Computably Enumerable Degrees in Π_1^0 *Classes*

Rod Downey Victoria University Wellington New Zealand

Singapore, August 2011

THANKS

- For the invitation.
- Supported by the Marsden Fund of New Zealand.

REFERENCES

- On the c.e. degrees realizable in Π^0_1 classes, with Csima and Ng
- On the c.e. degrees realizable in separating classes, (tentative title) with Greenberg, Turetsky, Wu
- Thin classes of separating sets, Reed Solomon, Contemporary Mathematics 425 (2007), 67-86.
- Cenzer-Remmel surveys, and preliminary version of book on Π⁰₁ classes.

GENERAL QUESTION

- (Computably bounded) Π⁰₁ classes have become ever more important, and it would be nice to understand the kinds of members they can have.
- There are *lots* of older results implicitly with this theme. E.g. Low Basis Theorem.
- Starting point: Kreisel Basis Theorem Every Π⁰₁ class has a member of c.e. degree.
- What else can be said about the c.e. members?

MOTIVATION

- Well nothing I guess. The class could be empty. Not very sporting as an example.
- What nonzero c.e. degrees are realizable?
- Long ago it was shown that any nonzero c.e. $(\Delta_2^0, \text{ in fact})$ degree can be the only nonzero member of a Π_1^0 class. Proof e.g. use retraceable sets.
- In such a class, the c.e. degree of members are {0, a}.
- If we take separating classes representing PA degrees, then by Arslanov's Completeness Criterion, the only c.e. degree of a member will be {0'}.
- Can we realize other singletons? What else is possible?

THE QUESTION

QUESTION

What sets of c.e. degrees are realizable in a Π_1^0 class?

• For example, what singletons, what finite collections, what other collections of c.e. degrees. Also:

QUESTION

What about c.e. degrees in more specialized Π_1^0 classes such as separating classes or thin classes?

INDEX SETS

• The following definition is useful here:

DEFINITION

We say that a real X is realizable in a Π_1^0 class C if $X \equiv_T \alpha$ for some $\alpha \in C$.

$$W[C] = \{ e : W_e \text{ is realizable in } C \}.$$

$$\mathbf{W}[C] = \{\mathbf{a} : \exists X \in \mathbf{a}X \in W[C]\}.$$

PROPOSITION (CDM) W[C] is Σ_4^0 .

• The proof is to calculate the definition.

• Also use if $S \subset \mathbb{N}$, $G(S) = \{e : W_e \equiv_T W_j \land j \in S\}$. Also Σ_4^0 .

QUESTION

So what Σ_4^0 sets are realizable? What about if the class has restricted rank? What about if it is special? thin? separating?

IF **0** IS PRESENT

- This is the easiest case of all, and we will begin with this
- We sketch how to do {0, a}.
- We have A = ∪_sA_s. C is built in stages. At stage s we specify up to length s. Initially have the spine 0ⁿ and then 0ⁿ1^{s-n} running off to the left. (board)
- If *i* enters A_{s+1} code with $0^{i}1^{s-i}$ then work above $0^{i}1^{s-i}$ similarly for j > i (board). Can kill if you like things to the right, or not as desired.

THEOREM (CDN)

If *S* is a Σ_3^0 set of indices and an index for **0** is in *S*, then *S* can be realized. Furthermore, the rank of the Π_1^0 class can be 2.

- For the proof it is easiest to begin with $S \Pi_2^0$. So $e \in S$ iff $\forall s \exists t R(e, s, t)$.
- The idea is to devote some specified part of the tree T with P = [T] to coding e. For instance, choose the extensions of $0^{e+1}1$.
- Then in that cone, we need to code W_e each time e looks correct.
- That is, each time *e* is confirmed again by *R*, see what has happened to W_e (what has entered) below some boundary given inductively, and $\rightarrow \infty$, and code as in the singleton case.
- While we are away believing the Σ⁰₂ outcome, extend by 0's (This is where we use 0) (board).

- For the Σ⁰₃ case, then e ∈ S iff exists j = j(e) where the Π⁰₂ case happens.
- Have one construction like the above for each guess at *j*. Either one will succeed as its is believed infinitely often, or each will result in a finite collection of computable paths.

NOT EVERYTHING IS POSSIBLE

• The Π_3^0 set { $e: W_e$ not computable} is not realizable by Jockusch and Soare (and in fact no downward dense set not containing an index for **0**).

THEOREM (CDN)

Also if **a** is c.e. you cannot realize $\mathbf{R} - \{\mathbf{a}\}$.

THEOREM (CDN)

There is a $\Pi_3^0 S$ with an index for **0** such that no Π_1^0 class has W[P] = G(S).

- The proof uses straightforward diagonalization.
- For any c.e. set L >_T Ø, one can effectively obtain a c.e. set D and reduction Ψ such that D = Ψ^L and D > Ø and D ≥_T L.
- Iterate from a low₂ c.e. set *L*, we get computable increasing functions *g* and ℓ such that $L = W_{g(0)} >_{T} W_{g(1)} >_{T} W_{g(2)} >_{T} \cdots$, and $W_{g(n)} = \Phi_{\ell(n)}^{L}$ for all *n*.

- We define *n* ∉ *S* iff whenever *n* = *g*(*e*), then there are some *i*, *j* for which
 - (I) $\Phi_i^{W_{g(e)}}$ is total and is in $[T_e]$, and
 - (II) $\Phi_j(\Phi_i^{W_{g(e)}})$ is total and equals $W_{g(e)}$.
- *S* is Π_3^0 , using the low-2-ness of *L*.
- No P such that W[P] = G(S).
- To see that S can be made to contain Ø, note that S ∪ Š is also good for any Π⁰₃ set Š where G(Š) ∩ G(W_{g(n)}) = Ø for every n.

• The low-2-ness is needed in some sense.

THEOREM

If *S* is a Σ_4^0 index set containing an index for a computable set, and *S*_H is a computable sequence of high c.e. degrees with $deg(S) \subseteq S_H \cup \{\mathbf{0}\}$, then there is a rank 2 P with W[P] = S.

SINGLETONS AND THE SPECIAL CASE

• It is easy to get **0** as a singleton, take a finite class. Again not sporting.

THEOREM (CDN)

There is a Π_1^0 class which is perfect, and every member is either computable or has minimal degree.

Compare with

THEOREM (GROSZEK-SLAMAN)

There is a special Π_1^0 class with only members of c.e degree or minimal degree.

NONZERO SINGLETONS

THEOREM (CDN)

For any Σ_3^0 set *S* there is a Π_1^0 class with W[P] = S.

• We begin discussing singletons.

LEMMA (CDN)

For any c.e. degree **a** we can (effectively from an index from a member of **a**) find a Π_1^0 perfect class with $W[P] = \mathbf{a}$.

THE SEPARATING CASE

- Separating classes are defined as C = {Z such that Z ⊇ A and Z ∩ B = Ø where A and B are disjoint c.e. sets. Write S(A, B) for such C.
- They are naturally of interest wrt e.g. WKL₀ and the like.
- Not everything is possible. For example.

THEOREM (DOWNEY, JOCKUSCH, STOB)

Suppose that $A \cup B$ has array computable degree (that is, there is a $f \leq_{wtt} \emptyset'$ such that for all $g \leq_T A \cup B$, for almost all x, g(x) < f(x).) Then $\mathbf{0}' \in W[S(A, B)]$.

Some known results

THEOREM (JOCKUSCH-SOARE)

There exist A_1, A_2, B_1, B_2 with every $S(A_1, B_1)$ forming a minimal pair with $S(A_2, B_2)$. (D-Greenberg have shown this is possible below and promptly anc degree)

THEOREM (SOLOMON)

There is pair A, B with S(A, B) having every member $Z' \equiv_T \emptyset' \oplus Z$, hence each c.e. member low.

THEOREM (SOLOMON)

There is pair A, B with S(A, B) such that if Z and X are members, either Z = X or they are Turing incomparable.

• Results still in formation here. Some of the questions still open are embarrassing.

QUESTION

Is a possible for a nonzero a?

- We tried to do this using a supermaximal pair. A maximal pair is a A, B such that for all disjoint Â, B containing A, B respectively and suitably disjoint, Â A, B B are finite. (Downey thesis, used in coding e.g. ideals in computable rings.)
- This pair is supermaximal if the same is true for \hat{A} , \hat{B} of c.e. *degree*.

THEOREM (DGTW)

There are no supermaximal pairs. That is, there is always a separating set of c.e. degree Z, with Z - A and Z - B both infinite.

• The proof is kind of interesting, and nonuniform.

THEOREM (DGTW)

There are c.e. $A \equiv_T B$ such that they have low degree and compute every separating *Z* of c.e. degree.

• If we have **0** we can easily realize upper cones.

THEOREM (DGTW)

For any c.e. **a** we can realize $\{\mathbf{0}\} \cup \{\mathbf{d} : \mathbf{d} \ge \mathbf{a}\}$.

 Let A be c.e. and consider the graph of the modulus function of A, Â.. Then the complement is uniformly introreducible, and hence any infinite subset (and hence any separator Z) can compute A, and a simple argument shows that coding is possible.

• Without **0** this is more difficult but can be done.

THEOREM (DGTW)

For any c.e. **a** there is a A, B with $A \equiv_T B \in \mathbf{a}$ and the c.e. members S(A, B) having degrees exactly $\mathbf{R} \cap {\mathbf{d} : \mathbf{d} \geq \mathbf{a}}$

THIN

- The case where C is thin (meaning that if Ĉ is a ⊓₁⁰ subclass of C then Ĉ = C ∩ M for some clopen M) is still being explored.
- Even what possible c.e. degrees can be realized as members is nontrivial.

THEOREM (D, CENZER, JOCKUSCH, SORE)

There is a c.e. **a** which cannot be realized in a thin class.

Proof (Board)

THEOREM (DCJS)

However, realizable c.e. degrees are dense.

THEOREM (D, WU, YANG)

If **b** is c.e.a **0**' then there is a c.e. degree **a** which cannot be realized and $\mathbf{a}' = \mathbf{b}$.

THEOREM (DWY)

There is a $\mathbf{a} < \mathbf{b}$ with all of $[\mathbf{a}, \mathbf{b}] \cap \mathbf{R}$ thin.

Thank you