Appendix 1 : Overall Module Diagram
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Appendix 2 : Game Controller Module Diagram
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Appendix 3 : Game Board Module Diagram
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Appendix 4 : Communications Module Diagram

[image: image4.wmf]Communications will be 

able to call methods in 

the GameController as 

messages are received in 

the Receiver Thread.

Receiver

in : BufferedReader

socket : Socket

Receiver(socket : Socket)

start()

Feedback

decode()

GameController

id

startTime

getID()

switchRoles()

undoMove()

drawBoard()

startDemoRound()

startRound()

move()

startRoundReplay()

startGame()

(from Game)

Client

port : Integer

host : String

socket : Socket

Client(port, host, Game)

Server

port : Integer

socket : Socket

Server(port)

Sender

socket : Socket

out : DataOutputStream

send(Message : String)

Sender(socket : Socket)

Communications

Role

Available : Boolean

Communications()

send()

0..1

0..1

0..1

0..1

When a Communication object is 

created it is passed a role.  

Role and action then taken:

Client, Creates a Client object which 

attempts to open a connection to the 

server.

Server, Creates a Server object which 

opens a port and waits for a Client 

to connect.

Once a connection is made, both the 

client and the server create a 

Receiver Thread and a Sender. 

The Receiver thread has a feedback 

object which in turn has a link to 

the GameController.  When It receives 

a message it will call the Feedback 

object to decode it and then call the 

correct method in the CameCOntroller.

The Sender is passed back to the 

communication object.  It is not 

passed back to the object that 

created the Communications object as 

this would increase coupling.  When 

the creator of the communications 

object wants to send a message it 

calls send on communication and 

passes it the message.


Appendix 5 : movePiece Sequence Diagram
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Appendix 6 : startRound Sequence Diagram
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Appendix 7 : switchRoles Sequence Diagram
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Appendix 8 : undoMove Sequence Diagram
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