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NOTATION

I Real is a member of Cantor space 2ω with topology with
basic clopen sets [σ] = {σα : α ∈ 2ω} whose measure is
µ([σ]) = 2−|σ|.

I Strings = members of 2<ω = {0, 1}∗.
I There are theories for more general spaces, notably by

Gács, (see his web site), but this is still under
development. Certainly no lowness work.
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Plain complexity

PLAIN KOLMOGOROV COMPLEXITY

I Capture the incompressibility paradigm. Random means
hard to describe, incompressible: e.g. 1010101010....
(10000 times) would have a short program.

I A string σ is random iff the only way to describe it is by
hardwiring it. (Formalizing the Berry paradox)

I For a fixed machine N, we can define
I The Kolmogorov complexity C(σ) of σ ∈ {0, 1}∗ with

respect to N, is |τ | for the shortest τ s.t. N(τ)↓= σ.
(Kolmogorov)
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Plain complexity

I A string σ is N-random iff CN(σ) ≥ |σ|.
I A machine U is called weakly universal iff for all N, there is

a d such that for all σ, CU(σ) ≤ CN(σ) + d .
I Actually we will always use universal machines where the

e-th machine is coded in a computable way.
I They exist (Kolmogorov). Hence there is a notion of

Kolmogorov randomness for strings up to a constant.
Define

U(1e0σ) = Me(σ).

This particular coding gives C(τ) ≤ Me(τ) + e + 1.

I We will often write =+, where we mean ±O(1).
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Plain complexity

DEFINITION
Thus we can define the plain Kolmogorov complexity of a string
σ as C(σ) for a fixed universal machine U.

I We can similarly do an oracle version of this and can
define C(x |y) as the Kolmogorov complexity of x given y .
(And CA(x) for a set A)
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Plain complexity

PLAIN COUNTING THEOREM

I The following is the basic fact that makes the theory work.

THEOREM (PLAIN COUNTING THEOREM-KOLMOGOROV)
|{τ : C(τ) ≤ |τ | − d}| ≤ O(1)2|τ |−d .

I Proof: pigeonhole principle.

DEFINITION (KOLMOGOROV)
We say that σ is C-random iff C(σ) ≥ |σ|.
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Plain complexity

COMPLEXITY OSCILLATIONS

I Tempting but false C(xy) ≤ C(x) + C(y) + O(1). The false
argument says : concatenate the machines

I The problem is where does x∗ stop and y∗ begin.
I Martin-Löf showed that the formula always fails for long

enough srings and hence reals.
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Plain complexity

I Why? Take any α. Then, as a string α � n corresponds to
some number which we can interpret as a string using llex
ordering: α � n is the m-th string.

I Now consider the program that does the following. It takes
a strings ν, interprets its length mν = |ν| as a string,
σ = σm and outputs σν.

I Apply this to the string τ whose length is m th code of
α � n.

I The output would be much longer, and would be α � m + n,
with input having length m. Thus
C(α � m + n) < m + n −O(1).

Rod Downey Victoria University Wellington New Zealand Strong Jump Traceability and Variations



Kolmogorov complexity for strings
Prefix-free complexity

K -Triviality
K -lowness

Plain complexity

I Why? Take any α. Then, as a string α � n corresponds to
some number which we can interpret as a string using llex
ordering: α � n is the m-th string.

I Now consider the program that does the following. It takes
a strings ν, interprets its length mν = |ν| as a string,
σ = σm and outputs σν.

I Apply this to the string τ whose length is m th code of
α � n.

I The output would be much longer, and would be α � m + n,
with input having length m. Thus
C(α � m + n) < m + n −O(1).

Rod Downey Victoria University Wellington New Zealand Strong Jump Traceability and Variations



Kolmogorov complexity for strings
Prefix-free complexity

K -Triviality
K -lowness

Plain complexity

I Why? Take any α. Then, as a string α � n corresponds to
some number which we can interpret as a string using llex
ordering: α � n is the m-th string.

I Now consider the program that does the following. It takes
a strings ν, interprets its length mν = |ν| as a string,
σ = σm and outputs σν.

I Apply this to the string τ whose length is m th code of
α � n.

I The output would be much longer, and would be α � m + n,
with input having length m. Thus
C(α � m + n) < m + n −O(1).

Rod Downey Victoria University Wellington New Zealand Strong Jump Traceability and Variations



Kolmogorov complexity for strings
Prefix-free complexity

K -Triviality
K -lowness

Plain complexity

I The reason this kills the C(xy) ≤+ C(x) + C(y) is to apply
this to a sufficiently long random z = xy where

I C(z) = p, and x = z � m + n (as above) and
y = z � [m + n + 1, |z|].

I Then p > n + (p − (m + n))−O(1) = p −m + O(1).
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Plain complexity

I This phenomenom is fundamental in our understanding of
Kolmogorov complexity and is called complexity
oscillations.

I There are several known ways to get round this problem to
cause only to get the information provided by the bits of
the strings.

I Telephone numbers!
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Basics

UNIVERSAL COMPUTERS

I Levin, Gaćs, Chaitin, Schnorr.
I Telephone numbers!!!!
I A computer M is prefix-free if

(M(σ)↓ ∧ σ′ ) σ) ⇒ M(σ′)↑ .

I A prefix-free machine is universal if every other one is
coded in it.

I They exist, same proof.
I Now we have the bits of σ producing τ .
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Basics

PREFIX-FREE RANDOMESS

I Prefix freeness gets rid of the use of length as extra
information: Machines concatenate!

I The prefix-free complexity K (σ) of σ ∈ {0, 1}∗ is |τ | for the
shortest τ s.t. M(τ)↓= σ.

I Note now K (σ) ≤ |σ|+ K (|σ|) + d , about n + 2 log n, for
σ| = n.

I Build M, M(zσ) = σ if U(z) = |σ|.
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Basics

K -COUNTING THEOREM

THEOREM (COUNTING THEOREM-CHAITIN)
|{σ : |σ| = n ∧ K (σ) ≤ n + K (n)− c}| ≤ O(1)2n+K (n)−c .
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Basics

I As with life, relationships here are complex (Solovay)

K (x) = C(x) + C(2)(x) +O(C(3)(x)).

and
C(x) = K (x)− K (2)(x) +O(K (3)(x)).

I These 3’s are sharp (Solovay) That is, for example,
K = C + C2 + C3 + O(C4) is NOT true.
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LOWNESS

I I would like to discuss the remarkable story of lowness.
I I will try to explain the little boxes method, which is new

and poorly understood.
I Theme: to what extent do computational lowness (the

extent to which sets resemble computable ones) and being
far from random align themselves?
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KEY FACTS

I THEOREM ( CHAITIN)
There is a constant d such that for all c and all σ,

|{ν : U(ν) = σ ∧ |ν| ≤ C(σ) + c}| ≤ d2c .

THEOREM (LEVIN, CHAITIN)
There is a constant d such that for all c and all σ,

|{ν : U(ν) = σ ∧ |ν| ≤ K (σ) + c}| ≤ d2c .

I The point here is that d is independent of |ν| and depends
onl y on the Recursion Theorem, and c
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INFORMATION CHARACTERIZATION OF COMPUTABILITY

I Chaitin proved that a real A is computable iff for all n,
C(A � n) ≤+ log n, iff C(A � n) ≤+ C(n).

I This is proven using the fact that a Π0
1 class with a finite

number of paths has computable paths, combined with the
Counting Theorem {σ : C(σ) ≤ C(n) + d ∧ |σ| = n} ≤ A2d .
(The Loveland Technique)

I Loveland had earlier shown A is computable iff
C(A � n|n) ≤ c for some c and all n.
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I If C(α � n|n) ≤ 5 then there are only 5 programmes
possibly computing initial segments of α.

I This computes a tree of strings of maximal width 5.
I Therefore only at most 5 paths. Say 4.
I Imagine the situation that there is only one path in a tree of

maximal width 2.
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K-TRIVIALITY

I What is K (A � n) ≤+ K (n) for all n? We call such reals
K -trivial. Does A K -trivial imply A computable?

I Write A ∈ KT (d) iff for all n, K (A � n) ≤ K (n) + d .
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THE ARGUMENT FAILS

I It is still true that {σ : K (σ) ≤ K (|σ|) + d} is O(2d), so it
would appear that we could run the Π0

1 class argument
used for C. But no...

I The problem is that we don’t know K (n) in any
computable interval, therefore the tree of K -trivials we
would construct would be a Π0

1 class relative to ∅′.
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THEOREM (CHAITIN, ZAMBELLA)
There are only O(2d) members of KT (d). They are all ∆0

2.

THEOREM (SOLOVAY)
There are noncomputable K -trivial reals.

THEOREM (ZAMBELLA)
Such reals can be c.e. sets.
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A REMARKABLE CLASS

I K -trivials form a remarkable class as we will see.
I First they solve Post’s problem.
I Theorem: (DHNS) If A is K -trivial then A <T ∅′.
I See “The Sixth lecture” for details of the proof.
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Similar methods allow for us to show the following

THEOREM (NIES)
All K -trivials are superlow A′ ≡tt ∅′, and are tt-bounded by c.e.
K -trivials. In fact they are Jump Traceable as we see below.
Thus triviality is essentially an “enumerable” phenomenom.
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There are other antirandomness notions.

DEFINITION (KUČERA AND TERWIJN)
We say A is low for randomness iff the reals Martin-Löf random
relative to A are exactly the Martin-Löf random reals.

DEFINITION (HIRSCHFELDT, NIES, STEPHAN)
A is a a base of a cone of randomness iff A ≤T B with B
A-random.
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THEOREM
The following are equivalent to being K -trivial.
(I) (Nies) A is low for randomness.

(II) (Hirschfeldt and Nies) A is K -low in that K A =+ K .
(III) (Hirschfeldt, Nies, Stephan) A is a base of a cone of

randomness.
(IV) (Downey, Nies, Weber, Yu+Nies, Miller) A is low for

weak-2-randomness.
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QUESTIONS AND A PROPER SUBCLASS

It is open if this is the same as a number of other “cost function”
classes such as the reals which are Martin-Löf cuppable to ∅′.
(Nies)
It is known there is a proper subclass defined by cost function.

DEFINITION (NIES)
Let h be an order. We say that A is jump traceable for the order
h iff there is a computable collection of c.e. sets Wg(e) with
|Wg(e)| < h(e) and JA(e) ∈ Wg(e). A is strongly jump traceable
iff it is jump traceable for every computable order.
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THEOREM (NIES)
A is K -triv implies that there is an order h (roughly n log n)
relative to which A is jump traceable.

THEOREM (FIGUEIRA, NIES, STEPHAN)
Noncomputable sjt c.e. sets exist.

THEOREM (CHOLAK, DOWNEY, GREENBERG)
The c.e. sjt’s are a proper subclass of the K -trivials. They form
an ideal.

THEOREM (DOWNEY, GREENBERG)
If A is sjt then A is ∆0

2

I Roughly need orders
√

log n, log log n. Is there a
combinatorial characterization?
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I Conjecture : A is K -trivial iff A is jump traceable for all
computable orders h with

∑
n≥1

1
h(n) < ∞.
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A HINT OF THE PROOF TECHNIQUES

I To show that if A and B are c.e. sjt, so is A⊕ B.
I We show h we can construct a slower order k such that if

A and B are jump traceable via k then A⊕ B is jump
traceable via h

I Opponent gives: Wp(x) jump tracing A and Wq(x) jump
tracing B, such that |Wp(x)|, |Wp(x)| < k(x).

I We: Vz tracing JA⊕B(z) with |Vz | < h(z).
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TWO OBSTACLES

I We see an apparent jump computation JA⊕B(x) ↓ [s].

I Should we believe? We only have h(x) many slots in the
trace Vx to put possible values.

I Opponent can change A or B after stage s on the use.
I We build parts of jump (recursion thm) testing A and B
I Basic idea: For some a = a(x) and b = b(x) we will define

JB[s](b) = jB(x , s) and JA[s](a) = jA(x , s),

where jC(x , s) denotes the C-use of the JA⊕B(x)[s]
computation.
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I Ignore noncompletion: that is the A⊕ B computation
changes before these procedures return.

I Simplest case: Wp(a) and Wq(b) were of size 1 (1-boxes)
I Then if return: A⊕ B is correct
I Now 2-boxes. If the A⊕ B computation is wrong, at least

one of the A or B ones are too.
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I If we are lucky and there is are false jump computations in
both of the Wp(a) and Wq(b).

I The are now, in effect 1-boxes. (Very good)
I Can’t allow to only point at one side. Use up all the

2-boxes.
I For example if always the A sides was the wrong part, and

there were k 2-boxes then after k attacks, all the 2-boxes
would be useless and the information in the B-side is
correct, hence the box is used.
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MULTIPLE BOXES

I Idea: use multiple 2-boxes. E.g. at the beginning use two
2-boxes for the same computation.

I A side was wrong. Then now we have two promoted
1-boxes.

I Since the A-computation now must be correct, if the
believed computation is wrong, it must be the B side which
wrong the next time, now creating a new B-1-box. Finally
the third time we test, we would have two 1-boxes.
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NON-RETURN

I Now we face the ignored problem. We test and before the
computation retruns, the Jump computation is changed by
an A or B change, but possibly one of the A or B uses is
correct. Now nothing is promoted. This seems very bad.

I Even with 1-boxes.
I Use descending sequences of boxes, and big metaboxes.
I Complicated, combinatorial.
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I The idea is that for a computation whose target is, say,
2-boxes, begin ever further out. Begin by testing at, say,
s-boxes.

I Monster boxes called metaboxes.
I If both A and B return at the s-box, go to s − 1 etc. Only

believe if you get back to the 2-boxes. The idea that a
failure at k promotes k + 1, . . . , s-boxes, at least on one
side.

I A combinatorial argument if used to show that cannot
favour one side forever.
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I How to make a properly ω-c.e. K -trivial?
I Use descending costs....
I If the trace grows slowly enough then can make K -trivial

and not jt at that order. Much the same idea, the key point
being the to change the trace and use a a box location, the
use is very big, and the opponent needs more tailweight.
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THE GENERAL CASE

I We conjecture that all sjt’s are bounded by c.e. sjts.
I They are all ∆0

2 (Downey and Greenberg). This is a very
difficult result.

I We can prove an apparently smaller class are all good in
this sense, strongly well-approximable. (being written)
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NG KENG MENG’S THEOREMS

I The c.e. sjt’s are Π0
4 complete.

I This solves a problem of Nies: there is no minimal order.
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BEYOND JUMP TRACEABILITY

I Say A is C-sjt iff for all orders hB, for B ∈ C, A is hB-jt.
I (Ng) No real is C-sjt where C = ∆2.
I (Ng) There are c.e. reals sjt for all c.e. sets.
I (Ng) They cannot be promptly simple, the first such class.
I (Ng) No real is K B-trivial for all B, or c.e. B.
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WHY CAN’T THE BE PROMPT?

I The construction is really a 0′′′ argument since we need to
guess whether ϕW

e is really a trace. Like the proof that the
sjt’s are Π0

4 complete this need the full apparatus of 0′′′

method.
I (Ng) There are sjt A and B such that B is not A-sjt.
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LOTS OF IGNORED WORK

I Use pseudo-jump inversion to talk about “ultrahighness”
I E.g. a proper subclass of the “almost everywhere

dominating”
I cappables etc. (Ng)
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