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GENERAL QUESTION

(Computably bounded) Π0
1 classes have become ever more

important, and it would be nice to understand the kinds of
members they can have.
There are lots of older results implicitly with this theme. E.g. Low
Basis Theorem.
Starting point: Kreisel Basis Theorem Every Π0

1 class has a
member of c.e. degree.
What else can be said about the c.e. members?



MOTIVATION

Well nothing I guess. The class could be empty. Not very sporting
as an example.
What nonzero c.e. degrees are realizable?
Long ago it was shown that any nonzero c.e. (∆0

2, in fact) degree
can be the only nonzero member of a Π0

1 class. Proof e.g. use
retraceable sets.
In such a class, the c.e. degree of members are {0,a}.
If we take separating classes representing PA degrees, then by
Arslanov’s Completeness Criterion, the only c.e. degree of a
member will be {0′}.
Can we realize other singletons? What else is possible?



THE QUESTION

QUESTION

What sets of c.e. degrees are realizable in a Π0
1 class?

For example, what singletons, what finite collections, what other
collections of c.e. degrees. Also:

QUESTION

What about c.e. degrees in more specialized Π0
1 classes such as

separating classes or thin classes?



INDEX SETS

The following definition is useful here:

DEFINITION

We say that a real X is realizable in a Π0
1 class C if X ≡T α for some

α ∈ C.
W [C] = {e : We is realizable in C}.

W[C] = {a : ∃X ∈ aX ∈W [C]}.

PROPOSITION (CDM)

W [C] is Σ0
4.

The proof is to calculate the definition.
Also use if S ⊂ N, G(S) = {e : We ≡T Wj ∧ j ∈ S}. Also Σ0

4.



QUESTION

So what Σ0
4 sets are realizable? What about if the class has restricted

rank? What about if it is special? thin? separating?



IF 0 IS PRESENT

This is the easiest case of all, and we will begin with this
We sketch how to do {0,a}.
We have A = ∪sAs. C is built in stages. At stage s we specify up
to length s. Initially have the spine 0n and then 0n1s−n running off
to the left. (board)
If i enters As+1 code with 0i1s−i then work above 0i1s−i similarly
for j > i (board). Can kill if you like things to the right, or not as
desired.



THEOREM (CDN)

If S is a Σ0
3 set of indices and an index for 0 is in S, then S can be

realized. Furthermore, the rank of the Π0
1 class can be 2.

For the proof it is easiest to begin with S Π0
2. So e ∈ S iff

∀s∃tR(e, s, t).
The idea is to devote some specified part of the tree T with
P = [T ] to coding e. For instance, choose the extensions of 0e+11.
Then in that cone, we need to code We each time e looks correct.
That is, each time e is confirmed again by R, see what has
happened to We (what has entered) below some boundary given
inductively, and→∞, and code as in the singleton case.
While we are away believing the Σ0

2 outcome, extend by 0’s (This
is where we use 0) (board).



For the Σ0
3 case, then e ∈ S iff exists j = j(e) where the Π0

2 case
happens.
Have one construction like the above for each guess at j . Either
one will succeed as its is believed infinitely often, or each will
result in a finite collection of computable paths.



NOT EVERYTHING IS POSSIBLE

The Π0
3 set {e : We not computable} is not realizable by Jockusch

and Soare (and in fact no downward dense set not containing an
index for 0).

THEOREM (CDN)
Also if a is c.e. you cannot realize R− {a}.

THEOREM (CDN)

There is a Π0
3 S with an index for 0 such that no Π0

1 class has
W [P] = G(S).



The proof uses straightforward diagonalization.
For any c.e. set L >T ∅, one can effectively obtain a c.e. set D and
reduction Ψ such that D = ΨL and D > ∅ and D 6≥T L.
Iterate from a low2 c.e. set L, we get computable increasing
functions g and ` such that L = Wg(0) >T Wg(1) >T Wg(2) >T · · · ,
and Wg(n) = ΦL

`(n) for all n.



We define n 6∈ S iff whenever n = g(e), then there are some i , j for
which

(I) Φ
Wg(e)

i is total and is in [Te], and
(II) Φj (Φ

Wg(e)

i ) is total and equals Wg(e).

S is Π0
3, using the low-2-ness of L.

No P such that W [P] = G(S).
To see that S can be made to contain ∅, note that S ∪ S̃ is also
good for any Π0

3 set S̃ where G(S̃) ∩G(Wg(n)) = ∅ for every n.



The low-2-ness is needed in some sense.

THEOREM

If S is a Σ0
4 index set containing an index for a computable set, and SH

is a computable sequence of high c.e. degrees with
deg(S) ⊆ SH ∪ {0}, then there is a rank 2 P with W [P] = S.



SINGLETONS AND THE SPECIAL CASE

It is easy to get 0 as a singleton, take a finite class. Again not
sporting.

THEOREM (CDN)

There is a Π0
1 class which is perfect, and every member is either

computable or has minimal degree.

Compare with

THEOREM (GROSZEK-SLAMAN)

There is a special Π0
1 class with only members of c.e degree or

minimal degree.



NONZERO SINGLETONS

THEOREM (CDN)

For any Σ0
3 set S there is a Π0

1 class with W [P] = S.

We begin discussing singletons.

LEMMA (CDN)
For any c.e. degree a we can (effectively from an index from a member
of a) find a Π0

1 perfect class with W [P] = a.



THE SEPARATING CASE

Separating classes are defined as C = {Z such that Z ⊇ A and
Z ∩ B = ∅ where A and B are disjoint c.e. sets. Write S(A,B) for
such C.
They are naturally of interest wrt e.g. WKL0 and the like.
Not everything is possible. For example.

THEOREM (DOWNEY, JOCKUSCH, STOB)
Suppose that A ∪ B has array computable degree (that is, there is a
f ≤wtt ∅′ such that for all g ≤T A ∪ B, for almost all x, g(x) < f (x).)
Then 0′ ∈W [S(A,B)].



SOME KNOWN RESULTS

THEOREM (JOCKUSCH-SOARE)
There exist A1,A2,B1,B2 with every S(A1,B1) forming a minimal pair
with S(A2,B2). (D-Greenberg have shown this is possible below and
promptly anc degree)

THEOREM (SOLOMON)
There is pair A,B with S(A,B) having every member Z ′ ≡T ∅′ ⊕ Z,
hence each c.e. member low.

THEOREM (SOLOMON)
There is pair A,B with S(A,B) such that if Z and X are members,
either Z =∗ X or they are Turing incomparable.



Results still in formation here. Some of the questions still open are
embarrassing.

QUESTION

Is a possible for a nonzero a?

We tried to do this using a supermaximal pair. A maximal pair is a
A,B such that for all disjoint Â, B̂ containing A,B respectively and
suitably disjoint, Â− A, B̂ − B are finite. (Downey thesis, used in
coding e.g. ideals in computable rings.)
This pair is supermaximal if the same is true for Â, B̂ of c.e.
degree.



THEOREM (DGTW)
There are no supermaximal pairs. That is, there is always a separating
set of c.e. degree Z , with Z − A and Z − B both infinite.

The proof is kind of interesting, and nonuniform.



THEOREM (DGTW)
There are c.e. A ≡T B such that they have low degree and compute
every separating Z of c.e. degree.



If we have 0 we can easily realize upper cones.

THEOREM (DGTW)
For any c.e. a we can realize {0} ∪ {d : d ≥ a}.

Let A be c.e. and consider the graph of the modulus function of A,
Â.. Then the complement is uniformly introreducible, and hence
any infinite subset (and hence any separator Z ) can compute A,
and a simple argument shows that coding is possible.



Without 0 this is more difficult but can be done.

THEOREM (DGTW)
For any c.e. a there is a A,B with A ≡T B ∈ a and the c.e. members
S(A,B) having degrees exactly R ∩ {d : d ≥ a}



THIN

The case where C is thin (meaning that if Ĉ is a Π0
1 subclass of C

then Ĉ = C ∩M for some clopen M) is still being explored.
Even what possible c.e. degrees can be realized as members is
nontrivial.

THEOREM (D, CENZER, JOCKUSCH, SORE)
There is a c.e. a which cannot be realized in a thin class.

Proof (Board)

THEOREM (DCJS)
However, realizable c.e. degrees are dense.



THEOREM (D, WU, YANG)
If b is c.e.a 0′ then there is a c.e. degree a which cannot be realized
and a′ = b.

THEOREM (DWY)
There is a a < b with all of [a,b] ∩ R thin.



Thank you


