
What have I been thinking about?

Rod Downey
Victoria University

Wellington
New Zealand

Shonan, May 2013

The New Book!

I First and foremost Mike and I have been writing Fundamentals of
Parameterized Complexity

I It is nearly done; I have brought a draft.

I End of May.

I I need exercises. Any (helpful) comments needed.

I Here is the TOC.

I download and comments:
http://homepages.ecs.vuw.ac.nz/∼downey/maindoc.pdf

Some other things

I Metatheme-Goal is truly useful FPT.

I Dimitrious pointed out that the right parameter is not always obvious,
but also

I Asking the right question is not always obvious For example: Mike
Langston and Mike Fellows suggested the following as a correct
formulation:
Input: I and a current solution S
Parameter: k
Question: Is there a better solution with k steps of S?

I Most things are hard with this set up. Perhaps first observed by Joing
Guo that they work by taking a carefully designed I and a silly S and
making sure that a better solution must be no more than k steps of
S , to code in, say, Clique.

I e.g. Dominating Set

Permissive Local Search

I First noted by Marx;
Input: I and a current solution S
Parameter: k
Question: Can we find a better solution S ′ possibly an arbitrary
distance from S , or, determine that there is no better solution within
k steps of S?

I Obvously related to parameterized approximation.

I And related to the following work which is

I joint with Judith Egan, Mike, Fran and Peter Shaw.

I Solution repair:

Solution repair

I Long ago Mike, Catherine McCartin and I tried
Input: I and a defective current solution S
Parameter: k
Question: Is there a solution S ′ within k steps of S?

I Obvious candidate Dominating Set

I Alas S = ∅. But,...
Input: I with a solution S and a modified instance I ′ with
d1(I , I ′) ≤ k .
Parameters: k , r
Question: Can we find a solution S ′ for I ′ with d2(I , I ′) ≤ r .

I Rhetoric: Who knows how we got S , and we were happy. We don’t
even remember the algorithm. Perhaps very expensive. Perhaps costly
to get S and far too costly to start again. e.g. cell phone stations,
hamburgers franchises, scheduling, DNA.

Theorem

Edge Dominating Set Repair is FPT (I.e. d1 is number of edges
deleted, d2 is vertices to be added.

I We can think of only deletions. The failure of S to dominate G ′

involves 2k vertices of G .

I let H denote the subgraph induced by these 2k affected vertices.

I There’s no point in deleting things from S , so we restrict ourselves to
G \ (H ∪ S)

I There are only 22k different types (by their neighbourhoods in the
affected H), and we would add to S at most one for each type.

I This gives a expnential kernel.

No poly kernel

I It has no poly kernel unless co-NP⊆ NP/Poly.

I Usual methods, in particular using Dorn, Lokshtanok, Saurabh colours
and ID’s.

Hand in Hand with Heuristics

I Hartung and Niedermeier had a very good idea of using FPT
algorithms in a subroutine for incremental computation.
Incremental k-List Colouring
Input: G = (V ,E) and k-list colour for G [v \ {x}] and c ∈ N.
Parameters: k
Question: Is there a k-list colouring f ′ of G such that

|{v ∈ V \ {x} : f (v) 6= f ′(v)}| ≤ c .

Here a list colouring must choose from L(v) ⊂ {1, . . . , k}. A k
colouring is simply L(v) = [k].

I This is NP-complete and even W [1]-hard for bounded treewidth. This
is true either for the parameter t, or c, but

I for (t, c) this is FPT O(k(k − 1)c |V |), and no poly kernel unless
collapse.

I This is the good news. A standard benchmark implementation of
graph colouring uses iterated greedy.

I The observation is that usually the conservation value c is small.
using this as a subroutine resulted in significant improvement of
performance of heuristics.

I Experimentally, average 11% imporvement, for k ≤ 117 c ≤ 8.

I There are so many heuristics around that perhaps this is a general
methodology.

Hand in Hand with Heuristics

I Hartung and Niedermeier’s work leads to a new program.

I (Mike’s name) Turbo-Charging Greedy Heuristics With Appropriate
Incremental FPT Subroutines

I The recipe is: start with a concrete greedy heuristic, and from that
articulate an inductive route such as one might use for iterative
compression, except that here we don’t care about keeping the
solution small. Then define a hopefully FPT parameterized problem
that can be used when you hit a snag to try to keep the cost of the
solution from increasing.

I These three things are all very similar in the end:
– iterative compression
– turbo-charging greedy heuristics with FPT subroutines
– the heuristic scheme proposed by Karp in his article on algorithms in
computational biology (which looked a lot like iterative compression)

I The program implicit in Hartung-Niedermeier: backwards — start
with the “classical” greedy heuristic. In the case of GRAPH
COLORING, the champion heuristic that they are FPT-turbocharging
works along the lines: Order the vertices, according to descending
vertex degree (so things get easier later in the ordering).

I So then you move along (think of iterative compression, but
preferably think of this technique abstractly — it is really just any
sort of inductive route that leads eventually to the input you were
asked to deal with) from one step to the next, carrying along a
solution to be, hopefully, efficiently modified (in the case of iterative
compression: compressed, exactly).

I in HN, list of vertices considered on the inductive route tends towards
lower degree vertices (which then have longer lists of possible
colorings, since fewer are forbidden by the “current” solution).

I Hopefully, there are plenty of colors available, so you just use one of
them. But with the non-turbocharged heuristic, maybe at a given
step, you are forced to use a “new” color.

I But the program here investigates if the previous coloring, can be
fiddled with a bit (the parameter, here called conservation), so that
you don’t have to use a new color.

I This is the essence of the FPT turbocharging.

I Also should be comnined with measure and conquer, perhaps,
inductive rules as to what to do.

I It is best to see their incremental problem, as the parameterized
incremental problem that arises from an effort to FPT-turbocharge
the greedy algorithm.

I Our “forward reading” FPT result about DOMINATING SET.

I But how does the problem we address arise in a “backward reading”,
starting from a greedy heuristic for DOMINATING SET that we wish
to turbocharge in a similar manner?
First problem: what is a reasonable greedy heuristic for
DOMINATING SET?

I There is likely literature on this. But if you think on this a little bit,
the following greedy heuristic seems moderately reasonable:

I Dominating Set: Greedy Plan A
(1) Order the vertices of G from small degree to large degree.
(2) At each step (addition of the next vertex) ... on our way to G
(the inductive route), if the new vertex v is not already dominated,
then add the highest degree vertex in N[v].
This seems like the right idea for the greedy underlying template
because it at least captures the degree 1 vertex kernelization rule.
(There may be general connections between smart FPT kernelization,
and smart greedy heuristics, not yet explored, but possibly
programmatic, in a big way.)

I Dominating Set: Greedy Plan B
The goal here is to try to “reverse engineer” our incremental FPT
result about DOMINATING SET to be interpretable in the above way
— as naturally arising from a greedy algorithm we wish to
FPT-turbocharge.
Our result has d1 being edge-edit distance, so this needs to be
respected in the inductive route (like with iterative compression).

I So here the plan is to mirror the “movie” of Plan A, starting with the
complete graph on n vertices, and gradually delete edges, eventually
to obtain G . In the beginning, the current solution obviously has size
1, and as edges are gradually deleted, it is a compression problem.
When the thing gets stuck, call in the incremental FPT algorithm.
The incremental problem derived in this way is:
INPUT: G , e,S where e is an edge, and S is a dominating set of G
but not G − e = G ′

PARAM: k
QUESTION: Can we find S ′ such that dv (S , S ′) ≤ k , |S | = |S ′| and
S ′ is a dominating set for G ′?

I another experiment: FFEDBACK VERTEX SET

I Need to start with a concrete greedy heuristic. The following seems
reasonable:
(a) Order the vertices from high degree to low degree. Use this to
make an initial movie M of how to build G , adding to the picture one
vertex per step.
(b) Turn this into an edge-addition movie; start with the empty graph
on n vertices, and add edges, as directed by M, to build G . This is
the inductive route we will use.
(c) If adding the edge e creates a unique uncovered cycle, choose the
vertex of the cycle of highest degree. If multiple cycles involving e are
created, then choose the endpoint of highest degree.

I This leads to the incremental problem:
INPUT: G , e,S where S is an fvs for G , but not for G ′ = G + e.
PARAM: k
QUESTION: Is there an fvs S ′ for G ′ with dv (S , S ′) ≤ k and
|S ′| = |S |?

I Other unformed thoughts

I We know that H a subgraph of G is FPT for fixed H by e.g.
Plehn-Voight, but is this a dichotomy? So if {Hi | i ∈ ω} is a family
of graphs of uniformly bounded treewidth then determining Hi a
subgraph of G with parameter Hi is FPT.

I But is it true that if {Hi | i ∈ ω} is a family of unbounded treewidth,
is determining Hi a subgraph of G with parameter Hi W [1]-hard.

I Parameterizing by bounds on rationals in various settings?

I Replacing smoothness?

I Also parameterised parity games. (Björklund, Sandberg, Vorobyov)

I Randomization again and an analog of Toda?

Thank You

