Appendix 1 : Overall Module Diagram

 [image: image1.wmf]Game

+ GameController

+ Round

Communication

+ Communications

+ Receiver

+ Sender

Storage

+ Board_Record

+ Storage_System

+ Round_Record

Review

+ ReviewGUI

PlayGame

+ PlayGameGUI

Edit

+ EditGUI

GameBoard

+ Cell

+ Circle

+ Cookie

+ Driver Board

+ Goat

+ Block

+ Slider Board

+ Space

+ Square

+ Square+Triangle

+ Triangle

+ Wall

Services

Behaviour

System Core

Appendix 2 : Game Controller Module Diagram

[image: image2.wmf]Methods are invoked by:

PlayGameGUI

Communicaton Package

Review(? Replay Module)

Presents the view of the

board relevant to the

Driver/Slider

GameController

id

startTime

getID()

switchRoles()

undoMove()

drawBoard()

startDemoRound()

startRound()

move()

startRoundReplay()

startGame()

Storage_System

Board record : list

Round Record : list

getRoundRecord()

listGameRecords()

listRoundRecord()

listBoards()

getBoard()

addRound()

addBoard()

deleteRound()

deleteGame()

mergeRoundRecords()

saveRound()

(from Storage)

Slider Board

BoardID : String

(from GameBoard)

Round

id

isDemo

moves : list

log_moves()

getID()

switchRoles()

move()

undoMove()

drawBoard()

checkEnd()

0..1

0..1

Driver Board

BoardID : String

(from GameBoard)

Appendix 3 : Game Board Module Diagram

[image: image3.wmf]Slider Board

BoardID : String

Square

Circle

Triangle

Square+Triangle

Cookie

collected : boolean = false

Goat

fed : boolean = false

Block

Colour

Start Pos

Finish Pos

NeedsPush

Space

Wall

Driver Board

BoardID : String

Moves/Rules

=====

Theses could either be coded into:

the pieces

the board (a la Sokoban)

a seperate class responsible for

definging how pieces can be moved.

May want a seperate class/global

method that can workout if the piece

can move X cells in one direction and

what pieces it will encounter.

Cell

Xpos

Ypos

Height

Width

CellType

getType()

isEmpty()

Board

grid[][] : Cell

score : int = 0

label : string

isGhost : Boolean

cookieCount : int = 0

moves : Stack

move()

undoMove()

drawBoard()

updateScore()

checkEnd()

changeRole()

Board()

changeCellContents()

Appendix 4 : Communications Module Diagram

[image: image4.wmf]Communications will be

able to call methods in

the GameController as

messages are received in

the Receiver Thread.

Receiver

in : BufferedReader

socket : Socket

Receiver(socket : Socket)

start()

Feedback

decode()

GameController

id

startTime

getID()

switchRoles()

undoMove()

drawBoard()

startDemoRound()

startRound()

move()

startRoundReplay()

startGame()

(from Game)

Client

port : Integer

host : String

socket : Socket

Client(port, host, Game)

Server

port : Integer

socket : Socket

Server(port)

Sender

socket : Socket

out : DataOutputStream

send(Message : String)

Sender(socket : Socket)

Communications

Role

Available : Boolean

Communications()

send()

0..1

0..1

0..1

0..1

When a Communication object is

created it is passed a role.

Role and action then taken:

Client, Creates a Client object which

attempts to open a connection to the

server.

Server, Creates a Server object which

opens a port and waits for a Client

to connect.

Once a connection is made, both the

client and the server create a

Receiver Thread and a Sender.

The Receiver thread has a feedback

object which in turn has a link to

the GameController. When It receives

a message it will call the Feedback

object to decode it and then call the

correct method in the CameCOntroller.

The Sender is passed back to the

communication object. It is not

passed back to the object that

created the Communications object as

this would increase coupling. When

the creator of the communications

object wants to send a message it

calls send on communication and

passes it the message.

Appendix 5 : movePiece Sequence Diagram

[image: image5.wmf]Leslie :

Driver

 : PlayGameGUI

 : GameController

 : Round

 : Board

 : Cell

 : Storage_System

 : Round_Record

 : Communications

1: selectCell()

2: move()

3: move()

isEmpty keeps getting called

on grid squares along path of

chosen direction, until it

returns false at which point

piece cannot move any further

and board needs to be

redrawn.

game play has not reached an end state

yet so game can continue (and board must

be redrawn)

6: isEmpty()

7: getType()

9: log_moves()

4: move(int, int, string)

5: move(Integer, Integer,)

10: getRoundRecord()

11: add()

8: updateScore()

12: checkEnd()

13: checkEnd()

15: drawBoard()

16: drawBoard()

14: send(String)

Appendix 6 : startRound Sequence Diagram

[image: image6.wmf] : Player

 : PlayGameGUI

 : GameController

 : Storage_System

 : Communications

 : Round

 : Board

2: startRound(String roundID)

6: startRound(String roundID, String boardID)

1: promptForRoundID()

9: drawBoard()

10: drawBoard()

4: promptForBoard()

8: send(String roundStart)

3: listBoards()

5: selectBoard()

7: addRound(String)

Appendix 7 : switchRoles Sequence Diagram

[image: image7.wmf]Leslie :

Driver

 : PlayGameGUI

 : GameController

 : Round

 : Driver

Board

 : Slider

Board

 : Communications

1: displayGameOptions()

2: switchRoles()

3: switchRoles()

4: switchRoles()

5: changeRole()

6: changeRole()

8: displayGameOptions()

7: send(String)

Appendix 8 : undoMove Sequence Diagram

[image: image8.wmf]Bobsnob :

Slider

 : PlayGameGUI

 : GameController

 : Round

 : Storage_System

 : Communications

 : Board

 : Round_Record

2: undoMove ()

3: undoMove ()

8: send(String)

1: undoMove ()

5: log_moves()

6: getRoundRecord()

7: add()

4: undoMove()

9: drawBoard()

10: drawBoard()

