that these tests were successful: our opponent
spent some of their capital on giving us wrong information. The opponent has
wasted |B| many possibilities of enumerating strings into Sz for z ∈ M1(B). We
say that the “box” M1(B) has been promoted from level e to level e− |B|. We can
now test strings of length m from the τi’s, including the correct initial segment of



10 ROD DOWNEY AND NOAM GREENBERG

A, on z ∈ M1(B), and the opponent can only deceive us with e − |B| − 1 many
incorrect such strings.

3.4. The construction. We let |Ik| = 2k + 1 + (2k)2
k

. For q ∈ Qk, fix (distinct)
z(k, q) ∈ Ik. We will test all strings of length nq on z(k, q), to make the first step
of whittling down the collection of strings of length nq that may be enumerated to
Tk, from all such strings to just k many.

We let

Mk(λ) = Ik \ {z(k, q) : q ∈ Qk};

so |Mk(λ)| = (2k)2
k

. Now we define Mk(ν) for every ν which is a sequence of
subsets of {1, 2, . . . , k} of length at most 2k. Mk(λ) has just been defined; if ν is
a sequence of subsets of {1, 2, . . . , k} and |ν| < 2k, and Mk(ν) is defined, then by
induction,

|Mk(ν)| = (2k)2
k−|ν|,

and we let {
Mk(νB) : B ⊆ {1, 2, . . . , k}

}
be a partition ofMk(ν) into 2k subsets of equal size, namely (2k)2

k−|ν|−1 = (2k)2
k−|νB|.

Note that if ν ⊂ µ then Mk(µ) ⊂Mk(ν), but if ν and µ are not comparable, then
Mk(ν) and Mk(µ) are disjoint.

Let

Q̄k =
{
q ∈ Qk : q > 0, q < c(ω) & nq > nq−2−k

}
.

Q̄k is c.e., uniformly in k.
As discussed above, for a set B of indices of strings of length nq1 where

q1 = min Q̄k, Mk(B) will be a testing ground for the strings that believe that B
can be a set of indices of leaves of Tk of length nq1 ; for another set C of indices of
strings of length some nq2 , where q2 is the next element of Q̄k, M1(B,C) will be a
testing ground for strings that believe that B is a set of indices for leaves of Tk of
length nq1 and C is a set of indices for leaves of Tk of length nq2 , and so on.

Initial testing. For all k > e, for all q ∈ Q̄k, we test all binary strings of length nq
at input z(k, q). Note that indeed all of these strings are incomparable, so this test keeps

Ψ consistent.

Approval and general testing. By induction on k > e, and then by induction on
q ∈ Q̄k, we describe how to further test strings that show up in Sz(k,q); and decide
which strings of length nq are enumerated into Tk (we also enumerate the empty
string into every Tk).

For k > e and q ∈ Q̄k, let P (k, q) be the collection of all pairs (k′, q′) such that:

• e 6 k′ < k, q′ ∈ Q̄k′ , and nq′ 6 nq; or
• k′ = k, q′ ∈ Q̄k, and q′ < q.

Note that for all (k′, q′) ∈ P (k, q), nq′ 6 nq. Since Q̄k is not computable, the
domain of the function (k, q) 7→ P (k, q) is not computable either. Nonetheless,
this function is partial computable. Once we know that q ∈ Q̄k, we can effectively
compute all of P (k, q). The point is that if we know that q ∈ Qk and q < c(ω), then
since we can calculate nq and so c(nq), for all k′ < k we know the set of q′ ∈ Qk′
such that nq′ 6 nq, and for all such q′, we know that q′ < c(ω).



STRONG JUMP-TRACEABILITY II : K-TRIVIALITY 11

The point is that P (k, q) is the collection of pairs (k′, q′) such that every string
σ ∈ Tk of length nq must have a (not necessarily proper) initial segment on Tk′ of
length nq′ .

Definition 3.2. We say that a string σ ∈ Sz(k,q) is (k, q)-preapproved if for all
(k′, q′) ∈ P (k, q), we have σ�nq′ ∈ Tk′ .

The idea of this definition is to achieve the coherence between the trees Tk
(Property (2) of Proposition 2.6) and to ensure that every Tk is in fact a tree.
Until a string of length nq is (k, q)-preapproved, it is not even a candidate for being
enumerated into Tk.

We will see that for all k > e and q ∈ Q̄k, the collection of (k, q)-preapproved
strings is c.e., uniformly in k and q. To see this, we will require that the trees
〈Tk〉k>e are c.e., uniformly in k. To avoid circularity, we need to be precise. For

k > e and q ∈ Q̄k, the inductive hypothesis is that for all (k′, q′) ∈ P (k, q), the
collection of strings of length nq′ on Tk′ is c.e., uniformly in k′ and q′.5 From this
hypothesis we can conclude that the collection of (k, q)-preapproved strings is also
c.e., uniformly in k and q. Our instructions below will then show that given all of
this information, the collection of strings of length nq on Tk is also c.e., uniformly,
thus enabling the induction to continue.

Let σ1(k, q), σ2(k, q), . . . be an effective list of the (k, q)-preapproved strings. The
list has length at most k, since |Sz(k,q)| 6 k. Note, though, that this is a c.e. list,
in the sense that if fewer than k many such strings have been listed, we can never
be sure that no more strings will be listed in the future.

Suppose that σ = σi(k, q) is (k, q)-preapproved. Let

m(k, q) =
∣∣{q′ ∈ Q̄k : q′ < q

}∣∣ ;
note that m(k, q) 6 2k and m(k, q) > 1. We further test σ on all the elements
of several boxes Mk(ν), where ν is a sequence of subsets of {1, 2, . . . , k} of length
m(k, q). Which such sequences? We test σ on the elements of Mk(B1, . . . , Bm(k,q))
if:

(1) i ∈ Bm(k,q);

(2) For all q′ ∈ Q̄k such that q′ < q, if σj(k, q
′) is an initial segment of σ, then

j /∈ Bm(k,q′).

For the second condition, note that since σ is (k, q)-preapproved and (k, q′) ∈ P (k, q),
and since Sz(k,q′) is an antichain of strings, there is a unique j such that σj(k, q

′)
is defined and is an initial segment of σ, and such a j is already present when we
test σ.

Finally, if σ is a (k, q)-preapproved string, then we enumerate σ into Tk if for all
z on which we tested σ we have s ∈ Sz, that is, all tests of σ are successful. Since
〈Sz〉 are uniformly c.e., and since the collection of (k, q)-preapproved strings is c.e.,
uniformly in k and q, we indeed get that the collection of strings of length nq on
Tk is c.e., uniformly, as required.

Further, we notice that the testing procedure keeps Ψ consistent:

Lemma 3.3. No comparable strings are tested on an input z.

5Or what amounts to almost the same, that for k′ ∈ [e, k), the trees Tk′ are c.e., uniformly in

k′; and that for q′ ∈ Q̄k such that q′ < q, the strings on Tk of length nq′ are also c.e., uniformly

in q′.



12 ROD DOWNEY AND NOAM GREENBERG

Proof. Let z ∈ Ik, and suppose that strings σ0 and σ1 are tested on z; we show
that σ0 and σ1 are incomparable. We must have z ∈Mk(λ). There are q0, q1 ∈ Q̄k
and indices i0, i1 6 k such that σ0 = σi0(k, q0) and σ1 = σi1(k, q1); without loss of
generality, q0 6 q1. There is some ν = (B1, . . . , Bm) of length m = m(k, q1) such
that z ∈Mk(ν).

Now there are two cases. If q0 = q1, then σ0, σ1 are both of length nq0 and so
are incomparable. Otherwise, q0 < q1; let m0 = m(k, q0) which is smaller than m.
There is a unique j such that σj(k, q0) is an initial segment of σ1, and j /∈ Bm0

.
Now ν0 = (B1, . . . , Bm0

) is the only sequence µ of subsets of {1, 2, . . . , k} of length
m0 such that z ∈ Mk(µ); the fact that σ0 is tested on z means that σ0 is tested
on Mk(ν0), which in turn implies that i0 ∈ Bm0

. Since j /∈ Bm0
we have i0 6= j,

and so σ0 = σi0(k, q0) is not an initial segment of σ1. Since |σ0| = nq0 < nq1 , we
conclude that σ0 and σ1 are incomparable. �

3.5. Verification. We show that the sequence 〈Tk〉k>e satisfies the properties re-
quired by Proposition 2.6.

By construction, the sequence 〈Tk〉k>e is uniformly c.e., and each Tk consists of

strings of length nq for some q ∈ Qk. We first establish properties (1) and (2).

Lemma 3.4. Let σ ∈ Tk.
(1) If n ∈ Nk and n < |σ|, then σ�n ∈ Tk.
(2) If k > e and |σ| ∈ Nk−1, then σ ∈ Tk−1.

Proof. We have Nk = {0} ∪ {nq q ∈ Q̄k}. Let q ∈ Q̄k such that |σ| = nq. Now σ is
(k, q)-preapproved: for all (k′, q′) ∈ P (k, q) we have σ�nq′ ∈ Tk′ .

If n ∈ Nk, n < |σ|, then either n = 0, in which case certainly σ�n ∈ Tk; or
n = nq′ for some q′ ∈ Q̄k smaller than q. In this case we have (k, q′) ∈ P (k, q), and
so σ�n ∈ Tk.

Now suppose that k > e and |σ| = nq ∈ Nk−1. Let q′ ∈ Q̄k−1 such that nq = nq′ ;
then (k − 1, q′) ∈ P (k, q). It follows that σ = σ�nq′ ∈ Tk−1. �

We verify property (3):

Lemma 3.5. For all k > e, Tk has at most k many leaves.

Proof. Fix k > e. We show, in fact, that every antichain on Tk has size at most
k; of course, the set of leaves of Tk is the largest antichain on Tk. So let L be an
antichain on Tk.

Let q∗ = max{Q̄k} and m∗ = m(k, q∗). For m 6 m∗, let

Bm = {i ∈ {1, 2, . . . , k} : σi(k, q) ∈ L} ,

where q is the unique element of Q̄k such that m = m(k, q).
Consider the sequence ν = (B1, B2, . . . , Bm∗). Since L is an antichain, for all

q ∈ Q̄k, every σ ∈ L of length nq is tested on Mk(B1, . . . , Bm(k,q)), and so on every

input in Mk(ν); and since such σ is actually enumerated into Tk, these tests must
be successful. We conclude that for all z ∈Mk(ν) we have L ⊆ Sz. The conclusion
follows from the fact that |Sz| 6 k for all z ∈ Ik. �

And finally, property (4):

Lemma 3.6. For all k > e, for all n ∈ Nk, A�n ∈ Tk.



STRONG JUMP-TRACEABILITY II : K-TRIVIALITY 13

Proof. We enumerated the empty string into every Tk, so it remains to show the
lemma for every nonempty initial segment of A. For k > e and nonzero n ∈ Nk,
there is some q ∈ Q̄k such that n = nq; so we show that for all k > e, for all q ∈ Q̄k,
A�nq ∈ Tk. This is proved by induction on k, and then on q.

Let k > e and q ∈ Q̄k. By induction, for all (k′, q′) ∈ P (k, q), we have
A�nq′ ∈ Tk′ . Let σ = A�nq . The string σ is tested on z(k, q), and since σ ⊂ A we
have σ ∈ Sz(k,q). Hence σ is (k, q)-preapproved. Now σ is tested on the elements of

various Mk(ν)’s, and since it is an initial segment of A, all these tests are successful,
so σ is enumerated into Tk as required. �

References

[1] Laurent Bienvenu and Rod Downey. Kolmogorov complexity and Solovay functions. In S. Al-

bers and J.-Y. Marion, editors, 26th Annual Symposium on Theoretical Aspects of Computer
Science, (STACS 2009), volume 3 of Leibniz International Proceedings in Informatics, pages

147–158. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl, Germany,

2009.
[2] Peter Cholak, Rod Downey, and Noam Greenberg. Strong jump-traceabilty I: The computably

enumerable case. Adv. Math., 217(5):2045–2074, 2008.

[3] R. Coles, R. Downey, C. Jockusch, and G. LaForte. Completing pseudojump operators. Ann.
Pure Appl. Logic, 136(3):297–333, 2005.

[4] Natasha L. Dobrinen and Stephen G. Simpson. Almost everywhere domination. J. Symbolic
Logic, 69(3):914–922, 2004.

[5] Rod Downey and Noam Greenberg. Failure of cone avoidance for the strong jump-traceability

pseudojump operator. In preparation.
[6] Rod Downey and Denis Hirschfeldt, Algorithmic Randomness and Complexity, Springer-

Verlag, 2010.

[7] Rod Downey, Denis R. Hirschfeldt, André Nies, and Sebastiaan A. Terwijn. Calibrating
randomness. Bull. Symbolic Logic, 12(3):411–491, 2006.

[8] Rod Downey, Denis R. Hirschfeldt, André Nies, and Frank Stephan. Trivial reals. In Proceed-

ings of the 7th and 8th Asian Logic Conferences, pages 103–131, Singapore, 2003. Singapore
Univ. Press.

[9] Santiago Figueira, André Nies, and Frank Stephan. Lowness properties and approximations

of the jump. Ann. Pure Appl. Logic, 152(1-3):51–66, 2008.
[10] Noam Greenberg, Denis Hirschfeldt, and André Nies. Characterizing the strongly jump trace-

able sets via randomness. Submitted.
[11] Noam Greenberg and André Nies. Benign cost functions and lowness properties. To appear

in Jour. of Symb. Logic.

[12] Carl G. Jockusch, Jr. and Richard A. Shore. Pseudojump operators. I. The r.e. case. Trans.
Amer. Math. Soc., 275(2):599–609, 1983.

[13] Carl G. Jockusch, Jr. and Richard A. Shore. Pseudojump operators. II. Transfinite iterations,

hierarchies and minimal covers. J. Symbolic Logic, 49(4):1205–1236, 1984.
[14] Bjørn Kjos-Hanssen, André Nies, and Frank Stephan. Lowness for the class of Schnorr random

reals. SIAM J. Comput., 35(3):647–657 (electronic), 2005.
[15] Antonin Kučera and André Nies. Demuth randomness and computational complexity. To

appear in Ann. Pure and Applied Logic.

[16] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its applications.

Texts and Monographs in Computer Science. Springer-Verlag, New York, 1993.
[17] Joseph S. Miller and André Nies. Randomness and computability: open questions. Bull.

Symbolic Logic, 12(3):390–410, 2006.
[18] Keng Meng Ng. On strongly jump traceable reals. Ann. Pure Appl. Logic, 154(1):51–69, 2008.

[19] Keng Meng Ng. Computability, Traceability and Beyond. PhD thesis, Victoria University of

Wellington, 2009.
[20] André Nies. Lowness properties and randomness. Adv. Math., 197(1):274–305, 2005.



14 ROD DOWNEY AND NOAM GREENBERG

[21] André Nies. Eliminating concepts. In Computational prospects of infinity. Part II. Presented
talks, volume 15 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., pages 225–247.

World Sci. Publ., Hackensack, NJ, 2008.

[22] André Nies. Calculus of cost functions. In preparation.
[23] André Nies. Computability and Randomness. Oxford Logic Guides. Oxford University Press,

2009.

[24] Stephen G. Simpson. Almost everywhere domination and superhighness. MLQ Math. Log.
Q., 53(4-5):462–482, 2007.

[25] R. Solovay. Draft of paper (or series of papers) related to Chaitin’s work. IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, 215 pages, 1975.

[26] Sebastiaan A. Terwijn. Computability and Measure. PhD thesis, The Institute for Logic,

Language and Computation (ILLC), University of Amsterdam, 1998.
[27] Sebastiaan A. Terwijn. Complexity and randomness. Rendiconti del Seminario Matematico

di Torino, 62(1):1–38, 2004. Notes for a course given at the University of Auckland, March

2003.
[28] Sebastiaan A. Terwijn and Domenico Zambella. Computational randomness and lowness. J.

Symbolic Logic, 66(3):1199–1205, 2001.

School of Mathematics, Statistics and Operations Research, Victoria University,

P.O. Box 600, Wellington, New Zealand
E-mail address: Rod.Downey@vuw.ac.nz, Noam.Greenberg@vuw.ac.nz


