Relativization and Complexity

Rod Downey
Victoria University
Wellington

World Logic Day, January 2026

RELATIVIZATION

> “making something relative or considering it in relation
to something else, rather than as absolute”

» We all “*know” about relativity in physics.

» In logic likely began with set theory, where we relativize
formulae to some set A and then consider quantifiers
ranging over A, so Vx becomes Vx € A.

» According to sources | have read, likely goes back to
Thoralf Skolem (1922) in his critique of axiomatic set
theory, exploring implications of the Downward
Léwenheim-Skolem Theorem.

» The “Skolem Paradox”. How can a countable model have
uncountable sets? The answer being that relative to the
model there is no counting of the sets.

» Extensive use in set theory especially by Godel in his work
on the constructable universe.

RELATIVIZATION IN COMPUTABILITY

» Began with Turing 1939: “Systems of logic based on
ordinals”

» But really developed with Post (1944), who defined
degrees.

» In Turing 1939 Turing first defines oracle computations,
and what we call Turing reducibility.

» Implicitly (and explicly in Post 1944) Turing defining the
B-computable sets as {A | A <7 B}. Same effect as
adding x to Kleene (partial) recursive functions.

REDUCTIONS

» The notion of reduction is old in mathematics. For example
a square matrix is singular iff its determinant is 0.

» All reductions used in classical computability theory, in,
say, undecidability proofs, were m-reductions A <., B iff
x € Aiff f(x) € B, where f is the computable function for
the m-reduction.

» <7, Turing reducibility has A <y B for B written on an
oracle tape (Read only memory) and a computable finite
procedure allowed to query B.

» Evidently A <, Bimplies A <7 B, but it's not hard to give
examples to show this is proper.

» Classical computability has many reducibilities, especially
after the seminal paper of Post 1944.

» For example truth table reducibility has A <y B via x € A iff
B ’: Uf(x)-

» This means, that, on imput x we specify a boolean
combination of queries we’ll make to B. That is the queries
don’t depend on B but are set in advance. An old result of
Nerode is that A <4 B iff A <t B via some procedure ¢
which is total for all oracles.

» Many others: Q-reducibility, Ziegler reducibility,
enumeration reducibility, etc.

» Relativization in classical computability is putting B as an
oracle all objects in the proof.

» For example, the undecidability of the halting problem
K = {x]px(x) 1}

> Suppose it was computable. Then let f(x) = ¢x(x) + 1, if
vx(x) } and f(x) = 0 otherwise. Then f is computable if we
can decide whether ¢4 (x) |. It is total, by construction and
hence has an index z, but then
f(z) = pz(2) I=¢z(2) +1], hence 0 = 1.

» The relativization is that B" £t B for any B, where
B' = {x | ©B(x) |}, the jump of B.

» The proofs are to put B’s on everything. So
B(x) = pB(x) + 1, etc.

» This is referred to as “Relativizing the proof”.

IN CLASSICAL COMPUTABILITY, I

» The general leitmotif is that “everything relativizes”.

v

The led to a number of conjectures.

» For example, the homogeneity conjecture (Rogers 1967),
that if A and B are sets the the upper cones {X | A <7 X}
and {Y | B <7 Y} are elementarily equivalent. (Earlier
isomorphic, or with the jump added to the language).

» These were all shown to be false by Feiner in restricted
form, and finally in full strength by Shore around 1979.

» But computability-theorists think that everything normal
relativizes.

» The reason is that the degree lower cone
a = {X | X <7 A} coincides with the sets computable
relative to B.

COMPLEXITY THEORY

» In the 1960’s authors such as Hartmanis and Sterns, Blum,
Edmonds and others developed the basic of computational
complexity.

» Add a counter to count steps in computation on a Turing
machine and then analyse the asymptotic complexity of
this process.

» Using this model, A eDTIME(qg) if if we can accept (i.e.
compute ya(x) in O(g(|x|) many steps.)

» This is regarded as robust according to an extension of
Church’s Thesis. That is Turing machines with counters
suffice so long as we allow a polynomial overhead in
translation between models.

» In particular A has a feasible algorithm means that A € P,
where P = U,DTIME(|x|").

» All of the obvious problems with this where known to the
wokers at the time (e.g. n'99%) pbut the model has nice
closure properties and is mathematically robust.

» We then can also miniaturise the apparatus of
computability theory, and define A g’; B means that we
can accept A in polynomial time with an oracle Turing
machine with oracle B where “z € B?” costs (either) 1 or
|z| depending on your model.

> A <P B means that there is a polynomial time computable
f with x € Aff f(x) € B,

» (This is the reduction that launched uncountably many
NP-completeness results, BTW.)

RELATIVIZATION IN COMPLEXITY 1

» In the early days of computational complexity, it was
observed that results relativized in a manner analogous to
those used in computability theory.

> To wit, of we have a complexity class C with associated
reductions <. then C8 = {A| A < B}.

> In particular, P = {A| A< B}.

» Many things relativized using this formulation. For instance
the Hierarchy Theorems: If f is o(g), then DTIME(f) is
strictly contained in DTIME(g), so, for example, PZ ¢
EXPE for all B.

» The next results came therefore as a big shock at the time.

» Famously, Levin and Cook (1971) and Karp (1972)
initiated studies into NP.

» Recall L eNP iff there is a polynomial time relation R such
that x € L iff 3FyR(x, y). (That is there is a witness y of
length < |x|¢ with R(x, y).)

» Working with rubrik above, NP2 would be defined
identically, except to make everyting <7 B (i.e.
IPByRB(x, y).).

THEOREM (BAKER, GILL AND SOLOVAY, 1975)
There are computable oracles X and Y with

1. PX £NPX (Also by Ladner).
2. PY = NPY (Also by Meyer and Fischer).

» Their conclusion:
“Methods that relativize (such as diagonalization, and

simulation) are not sufficient to settle the P=?NP ques-
tion”

ONE PROOF

We construct X with PX £NPX as it is useful for later.

We build X by finite extension and diagonalization.

We define Z = {17 | 3y[ly| = nA y € X}. Clearly Z eNPX.
We satisfy the requirements

Riec : 5 # Zintime c|x|°.

> To meet R, we will have already met higher priority
requirements, constructed X; and be wanting to construct
Xs11 extending it. We now choose a long length n,
sufficiently long that

vVvyyvyy

2" >> cn°.
> Let Xi be an empty extension of Xs of long length. Run
d>§s (1™M), and se what the answer is.
> If=1let Xs11 = Xg. If =0, find a y of length n not
addressed in the computation and put y into X5 to define
Xsi1.

AFTERMATH

» After this there were many oracle results showing nothing
can be settled. (see e.g. Forthow’s survey)

» Some results were found that broke the “oracle barrier”..

» E.g. Shamir IP=PSPACE. It was known that with the model
above, IPA £ PSPACEA with probability 1.

» Shamir used arithmetization and algebra over a big finite
field.

» Also algebraization, however claimed limitations due to
“natural proofs”.

» Both of these in some sense have been shown to fail to
suffice to separate e.g. P from NP.

COMPUTABILITY THEORY 2

» Do “all normal things” in computability relativize.

» Relativization concerns <7, whereas moving to different
concepts in computability shows that relativization is
strongly tied to Turing reducibillty.

» On startling example is in algorithmic randomness. There
are oracles A and B such that A and B differ by a finite
amount and yet Q4 is relatively random with QF. (Downey,
Hirschfeldt, Miller, Nies, 2005)

> Relevant to complexity theory is that, even in computability
theory, relativization and strong reducibilities have a
strained relationship.

A DEGREE EXAMPLE

THEOREM (MOHRHERR, 1984)
The truth table degees above 0'y; are dense.

THEOREM (KOBZEV, 1978)
There is a minimal c.e. truth table degree.

» Does Mohrherr’s result mean that Kobzev’'s Theorem does
not relativize?

» Well no. The problem is that we need to fully relativize the
theorem. So Kobzev’s Theorem relativizes to say that there
is a c.e. relative to () tt-degree a which is a minimal cover
of 0’ in the <!} degrees.

> What does < mean? It means that on input x we
compute o¢(x) but now f(x) is an ('-computable function,
rather than a computable one from the definition of <j.

COMPLEXITY THEORY 2

» The point is that strong reducibilities are much more like
bounded reducibilities met in computational complexity
theory.

> By identifying P4 as {X | X <? A} for example, are we
capturing what we mean by polynomial time relative to A?.

> We we see some X in PA we often tell students that if A
was in P so would X. But we do this to languages A which
are surely not in P.

» For example, if A is very complicated (e.g. double
exponential time computable) , don’t we really mean that
from computing A in polynomial time we can solve X
quickly.

> | believe that for a true relativization we should relativize
what we mean by polynomial in the same was as for
countable models of ZFC we need to relativize what we
mean by uncountable relative to the model.

RELATIVIZING P

» | offer some ideas below. | will do this for polynomial time,
but clearly any reasonable time class could be approached
using the same methods.

> Clearly any notion of P# should include {X | X <f A}.

» | think we should formalize this as any algorithm which
computes A should allow us to compute X in no more that
a polyomial amount more.

» The point here is that classical relativization in
computability theory is concerned with non-computable
things, whereas in complexity theory, we are concerned
with things that are computable and hence we need to
relativize both the access mechanism (as in the tt-case)
and the notion of running time, and concern ourselves with
sets that do have running times.

POSSIBLE DEFINITONS

DEFINITION

1. A e PBiff for all procedures ® and computable g, if ¢
accepts Bin time g(|x|), then there is an nand a
procedure W accepting A in time O(g(|x|))".

2. A€ PE, iff there is a functional © such that for all ® and
computable g with & accepting B in time g(|x|), then
O(%, g, x) accepts A(x) in time O(g(|x|))", for some n.

> Notice that for both of these if B € P and A € PB or PE,
then A c P.

» In both definitions, we are allowed to use the actual
computation time in the computation of A. Notice that 2.
above is a an actual reduction, whereas 1 only gives a
relative computation times.

> We remark that there are precursors to these ideas with
work of Maass and Slaman (complexity types of
computable setsi, early 1980’s) and Geske, Huynh and
Selman, early 1970’s (polynomially related complexities).

» To my knowledge nothing questioning the notion of
relativization.

» Notice also that there is also a weaker effective connection:

DEFINITION
Ae PB . . iff for all ® and computable g with ¢ accepting B in

time g(|x|), there is a © such that then ©(®, g, x) accepts A(x)
in time O(g(|x[))", for some n.

REFINEMENTS

> Suppose that we want to attribute meaning to A € P8 is the
sense outlined above. Consider 2. of Definition 4. Here we
are considering a procedure © which uses as input a
procedure accepting B, and it could be that ® might
accept inputs for B in differing runtimes. We might have
|z| = |y|, but y € B? might run in time h(y) and z € B? in
time h(z). Perhaps we should have then following which

i B
we will refer to as Pgy ;-

DEFINITION

Ac Pf,fvref iff there is a functional © such that for all ¢ and
computable h with ¢ accepting B(z) in time h(z), then

O(9, g, x) accepts A(x) in time O(g(m))", for some n, where
m = max{h(z) | z € B? is queried in the computation}.

» In the classical model of relativization we imagine the
oracle tape as having B written as read only memory on an
oracle tape, in the case of computational complexity, on a
multitape oracle turing machine, where oracle queries have
unit cost. In this speculation, | would prefer to think of
z € B? as costing the time it takes for ¢ to accept z.

» In the first model we can think of two machines run in
parallel where one is emulating ¢ accepting B in time g,
and the other is accepting A via ¥, in time O(g(|x|)"). ¢
acts like a clock and is not consulted during the
computation of A, but the latter must halt in the number of
steps specified.

» In the second model computing © we think of part of the
machine computing ¢ = ®, via some set of tapes, and the
result computes A via the remainder of tapes.

DEFINITION (NP-1)

1. Ae NP, iff for all nondeterministic procedures ¢ and
computable g, if ® accepts B in time g(|x|), then there is

an n and a procedure W accepting A in time O(g(|x|))".
2. Ac NP8 iff there is a functional © such that for all ®

strong, eff

and computable g with ® accepting B in nondeterministic
time g(|x|) ©(®, g, x) accepts A(x) in time O(g(|x|))", for
some n.

DEFINITION (NP-2)

1. Ae NP5 iff for all deterministic procedures ¢ and
computable g, if ® accepts B in time g(|x|), then there is
an n and a nondeterministic procedure W accepting A in

time O(g(|x|))".

2. Ae NP2 o iff there is a nondeterministic functional ©
such that for all ® and computable g with ¢ accepting B in
nondeterministic time g(|x|) ©(®, g, x) accepts A(x) in
time O(g(|x|))", for some n.

» Indeed we could also simply put the new notions of
relativization to the the characterization/definition
Jy(Ix| < f(|x]) A R(x,y)) so that

> Exists y, |y| < f(|x|) becomes one where f ¢ PB and
similarly R becomes R&, etc.

WHAT ABOUT RELATIVIZATION?

PROPOSITION (FORTNOW)

If P = NP and B is a computable oracle, then according to any
of the definitions above, PE = NPB.

PROOF.

Suppose P = NP and fix computable B and a Turing Machine
M that computes B in time t(n). If L is in NPB then Lis in
NTIME (poly(t(n)) which is in DTIME(poly(t(n)) by P = NP and
padding. (That is, define L' = {(x, 1{(*))|x isin L}. L’ is in NP
so L' is in P which implies L is in DTIME(poly(¢(n)).) Since this
holds for all M, by Definition 4 L € PB O

A QUESTION

At this stage it is not clear whether separation propogates. That
is, is the following true? If P 4 NP, and B is a computable
oracle, then according to Definition 4, PB £ NP5,

TECHNICAL SEPARATIONS

The following proof even works for Definition 6.

THEOREM
There are computable A € PB such that A % B.

We build A = limg As and B = limg Bs. We meet the
requirements

P.: A £ Bvia ®, in time |x|°.

We also build a collection of computable machines M, with
running times ©,, such that for suitably chosen o, M, accepts
B and

Re : Ve accepts Bin time =, implies a.a. x, =¢(x) > O,(x),

for suitably chosen o of length e.

We use R. to make sure that A € PB. To do this we need to
build a procedure A which takes any procedure V. accepting B
in time =, and has A(V; x) accepting A(x) in time polynomial in
=e(x), and do this by making it accept x in time polynomial in
O, (x).

The construction works in substages t < s at each stage s. To
attend to R;, we will examine at substage t each string x with
|x| = s we see if W4(x) converges, and if so we will make sure
that B(x) # W(x), and declare that R, is no longer active. To
work with many requirents of type Re, we will examine all the
active Re on each x in substages e < s in reverse order of
priority. The fate of B(x) is therefore decided by the highest
priority active requirement we might diagonalize.

> Additionally, we need to attend the P.. At stage s there will
be a highest priority unmet P.. Before we consider R, we
would first consider P,. For this we would examine the
values of d>g1(1”) and <D22(1S). Here C; denotes Bg_1 % 1°
with an empty extension for all strings 7 of length < sé+'
and C, denotes Bs_1 * 015+ and similarly empty otherise.

» If both give answer 0, then this requirement wishes to set
As(1%) = 1. If either give answer 1, then chose one that
does and declare that R, wants to set Bs to be appropriate
Ci. (Notice that this affects all strings of length up to s€ and
hence the next s® many stages, although whether this
actually happes will only be determined by that stage, as
we might see a higher priority Re which declares
otherwise. If this succeeds then at stage s€ we would
declare that P., 1 becomes active.

» Thus we consider the strategies in reverse order of priority.
Since we actually act for any requirement once, there is
some o of length e which codes the requirements R; for
j < e which are infinitely examined by never acted on, and
all Py for k < e are now met.

» The machine M, believes that at every stage s >,, only
requirements of indices > e will act, and it will be right.
Thus once this o has priority, we will never act to
diagonalize ¥, and hence ©¢(x) must be slower than the
running time for M,, thereafter on every x of length > s,.

» A simulates the construction to point o and will know the
fate of 19 forall d > s,.

CONCLUSIONS

» Perhaps the Baker-Gill-Solovay conclusion should be:
“Methods that partially relativize are not sufficient to
settle the P=?NP question”

» There is nothing wrong with this but it points at a
programme trying to understand what might relativize and
not partially relativize.

» In particular, we should view BGS results as being about
relationships between degree structures, the Polynomial
time degrees and the nondeterministic polynomial time
degrees. Not about relativization.

» In particular, we might explore the limits of Fortnow’s
observation.

» Unfortunately, if you try to use the Baker-Gill-Solovay proof
methods, certainly the diagonal set is in P8, but the
obstacle to the proof seems to be something like P vs NP
(unsurprisingly!)

» Explore other ideas of what we actually mean by
relativization in the complexity setting. Bienvenu has
suggested that we should apply a polynomial to the input
first and then run the algorithm computing B second. This
has not been explored.

» | should also mention that other authors have instead
changed the kinds of allowable machines to limit
relativization results; notably Ron Book and his co-authors.
(Positive machines-e.g. “Controlled Relativizations of P
and NP”.)

Thank You.

