
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

School of Engineering and
Computer Science

PO Box 600 Tel: +64 4 463 5341
Wellington Fax: +64 4 463 5045

New Zealand Internet: office@ecs.vuw.ac.nz

Milestone 1 Report

Joshua Lindsay

Supervisor: Professor James Noble

Submitted in partial fulfilment of the requirements for the
Bachelor of Information Technology fourth year research project.

Abstract
This document contains a report on my progress of milestone 1.

Table of Contents

1 Introduction / Background .. 3

1.1 Research goal .. 3

1.2 This milestones goal .. 3

2 What has been achieved .. 4

2.1 Selecting a software metrics tool .. 4

2.2 Metrics ... 4

2.3 Calibration ... 5

2.4 The corpus ... 7

2.5 Gathering results from the corpus ... 7

2.5.1 Initial Results .. 8

2.5.2 Initial Analysis of results... 11

3 What’s next.. 11

4 References ... 12

1 Introduction / Background

Much of software engineering is focused on how software could or should be written, and
how it ‘should’ be structured. A consequence of much of this offered advice is the Lego
Hypothesis; which says that software can be put together like Lego out of lots of small
interchangeable components [1].

If this were the case then we would expect the size of the classes to stay the same, no matter
how large the program – just as fixed sized Lego bricks can form buildings of any size [2].

So any large program can (according to this theory) consist entirely of a large number of
small classes, which should be a natural consequence of good object-oriented development
[9].

Yet these “big” Java classes still exist.

And certain “big” Java classes even have a name – “God classes” [5]

Which makes us wonder why? Why is it when the design of classes is consistently declared
to be central to the OO paradigm [4] do they still exist in the real world? Is it because
programmers have missed the OO paradigm boat? Or are there simply situations where the
creation of a “big” class is inevitable?

These are the questions I hope to answer during my research, which will hopefully give the
Java community (and perhaps the OO community in general) some idea as to what can be
done about them.

1.1 Research goal
Just to be crystal clear (and if you didn’t read the last section), the goal of my research is to:

Identify why big Java classes exist, and what (if anything) can be done about
them?

1.2 This milestones goal
My goal for this milestone was to:

Attempt to identify what makes a class “big”

Which can be broken down further into steps:

• Identifying a range of size metrics to use for analysing a large corpus of non-trivial
Java programs.

• Running statistical tests on the corpus to measure those metrics.

• And finally; use the results of the tests to identify and define what makes a Java class
“big”

2 What has been achieved

2.1 Selecting a software metrics tool
Rather than writing my own software for calculating software metrics, I did some research
into possible existing software that can calculate the metrics I am interested in. Two stood
out; Semmle’s product SemmleCode and SciTools Understand. For this milestone, Understand
was the best choice as it is able to analyse entire directories of programs and offers a large
selection of software metrics that can (when run on the selected directories containing java
source files) export its results to .csv files.

2.2 Metrics
For the first part of this milestone I needed to select several software metrics that give an
indication of the size of a class. Understand 2.0 contained these metrics and many more, but
for this step of the project I focused on a select few.

CountDeclMethod
The number of local (not inherited) methods (includes both static and
instance methods).

 CountDeclInstanceVariable
 The number of instance fields in a class.
 CountDeclClassVariable
 The number of static fields in a class.
 CountLine
 The number of lines in a class.

Fig. 1: Screenshot of Understand 2.0 (build 477) analysing the
corpus.

CountLineCode
The number of lines of source code. A useful subset of CountLine. This is any
line that isn’t blank, or isn’t a pure comment (i.e. non-trailing comment).

 CountLineCodeExe
 The number of executable lines of code. A useful subset of CountLineCode.

2.3 Calibration
Having chosen SciTools Understand 2.0 as my tool and selected the metrics required, I needed
to confirm the accuracy of Understand for these metrics. For this I wrote a number of test
classes (in Java of course) and manually worked out what the result for each metrics test
should be.
I then ran Understand over these test classes, and confirmed that the results do indeed match.

public class Class2 {

 public static void main(String[] args) {

 System.out.println(new Class1(10).foo());

 System.out.println(Class4.hello_world);

 Class5.getInstance();

 }

}

public class Class1 extends AbstractClass {

 int arg;

 public Class1(){

 }

 // comment

 public Class1(int arg){

 this.arg = arg;

 }

 public int foo(){

 return arg + p;

 }

}

public class Class0 {

}

// Some random example

public class Class3 {

 private Class4 class4;

 public Class3(){

 class4 = new Class4();

 }

 /**

 * Returns some sudo-random pre-established number

added to i.

 * @return some pre-established random number + i

 */

 public int doSomething(int i){

 return class4.compute(i);

 }

 class Class4{

 private int foo = ((int)(Math.random() + 1 *

100000));

 private int compute(int bar){

 return foo + bar;

 }

 }

}

public abstract class AbstractClass {

 protected int p = 100000;

 public AbstractClass(){

}

public class Class5 {

 private static Class5 instance;

 private String value = "blah";

 private Class5(){}

 public static Class5 getInstance(){

 return (instance == null ? (instance = new

Class5()) : instance);

 }

 public String getValue(){

 return value;

 }

}

public class Class4 {

 public static String hello_world = "Hello World.";

 public static int one = 1;

}

2.4 The corpus
[10] The corpus is maintained by Ewan Tempero at the University of Auckland. It is a large
collection of open-source Java software systems, often containing many versions of each
system.
The corpus version I used was 20090202 but the programs outlined below could also be
acquired from their homepages as well.

The following (19) programs were selected from the Qualitas Corpus:

Application Name Version Homepage URL

ant 1.7.1 http://ant.apache.org/

aoi 2.5.1 http://www.artofillusion.org/

aspectj 1.0.6 http://www.eclipse.org/aspectj/

axion 1.0-M2 http://axion.tigris.org/

azureus 3.1.1.0 http://azureus.sourceforge.net/

c_jdbc 2.0.2 http://c-jdbc.ow2.org/

checkstyle 4.3 http://checkstyle.sourceforge.net/

cobertura 1.9 http://cobertura.sourceforge.net/

columba 1.0 http://www.columbamail.org/

derby 10.1.1.0 http://db.apache.org/derby/

displaytag 1.1 http://displaytag.sourceforge.net/

drawswf 1.2.9 http://drawswf.sourceforge.net/

drjava 20050814 http://www.drjava.org/

emma 2.0.5312 http://emma.sourceforge.net/

exoportal 1.0.2 http://exo.sourceforge.net/

findbugs 1.0.0 http://findbugs.sourceforge.net/

fitlibraryforfitnesse 20050923 http://fitnesse.org/

freecol 0.5.1 http://www.freecol.org/

freecs 1.2.20060130 http://freecs.sourceforge.net/
Table 2: Applications included in the metrics

Why 19 systems you may ask? Simply it is because all of these programs contained ‘src’ in
their archives’ file names. Since SciTools cannot read byte code this was desired. However
the included systems represent a good range of differences in application and system size.

2.5 Gathering results from the corpus
Running SciTools over the selected systems was easy. Once SciTools had finished gathering

its results, these could then be exported to a .csv (comma separated values) file which could

then be opened with excel.

2.5.1 Initial Results

 CountDeclClassVariable CountDeclInstanceVariable CountDeclMethod CountLine CountLineCode

Total 20239 41559 134945 2552886 1704649

Min 0 0 0 0 0

Max 315 184 1143 23140 20004

Average 1.025 2.106 6.840 129.404 86.407

Table 1: Summary of results

Figure 1: Number of static fields in each class

Figure 2: Number of non-static (Instance) fields in each class

Figure 3: Number of non-inherited methods in each class

Figure 4: Number of lines in each class

Figure 5: Number of lines of code in each class

Figure 6: Number of executable lines of code in each class

2.5.2 Initial Analysis of results

All graphs show an interesting sudden jump in their metrics. It was not the gradual or
steady curve I was expecting to see. Further analysis is needed but initial thoughts lean
towards a) the data is very noisy / I have done something wrong or b) this is exactly the
result I was expecting – lots of small classes and a band of large to very large ones.

As a side note; comparing what I have found to what Zhang and Tan found in their study
[9], my results showed an average of 129 lines of code vs their 114 LOC, suggesting my
selected systems had a nasty habit of containing larger classes. This could be for a number of
reasons (e.g. I had fewer systems with smaller classes) and further research into this is
required.

3 What’s next

• Further analysis of results is needed.

• Identify and define what makes a Java class “big”

• Identifying similarities and patterns between “big” Java classes in the corpus. This
will help us understand why “big” classes exist.

o This may involve running additional statistical tests to identify if any “micro
patterns” exist in the “big” Java classes.

• Having understood the why, identifying what can be done (if anything) with these
“big” classes.

4 References

[1] G. Baxter, M. Frean, H. Melton, J. Nobel, M. Rickerby, H. Smith, E. Tempero, M.
Visser. Understanding the Shape of Java Software. ACM, 2006.

[2] R. Biddle, M. Frean, A. Potanin, J. Noble. Scale-free Geometry in Object-Oriented
Programs.

[3] S. R. Chidamber, C. F. Kemerer. Towards a Metrics Suite for Object Oriented Design.
ACM, 1991.

[4] S. R. Chidamber, C. F. Kemerer. A Metrics Suite for Object Oriented Design. IEEE,
1994.

[5] S. Ducasse, T. Girba, R. Marinescu, D. Ratiu. Evolution Enriched Detection of God
Classes. CAVIS 2004.

[6] N. E. Fenton, S. L. Pfleeger. Software Metrics, A Rigorous & Practical Approach -
Second Edition Revised Printing. PWS Publishing Company, 1997.

[7] J. Y. Gil, I. Maman. Micro Patterns in Java Code. ACM, 2005.
[8] H. Melton, J. Nobel, E. Tempero. How do Java Programs use Inheritance? An

Empirical Study of Inheritance in Java Software. Springer-Verlag Berlin Heidelberg,
2008.

[9] H. B. K. Tan, H. Zhang. An Empirical Study of Class Sizes for Large Java Systems.
IEEE, 2007.

[10] Qualitas Research Group, Qualitas Corpus Version 20090202,
http://www.cs.auckland.ac.nz/~ewan/corpus. The University of Auckland,
February, 2009.

