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Abstract. For every order h such that
P

n 1/h(n) is finite, every K-trivial

degree is h-jump-traceable. This motivated Cholak, Downey and Greenberg [2]
to ask whether this traceability property is actually equivalent to K-triviality,

thereby giving the hoped for combinatorial characterisation of lowness for

Martin-Löf randomness. We show however that the K-trivial degrees are prop-
erly contained in those that are h-jump-traceable for every convergent order

h.

1. Introduction

An important question in algorithmic randomness is whether there is a combi-
natorial characterisation of the class of K-trivial reals (equivalently, of the Turing
degrees of such reals). This important class was shown by Nies and his co-authors
(see [10, 12]) to coincide with a number of lowness notions such as lowness for
Martin-Löf randomness and lowness for K. However, all known definitions of this
class involve effective randomness or measure. It is still hoped that new light will
be shed on this class by finding a measure-free definition, one which only involves
standard notions of computability. We refer to such a definition as “combinatorial”.

The main example of a combinatorial characterisation of a class which was first
defined by randomness and lowness is the class of reals which are low for Schnorr
randomness (for a general introduction to randomness notions and lowness see the
texts [4, 12]). In a pair of papers, Terwijn and Zambella [14] and then Kjos-Hanssen,
Nies and Stephan [7] showed that a degree is low for Schnorr randomness if and
only if it is computably traceable.

Traceability is a notion which was borrowed from set theory by Terwijn and
Zambella. In the context of computability, we say that a partial function ψ : ω → ω
is traced by a sequence of finite sets 〈Tn〉 of natural numbers if for every n ∈ domψ
we have ψ(n) ∈ Tn. If the sequence 〈Tn〉 is given effectively, then we can think of
ψ as being “weakly computable”; it may not quite be computable, but for every n,
there are only finitely many possibilities for ψ(n), which are given effectively. The
more effective the trace 〈Tn〉, the closer ψ is to being computable: for the notion
above we assume that the list 〈Tn〉 is computable (that is, canonical indices for
finite sets are given effectively). A standard weakening is that of c.e. traceability;
here the trace is a c.e. trace which means that the sequence 〈Tn〉 is uniformly c.e.

In the search for a combinatorial definition of the K-trivial degrees (see [8, 11]),
Figueira, Nies and Stephan [5] modified Nies’s class of jump-traceable reals [9] and
introduced the notion of strong jump-traceability. We give the definitions.
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Definition 1.1.

(1) An order is a computable, non-decreasing and unbounded function h : ω →
ω \ {0}.

(2) A trace 〈Tn〉 obeys an order h if for all n, |Tn| 6 h(n).
(3) A real A ∈ 2ω is jump-traceable if the universal A-partial computable func-

tion JA is traceable by some c.e. trace which obeys some order.
(4) A real A ∈ 2ω is strongly jump-traceable if for every order h, JA is traceable

by some trace which obeys h.

The point here was that unlike the previously used notions of computable trace-
ability and c.e. traceability, when tracing partial functions, the orders which bound
the size of the traces do make a difference. For instance, there are 2ℵ0 many
jump-traceable reals, but by a result of Downey and Greenberg [3], there are only
countably many strongly jump-traceable reals, indeed they are all ∆0

2.
All K-trivial reals are jump-traceable (Nies [9]). Cholak, Downey and Greenberg

[2], however, showed that while all c.e. strongly jump-traceable reals are K-trivial,
there are K-trivials which are not strongly jump-traceable; so this attempt at giving
a measure-free characterisation of K-triviality fails.

We have mentioned, though, that (at least among c.e. sets, which is not a restric-
tion when dealing with K-triviality), the K-trivials lie somewhere between strong
and plain jump-traceability (for c.e. degrees, jump-traceability is equivalent to su-
perlowness). So possibly, a less naive approach would be to investigate for which
orders h are K-trivials h-jump traceable. For this to be meaningful, we first need
to define this notion.

One is tempted to make the following definition: a real A ∈ 2ω is h-jump-
traceable if JA is traceable by a trace which obeys h. Indeed some authors have
taken this approach and have interesting results; for example, Ng [13] showed that
there are two c.e. sets A0 and A1 which join up to ∅′ and such that JAi can be
traced by a trace which obeys the identity function.

The drawback of this definition, though, is that it depends on the particular
choice of universal function J , and so is not degree invariant, let alone downward
closed in the Turing degrees, as is expected from a notion of computational weakness
such as traceability. We suggest a degree invariant definition.

Definition 1.2. Let h be an order. A Turing degree a is h-jump-traceable if every
function which is a-partial computable has a c.e. trace which obeys h.

We mention that Ng’s construction cannot be used to construct id-jump-traceable
degrees (this would imply our main result).

Now what is the relationship between K-triviality and h-jump-traceability for
various orders h? As mentioned above, Nies showed that all K-trivials are jump-
traceable, indeed they are all n log2 n-jump-traceable (see [12]). We improve this
result in Theorem 1.3 below. On the other hand, Cholak, Downey and Greenberg [2]
showed that every c.e. degree which is

√
log n/9-jump-traceable is K-trivial (again

see [12]).
The decanter argument which shows that K-triviality implies superlowness ac-

tually yields the following.

Theorem 1.3. Let h be an order such that
∑
n 1/h(n) is finite. Then every K-

trivial degree is h-jump-traceable.
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Proof. Let A be K-trivial and let Φ be a Turing functional.
Let k0 be such that

∑
n>k0

1/f(n) < 1 and let (qi) be a computable sequence of
finite binary rationals such that qi > 1/f(i) for all i ∈ N and

∑
n>k0

qi < 1. For each
n > k0 define a prefix-free set of strings Cn such that µ(Ci) = qi and [Ci]∩ [Cj ] = ∅
for all i 6= j with i, j > k0. Define a prefix-free machine M as follows: for each
j > k0, s ∈ N and σ ∈ Cj let MA(σ)[s] ↓ iff ΦA(j)[s] ↓. By a lemma in [10, 12]
(an application of the golden run construction) there is a computable increasing
function g such that

(1.1)
∑
x,r

{c(x, r) | x is least s. t. A � g(r + 1) 6= A � g(r + 2) } < 1

where

c(x, r) =
∑
{2−|σ| | MA(σ)[g(r + 1)] ↓ ∧ x < use(MA(σ)[g(r + 1)]) < g(r)}.

Now we can enumerate a trace (Ti) for ΦA by proceeding as follows for each r ∈ N:
at stage g(r+ 1) for each i < g(r+ 1), if ΦA(i) ↓ with use < g(r), enumerate ΦA(i)
into Ti. By (1.1) for each i > k0 we have (|Ti| − 1) · qi < 1 hence |Ti| ≤ f(i). �

Notice that the function n log2 n satisfies the condition of theorem 1.3. This
observation prompted Cholak, Downey and Greenberg to ask whether this level
of jump-traceability actually provided the sought-after combinatorial definition of
K-triviality. We show that it doesn’t:

Theorem 1.4. There is a (c.e.) degree a which is h-jump-traceable for every order
h such that

∑
n 1/h(n) is finite, but is not K-trivial.

The convergence of
∑

1/h(n) is not a particularly easy assumption to work with.
We instead work with a wider class of orders, the superlinear ones.

Definition 1.5. An order h is called superlinear if limn h(n)/n =∞.

Lemma 1.6. If h is an order and
∑
n 1/h(n) <∞ then h is superlinear.

Proof. Suppose that lims
h(n)
n = ∞ does not hold. Then there exists some c ∈ N

such that for infinitely many n we have h(n) < c · n. So there exists a sequence
〈nk〉 such that for all k, h(nk) < c · nk and nk+1 > 2nk (so 1 − nk/nk+1 > 1/2).
Since h is non-decreasing, for all x ∈ (nk−1, nk] we have

1
c · nk

6
1

h(nk)
6

1
h(x)

and so ∑
x

1
h(x)

=
∑
k

nk∑
x=nk−1+1

1
h(x)

>
∑
k

nk − nk−1

c · nk
>

1
c

∑
k

1
2

=∞. �

Hence, instead of proving Theorem 1.4 directly, we prove the following:

Theorem 1.7. There is a (c.e.) degree a which is not K-trivial but which is
h-jump-traceable for every superlinear order h.

This still leaves us wondering whether some other level of the jump-traceability
hierarchy might characterise K-triviality. Orders h such that

∑
2−h(n) is finite may

play a role. A particular test question is the following: is every K-trivial degree
id-jump-traceable?
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2. Proof of theorem 1.7

2.1. The individual requirements. We enumerate a c.e. set A which will have
the required degree.

Making A not K-trivial. By the equivalence of K-triviality and lowness for ran-
domness, it is sufficient to make A not low for ML randomness. In [6] (see [1] for
a different proof) it was shown that A is low for ML-randomness iff every Π0

1(A)
class of positive measure contains an unrelativised Π0

1 class of positive measure;
equivalently, every Σ0

1(A) class GA such that µ(GA) < 1 is contained by some un-
relativised Σ0

1 class V such that µ(V ) < 1 (here µ denotes the standard Lebesgue
(or fair coin) measure on Cantor space 2ω). Hence we build a Σ0

1(A) class GA and
meet the requirement P which states that GA is not contained in any Σ0

1 class of
measure less than 1 (in fact, we can modify the construction to ensure that if V is
any Σ0

1 class which contains GA then V = 2ω).
To achieve P , we enumerate all Σ0

1 classes of measure less than 1 effectively as
〈Vj〉j∈N; for each j we enumerate a Σ0

1(A) class GAj and ensure that
∑
j µ(GAj ) < 1.

The requirement is
Pj: GAj 6⊆ Vj .

So if we let GA =
⋃
j G

A
j then the requirement P is met.

The strategy for meeting Pj , if there are no restraints around, is very simple.
Suppose that we want to ensure that µ(GAj ) 6 qj , where qj is a binary rational
(if, for example, we let qj = 2−(j+2), then the requirement

∑
j µ(GAj ) < 1 will be

satisfied). We partition the space 2ω into 1/qj many clopen sets C1, C2, . . . , C1/qj .
In order, we first enumerate Ck into GVj with some (large) use u = uk. We then
wait for Ck to appear completely in Vj (by compactness of Ck, if Ck ⊆ Vj then there
is a finite stage s at which Ck ⊆ Vj [s]). If this never happens, then we keep waiting
(and don’t do anything else); in this case we’ll have GAj = Ck, so µ(GAj ) = qj as
required, and GAj 6⊆ Vj so Pj is met. If, on the other hand, we see at some stage
that Ck ⊆ Vj , then we take Ck out of GAj (by enumerating u into A) and move on
to Ck+1. We can never get to k = 2n for otherwise Vj = 2ω and certainly doesn’t
have measure less than 1.

Note that if Pj decides to work with clopen pieces of size qj , then it may end up
enumerating 1/qj many numbers into A.

Making A h-jump-traceable. Let 〈Φe, he〉 be an effective enumeration of all pairs
consisting of a functional and a partial computable, non-decreasing function from
ω → ω \ {0} whose domain is an initial segment of ω. For each e we need to build
a c.e. trace 〈T ei 〉i∈N which obeys he and meet the requirment

Qe: If he is a superlinear order, then 〈T ei 〉 traces ΦAe .
The strategy for meeting Qe is also straightforward: whenever a computation

ΦAe (i) is discovered, we impose restraint on A to preserve this computation and
enumerate the value in T ei .

The conflict between the P and Q requirements is now clear: the P requirements
need to enumerate numbers into A in order to keep GAj small, whereas the Q
requirements need to restrain A from changing in order to keep T ei small.
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2.2. The private priority list; restraint on Pj. Here we describe the interaction
between a single requirement Pj which has to respect a single requirement Qe; we
assume that he is a total, superlinear order. To understand the situation better,
we realise that Qe can be broken up into infinitely many subrequirements:

Qe,i: |T ei | 6 he(i); and if ΦAe (i)↓ then ΦAe (i) ∈ T ei .
We imagine all of the subrequirements Qe,i being ordered (naturally) in a “private”
priority list. Somewhere in this list, we need to place Pj :

Qe,0, . . . , Qe,k−1, Pj , Qe,k, Qe,k+1, . . .

Pj acts as we described before, except that it has to respect the restraints imposed
by Qe,0, . . . , Qe,k−1. Each one of these subrequirements acts at most once, because
they can never be injured. When Pj is restrained, it may not be able to take out
a clopen set from GAj as the A-use used in enumerating that piece into GAj may
be smaller than the use of the computation ΦAe (i) which is being protected. In
that case, Pj is forced to leave the clopen piece in GAj and move on to the next
piece. Now note that if Qe,i (for some i < k) prevents Pj from extracting some
clopen piece C from GAj , then the A-uses which Pj picks later are greater than the
use of the computation ΦAe (i), which as mentioned above, is never injured. Hence
Qe,i will not prevent Pj from extracting a different piece C ′ from GAj , so the total
number of clopen pieces that Pj may be prevented from extracting from GAj is at
most k. So if Pj needs to keep the measure of GAj below qj , then it needs to work
with clopen pieces of size qj/k (we may assume that k is a power of 2).

As analysed above, this means that Pj may make enumerate up to k/qj many
numbers into A. Each such enumeration may injure any of the subrequirements
Qe,k, Qe,k+1, . . . , by removing a computation ΦAe (i) whose value was already enu-
merated into T ei . To keep these subrequirements happy, we need to ensure that
they are allowed to make T ei have size greater than k/qj ; which, since he is non-
decreasing, is equivalent to requiring that he(k) > k/qj .

The existence of such a number k, indeed cofinitely many such numbers, is
guaranteed by the assumption that he is superlinear. So in this simple case, the
tension can be resolved.

2.3. Initialisations. Let us now see how one Qe interacts with all of the require-
ments Pi. Again we assume that he is a total, superlinear order and we break Qe
into subrequirements, and we place all of the Pi on Qe’s private priority list:

Qe,0, . . . , Qe,k0−1, P0, Qe,k0 , . . . , Qe,k1−1, P1, Qe,k1 , Qe,k1+1, . . .

Suppose that the quota for requirement Pj (that is, the bound required on the
measure of GAj ) is qj . There are three ways to deal with this situation. The
naive (or brute force) approach proceeds as in the previous section. We require
that he(k0) > k0/q0. For each i ∈ [k0, k1) we see that Qe,i will protect at most
k0/q0 many computations, and so P1 will be restrained something like k1k0/q0

many times, so we require something like he(k1) > k0k1/(q0q1), which is again
possible by superlinearity. This approach yields terribly complicated inequalities.
An improvement on the naive approach is obtained by observing that in fact, each
Pj is restrained at most kj many times. The reason is that if j′ < j, then at any
given time, the A-use used by Pj′ is smaller than the A-use used by Pj , and so any
action by Pj′ already removes from GAj the current clopen piece. If i < kj and Qe,i
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permanently restrains Pj from extracting a piece from GAj , then only this piece
can be “blamed” on Qe,i, because the computation ΦAe (i) which Qe,i can only be
injured by some Pj′ for some j′ < j, hereby extracting that very clopen piece from
GAj .

The reason we rather adopt the third approach, which is initialising Pj and
moving the locations kj along the private priority list, is that it is necessary for
meeting a different task entirely, namely injuring P -nodes by Q-nodes which are
lexicographically left to those P -nodes in the tree of strategies we will use in the
full construction. Since we have to use this blunt tool, it can subsume the gentler
approaches for the issue in hand. The main idea is this. When we choose to place
Pj at location kj of Qe’s private list, we assume that all the stronger Pj′ (for j′ < j)
have already ceased all action. Under this assumption, no subrequirement Qe,i (for
i < kj) can be later injured, and so, by the arguments from Section 2.2, can only
be responsible for at most one clopen piece remaining stuck in GAj . It follows that
we can let Pj use pieces of size qj/kj .

Of course, this assumption may be wrong. So if some Pj′ (where j′ < j) acts
later, we initialise Pj . This has some consequences. The first is that while we can
intialise the requirement Pj (and let it start with a fresh GAj ), we cannot initialise
GAj itself; after all, we are building a global set GA which must be open. So before
declaring the “new” GAj to be empty, we need to “pour” the old GAj into the global
GA. This means that we need to shrink the quota of Pj so that repeated injury
would not make the measure of GA too large. So at the beginning, we actually
choose qj in such a way that

∑
j qj < 1/2; and each time Pj is injured, we halve the

current value of qj . Thus in total, Pj does not add more than 2qj much measure
to GA.

Updating qj implies that we need to update kj as well, since we at least need
the inequality he(kj) > kj/qj - which becomes stricter when qj shrinks. Another
reason we would like to update kj each time Pj is initialised, is the fact that we do
not wish to keep injuring subrequirements Qe,i which were already maltreated by
Pj ; we do not want these injuries to accumulate so as to make T ei too large, so each
time we initialise Pj , we move it beyond any Qe,i which has already been injured
by Pj .

But what inequality do we ask for? Suppose that we install Pj at location kj . Let
i > kj . We already decided that Pj will work with pieces of size qj/kj (for the
current value of qj) and so will enumerate at most kj/qj many numbers into A,
making T ei have size possibly kj/qj + 1. But it is not sufficient to require that
he(kj) > kj/qj , because the requirements P0, P1, . . . , Pj may act in backwards
order: first Pj doing its worst, enumerating kj/qj many numbers into A; then Pj−1

(indeed injuring Pj and putting the next manifestation of Pj beyond Qe,i, but
nevertheless, enumerating kj−1/qj−1 numbers on its own), and so on. In this case
of a single Qe, this can easily be solved by requiring he(kj) > (j + 1)kj/qj which is
in turn greater than

∑
j′6j kj′/qj′ . But in the general construction we will need a

more complex approach, which we describe later.

2.4. Considering several Q. Suppose now that we want to work for all require-
ments Qe that matter, namely the requirements Qe for e such that he is total and
superlinear. We need to place the requirements Pj on the private lists of the various
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Qe’s. As we will see shortly, it is only possible for each Pj to respect finitely many
Qe’s, so we make a global priority list of the requirements Qe and Pj . If Pj is
stronger than Qe, then Pj does not appear on Qe’s private list and every action of
Pj completely initialises Qe (which means that we start with a new trace 〈T ei 〉). If
Qe is stronger than Qe then Pj appears on Qe’s list.

We need to modify our calculations a bit. Fix some Pj , and let E be the finite
set of indices e for which Qe is tended to and stronger than Pj . If e ∈ E and
the current location of Pj on Qe’s private list is ke,j , then the number of clopen
sets which can be stuck in GAj is at most k =

∑
e∈E ke,j and this determines the

size of the clopen sets which Pj uses (qj/k), and hence the desired inequalities -
he(ke,j) > (j + 1)k/qj . The point here is that the value of one ke,j is relevant for
the inequality he′(ke′,j) > . . . of every e′ ∈ E; so these numbers cannot be chosen
independently. For simplicity, we declare that all of these locations ke,j are equal
(to a sinlge number kj). So Pj uses clopen pieces of size qj/kj |E| (actually, in the
construction, we use 2|E| instead of |E|, just to make sure that we have a power of
2).

2.5. Guessing superlinearity; the tree of strategies. The construction of the
previous subsection would be the complete one, if the set of e such that he is a
total, superlinear order were computable. It is not. In fact, while the property of
he being a (total) order is Π0

2 and so can be guessed appropriately, the property of
being superlinear is not Π0

2, indeed not even ∆0
3 (but Π0

3). However, the collection
of e such that lim infn he(n)/n = ∞ is Π0

2. Guessing for that collection is not
good enough, because to find the appropriate kj , we need he(kj) > c · kj for some
constant c and all e 6 j which we believe are relevant. The solution is to adopt a
“tree philosophy” and guess, at level e, whether lim infn he(n)/n = ∞, where the
limit inferior is only taken over the set of n which have been approved and passed
on by the previous he′ which are guessed large. That is, say, for example, that
lim inf h0(n)/n =∞; the guessing process extracts an infinite set H0 such that the
nth number k of H0 satisfies h0(k) > nk. We then test h1 relative to H0: we try
to find a subset H1 ⊆ H0 such that the nth number k of H1 satisfies h1(k) > nk.
Since H1 ⊆ H0 we’ll of course also get h0(k) > nk.

The point is that if he is truly superlinear, then this process of guessing will not
cause us to miss he and we will be able to find the infinite set He, relative to any
infinite set He−1 which will be handed to us. This will ensure that if we really need
to tend to Qe, we will in fact do so.

We use a simple tree of strategies; nodes on level 2e work for requirement Qe
and have outcomes fin and inf, and nodes on level 2j + 1 work for requirement
Pj and only have a single outcome. Nodes γ which work for some Pj build their
own version of GAj , which we call GAγ (at the end we let GA be the union of all the
versions of all GAγ ). We issue quotas qγ such that

(2.1)
∑
γ

qγ < 1/2.

Similarly, every node α which works for some Qe builds a trace 〈Tαi 〉 for ΦAe and
has a private priority list which we indicate by Qe,0, Qe,1, . . . .

We note that out method of initialising Pj ’s also takes care of initialising Pγ
which lie to the right of the current accessible node (this is why we introduced it
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in the first place). The original problem is that if a Pj-node γ extends the finite
outcome of a Qe-node α, then γ believes that Qe can be safely ignored, and so the
location kγ (which is chosen with respect to those Qe′ which γ does not ignore)
may not be sufficiently large to accommodate α’s private priority list. So when the
infinite outcome of α is accessible, all the subrequirements on α’s list must have
priority over γ. Of course, γ did not take into account this amount of restraint,
which may make GAγ too large. Initialisation takes care of this concern.

Now we need to describe a problematic configuration which explains why the
approach we outlined above, for determining which inequalities he(kγ) should sat-
isfy for the construction to work, is actually insufficient. Consider three nodes,
α0 (working for Qe0), α1 (working for Qe1) and γ (working for Pj) such that
α0 ∗ inf ⊂ α1 ∗ inf ⊆ γ. Suppose that we wish to define kγ ; we plan to let
γ use clopen pieces of size mγ := qγ/4kγ . Suppose for simplicity that γ is the
strongest P -node on the tree.

The issue is of timing. While waiting for he1 to converge and yield large values,
we follow the node α1 ∗ fin (assuming that he0 converges much more quickly than
he1). Various P -nodes extending α1 ∗ fin only need to consider α0’s private list,
and are set up along that list, and as the P -nodes act, they increase the size of
various Tα0

i . When γ is finally accessible, the only candidates for kγ may be small
relative to the i for which Tα0

i is already large, as he1 has not caught up to the
length of convergence of he0 . So the inequality he0(kγ) > mγ is no longer sufficient
to prevent the bust of these Qe0,i. This situation can repeat indefinitely.

The solution is for Qe0,i to be proactive and make sure it never gets injured
too often by making sure that not too many P -nodes ever get placed before it.
Surprisingly, the most elegant way to achieve this is indirectly, by requiring that
the kγ satisfy even more stringent inequalities than was indicated above. For this
purpose, we attach, for every P -node γ, a constant cγ such that

(2.2)
∑
γ∈P

1/cγ < 1/4

where P is the set of all P -nodes on the tree of strategies and we require, when
setting kγ , that for all nodes Qe nodes α which Pγ needs to respect, that he(kγ) >
cγmγ . This ensures that |Tαi | 6 he(i) because if Γ is the (finite) set of nodes which
injure α, then

|Tαi | 6
∑
γ∈Γ

mγ 6
∑
γ∈Γ

he(kγ)
cγ

6 he(i)
∑
γ∈Γ

1
cγ
6 he(i)

as is required. [Again we use here the fact that only one “version” of each γ can
injure α, because if γ is injured after Tαi is started, then future values of kγ will be
larger than i.]

2.6. Construction. We are now ready to give the formal construction.

For any node γ, we let Iγ be the collection of indices e such that there is some
node α which works for Qe such that α ∗ inf ⊆ γ.

Let ∀x∃yR(e, x, y) be a Π0
2 condition which states that he is a total order. At

stage s we let `(e)[s] be the least x such that there is no y < s for which R(e, x, y)
holds.
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At stage s we build the path of accessible nodes, and act as follows.
Suppose that γ, a node which works for Pj , is accessible at stage s. Let r be the

last stage before s at which γ was initialised (0 if γ was never initialised).
(1) If kγ is not defined: look for a number k > r (but k < s) which is a power of

2 such that for all e ∈ Iγ we have he(k) > cγ2|Iγ |k/qγ [s]. If such a number
is not found, terminate this stage. Otherwise, declare such a number to be
the new kγ .

Divide 2ω into clopen subsets, each of measure qγ/kγ2|Iγ |. Terminate
this stage.

(2) If there is a clopen piece C which is currently processed by γ, do the
following (if not, goto (3)). If C 6⊆ Vj [s], let the successor of γ be accessible
(and move to act for it). Otherwise, let u be the use of enumerating C into
GAγ . If there is some α, working for Qe, such that α ∗ inf ⊆ γ (so e ∈ Iγ),
and some i < kγ such that ΦAe (i) ↓ [s] with use greater than u and value
ΦAe (i) already traced in Tαi , then just goto (3). Otherwise, enumerate u
into A and goto (3).

(3) Pick a clopen piece C which hasn’t yet been processed. Pick a large number
u and enumerate C into GAγ with use u. End this stage.

Next, suppose that α, a node which works for Qe, is accessible at stage s. Let r
be the last stage at which either α was initialised, or at which α∗inf was accessible.
If both `(e)[s] > r and there is some number k > r, k < s which is a power of 2
and such that for every e′ ∈ Iα ∪ {e} we have he′(k) > rk, then we let α ∗ inf be
accessible next. Otherwise, we let α ∗ fin be accessible.

If α ∗ inf is accessible, then before we act for it, we update α’s traces: for every
i < r such that ΦAe (i)↓ [s], we enumerate ΦAe (i)[s] into Tαi .

At the end of the stage, we initialise all nodes which lie above the last acces-
sible node or to the right of it. Initialising a node γ which works for Pj means
setting qγ [s+ 1] = qγ [s]/2, making kγ undefined, and resetting GAγ to be empty (by
“emptying” it into the global GA). Initialising a node α which works for Qe means
resetting the trace 〈Tαi 〉.

2.7. Verification. The following lemmas show that the construction satisfies the
requirements of theorem 1.7.

Lemma 2.1 (True Path).
• If β is the leftmost node of its length that is visited infinitely often then for

every m ∈ N there is some k ∈ N such that he(k) > m · k for all e ∈ Iβ.
• The leftmost infinitely often visited path f of the tree is infinite.

Proof. The first clause follows by the construction and the definition of Iβ . The
second follows from the first, because if β is a P -node on the true path, then the
first clause ensures that the construction cannot be stuck in step (1) at all but
finitely many β-stages. �

Lemma 2.2 (Properties of the P nodes). Let γ be a P node on the true path.
Then:

• After some stage, γ is never initialized again and kγ reaches a limit.
• During an interval [s, t] of stages where γ is not initialized, it can make at

most kγ [s]2|Iγ |/qγ [s] enumerations into A.
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• At each stage s, the set GAγ [s] contains at most kγ [s] · |Iγ | clopen sets.
• At each stage s, each clopen set in GAγ [s] is of measure qγ [s]/kγ [s]2|Iγ |. So
µ(GAγ ) ≤ qγ [s].

Proof. By induction on the length of γ. The first clause holds because by induc-
tion, nodes preceding γ stop initialising γ after some stage. For the second clause,
note that each time a P node which precedes γ completes a cycle (i.e. goes from step
3 to step 2), the measure of the corresponding set V increases by a constant amount,
namely qγ [s]/kγ [s]2|Iγ |. Hence there can be at most kγ [s]2|Iγ |/qγ [s] enumerations
into A by γ. For the third clause note that |GAγ | increases only when some compu-
tation of some Q node above γ with index in Iγ for some argument < kγ involves
a use below the use of GAγ . But there are at most |Iγ | · kγ such computations. The
last clause follows from the construction and the third clause. �

Lemma 2.3 (Satisfaction of the Q requirements). If α is a Qd-node on the true
path, and limn hα(n)/n =∞, then:

• ΦAα (k) ∈ Tαk for all k such that ΦAα (k) ↓
• |Tαk | ≤ hα(k) for all k ∈ N.

Proof. For each m ∈ N there are infinitely many k ∈ N such that he(k) > k ·m
for all e ∈ Iα. Since limn hα(n)/n = ∞, for each m ∈ N there are infinitely many
k ∈ N such that he(k) > k · m for all e ∈ Iα ∪ {d}. Hence there are infinitely
many α-expansionary stages (i.e. stages where the outcome inf of α is accessed)
and according to the construction for every k, the value ΦAα (k) (if it is defined) will
be recorded in Tαk . This establishes the first clause.

For the second clause, let s0 be the last stage at which α was initialised.Then
|Tαk [s0]| = ∅. By the initialisation of nodes to the left of the approximation of the
true path, after stage s0 only P nodes below α ∗ inf can ever enumerate a number
into A which is less than the use of a computation ΦAα (k) whose value is in Tαk .
Let us call such an enumeration (α, k)-violating and suppose, for a contradiction,
that |Tα(k)| > hα(k) for some k ∈ N. According to the discussion above, this
means that hα(k) many (α, k)-violating enumerations into A occurred after stage
s0, which were caused by P nodes below α ∗ inf. Let (γi)i<t be the P nodes
which where involved in the first hα(k) such enumerations. We note that no γi can
perform (α, k)-violating enumerations both before a stage where it was injured and
after that. This is because after an injury of γi the parameter kγi receives a large
value. The parameters kγi , qγi mentioned below refer to the interval of stages where
γi performed the (α, k)-violating enumerations. According to the construction (in
particular the choice of kγi at step 1 of the P strategy) we have

(2.3) ht(k) > cγi2
|Iγi |kγi/qγi

for all i < t. By Lemma 2.2, each γi can make at most kγi2
|Iγi |/qγi enumera-

tions into A during any interval of stages at which it is not injured, so, at most
kγi2

|Iγi |/qγi (α, k)-violating enumerations. Hence
∑
i<t kγi2

|Iγi |/qγi ≥ ht(k). But
by (2.3), (2.1) and (2.2) we have

∑
i<t kγi2

|Iγi |/qγi <
∑
i<t hα(k)/ci ≤ hα(k)/2,

which is a contradiction. �

Lemma 2.4. The set A is not low for random.

Proof. Let GA be the union of all versions of GAγ for all P -nodes γ. By (2.1), the
fourth clause of lemma 2.2, and since qγ is halved each time γ is initialized, we
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have µ(GA) =
∑
γ∈P µ(GAγ ) < 1. We show that for all e ∈ N, GA * Ve. Let γ be

a Pe-node on the true path; let s0 be a stage after which γ is never initialised. If
GAγ ⊆ Ve the strategy γ would proceed in forcing the whole space 2ω into Ve by
ensuring that successive small intervals belong to Ve; but this is impossible since
µ(Ve) < 1. �
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