
Topics in Computability

by

Sapir Ben-Shahar

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the

requirements for the degree of

Master of Science

in Mathematics.

Victoria University of Wellington

2025

Abstract

This thesis studies two topics in computability. The first is about com-

putable metric and Polish spaces. We compare different notions of effective

presentability and construct some spaces that are ‘almost computable’, in

the sense that they do not have a computable presentation but they do have

both left-c.e. and right-c.e. presentations. The second part studies c.e. Quasi-

degrees (Q-degrees) and c.e. strong Quasi-degrees (sQ-degrees), which have

interesting connections to algebra. We show that the c.e. sQ-degrees are not

distributive, embed the lattice N5 into them and show that no initial segment

forms a lattice. We construct a non-computable c.e. set that has no c.e. sim-

ple set Q-below it. We also briefly study the relationship of sQ-degrees to

wtt-degrees. Finally we show there is a minimal pair of sQ-degrees within the

same Q-degree, and that if a degree is half of a minimal pair in the Q-degrees,

it is also half of a minimal pair in the Turing degrees.

ii

Acknowledgments

Thank you to my fantastic supervisors, Prof. Rod Downey and A/Prof.

Sasha Melnikov, for suggesting fun problems to work on and for providing

ongoing guidance and advice. I am grateful for your teaching of the relevant

background, sharing your enthusiasm for the subject, and offering patience

and feedback on my writing. Thank you to HT Koh, PhD student at Nanyang

Technological University, for working with me on the second part of the Polish

spaces and Polish groups project, and forcing me to write more formally and

with more details. Thank you to Prof Mariya Soskova from University of

Wisconsin-Madison who helped with the Q-degrees project.

iii

iv

Contents

1 Background 1

1.1 General background . 1

1.1.1 Early beginnings . 1

1.1.2 Computability . 3

1.1.3 Non-computability and degrees 4

1.1.4 Post’s Problem . 6

1.2 More technical background . 8

1.2.1 Computability, Computable Reals 8

1.2.2 Computable Polish Spaces 10

1.2.3 Algebraic structures 12

1.2.4 Reducibilities . 13

1.3 Post’s Programme . 17

1.3.1 First attempts: simple and hyper-simple sets 17

1.3.2 Hyper-hyper-simple and semirecursive sets 20

1.3.3 Equivalence relations 23

1.4 Proof Sketches . 24

1.4.1 Dump construction . 25

1.4.2 Semirecursiveness . 26

1.4.3 The priority method: maximal sets 27

2 Polish Groups 35

2.1 An Almost Computable Metric Space 39

2.2 Sequential Computability and Effective Continuity 55

v

vi CONTENTS

2.3 An Almost Computable Polish Group 66

3 Q-degrees 73

3.1 Existing literature . 73

3.1.1 Our results . 76

3.2 Lattices . 77

3.3 sQ-degrees and wtt-degrees . 91

3.4 Simple sets and Q-degrees . 94

3.5 Minimal pairs and half minimal pairs in the Q-degrees 102

Chapter 1

Background

1.1 General background

1.1.1 Early beginnings

Mathematicians have been interested in computing things for eons. Nearly

four thousand years ago the Babylonians calculated
√
2 to be 1 + 24

60
+ 51

602
+

10
603

= 1.414212963, which is incredibly accurate: it only differs from
√
2 by

about 0.0000006. Following this is a long history of mathematicians trying to

compute important constants such as π and e explicitly, which eventually led

to the formalisation of ideas such as limits, and the development of analysis

by Cauchy and other analysts in the eighteenth and nineteenth centuries

[27, 18].

Indeed, around the turn of the nineteenth century there was a growing

interest in making mathematics more formal and rigorous, and finding me-

chanical (or effective) methods to solve problems and to determine whether

logical statements were true or false. In 1900, Hilbert posed a list of un-

solved problems which he thought should direct mathematical efforts. The

second problem was about the axioms of arithmetic: to prove that they are

not contradictory, that is, that a definite number of logical steps based upon

them can never lead to contradictory results. The tenth problem was, given

1

2 CHAPTER 1. BACKGROUND

a Diophantine equation with any number of unknown quantities and with ra-

tional integral numerical coefficients, to devise a process according to which

it can be determined by a finite number of operations whether the equation is

solvable in rational integers [37]. Essentially, Hilbert was asking for an effec-

tive process, or an algorithm, to determine whether a Diophantine equation

has integer solutions, given its integer coefficients.

While there wasn’t yet any formal definition of what an effective process

was, the mathematicians of the early 20th century did have a sharp intuitive

notion for what an algorithmic process was. For instance, in 1912 Borel gave

an informal definition of a computable real number: We say that a number

α is computable when, given any natural number n, we know how to obtain

a rational number q that differs from α by less than 1
n
. Although Borel’s

definition for ‘obtaining’ the rational was vague due to the lack of formalism

around computation, he did say that the essential thing was for the operation

(of obtaining the rational number) to be executable in a finite amount of

time, by a sure and unambiguous method. The Entscheidungsproblem (the

‘decision problem’), posed by Hilbert, was also an important and well-known

problem. It asks for a process which, given a logical expression, permits the

determination of its validity.

Another example from the early 20th century comes from Dehn, who

analysed algorithmic questions about finitely presented groups. Dehn gave

geometric algorithms for solving the word problem for certain kinds of finitely

presented groups. The word problem in a group is to decide if two words,

i.e. strings consisting of the generating elements, are equal in the group.

Dehn noted that these methods were specific to certain classes of groups and

did not apply in general. This prompted Dehn to articulate three questions,

which significantly drove the study of what is now called combinatorial group

theory [18]:

1. Is the word problem of every finitely presented group algorithmically

decidable (solvable)?

1.1. GENERAL BACKGROUND 3

2. Given x and y in a finitely presented group, can we algorithmically

decide if x is conjugate to y?

3. Given two finitely presented groups can we algorithmically decide if

they are isomorphic?

In fact, almost all of pre-20th century mathematics was fundamentally

algorithmic, and proofs were often constructive. One notable exception to

this was Hilbert’s Basis Theorem from 1890, which proves that every alge-

braic set over a field can be described as the set of common roots of finitely

many polynomial equations. Hilbert’s proof did not actually compute this

finite basis, but showed that the basis must exist. The non-constructive na-

ture of this proof made it a rather controversial result at the time, as there

was generally a lot of scepticism towards non-constructive proofs. Over time,

acceptance for non-constructive proofs grew. For example, early editions of

van der Waerden’s books on modern algebra in the 1940s had algorithmic

proofs of various results on rings and fields. But then in later editions of

van der Waerden’s books many of the algorithmic proofs were replaced by

slicker, though less constructive proofs [18].

Then in 1931 Gödel proved that any consistent system of formal logic

powerful enough to talk about arithmetic must include true statements that

cannot be proven. He showed that such a system will have self-reference, and

produced a formula P that says ‘P has no proof’. Then if P is true, it has

no proof. If P is false, that is, the negation of P is true, then P has a proof.

But then that would contradict that P is false. So if the logical system is

consistent, P must be true, and thus has no proof. In particular, the axioms

of arithmetic cannot prove the consistency of arithmetic, giving a negative

answer to Hilbert’s second problem [31].

1.1.2 Computability

To answer Hilbert’s tenth problem (and the many other questions involving

effective processes), some more clarity was needed on the notion of an effec-

4 CHAPTER 1. BACKGROUND

tive process to solve a problem, or as it was generally known at the time,

‘effective calculability’. In 1936 Church proposed two equivalent definitions

for effectively calculable functions, and further showed that not every prob-

lem was solvable (decidable) in this way. In particular, Church showed that

the Entscheidungsproblem (Hilbert’s decision problem) is unsolvable, that is,

it is not effectively calculable [15].

The two notions that Church wrote about were the lambda calculus, due

jointly to Church and Kleene, and recursive functions, due jointly to Jacques

Herbrand and Gödel. These two very different notions of effective calculabil-

ity are in fact equivalent, as was shown by Kleene, and also partly by Rosser

and Church. Church argued that these definitions were both natural notions

that captured the idea of effective calculability because for any function that

was effectively calculable, there is an algorithm for calculating the function’s

values. Conversely, any function for which there is an algorithm to calculate

its values will be effectively calculable under Church’s definition [15].

In 1936 (with a correction added in 1937), Turing [75, 76] published a

paper introducing Turing Machines, which he developed for the same pur-

pose; to formalise the notion of effective calculability. The main purpose

of these papers was to study computable numbers and functions, and to

show that the Entscheidungsproblem is undecidable (among other applica-

tions). Turing showed that being Turing computable was equivalent to being

lambda-computable and partial recursive, so in fact all of these definitions

captured the same class of functions: the partial computable functions [75].

1.1.3 Non-computability and degrees

A particularly important undecidability result showed that there is no al-

gorithm for determining whether an arbitrary Diophantine equation has an

integer solution. That is, Hilbert’s tenth problem is undecidable. This proof

was only completed in 1973, in contrast to Church’s much earlier result in

1936. Novikov in 1955 [59] and Boone in 1959 [9] showed that there are

finitely presented groups whose word problem is undecidable, giving a nega-

1.1. GENERAL BACKGROUND 5

tive answer to Dehn’s first question. That is, there are c.e. presented groups

(see section 1.2.3 for definitions) with no computable presentation. Com-

putable presentations and c.e. presentations are two of the main notions of

effective presentability for countable discrete algebraic structures, and this

result shows that these main notions differ up to isomorphism for groups [18].

Adyan (in 1957) and Rabin (in 1958) showed that it is undecidable to

tell if two given finitely presented groups are isomorphic [18]. In fact, the

answer to all three of Dehn’s questions turned out to be negative, and the

techniques developed to answer these questions have been enormously influ-

ential in group theory. In 1958 Markov used Adyan’s and Rabin’s results

to show that it is undecidable to tell whether two compact manifolds of di-

mension n ⩾ 4, given as simplicial complexes, are homeomorphic. The proof

of this fact is accomplished by computably transforming a finite presenta-

tion of a group G into a simplex that is homeomorphic to an n-manifold

whose fundamental group is G, so that two groups are isomorphic if and

only if the simplices constructed from these groups are homeomorphic. That

is, Markov reduced the isomorphism problem for group presentations to the

homeomorphism problem for simplices representing n-manifolds. Then, be-

cause the isomorphism problem for group presentations is undecidable, so is

the homeomorphism problem for n-manifolds [18].

Coding a known undecidable problem Q into another problem P in a com-

putable way, that is, reducing the decidability of one problem to another, is

a very useful technique. This shows that P is itself undecidable, because if

P was decidable, the algorithm for P could be used in combination with the

coding to compute the undecidable problem Q, which is impossible. Essen-

tially, this says that P is at least as computationally complicated, or difficult

to solve, as Q. More generally, two problems P1 and P2 can be compared in

terms of their relative computational complexity, so P1 ⩽ P2 means that P2

is at least is hard as P1. That is, P1 reduces to P2, or P2 computes P1, in the

sense that a method for solving P2 would give a method for solving P1.

Turing introduced the most general method of making this comparison,

6 CHAPTER 1. BACKGROUND

called Turing reducibility, denoted as P1 ⩽T P2. If both P1 ⩽T P2 and

P2 ⩽T P1, we say P1 and P2 are Turing equivalent, and denote this by

P1 ≡T P2. This relation, ≡T , is an equivalence relation on sets, and thus

Turing reducibility leads to the concept of Turing degrees, which are the

equivalence classes of ≡T . Then P1 and P2 have the same Turing degree if

P1 ≡T P2, and P2 has a higher degree than P1 if P1 ⩽T P2, but P2 ̸⩽T P1,

and finally P1 and P2 have incomparable degrees if neither reduces to the

other. When a Turing degree contains a c.e. set, we say it is a c.e. Turing

degree (see Section 1.2.1 for definitions) [75].

The Turing degrees and c.e. Turing degrees have natural correspondences

to other areas of mathematics, which means that studying these degree struc-

tures can give insight into other problems. For example, for any Turing degree

there is a finitely generated group whose word problem has that degree. Fur-

ther, if the Turing degree is a c.e. Turing degree, the same is true for a finitely

presented group. Also, for each c.e. Turing degree there is a computable class

of n-manifolds for n ⩾ 4 whose homeomorphism problem has that degree.

With this correspondence we now know that, for example, the existence of

infinitely many c.e. Turing degrees implies that there are infinitely many gen-

uinely different word problems for finitely presented groups, and similarly for

homeomorphism problems of n-manifolds (n ⩾ 4). That is, any result about

the structure of the c.e. Turing degrees can immediately be translated into

results in other areas of mathematics.

1.1.4 Post’s Problem

In 1944, Post [68] examined the existing undecidability results in the lit-

erature. These were all proven in specific contexts, such as in groups (for

example to answer Dehn’s questions), or in first order logic (for the Entschei-

dungsproblem). Essentially, what all the undecidability proofs did at the time

was encode Turing machines in some way into the specific context and ob-

jects under study. Implicitly, effectively generated undecidable sets such as

the halting set (defined in Section 1.2.1) were being used in all of these early

1.1. GENERAL BACKGROUND 7

undecidability results. Post’s idea was to abstract away from the specific con-

text such as the algebra or logic. He suggested that by stripping away this

additional structure and focusing solely on sets arising from Turing machine

computations, we could study relative computational complexity with more

clarity. This idea of abstracting the essential properties away from specific

(applied) contexts is analogous to how linear algebra began as the study of

linear transformations, and group theory began as the study of group actions

on objects, and so on.

The idea of reduction is also widely used in computational complexity

theory, especially in the theory of NP-completeness. In computational com-

plexity theory, time constraints are added to the usual computability notions

[30].

All the computably enumerable problems known at the time either had

the same Turing degree as the halting set, or were computable. This prompted

Post to ask in 1944 whether there were unsolvable (non-computable) prob-

lems that were computably enumerable, but had a lower degree than the

halting set. That is, in the c.e. Turing degrees, Post was seeking a degree

that was strictly between the lowest degree (the degree of the empty set,

which contains all the computable sets and is denoted by 0), and the highest

degree (the degree of the halting set, also called ‘zero jump’ and denoted by

0′). Specifically, Post was looking for a structural property of c.e. sets that

would guarantee the sets are between 0 and 0′.

There were many attempts to solve Post’s problem, and these drove the

development of new tools and characterisations. These developments have

had far-reaching implications in computability theory way beyond Post’s

problem. See Section 1.3 for more details on some of these attempts. Essen-

tially, Post’s idea of abstracting away from specific contexts was fundamen-

tally important for the development of computability theory and the study

of degree structures and relative computational complexity.

8 CHAPTER 1. BACKGROUND

1.2 More technical background

Here we revisit some of the topics mentioned in the informal introduction in

more detail, and introduce some formal definitions.

1.2.1 Computability, Computable Reals

Recall that the partial computable functions are those functions computed by

a Turing machine. We can also think of the computability of a set by saying

that a set is computable if its characteristic function is computable. Another

important concept is that of computably enumerable (c.e.) sets, which are

the domains of partial computable functions. That is, A is c.e. if for some e,

x ∈ A if and only if φe(x) ↓ (the e-th Turing machine halts on input x). This

is one of many equivalent characterisations of c.e. sets. With c.e. sets, only

positive information about the set is computable: when an element x belongs

to the set, we will eventually find out as φe(x) will at some point halt, and

once we know the element is in the set this does not change. However, if the

element is not in the set, φe(x) will simply never converge, but at any finite

stage of the computation we do not know whether the element is truly not

in the set or if we just need to wait longer. A set is computable if and only

if both it and its complement are computably enumerable.

A particularly important non-computable set is the halting set, first ex-

plicitly defined by Post in 1944 [68]:

K = {e : φe(e) ↓}

The halting set is famously not computable (i.e. the halting problem of de-

ciding if a given Turing machine will halt on its own index is undecidable),

although it is computably enumerable (c.e.). Roughly speaking, to enumer-

ate K, run all the Turing machines on their own inputs and when φe(e) ↓,
enumerate e into K. Of course, we would not be able to just run each ma-

chine in turn and wait for it to halt, else we may get stuck forever waiting for

a given machine to halt. So a computable process to enumerate the halting

1.2. MORE TECHNICAL BACKGROUND 9

set could for instance run the first s Turing machines on their own input for

s many steps at stage s, and if any of them halt, enumerate the relevant e

into Ks (K at stage s).

Among c.e. sets the halting set has the highest degree of unsolvability,

that is, the highest c.e. Turing degree, in the sense that any other c.e. set is

Turing below the halting set. We call sets with this property Turing complete,

so the halting set K is Turing complete.

Returning to numbers, the focus of Turing’s initial 1936/1937 paper, the

intuition is that a computable number is one which a Turing machine could

compute to arbitrary precision. There are a number of equivalent ways to

formalise this, some of which effectivise classical ways of constructing real

numbers. We say that a number α is a computable real number if one of the

following equivalent conditions hold.

(i) There is a computable function f such that |f(n)− α| ⩽ 2−n. That is,

there is a computable fast Cauchy sequence of rationals (f(n))n∈ω that

converges to α (note that this is essentially Borel’s definition).

(ii) There is a computable sequence of closed intervals (Cn)n∈ω whose in-

tersection is α, that is
⋂

Cn
Cn = {α}

(iii) The left cut of α, α− = {r ∈ Q : r < α}, and the right cut of α,

α+ = {r ∈ Q : r > α}, are both computably enumerable.

(iv) The set of all open intervals with rational endpoints that contain α,

{(a, b) : a, b ∈ Q, a < α < b}, is computably enumerable.

It is straightforward to see that these conditions are all equivalent. Given

f as in (i), we can construct a computable sequence of closed sets by setting

Cn = [f(n)−2−n, f(n)+2−n]. From a computable sequence of closed intervals

(Cn)n∈ω, we can for each n, compute [a, b] =
⋂n

i=0Ci and then enumerate

{r ∈ Q : r < a} into α− and {r ∈ Q : r > b} into α+. From an enumeration of

the left and right cuts, we can get an enumeration of open intervals
⋃

s{(a, b) :
a ∈ α−

s , b ∈ α+
s } (that is, at stage s look at the enumerations of α−, α+ up to

10 CHAPTER 1. BACKGROUND

stage s and add all open intervals with one end point from α−
s and the other

endpoint from α+
s , which guarantees that α is contained in the interval).

Finally from an enumeration of open intervals we can get a convergent fast

Cauchy sequence by enumerating the open intervals until we get an interval

(a, b) with b− a ⩽ 2−n and then setting f(n) = a+b
2
.

We can also take condition (iii) above and only require one of α− and α+

to be computably enumerable. Then if the left cut is c.e. we say that α is a

left-c.e. real, and if the right cut is c.e. we call α a right-c.e. real. Now α is a

computable real if and only if it is both a left-c.e. and a right-c.e. real. This is

a bit reminiscent of how a set A is computable if and only if both A and the

complement of A are computably enumerable: two ‘opposite’ enumerations

give us a computable thing.

Since there are countably many computable functions (Turing machines),

only countably many real numbers are computable. Turing showed that

these include all real algebraic numbers and many transcendental numbers

including π and e (which shouldn’t be too surprising given people have been

computing these numbers for such a long time) [75]. A particularly nice thing

about the computable real numbers is that they form a field. This was stated

in 1954 by Rice, although it was likely known earlier. Rice also showed that

E(i) is algebraically closed, where E denotes the field of computable reals

[70].

1.2.2 Computable Polish Spaces

The real numbers (strictly speaking, the reals in the interval (0, 1)) are a

computable field in the sense that there is a single Turing machine which

emulates addition on the reals, and similarly for multiplication. That is, there

is a Turing functional Φ such that when Φ is given fast Cauchy sequences of

rationals (qi)i∈ω and (q′i)i∈ω that converge to the reals x and y respectively,

then Φ outputs a fast Cauchy sequence of rationals that converges to x+ y,

and similarly for multiplication. This notion of computability of a function

on the reals (in this case addition and multiplication) is known as Type II

1.2. MORE TECHNICAL BACKGROUND 11

computability and is often attributed to Kleene [44] (see Chapter 2 for more

on this).

This notion and the notion for computable reals essentially rely on the

fact that the rationals are a countable (computable) dense subset of the reals,

so R is the completion of a computable, countable set (the rationals). This

idea was extended to computability notions of separable Banach spaces, and

to complete separable metric spaces, called Polish spaces. Ceitin [10] in 1959

and Moschovakis [57] in 1964 independently introduced the following notion

for computable (‘recursive’) metric spaces.

Definition 1. A computable presentation of a Polish space M is given by a

sequence (xi)i∈ω and a complete metric d such that (xi)i∈ω is dense in (M,d),

and the distances d(xi, xj) are uniformly computable reals in i and j.

Being uniformly computable means that there is a single procedure which,

given i and j, will compute d(xi, xj). The points xi are usually called special

points, rational points (in analogy to the rationals in R) or ideal points. Many

natural examples of computable Polish spaces come from functional analysis

and topological algebra. As with computable reals, we can also weaken this

notion slightly:

Definition 2. For a Polish space M , we say that a complete metric d and a

sequence (xi)i∈ω that is dense in (M,d) give:

• a right-c.e. presentation of M if {r ∈ Q : r > d(xi, xj)} are uniformly

c.e. in i, j (that is, the distances d(xi, xj) are uniformly right-c.e. reals

in i and j);

• a left-c.e. presentation of M if {r ∈ Q : r < d(xi, xj)} are uniformly

c.e. in i, j (that is, the distances d(xi, xj) are uniformly left-c.e. reals in

i and j);

We will say that a Polish space M is computable if it has a computable

presentation, and similarly it is left-c.e. (right-c.e.) if it has a left-c.e. (right-

c.e.) presentation.

12 CHAPTER 1. BACKGROUND

1.2.3 Algebraic structures

For discrete, countable algebraic structures, the following notion of com-

putability was independently proposed by Rabin [69] in 1960, and Mal’cev

[51] in 1961:

Definition 3. A discrete, countable algebraic structure A with finitely many

operations and relations is computably presented if there is an algebraic struc-

ture B isomorphic to A whose elements form a computable set of natural

numbers, and the operations and relations on B are computable (as func-

tions and relations on the natural numbers).

This isomorphic copy B is called a computable presentation of A, or a

computable (isomorphic) copy of A, and we say that A is computable. There

are also stronger notions, such as primitive recursive presentations and punc-

tual presentations, among many others, as well as weaker notions.

For instance, an algebraic structure is computably enumerably (c.e) pre-

sented if it is isomorphic to the factor of a computable structure by a c.e. con-

gruence. A congruence is an equivalence relation that ‘respects’ the opera-

tions of the structure. That is, for any operation f , whenever xi ∼= yi we have

that f(x0, . . . , xn) ∼= f(y0, . . . , yn). A standard example of a c.e. presented

structure is the factor of a computable group G by a c.e. normal subgroup

H, which are quite common in group theory. Now, a finite presentation

of a group is also a c.e. presentation of that group, and groups with unde-

cidable word problems cannot have computable presentations. Under these

definitions, Dehn’s first question is asking if every finitely presented group

is computable (has a computable presentation). In particular, the question

asks if c.e. presentability and computable presentability differ for finitely pre-

sented groups [18]. Thus the negative solution to Dehn’s first question says

that c.e and computable presentability do indeed differ for finitely presented

groups.

It is important to note that there are several different traditions in com-

putable mathematics, and so there are differences in terminology when it

1.2. MORE TECHNICAL BACKGROUND 13

comes to computable presentations of spaces [18]. The closely related topics

of effective descriptive set theory and classical combinatorial group theory

also have their own terminology and notation. The most basic fundamental

definitions in all of these turn out to be either equivalent or closely related,

but sometimes the same term can correspond to non-equivalent definitions.

For example, in combinatorial group theory ‘recursively presented groups’

refers to what we call ‘c.e. presented groups’ and ‘recursively presented groups

with solvable word problems’ refers to what we call a ‘computable group’ (or

a ‘computably presented group’). In the literature, ‘recursive’ and ‘com-

putable’ are often used interchangeably, which means that ‘recursive group’

could be referring to either of these two notions [18]. This is one of many

examples of differences in terminology. To avoid confusion, we will only use

the terminology that we described in our definitions, and in particular will

avoid using the term ‘recursive’.

1.2.4 Reducibilities

As well as the Turing degrees, there are a number of other degree structures

arising from other reducibilities, and these have natural ties to various other

areas of mathematics too. The different degree structures are also interesting

to study in relation to one another, as sometimes results about one degree

structure give insight into other degree structures. Some common reducibil-

ities include the following.

Definition 4.

• A set A is Turing reducible to a set B, denoted A ⩽T B, if for some e,

ΦB
e = A.

That is, the Turing machine Φe computes A when given B as an oracle.

This is the most general reducibility.

• A set A is many-one reducible (called m-reducible) to a set B, denoted

A ⩽m B, if and only if there is a computable function f such that for

14 CHAPTER 1. BACKGROUND

all x,

x ∈ A if and only if f(x) ∈ B.

Further, if f is a one-to-one function, then we say A is one-one reducible

to B, written A ⩽1 B.

• A set A is truth table reducible (tt-reducible) to a set B, written A ⩽tt

B, if and only if there is a computable function h such that h(x) is

a Boolean condition (a propositional formula built from the atomic

formulas ‘n ∈ X’) and x ∈ A if and only if B satisfies the condition

h(x). Nerode [71] showed that A ⩽tt B if and only if there is a Turing

procedure Φe, total for all oracles, such that ΦB
e = A.

• A set A is weak truth table reducible (wtt-reducible) to a set B, denoted

A ⩽wtt B, if and only if there is a computable function ψ and a Turing

procedure Ψ such that

x ∈ A if and only if ΨB(x) = 1

and additionally, for all y the use of the computation ΨB(y) is bounded

by ψ(y). Note that wtt-reducibility is Turing reducibility but with a

computable bound on the use.

Each of these reducibilities gives rise to its own degree structure. It is not

too difficult to see that⩽m implies⩽tt implies⩽wtt implies⩽T . Reducibilities

end up being important in other areas of mathematics. For example, the

c.e. m-degrees correspond to the word problems of finitely presented semi-

groups [60]. That is, for any c.e. m-degree there is a finitely presented semi-

group whose word problem has that degree. Another example is that tt-

degrees are fundamental in algorithmic randomness, because the totality of

a tt-reduction Φe makes it appropriate for working with measures.

A reducibility that is of particular interest to us is Q-reducibility, which

gained interest because of its connections to algebra and relevance to Post’s

Programme (see Section 1.3.2).

1.2. MORE TECHNICAL BACKGROUND 15

Definition 5. A set A is Quasi-reducible (Q-reducible) to a set B, written

A ⩽Q B, if there is a computable function f such that for every x, x ∈ A if

and only if Wf(x) ⊆ B. Further, A is strong Quasi-reducible (sQ-reducible)

to B, denoted A ⩽sQ B if additionally there is a computable function h such

that max{z : z ∈ Wf(x)} < h(x).

In general, Quasi-reducibility is not actually a reducibility (hence the

name ‘quasi’). This is because Wf(x) may be infinite, requiring an infinite

amount of information to determine whether x ∈ A, while a reducibil-

ity should only use a finite amount of information. On the other hand

sQ-reducibility is always a reducibility, because the computable function h

bounds the amount of information used in each computation (in particular,

|Wf(x)|). For c.e. sets Q-reducibility is a reducibility, because we can always

assume that Wf(x) is finite.

To see this, suppose we have c.e. sets A ⩽Q B via f . For each Wf(x) we

will construct a finite Wg(x) ⊆ Wf(x), so that A ⩽Q B via g. Simultaneously

enumerate A,B and every Wf(x). Each Wg(x) will copy Wf(x) (so we always

have Wg(x) ⊆ Wf(x)), but we only put a new element (which is in Wf(x))

into Wg(x) at stages s + 1 where x ̸∈ As+1 and Wg(x),s ⊆ Bs. That is, we

put a new element into Wg(x) if B contains all the elements that we have

thus far put into Wg(x), but x is not currently in A (which indicates there is

something else in Wf(x) which isn’t currently in B). Now if x ∈ A, then we

stop enumerating new elements into Wg(x) at the first stage t where x ∈ At,

and soWg(x) is finite. If x ̸∈ A, thenWf(x) ̸⊆ B. Then eventually at a stage s

some element z ∈ Wf(x)\B appears inWf(x),s and is enumerated intoWg(x),s,

at which point we stop enumerating new elements into Wg(x) (because from

now on Wg(x),t ̸⊆ Bt, for all t ⩾ s) and so Wg(x) remains finite.

That is, at every stage s, we either have that x ∈ As, or that there is a

unique element z ∈ Wg(x),s+1\Bs+1 and in particular ifWg(x),s+1 ̸= Wg(x),s, we

must have that Wg(x),s ⊆ Bs+1 (since we required this in order to enumerate

anything new into Wg(x)). In light of this, we make the following definition.

Definition 6. A total computable function m(x, s) is Q-like if m(x, s) = z

16 CHAPTER 1. BACKGROUND

with z being the unique element described above. So m(x, s) ∈ Bs only if

x ∈ A and if m(x, s+ 1) ̸= m(x, s) then m(x, s) ∈ Bs+1.

Now A ⩽Q B if and only if there is a Q-like function m such that

limsm(x, s) = m(x) exists and m(x) ∈ B iff x ∈ A. Furthermore, A ⩽sQ B

if for all s, m(x, s) < h(x) (where h(x) is the computable function from the

definition of sQ-reduction).

Strong quasi-reducibility was introduced by Omanadze in 1991 [61]. Q-

reducibility is a natural weakening of m-reducibility, replacing singletons with

c.e. sets. For c.e. sets, A ⩽Q B implies A ⩽T B, although in general for non-

c.e. sets there is no simple relationship between ⩽Q and ⩽T : for any set A,

the set AQ = {e : We ⊆ A} is Q-equivalent to A, but AQ is also a non-trivial

index set and so by Rice’s theorem, K ⩽T A
Q. In particular, the Q-degree of

∅ contains a set that is Turing above the halting set, while the Turing degree

of ∅ contains only the computable sets. Notice also that sQ-reducibility is the

analog of wtt-reducibility but for Q-reductions instead of Turing reductions

(the use is computably bounded). In fact, we have that for c.e. sets, A ⩽sQ B

implies A ⩽wtt B.

As with the other reducibilities, the Q-degrees also have ties to algebra.

Macintyre [50] showed that whenever the word problem of a group G was

Turing below the word problem of a group H, then G must be a subgroup of

every algebraically closed group of which H is a subgroup. The converse fails,

but is true if we replace Turing reducibility with Q-reducibility, as shown by

Belegradek [8]. That is, for any computably presented groups G and H, if

G is a subgroup of every algebraically closed group of which H is a sub-

group, then G’s word problem must be Q-reducible to that of H. Thus any

fact about the partial order of the c.e. Q-degrees has an immediate trans-

lation into one involving inclusion relations between the classes of finitely

generated subgroups of algebraically closed groups. Since any countable al-

gebraically closed group is determined up to isomorphism by the class of

its finitely generated subgroups, this gives a natural relationship between a

purely computability-theoretic notion and a purely algebraic one.

1.3. POST’S PROGRAMME 17

1.3 Post’s Programme

1.3.1 First attempts: simple and hyper-simple sets

Post’s programme was to find a thinness property of the c.e. sets which guar-

anteed incompleteness. It was motivated by the fact that creative sets have

complements that are full of infinite c.e. sets, and this property guarantees

m-incompleteness. The thought was that maybe a ‘very thin’ complement

would work the same way for Turing incompleteness [68].

Creative sets are a large class of non-computable c.e. sets that includes

the halting set. In fact, all creative sets are halting problems under some

re-ordering of the partial computable functions. Every creative set contains

(infinitely many) infinite c.e. sets in its complement, and a necessary and

sufficient condition for a set S to be 1-complete (so every c.e. set is one-

one reducible to S) is that S is infinite, and the complement S contains an

infinite c.e. set. Thus in an effort to find a non-computable incomplete set,

Post looked for sets that did not have this property:

Definition 7. A c.e. set A is simple if the complement A is infinite and

contains no infinite c.e. sets. That is, if |We| = ∞ then We ∩ A ̸= ∅.

Notice that a simple set can’t be computable, for if A is computable then

A is computable, and thus A contains an infinite c.e. set, namely A itself.

Further, a simple set is not 1-complete, since it does not contain any infinite

c.e. sets in its complement. In fact, no creative set is one-one reducible to a

simple set.

To see this, suppose we have a simple set A and a creative set C with

C ⩽1 A, as witnessed by a one-to-one function f . Let g be a total computable

function that enumerates We, one of the infinite c.e. sets that is contained

in the complement C. That is, g(n) /∈ C for every n, and so f(g(n)) /∈ A.

But now the infinite c.e. set {f(g(n)) : n ∈ ω} is entirely contained in the

complement A, contradicting that A is simple.

Having shown that simple sets exist, Post had two disjoint classes of non-

18 CHAPTER 1. BACKGROUND

computable sets. On the one hand, creative sets like the halting problem, that

are 1-complete and have infinitely many infinite c.e. sets contained in their

complement, and on the other hand simple sets, that are not 1-complete and

do not have even a single infinite c.e. set in their complement. Post further

showed that no creative set was wtt-reducible to a simple set. All this makes

simple sets seem like a good candidate for a set that may give an intermediate

degree. However, simple sets can in fact be truth table complete (and hence

also Turing complete since ⩽tt implies ⩽T). Post constructed for any creative

set C a simple set S with C ⩽tt S. In particular, there is a simple set that

has the same degree as K. Thus simple sets do not give the solution that

Post was seeking of an intermediate degree.

To overcome this issue, Post next tried exploring sets which were simple

in a stronger sense, replacing singletons with finite sets.

Definition 8. A c.e. set A is hyper-simple if A is infinite, and there is no

infinite c.e. set of mutually exclusive finite sequences such that each sequence

has at least one member in A.

Another way of phrasing this definition is by considering disjoint canonical

finite sets Dz = {x1, . . . , xn} given by some standard coding, for example

z = 2x13x2 . . . pxn
n . The exact coding is not important, the point is that we

have a finite set and we know what it is from its index. For a computable

function ge, we call Ve = {Dge(x) : x ∈ ω} (with the property that the Dge(x)

are all disjoint) a strong array. Now A is hyper-simple if for every strong

array Ve, there exists an x such that Dge(x) ⊆ A. That is, there is no strong

array such that each finite set Dge(x) has at least one member in A. In

particular, we don’t have an infinite collection of canonical finite sets living

in the complement A.

The intuition for why this may be useful is as follows. Suppose we have

a Turing reduction ΓA = X, with A computing some set X. At some stage

s we could have the computation on some element p be ΓAs(p) = 0, that is,

p ̸∈ Xs. But then if p later enters x, the computation needs to change to

reflect this, and for this to happen, some element has to enter A below the

1.3. POST’S PROGRAMME 19

use of the computation ΓAs(p). This means that in order for the reduction

to be correct, so for the computation to be able to recover when X changes,

the reduction must be using things that are not currently in A to complete

the computation ΓAs(p). For if all the things which the computation used

were already in As, then when X later changes, the reduction will be wrong.

This is because even if the oracle As changes, that change won’t affect the

computation since the computation only uses things already in A at stage s

and not any of the things which have changed. So if the reduction is correct,

there must be a bunch of elements below the use of the computation that are

not currently in A. These elements that are used in the computation look

like a finite sequence, or a canonical finite set. The idea with a hyper-simple

set is that there is at least one canonical finite set which is fully contained

in A, which would correspond to a computation that can’t change, or a tt-

reduction that could fail. That is, the computational power of A is limited.

Indeed, Post showed that no hyper-simple set is truth table complete.

However, there are still Turing complete hyper-simple sets. In fact, there are

hyper-simple sets of every Turing degree. To construct a hyper-simple set

with the same degree as a c.e. set B, we need a dump construction. This

construction is described in Section 1.4.1.

Now if we apply the dump construction to B = K we get a hyper-simple

set that is Turing equivalent to the Halting set, and hence is complete. So

hyper-simple sets also don’t give the solution to Post’s problem.

As an interesting aside, computability theory has another connection

to classical mathematics (among many others not mentioned here) through

hyper-simple sets. A consistent axiomatizable theory is not independently ax-

iomatizable if and only if there is an enumeration {x0, . . . , xk} of it such that

the set {n : xn+1 is deducible in first order logic from x0, . . . , xn} is hyper-

simple [60].

20 CHAPTER 1. BACKGROUND

1.3.2 Hyper-hyper-simple and semirecursive sets

Post continued in his search for an intermediate degree with hyper-hyper-

simple (hh-simple) sets, which now replace canonical finite sets with c.e. sets.

The idea here is to capture the adaptive nature of Turing reductions in a

notion akin to hyper-simplicity.

Definition 9. A set A is hyper-hyper-simple (hh-simple) if A is infinite and

A meets all infinite weak arrays Ve = {Wge(x) : x ∈ ω} (where Wge(x) are all

disjoint). That is, there is an x for which Wge(x) ⊆ A.

When Post suggested hh-simple sets in [68], he did not know whether they

even existed, but nevertheless hoped hh-simple sets were good candidates for

an intermediate degree. Hh-simple sets are indeed interesting as potential

candidates for Post’s problem, because of a characterisation of hh-simple sets

by Soloviev from 1974 [73]. This characterisation states that a co-infinite

c.e. set is hh-simple if and only if it is not contained in any Q-complete set.

In particular, hh-simple sets cannot be Q-complete themselves. This still

leaves open the questions of whether hh-simple sets even exist, and if they

do exist, whether they can be Turing complete.

Lachlan [48] proved another characterisation of hyper-hyper-simplicity in

1968: a set A is hh-simple if and only if its lattice of supersets L∗(A) is a

Boolean algebra. The lattice of supersets is defined as L∗(A) = {We : We ⊇∗

A}, under intersection and union. The relation =∗ and ⊆∗ are equality and

containment up to a finite difference. That is, if A ⊆∗ We, there are at most

finitely many things that are in A but not We, and similarly with A =∗ B,

there are at most finitely many things in A \ B and in B \ A. Note that =∗

is an equivalence relation.

With Lachlan’s characterisation of hh-simple sets, we can consider those

hh-simple sets whose lattice of supersets is the simplest possible Boolean

algebra, the two element Boolean algebra. These are called maximal sets,

and they have the property that for any We where A ⊆ We, either We =
∗ A

or We =∗ ω. That is, maximal sets have extremely thin complements: no

1.3. POST’S PROGRAMME 21

c.e. set (that contains A) splits the complement A, because if We contains A

it either contains almost all of the complement of A (all but finitely much),

or it only contains finitely much of A. That is, We can never have infinitely

many things from the complement of A while also leaving out infinitely many

things. Maximal sets were first introduced by Myhill to try to solve Post’s

problem, following Post’s intuition of making sets with very thin complements

[60].

Friedberg [29] constructed a maximal set in 1958 using a priority argu-

ment, showing that hh-simple sets do indeed exist. We present a construction

of a maximal set using the priority method in Section 1.4.3. The priority

method was pioneered independently by Friedberg [28] and Muchnik [58] in

order to solve Post’s problem, and has since been adapted to solve many other

problems. Friedberg and Muchnik did indeed each succeed in solving Post’s

problem, constructing non-computable c.e. sets each of which is not reducible

to the other, and thus getting a set whose degree was strictly between 0 and

0′. However, this wasn’t entirely in the spirit of Post’s programme, which

asked for a structural property that would guarantee incompleteness, and so

various mathematicians continued looking for a structural property solution

to Post’s problem.

Now that we know maximal sets exist, all that’s left is to determine if

maximal sets, with their thin complements and Q-incompleteness, are also

Turing incomplete. However, in 1963, Yates [77] constructed a maximal set

with degree 0′.

The next attempt was to find a property that would reduce being Turing

complete to being Q-complete, which could be combined with maximality to

give a set of an intermediate degree. In order for a computation to change in a

Turing reduction, something small (below the use of the computation) needs

to enter the set which is used as the oracle in the computation. However,

there could be many things below the use that could potentially enter the

oracle, so we need to pay attention to a finite set of elements, and if any

one of these elements enters, the computation might change. On the other

22 CHAPTER 1. BACKGROUND

hand with a Q-reduction, we only point at a single element (with the Q-

like function), and if this single element enters then the computation might

change. So to reduce being Turing complete to being Q-complete, we would

need a property that turns questions about a finite set into questions about

a single element. One property to consider is semirecursiveness [60].

Definition 10. A set A is semirecursive if there is a computable function

f(x, y) with the following two properties for all x and y:

(i) f(x, y) = x or f(x, y) = y;

(ii) if x ∈ A or y ∈ A, then f(x, y) ∈ A

Semirecursiveness essentially picks out a preferred element between each

pair of elements, in the sense that if x and y are not in the set A, and say

f(x, y) = x, then if y enters A, xmust also enter A. This is because by having

y enter A, we now fulfill the premise in part (ii) of the definition, so f(x, y) =

x must also enter A. We can extend this to a finite set {x0, . . . , xn} ⊆ As

by computing f(xi, xj) for each pair in the set, and through that find the

most preferred element xk in the set, such that if anything in the set enters

A (after stage s), xk must also enter A.

Marchenkov showed in 1976 [53] that if A is a c.e. set, B is a semirecursive

c.e. set and A ⩽T B, then A ⩽Q B. For c.e. sets we have that ⩽Q implies

⩽T , so in fact this says that if B is semirecursive then A ⩽T B if and only

if A ⩽Q B. In particular, if A is not Q-complete then A also isn’t Turing

complete; so semirecursiveness is exactly the desired property. Marchenkov’s

result is not too difficult to see, for a sketch see Section 1.4.2.

Since hh-simple sets are not Q-complete, semirecursive hh-simple sets

would provide the solution to Post’s problem, because the hyper-hyper-

simplicity ensures the set is not Q-complete, and the semirecursiveness lets

us translate that into being not T-complete. All that remains is to construct

such a set. Unfortunately, no hh-simple set is semirecursive. In fact, in

1992 Cholak, Downey and Stob [14] proved that no property of the lattice

1.3. POST’S PROGRAMME 23

of supersets alone can guarantee incompleteness (recall that hh-simplicity is

the same as the lattice of supersets being a Boolean algebra). Around the

same time in 1991, Harrington and Soare [34] did find a first order property

that guaranteed incompleteness and non-computability (any set satisfying

this property is Turing incomplete and not computable), and further showed

that there were c.e. sets that satisfied this property. This property is a 4

quantifier statement which was obtained from analysing how the ‘automor-

phism machinery’ fails when one tries to prove that all c.e. non-computable

sets are automorphic to complete sets.

1.3.3 Equivalence relations

Another approach would be to try to loosen the definition of hyper-hyper-

simplicity in a way that allows for a set to be semirecursive, while main-

taining that the set is Q-incomplete. This approach replaces equality with

a c.e. equivalence relation. In 1971, Ershov [22] introduced c.e. equivalence

relations (‘Positive equivalences’), encouraging their study and illustrating

some of their potential. In particular, certain properties of c.e. equiva-

lences have non-trivial consequences for sets closed under these equivalences,

and many classical concepts about c.e. sets can naturally be extended to

c.e. equivalences.

An equivalence relation =η is a c.e. equivalence relation if the set of η-

equivalent pairs, {< x, y >: x =η y}, is computably enumerable. This means

that equivalence classes can grow over time, as we find out that more things

are η-equivalent. We will consider only those c.e. equivalence relations that

have infinitely many equivalence classes. It will soon become apparent that if

there are only finitely many equivalence classes then the equivalence relation

is not helpful for our purposes. For a c.e. equivalence relation =η, we say

a set A is η-closed if it consists entirely of η-equivalence classes, so the set

doesn’t split up any equivalence class. That is, for all x and y, if x ∈ A and

x =η y then y ∈ A. Further, A is called η-finite if it consists of only finitely

many equivalence classes (so all η-finite sets are η-closed).

24 CHAPTER 1. BACKGROUND

As Ershov [22] noted, we can relativise a large number of concepts to

c.e. equivalence relations, for sets that are closed under said equivalences. In

particular, we can use η-finiteness instead of finiteness to relative simplicity,

hyper-simplicity, maximality and so on. This is why we want our equivalence

relation to have infinitely many equivalence classes.

For example, a non-computable η-closed c.e. set A with A being η-infinite

is η-simple if every η-closed c.e. subset of A is η-finite. A is η-hyper-simple

if for every sequence of finite sets {Fge(x) : x ∈ ω} (for ge computable) such

that [Fi]η ∩ [Fj]η = ∅ whenever i ̸= j (i.e. the equivalence classes of the finite

sets are all disjoint), there is an x for which [Fge(x)]η ⊆ A. A is η-maximal

if for any c.e. set B that is η-closed and B ⊇ A, either B \ A is η-finite or

ω \ B is η-finite. Similarly we can naturally relativise many other notions,

and a lot of properties are preserved when we do this, such as the fact that

η-maximal sets are all η-hh-simple. However, not everything gets transferred

over. For instance, η-simple sets are not necessarily non-computable if we

don’t include that in the definition, while all simple sets certainly are non-

computable, without that needing to be part of the definition [22].

Most importantly, Marchenkov showed in 1976 [53] that η-hh-simple sets

are all Q-incomplete. Once again we can combine this with semirecursive-

ness to get that all η-hh-simple sets are Turing incomplete. In 1973, Degtev

constructed a c.e. equivalence relation η for which η-maximal semirecursive

non-computable sets exist [60]. That is, the class of η-maximal semirecursive

non-computable sets is not empty, and by Marchenkov’s results, is Turing

incomplete. At last, Post’s problem has been solved using the methods sug-

gested by Post’s programme.

1.4 Proof Sketches

In this section we describe the constructions and proof sketches that were

omitted from the previous section.

1.4. PROOF SKETCHES 25

1.4.1 Dump construction

We describe the dump construction for making a hyper-simple set A that is

Turing equivalent to a given c.e. set B.

Let f(ω) = B be a one-to-one computable enumeration of the c.e. set B,

and construct A in stages with A0 = ∅. Then let {a0,s, . . . , as,s} be the first

s+ 1 things in the complement of As, and let As+1 = As ∪ {af(s),s, . . . , as,s}.
That is, when f(s) enters B (at stage s), we dump the f(s)-th thing in the

complement of A into A, together with all things after, up until as,s. Then

for i < f(s), ai,s+1 = ai,s, while af(s),s+1, . . . , as+1,s+1 are the next elements

in the complement of As+1.

Then A ≡T B and A is hyper-simple. To compute A from B, go to a

stage s where B ↾ n has stopped changing, that is, Bs ↾ n = B ↾ n. Now

As ↾ an,s = A ↾ an,s, because the n-th thing in the complement of A at stage

s, an,s, will only change if something below n enters B. Thus if nothing

below n ever enters B hereafter, the first n things in the complement of

A must have stopped changing too. Similarly, to compute B from A, wait

for a stage s where an,s is final, so an,t+1 = an,t for all t ⩾ s. That is,

the first n things in the complement of A have stopped changing. Now

Bs ↾ n = B ↾ n. To see that A is hyper-simple, suppose for a contradiction

that we have a strong array Ve such that for every n, Dge(n) ̸⊆ A. Then we

claim B is computable. To compute B ↾ z, run the enumeration of Ve until

we find an n such that for every p ∈ Dge(n) which is not in As, p > az,s. We

assume, as is standard, that everything is bounded by the stage number s

(if this is not the case we can slow things down until it is so). In particular,

max{r : r ∈ Dge(s)} < s ⩽ as,s. We will at some stage s find our desired

n because each canonical finite set Dge(n) has elements that are not in A,

and the complement of A at stage s, that is, the elements ai,s, eventually

stop changing. Further, the sets Dge(n) are all disjoint, so we must have

canonical finite sets with elements that are arbitrarily large, in particular

greater than az,s. Now Bs ↾ z = B ↾ z, because if B were to change below

z, say at w < z, then we would dump aw,s, . . . , az,s, . . . , as,s into A, and in so

26 CHAPTER 1. BACKGROUND

doing, make Dge(n) ⊆ A which contradicts our assumption. Thus A must be

hyper-simple.

1.4.2 Semirecursiveness

The following is a sketch of Marchenkov’s result that if A is a c.e. set, B is

a semirecursive c.e. set and A ⩽T B, then A ⩽Q B [53].

Suppose B is semirecursive via f , and A ⩽T B via Φ. To define a Q-like

function m(x, s), consider the simultaneous enumerations of A and B and

the computations of ΦB. In particular, at each stage s we want to keep track

of how much of As agrees with the computation ΦBs . Thus we introduce the

following function.

Definition 11. The length of agreement at stage s is ℓ(s) = max{z : ∀x ⩽

z, As ↾ x = ΦBs ↾ x}

The length of agreement is the length on which the enumeration of As

agrees with the current computation ΦBs . We will use various length of agree-

ment functions throughout this thesis, and they always measure how much

the relevant computations and/or enumerations agree with each other. The

exact function will depend on the situation at hand, although we don’t always

explicitly write them out. In essence they are all the same as the length of

agreement just defined, though they may include more sets/functions/Turing

functionals. Now, assuming that ΦB = A, the length of agreement must go

to infinity, that is lims ℓ(s) = ∞.

To define our Q-like function on an element x, we wait for the length of

agreement to go above x, so ℓ(s) > x, and compute ΦBs(x). If ΦBs(x) = 1,

then x ∈ As and we can define m(x, s) to be an element already in B.

Otherwise, ΦBs(x) = 0 and x ̸∈ As. Consider pairwise all the elements

below the use of this computation that are not in Bs. That is, elements

y, z ∈ N ↾ φ(x)[s] \ Bs, where φ is the use function of Φ. If ΦBs(x) is to

change and x is to enter A, then one of these elements below the use must

enter B. Compute f(y, z) for all such pairs, and in so doing determine which

1.4. PROOF SKETCHES 27

element y0 is the most preferred element. Define m(x, s) = y0. If something

below the use enters B at stage s′ > s, y0 must enter B too, say at stage

t > s. It is possible that at this stage the length of agreement has dropped

below x, in which case we wait for a stage t′ ⩾ t where ℓ(t′) > x again. If

x ∈ At′ , we don’t need to do anything; m is correct and need never change

again. Otherwise, m needs to retarget to an element not in Bt′ (that is,

we define m(x, t′) ̸= m(x, s) to be an element not in Bt′). To find this

element, as before we compute f(y, z) on all pairs y, z ∈ N ↾ φ(x)[t′] \ Bt′

and find the most preferred element (it is possible the use has changed, since

we have a different computation now). Eventually we will reach a stage r

where Br ↾ φ(x)[r] = B ↾ φ(x)[r] (i.e. B has stopped changing below the use

of the computation, and so correspondingly the computation has stopped

changing). Thus we know that limsm(x, s) = m(x) exists; either at some

point x enters A and so m points at an element in B and never changes, or

x ̸∈ A and m(x, r) /∈ B and m(x) = m(x, r). Following this process for every

x, we have a Q-reduction A ⩽Q B.

1.4.3 The priority method: maximal sets

The priority method which was developed independently by Friedberg [28]

and Muchnik [58] to solve Post’s problem is extremely useful, and has been

used for many proofs about c.e. sets and degrees. Many results in this thesis

use the priority method in various incarnations. Priority constructions are

used for making sets with particular properties. Here we use the example of

being maximal to illustrate the ideas and thought process behind a priority

argument.

Theorem 12. Maximal sets exist.

Proof. The main idea of a priority argument is to break up a property, in

this case maximality, into a countable sequence of requirements, so that if we

satisfy every requirement during our construction, then our set will have the

desired property. The individual requirements are easier to deal with than

28 CHAPTER 1. BACKGROUND

the property itself, and each one takes care of a small part of the property.

For maximality, we need the following requirements to be satisfied by the set

A we are constructing, in order for A to be maximal.

Pe : if (We ⊇ A and |We \ A| = ∞) then We =
∗ ω.

Each Pe requirement cares only about one set, We, and if We doesn’t contain

A then it is satisfied. If We does contain A but We =
∗ A, so there are only

finitely many things in We that are not in A, then again Pe is met (satisfied).

Otherwise, in order to satisfy Pe we need to ensure that We =∗ ω, and the

only power we have to ensure this is to put things into A, since A is the set

that we are constructing (then if We is to still contain A, it must also have

these elements in it, which is how we can force it to be close to ω). Then

if every requirement is met, the set A we are constructing will be maximal.

The P requirements are called positive requirements because they want to

put elements into A: when Pe sees there are lots of things in We that are in

the complement of A, it will want to put things into A to ensure that either

almost all of the complement is in We, or almost all of it avoids We.

We construct our set A in stages, and at each stage we may enumerate

elements into A. Then provided each step in the construction is computable,

this makes A computably enumerable. Because for each Pe we care about how

much of the complement of A is in We, we will keep track of the complement

of A by having markers an,s for the n-th (smallest) thing in the complement of

As. We want A to be infinite, so we don’t want our markers for the elements

in the complement to keep changing infinitely many times, which gives us

another set of requirements to fulfill.

Ne : lim
s
ae,s = ae exists.

These requirements are called negative requirements because they want to

keep elements out of A: Ne wants to keep a0,s, . . . , ae,s out of A so that

lims ae,s = ae exists, that is, the e-th thing in the complement of A stops

changing.

1.4. PROOF SKETCHES 29

In order to understand how we will meet all of our requirements, we first

consider only P0 in isolation.

Basic Strategy for P0 and N0: Recall that P0 wants either almost all

of the complement of A inW0, or almost all of it outside ofW0. Suppose that

at stage s, some element ap,s enters Ws (that is, an element that is currently

in A). One potential strategy would be to put ap,s into As+1. Certainly if

we put into A everything from the complement which goes into W0, then

we will have W0 \ A = ∅, and P0 is satisfied. However, if we do this it

is possible we will end up putting everything into A, which we certainly

don’t want! Instead what we can do is put a0,s, . . . , ap−1,s into As+1. Now

a0,s+1 = ap,s, and we say that the 0-state of a0,s+1 has changed from (0) to

(1). We use e-states to keep track of which elements in the complement are

in which c.e. sets. In general, the e-state of an element a at stage s is a

binary sequence with e+ 1-many elements, that indicates if a is or is not an

element of the c.e. sets W0,s,W1,s, . . . ,We,s. That is, the 0-state of a0,s being

(0) means that a0,s ̸∈ W0,s, and the 0-state of a0,s+1 being (1) means that

a0,s+1 ∈ W0,s+1. So initially, every ai,s is in 0-state (0). Now we want to keep

a0,s+1 out of A, so that a0 = lims a0,s exists N0 is satisfied. At a later stage

t > s + 1, suppose we see an,t enter Wt. We put a1,t, . . . , an−1,t into A, so

that a1,t+1 = an,t, and declare a1,t+1 to be in 0-state (1). Whenever a new

element a from the complement enters W0 we do the same thing again: put

all elements below a that have 0-state (0) into A, and a now has 0-state (1)

and so will be kept out of A. Notice that under this scheme, P0 changes ae,s

at most e+ 1 many times.

There are two possibilities. First, that infinitely many things from the

complement enter W0. In this case we will have infinitely many things in

the complement of A, all of which have 0-state (1). That is, they are all in

W0. Now P0 is satisfied, because all of A is in W0, so if W0 contains A then

W0 = ω. The other case is that this does not happen infinitely many times.

That is, after some stage s, no element an,s in the complement of As ever

enters W0. Then there are only finitely many things in A that are also in

30 CHAPTER 1. BACKGROUND

W0, namely those elements that entered W0 before stage s. Everything else

which is in A is also in W0, and so if W0 ⊇ A, then W0 =
∗ A and P0 is again

satisfied. In this scenario, all but finitely many of the elements in A have

0-state (0).

Interactions between requirements. So far we have considered P0 in

isolation, as if it is the only requirement in existence. However, we also need

to meet all other P requirements at the same time. Consider for example P1.

This requirement wants to have the same strategy as P0, and do the same

thing when it sees elements from the complement of A enteringW1. If we just

let both requirements ignore each other and act as they wish, it is possible

we will end up putting everything into A. For instance, suppose P0 has seen

p − 1 elements from the complement enter W0, so now a0,s, . . . , ap−1,s all

have 0-state (1), and P0 is happy to keep them out of A. Now suppose that

ap,s enters W1, and this is the first time something from the complement

enters W1. Then P1 wants to put all of a0,s, . . . , ap−1,s into A, and make

a0,s+1 = ap,s. If this kind of thing keeps happening, alternating between P0

and P1, eventually everything will get put into A!

Priority. To overcome this issue, instead of just letting each requirement

act independently and ignore all other requirements, we will assign a different

priority to each requirement. We will say that Pi has higher priority than

Pj if i < j. In this way, P0 is the highest priority requirement, and so can

act as described in the basic strategy, but any lower priority requirement has

to take into consideration the actions of all higher priority requirements (of

which there are finitely many). Also, we will only allow P0 to change a0,

and only allow P0 and P1 to change a1, and in general only Pi for i ⩽ e can

change ae. Now only finitely many Pi can change each ae,s, so if we ensure

that each Pi changes ae,s at most finitely many times, then lims ae,s exists

and Ne is satisfied.

In order for Pe to keep track of what higher priority requirements are

doing, the e-state of an element ai,s will be a tuple that keeps track of which

Wn, n ⩽ e, ai,s is in. For example, if a3,s is in W0,s and W3,s but not in

1.4. PROOF SKETCHES 31

W1,s nor W2,s, its 3-state at stage s will be (1, 0, 0, 1), its 2-state at stage s is

(1, 0, 0) and so on, and for e > 3, Pe is not allowed to change a3,s (it cannot

put any of a0,s, . . . , a3,s into A). Then the strategy for each Pe is to try to

maximise the e-states of those elements ai which Pe is allowed to change, so

that almost all elements in A have the same e-state.

Since each Pe keeps track only of what higher priority requirements are

doing, Pe is in a sense blind to the requirements below it, those with lower

priority. This means that a lower priority requirement might have to take

action multiple times for the same ai. For example, suppose P1 has seen 5

things go into W1 (and thus far nothing has entered W0), so P1 has acted

5 times. As a result, at stage s, a1,s, . . . , a5,s all have 1-state (0, 1). Then

perhaps at stage t > s, some large an,t enters W0, so P0 takes action and

puts a0,t, a1,t, . . . an−1,t into A. Now a1,t, . . . , a5,t are back to having 1-state

(0, 0), and so P1 will want to take action for these elements again, should it

see more things from the complement of A go into W1. We say that P1 has

been injured, because the action of P0 has destroyed the work of P1, causing

P1 to need to start again.

The point of having a priority ordering is that we allow higher priority

requirements to injure lower priority requirements, but not the other way

around. If we don’t have a priority ordering, and we didn’t allow any re-

quirement to injure any other requirement we would get stuck and won’t be

able to satisfy all the requirements, but if we allowed any requirement to in-

jure any other requirement, we would once again be in trouble. For example,

it could be that a1,s has 1-state (1, 0), and then an,s enters W1,s. Now P1

acts and puts a1,s, . . . , an−1,s into A, so now a1,s has 1-state (0, 1). Then per-

haps ap,t, t > s enters W0,t and P0 takes action again, putting a1,t, . . . , ap−1,t

into A, turning the 1-state of a1,t back into (1, 0). If this happens infinitely

many times, we end up with everything except for a0 in A! Having a pri-

ority ordering and only allowing higher priority requirements to injure lower

priority requirements is a middle ground that lets us eventually satisfy every

requirement, even though in the process of satisfying one requirement, we

32 CHAPTER 1. BACKGROUND

may cause another (lower priority) requirement to have to start over.

We can force requirements to respect higher priority requirements (i.e. not

injure them) by insisting that a requirement Pe can only act to increase the

e-state of an element ai,s, where the e-states are ordered lexicographically

(so for example with 2-states, (0, 0) <L (0, 1) <L (1, 0) <L (1, 1) and (1, 1) is

the highest 2-state).

We say that Pe requires attention at stage s if there is an ai,s ∈ We and

Pe can increase the e-state of some aj,s, e ⩽ j < i, by making aj,s+1 = ai,s

(by enumerating aj,s, . . . , ai−1,s into A, as in the basic strategy).

Construction. We start with A0 = ∅. At stage s, find the highest

priority Pe that requires attention at stage s. Let j be the smallest such that

Pe can increase the e-state of aj,s, and let an,s ∈ We,s be the (smallest) element

by which Pe can do this. Enumerate aj,s, . . . , an−1,s into As+1. Repeat this

until there are no more Pe that require attention at stage s.

Verification. We now check that our construction does indeed yield a

maximal set, that is, all of our requirements are met.

Lemma 13. All the Ne requirements are met.

Proof. Each element ae,s in As can only be changed by Pi for i ⩽ e, so all

changes to ae,s will be reflected by a change in the e-state of ae,s. There are

finitely many e-states, and the actions of Pi for i ⩽ e will only ever increase

the e-state of ae,s. Thus the e-state of ae,s, and consequently ae,s itself, only

change finitely many times. Then lims ae,s exists and Ne is satisfied.

Lemma 14. All the Pe requirements are met.

Proof. Suppose not. Let e be the smallest such that Pe is not met. That is,

A ⊆ We and |We \A| = ∞, but also |ω \We| = ∞. For this to happen, there

are infinitely many elements in the complement of A that are in We, and

infinitely many that are not. Let n be such that an ̸∈ We. Go to a stage s0

where all Pi for i < e have finished acting on aj,s0 for j ⩽ n, and an,s0 = an.

There are infinitely many elements in We \ A, so there are infinitely many

1.4. PROOF SKETCHES 33

stages s1 > s0 where we see a new aj,s1 ∈ We,s1 for some j > n. If Pe requires

attention at stage s1, the smallest element ai,s1 whose e-state can be increased

by Pe’s action cannot be an,s1 , nor can it be smaller than an,s1 , otherwise Pe

will enumerate an,s1 into As1+1, contradicting either that We ⊇ A or that

an /∈ We. This means that aj,s1 is not in Wi,s1 for some i ⩽ e for which

an,s1 ∈ Wi,s1 , so that shifting aj,s1 down to an,s1+1 would decrease the e-state

of an. Further, aj,s1 never enters Wi, for if it does then at the stage t when

it enters, Pe will act and enumerate an,s1 into At+1. If Pe does not require

attention at stage s1, that has to be because there is no element in As1 below

aj,s1 whose e-state can be increased by Pe. Since an,s1 has an e-state ending

in 0 (so not the highest possible e-state), this means that again aj,s1 is not

in Wi for some i ⩽ e for which an,s1 ∈ Wi.

Infinitely often we have an an,s ∈ Wi,s for some i ⩽ e and a larger aj,s /∈
Wi. There are only finitely many i ⩽ e, so for (at least) one of these Wi,

there are infinitely many such elements. That is, there are infinitely many

elements from the complement of A both in Wi and not in Wi, so in fact

Pi is not met. This contradicts our choice of e, thus all Pe must have been

satisfied.

All of the requirements have been satisfied, and so the constructed set A

is indeed maximal.

The priority method is very useful and can be adapted to many different

situations. In general, priority arguments can be much, much more compli-

cated than this example, and they can also be simpler. It’s possible in some

priority arguments that the requirements don’t interact with each other at

all (do not cause injury to other requirements), and can each simply act in-

dependently. In this case all we need to do is reserve a part of the set or

space that we are constructing for each requirement to freely take action in.

It could also be that the requirements only need to take a finite number of

actions before being satisfied forever. For more complicated priority argu-

ments, various different techniques and models have been developed over the

34 CHAPTER 1. BACKGROUND

years to ensure all the requirements are met. For example, a tree of strategies

can be used for more complicated priority requirements to have multiple ver-

sions of each requirement, when there are multiple ways a requirement can

act depending on if a certain condition is met or not. Here, each version of a

lower priority requirement ‘guesses’ how all higher priority requirements will

act, and has a strategy based on these guesses. Then a requirement is met if

some version of it on the tree is met. Another useful model is the pinball ma-

chine, which forces elements (that positive requirements want to enumerate)

to pass through every higher priority negative requirement in turn before

being enumerated. The priority method is used extensively throughout this

thesis.

Chapter 2

Polish Groups

Sometimes, the combinatorics of specific structures cannot be separated from

the problem at hand in the way Post suggested doing. Regardless, techniques

that were developed for studying degree structures can still be used in applied

contexts, for instance priority arguments. Questions about effective processes

(i.e. computability) have been asked in many areas of mathematics, including

analysis, algebra, logic, and so on.

For instance, a significant portion of Turing’s 1936 paper [75] (about

Turing machines) was focused on computable reals. Turing notes that ‘al-

though the subject of this paper is ostensibly the computable numbers, it is

almost equally easy to define and investigate computable functions of an inte-

gral variable or a real or computable variable, computable predicates, and so

forth’ [75]. So while Turing focused on computable numbers, his techniques

could be used for computable functions just as well. Around the 1950s this

was picked up by Markov, Zaslavskii, Ceitin and others, and in fact nowa-

days Turing’s notion of computable functions is more commonly known as

Markov computability [18]. Much of classical elementary real analysis can

be effectivized using Markov computability. In the mid 1950s Grzegorczyk

and Lacombe laid out the foundations of computable analysis in detail. A

lot of the work at this time was essentially on computable calculus [18].

Several different traditions and approaches arose independently in com-

35

36 CHAPTER 2. POLISH GROUPS

putable analysis. Banach and Mazur introduced sequential computability for

functions on computable reals in 1937, which is more general than Markov

computability. That is, all Markov computable functions are sequentially

computable, but the converse is not always true (so some sequentially com-

putable functions are not computable by a Turing machine) [18]. Another

notion is Borel computability, also defined for functions on computable real

numbers, which was shown to be equivalent to Markov computability in 1957

by Kriesel, Lacombe and Shoenfield [47] and in 1959 by Ceitin [10].

One key notion is typically attributed to Kleene [44] from 1952, although

many other equivalent definitions were introduced around the same time.

Kleene computable functions are not restricted to the computable reals only,

and are equivalent to effectively continuous functions, one form of which was

introduced by Grzegorczyk and Lacombe. Essentially, Borel computability

corresponds to effective continuity restricted to the computable reals. On

the other hand, Markov computable functions are not necessarily continuous,

and so Markov computability is not equivalent to Kleene computability, as

Kleene computable functions are necessarily continuous. Further, Specker

[74] showed in 1949 that even continuous Markov computable functions are

not necessarily Kleene computable.

Many other notions for computable real-valued functions, for example

Lacombe-Grzegorczyk computability (introduced independently in 1955 by

Lacombe and 1957 by Grzegorczyk) and uniformly computable functions (in-

troduced by Caldwell and Pour-El in 1975) have also turned out to be equiva-

lent to Kleene computability. With so many definitions arising in computable

analysis, it was important to know which definitions were equivalent, which

were stronger or weaker, and so on, in order to make sense of the existing

literature on the subject.

Similarly in effective algebra, we saw that various notions for effective pre-

sentability of algebraic structures emerged by the early 1960s, with the most

well-studied being c.e. presentations, co-c.e. presentations and computable

presentations. As with computable functions, some key results early on to

37

characterise and separate these notions in various classes of algebraic objects.

For example, Mal’cev [52] in 1962 gave a characterisation of computable pre-

sentability for the groups GS, where GS is the subgroup of (Q,+) generated

by {1, 1
pni

: ⟨i, n⟩ ∈ S}, and ⟨i, n⟩ ∈ S implies ⟨i, k⟩ ∈ S for all k ⩽ n. He

found that GS is computably presentable if and only if S is computably enu-

merable. As well as the Novikov and Boone result about undecidable word

problems in finitely presented groups, another example in group theory comes

from Khisamiev [42], who showed in 1986 that every c.e. presented torsion-

free abelian group has a computable presentation. For Boolean algebras,

some key examples include Feiner’s result from around 1968 [23, 24] that

there is a c.e. presented Boolean algebra that does not have a computable

presentation (i.e. is not isomorphic to any computable Boolean Algebra), and

the result of Downey and Jockusch from 1994 [16] that every low Boolean

algebra has a computable presentation. The presentability of other standard

classes have also been studied and characterised by Metakides and Nerode

in 1979 [56], and many others [3, 21, 32].

Simultaneously and independently, multiple different notions of effective

presentability for separable structures were being used by the early 1960s

(recall the definitions by Ceitin and Moschovakis for Polish spaces). As

with the rationals in the reals, there is a large class of topological spaces

with computable countable dense subsets. Generally, many (though not all)

of the natural separable spaces that arise classically in the literature have

computable presentations in this sense. There was also some early work on

computable metric spaces, for example by Ceitin in 1959 [10], but among

separable structures, the theory around computable Banach spaces and com-

putable compact spaces is more developed [18].

However, in contrast with effective analysis and algebra, the notions of

effective presentability for separable spaces (that is, left-c.e. presentations,

right-c.e. presentations and computable presentations) have only been com-

pared very recently, in the last several years [35, 36, 49, 54]. For instance, it

was shown in 2023 that there are right-c.e. Polish spaces not homeomorphic

38 CHAPTER 2. POLISH GROUPS

to any computable Polish space [6], and left-c.e. presented Polish spaces that

are not computable Polish, up to homeomorphism [54]. In a similar vein,

this chapter focuses on the following question.

Question 1. Does there exist a Polish space that is both left-c.e. and

right-c.e. presentable but not computably presentable?

The question changes based on the type of isomorphism under which the

structures are considered. For instance, one can study them up to quasi-

isometry, isometry, bi-Lipschitz maps, homeomorphism, and so on. Consid-

ering the structures up to isometry, it is not too hard to construct a Polish

space that is left-c.e. (or right-c.e.) but not computable. Simply take the

space [0, α] with the Euclidean metric for some non-computable left-c.e. real

α. The same can be done for the right-c.e. case by taking α to be a right-

c.e. real that is not computable. Observe, however, that this would not

suffice to answer Question 1 up to isometry, as a real number that is both

left-c.e. and right-c.e. is computable. Instead, to answer the question up to

isometry, we encode a ∆0
2 set into a Polish space, and show that the space is

both left-c.e. and right-c.e. presentable. Further, we show that this space is

computably presentable if and only if the encoded ∆0
2 set is limitwise mono-

tonic. Since there are ∆0
2 sets that are not limitwise monotonic [41, 43], in

Theorem 16 we conclude that there is a space which answers Question 1

(up to isometry) in the affirmative. Moreover, Theorem 16 is witnessed by

a discrete space. A totally disconnected example that works up to homeo-

morphism can be found in the recently submitted [46]. We seek an example

which is neither discrete nor totally disconnected. Extending the technique

in Theorem 16, we prove the following.

Theorem 21. There is a compact connected Polish space that has a left-

c.e. presentation and a right-c.e. presentation but does not have a computable

presentation, up to isometry.

Another related area of study is the recently emerged theory of effectively

presented Polish groups. Following a similar pattern seen in effective algebra

[45, 49], an effective presentation of a Polish group is defined to be an effective

2.1. AN ALMOST COMPUTABLE METRIC SPACE 39

presentation of the Polish domain, upon which the (group) operations can

be effectively computed. For instance, the domain of a Polish group can be

computable, left-c.e. or right-c.e. Polish. Further, we need the operations to

be effective in some sense. We examine this in detail in Section 2.2, where we

see that two common notions for the effectiveness of the operations differ in

general. Interestingly, the choice of these generally non-equivalent definition

turns out to not affect our second main result. Recently, it was shown that

there is a right-c.e. Polish group that is not topologically isomorphic to any

computably presented Polish group [45]. We answer Question 1 for Polish

groups up to topological isomorphism.

Theorem 37. There is a Polish group G that has a left-c.e. presentation,

a right-c.e. presentation, but no computable presentation, up to topological

isomorphism.

In order to prove Theorem 37, we develop techniques that allow us to

reduce this question to a question about discrete groups. More specifically,

we establish a one-to-one correspondence between topological and effective

algebraic presentations of certain groups.

This chapter is organised as follows. Section 2.1 explores effective presen-

tations of metric spaces and contains the proof of Theorem 21. Section 2.2

compares the notions of effectively continuous and sequentially computable

operations on left-c.e. presented Polish groups, and establishes the aforemen-

tioned correspondence. Finally, Section 2.3 contains the proof of Theorem

37.

2.1 An Almost Computable Metric Space

To begin, we recall some definitions for presentations of Polish spaces.

Definition 15. Let M = (M,d) be a Polish space. X = ((αi)i∈N, d) is a

computable presentation of M if:

• (αi)i∈N is dense in M , and

40 CHAPTER 2. POLISH GROUPS

• d(αi, αj) are reals uniformly computable in i, j.

Similarly X is a left-c.e. presentation (or lower semi-computable presenta-

tion) ofM if d(αi, αj) are uniformly left-c.e. reals, and it is a right-c.e. presen-

tation (or upper semi-computable) if d(αi, αj) are uniformly right-c.e. reals.

To this end, we view all our spaces up to isometry.

Theorem 16. There exists a discrete Polish space that has a left-c.e. pre-

sentation and a right-c.e. presentation but does not have a computable pre-

sentation, up to isometry.

Proof. The idea is to look at spaces with recognisable ‘components’ that we

can use to ensure the space does not have a computable presentation. We

take a metric with just two non-zero distances: one small distance for points

within the same component, and one large distance for points in different

components.

Let an n-component be a component with n points in it. Let a dis-

crete component space be a discrete metric space with infinitely many 1-

components and one n-component for infinitely many n > 1. Note that for

each n > 1 there is at most one n-component. Define a metric for discrete

component spaces:

d(x, y) =

0 if x = y;

1 if x ̸= y and x, y are within the same component;

2 if x ̸= y and x, y are in different components.

The idea is that we can ‘code’ a set S ⊆ N into a discrete component space

MS so that MS has a computable presentation if, and only if, S is limitwise

monotonic, as defined below:

Definition 17. [41, 43, 38] An infinite set S ⊆ N is said to be limitwise

monotonic if

S = rng sup
y
f(x, y)

2.1. AN ALMOST COMPUTABLE METRIC SPACE 41

for some total computable f where supy f(x, y) exists for all x.

The idea of the coding is that n ∈ S iffMS has an n-component. Further,

if S is ∆0
2 (but not necessarily limitwise monotonic) then MS has a left-

c.e. presentation and, via a different construction, a right-c.e. presentation.

Since it is well-known [41, 43] that not every ∆0
2 set is limitwise monotonic,

the theorem follows.

Lemma 18. A discrete component space M has a computable presentation

if and only if the set SM = {n > 1 : M has an n-component} is limitwise

monotonic.

Proof. Suppose M = (M,d) has a computable Polish presentation X. Then

X is dense in M and d(xi, xj) are uniformly computable reals for all xi, xj ∈
X. Because of the discrete component space metric, it suffices to compute

d(xi, xj) to within an accuracy of 1
2
in order to know if d(xi, xj) is 0, 1 or 2.

As such, when we say compute the distance d(xi, xj), we mean compute it

to within an accuracy of 1
2
, and from that conclude what the distance must

be. Construct a function f witnessing that SM is limitwise monotonic.

Construction.

Stage 0 Let f(k, 0) = 1 for all k. Declare all xj to be unassigned.

Stage s Compute the distances d(xi, xs) for all i ⩽ s. Then for each such i

in turn, consider the following cases.

Case 1 Both xi and xs are unassigned, but d(xi, xs) = 1. Assign xi

and xs to the k-th component where k ∈ ω is the least number

not currently used to label a component. Define f(k, s) = 2.

Case 2 The element xi is already assigned to the k-th component, xs

is unassigned and d(xi, xs) = 1. Assign xs to the k-th component

and define f(k, s) = f(k, s− 1) + 1.

Case 3 Either d(xi, xs) = 1 and both xi and xs are already assigned

to a component, or d(xi, xs) = 0, or d(xi, xs) = 2. Do nothing.

42 CHAPTER 2. POLISH GROUPS

For all f(k, s) that are not already defined, let f(k, s) = f(k, s− 1).

Notice that as more points are computed in X, we may find new n-

components and these can grow, but never shrink. Hence f(x, s) is mono-

tonically increasing in s. Since the k-th component corresponds to an n-

component for some n, at some large enough stage sk, all n points within

this component will have shown up in the construction and been assigned

to the k-th component, and so f(k, s) = n for all stages s ⩾ sk. Thus

lims f(k, s) = sups f(k, s) = n, f is computable, and in particular SM =

rng sups f(k, s). Hence SM is limitwise monotonic.

Now suppose S = rng supy f(x, y) is an infinite limitwise monotonic set,

so f is computable and the supremum exists for every x. It is known [40, 39]

that if the range is infinite, we can ensure that f is injective. We can also

assume that f(i, 0) = 0 for all i. We construct a computable presentation

X = ((xi)i∈ω, d) for the discrete component space M that has SM = S. To

uniformly compute the distances d(xi, xj), wait for both xi and xj to show

up in the construction, and from then on output either 1 or 2 as per the

construction. For simplicity, d(xi, xj) = 0 iff i = j.

Construction.

Stage 0 For all i define ni,0 = 0 and say that xi is unassigned.

Stage s > 0 For every i ⩽ s, if f(i, s) > ni,s−1 then let m = f(i, s) −
ni,s−1, take the least k for which x2k is unassigned and assign x2k,

x2(k+1), . . . , x2(k+m−1) to i (to the i-th component). If s is odd, assign

xs to −1 (this is to say it is not in an n-component for n > 1).

Define d(xi, xj) = 1 for each xi, xj that are assigned to the same compo-

nent k ̸= −1, and d(xi, xj) = 2 for xi, xj that are assigned to different

components (including if one of xi, xj is assigned to −1), or if both xi

and xj are assigned to −1. Finally, define ni,s = maxi⩽s f(i, s).

Here the odd-numbered elements x2k+1 each form a 1-component, giving

us countably many 1-components. Since f is injective and has infinite range,

2.1. AN ALMOST COMPUTABLE METRIC SPACE 43

there is exactly one n-component per n in the range, which consists of points

xi with even indices. Thus we have constructed a computable presentation

of M, a discrete component space with SM = S.

Lemma 19. For any infinite ∆0
2 set S, there is a left-c.e. discrete component

space M such that SM = S.

Proof. Fix f injective, computable, with f(x, 0) = 0 for all x, such that

S = rng(lims f(x, s)) and lims f(x, s) exists for every x. Construct a left-

c.e. discrete component space M where d(xi, xj) = 0 iff i = j.

Construction.

Stage 0 Declare all xi to be unassigned.

Stage s If s is odd then assign xs to −1 (to say it is not in any n-component,

it is a 1-component). For each i ⩽ s, consider the following cases.

Case 1 f(i, s) = f(i, s− 1). Do nothing

Case 2 f(i, s) > f(i, s−1). Let m = f(i, s)−f(i, s−1), take the least

k for which x2k is unassigned and assign x2k, x2(k+1), . . . , x2(k+m−1)

to i, the i-th component.

Case 3 f(i, s) < f(i, s−1). Let m = f(i, s−1)−f(i, s), take the first
m elements xj that are currently assigned to i and re-assign them

to −1.

Enumerate {r ∈ Q : r < 1} into the left cuts d−(xi, xj) for all i ̸= j such

that xi, xj are assigned to the same component k ̸= −1. Enumerate

{r ∈ Q : r < 2} into the left cuts d−(xi, xj) for all xi, xj assigned to

different components, or if one or both of xi, xj are assigned to −1.

Elements are only ever reassigned from i to −1, so distances only ever

increase and hence this presentation of M is a left-c.e. presentation. Since f

is injective, the space M is a discrete component space with SM = S.

44 CHAPTER 2. POLISH GROUPS

Lemma 20. For any infinite ∆0
2 set S, there is a right-c.e. discrete compo-

nent space M such that SM = S.

Proof. Fix f injective, computable, with f(x, 0) = 0 for all x, such that

S = rng(lims f(x, s)) and lims f(x, s) exists for every x. Construct a right-

c.e. discrete component space M.

Construction.

Stage 0 Declare all xi to be unassigned.

Stage s If s is odd then assign xs to −1 (to say it is not in any n-component,

it is a 1-component). For each i ⩽ s, consider the following cases.

Case 1 f(i, s) = f(i, s− 1). Do nothing

Case 2 f(i, s) > f(i, s−1). Let m = f(i, s)−f(i, s−1), take the least

k for which x2k is unassigned and assign x2k, x2(k+1), . . . , x2(k+m−1)

to i, the i-th component.

Case 3 f(i, s) < f(i, s − 1). For xj that are assigned to i, re-assign

xj to −2 (to say it is no longer in any n-component). If f(i, s) >

1, then take the least k for which x2k is unassigned and assign

x2k, x2(k+1), . . . , x2(k+f(i,s)−1) to i.

Enumerate {r ∈ Q : r > 1} into the right cuts d+(xi, xj) for all i ̸= j

where xi, xj are assigned to the same component i > −1. Enumerate

{r ∈ Q : r > 2} into the right cuts d+(xi, xj) where xi, xj are assigned

to different components (including if exactly one of xi, xj is assigned

to −1 or to −2), or if both xi, xj are assigned to −1. Enumerate

{r ∈ Q : r > 0} into the right cuts d+(xi, xj) where xi, xj are both

assigned to −2.

Elements are only ever reassigned from i to −2, and all elements that are

assigned to −2 are made into the same point, so distances only ever decrease

and hence this presentation is a right-c.e. presentation of M. Since f is

injective, the space M is a discrete component space with SM = S.

2.1. AN ALMOST COMPUTABLE METRIC SPACE 45

To complete the proof of Theorem 16, take S to be ∆0
2 not limitwise

monotonic. Then consider the space M that has SM = S, which is unique

up to isometry. Use this S in Lemma 19 and Lemma 20 to construct a left-

c.e. and a right-c.e. presentation of M. By Lemma 18, M is not computable

(has no computable presentation) since S is not limitwise monotonic.

Now we consider compact, connected spaces in order to show our main

result.

Theorem 21. There is a compact connected Polish space that has a left-

c.e. presentation and a right-c.e. presentation but does not have a computable

presentation, up to isometry.

Proof. Our spaces here can each be viewed as a closed subset of the Hilbert

cube. We think of points in terms of their coordinates. Then the distance

between two points x = (x0, x1, x2, . . .) and y = (y0, y1, y2, . . .) is

d(x, y) =

√∑
i

(xi − yi)2.

The points will have at most two non-zero coordinates, so the sum has at

most 4 (non-zero) terms in it and therefore is finite.

For an infinite set S, define a component space MS as follows. The space

MS has a central point with branches coming out of it: each branch is a

line segment along an axis (so points in a line segment have a single non-zero

coordinate), perpendicular to all other branches. An n-component is a branch

of length 4
2n

with a circle of radius 3
4

1
2n

attached to the end. Each circle is

in its own plane, perpendicular to all other branches and circles (so points

on a circle have at most two non-zero coordinates). For each n ∈ S, the

component space MS has exactly one n-component. Additionally, for each

n /∈ S, MS has an empty branch (a line segment with no circle on the end) of

length 4
2n
, and a branch of length 4

2n
with a larger circle of radius 1

2n
attached

to the end. These bits of ‘junk’ will not be considered as n-components.

46 CHAPTER 2. POLISH GROUPS

Figure 2.1: Example sketch of a component space. To accurately depict this,

we would need 10 dimensions, since each circle and each line is in a plane

perpendicular to all other circles and lines in the space.

The idea is that to get rid of n-components in the left-c.e. space, we ex-

pand the circle in the n-component to be of radius 1
2n
. In the right-c.e. space,

collapse it to a single point. Then to make the left-c.e. and right-c.e. construc-

tions isomorphic, when we get rid of an n-component in the left-c.e. space we

will introduce an empty branch of the same length, and in the right-c.e. space

a branch with a circle of radius 1
2n
.

For example, Figure 2.1 is a sketch of a component space, with a 1-

component and a 4-component, but without a 2-component nor a 3-component

(instead there is some ‘junk’), and all other branches are not shown.

Lemma 22. A circle of radius r can be unambiguously recognised in a com-

putable presentation of a component space, by finding four points x0, x1, x2, x3

with distances d(x0, x1) = d(x1, x2) = d(x2, x3) = d(x3, x0) =
√
2r and

d(x0, x2) = d(x1, x3) = 2r, where the distances have been computed up to

a high enough accuracy. That is, such points must come from a circle of

radius r and not from any other part of the space.

Proof. The concern here is that four such points might at first appear to

be coming from a circle, but at a later stage we find out that in fact they

are from elsewhere in the space, which would mean that there actually is no

2.1. AN ALMOST COMPUTABLE METRIC SPACE 47

circle of radius r in the space. For instance, simply finding three points that

are equidistant is not enough to determine that there is a circle of radius r in

the space, because although they determine a unique circle in 2D Euclidean

space, in our spaces they may in fact be located on 3 different branches, as

in Figure 2.2.

Figure 2.2: Three points that appear to be on a circle but are not from a

circle

However, in a component space (although, of course, not in general), four

points are sufficient. Think of a coordinate system for the component space

where the origin is at the centre of the space and each point has at most two

non-zero coordinates, one if it is on a branch and two if it is on a circle. That

is, branches lie along axes and there is a second axis per component. Then

the perpendicularity of components means that two points within different

components cannot both have non-zero entries at the same coordinate. Let

us consider the possible cases.

Case 1: There are 3 points that are within the same component

In this case, in order to have the distances described, the 4th point must

be in the same component as the other points. This is because if we have 3

points, they lie on a plane, and a fourth point with the distances described is

48 CHAPTER 2. POLISH GROUPS

forced to lie within the same plane as the first 3 points. This can be checked

by a simple calculation:

Consider the first 3 points x0, x1, x2 (which are within the same compo-

nent) under a new coordinate system, where x1 is at the origin and x0, x2 are

along axes. That is, x1 = (0, 0, 0), x0 = (
√
2r, 0, 0), x2 = (0,

√
2r, 0) and the

fourth point x3 = (w, y, z) is to be determined. Then

d(x0, x3)
2 = w2 − 2

√
2rw + 2r2 + y2 + z2

= d(x2, x3)
2 = w2 + y2 − 2

√
2ry + 2r2 + z2

That is, w = y. Now d(x1, x3)
2 = 4r2 = w2 + y2 + z2 = 2w2 + z2 so

z2 = 4r2 − 2w2. Finally,

d(x0, x3)
2 = 2r2 = w2 − 2

√
2rw + 2r2 + w2 + 4r2 − 2w2

So w =
√
2r, and hence z2 = 0. That is, the fourth point x3 must be within

the same plane as x0, x1, x2 in order to have the distances described.

In this case, this means the fourth point must be within the same com-

ponent as the other three. Now in the case that all four points are within

the same component, they clearly must all come from the circle.

Case 2: There are 2 points within the same component

Suppose we have two points within one component and a third point in

a different component. Consider the plane on which these three points lie.

Similar to Case 1, the distances between the points force the fourth point to

be within this same plane. Since we are in a component space, the fourth

point can have at most two non-zero coordinates. By perpendicularity of the

components, these coordinates cannot be a mix of the non-zero coordinates

from the component of the first two points and the component of the third

point. That is, the fourth point must be either in the same component as

the first two points (in which case we have Case 1 again), or in the same

component as the third point. In the latter, we have two points in one

component and two points in a second component. If one of the points is

at the origin, we are back to Case 1. Otherwise, let us consider the two

2.1. AN ALMOST COMPUTABLE METRIC SPACE 49

subcases. For notational simplicity, we will write only the 4 potentially non-

zero coordinates, so denote (w, y, u, v) the coordinates of a point, where the

first two coordinates are the non-zero coordinates of one component and the

second two coordinates are the non-zero coordinates of the other components.

Subcase 1: (at least) one point is on a branch

Let x0 = (w0, y0, 0, 0), x1 = (0, 0, u0, 0) and x2 = (0, 0, u1, v1) be the first

three points, so x1 is on a branch and y0, v1 may potentially be zero (so x0

and x2 may or may not be on branches). Then

d(x0, x1) =
√
w2

0 + y20 + u20

d(x0, x2) =
√
w2

0 + y20 + u21 + v21

d(x2, x3) =
√
u21 − 2u0u1 + u20 + v21

Now if d(x0, x1) = d(x1, x2) =
√
2r and d(x0, x2) = 2r, then w2

0+y
2
0+u

2
0 =

u21 − 2u0u1 + u20 + v21 and so

d(x0, x2)
2 = 4r2 = w2

0 + y20 + u21 + v21

= 2u21 + 2v21 − 2u0u1

But then

d(x1, x2)
2 = 2r2 = u21 + v21 − 2u0u1 + u20

= u21 + v21 − u0u1

That is, u0u1 = u20. That is, u1 = u0 and so v1 = 0 because x1 is on a

branch and the circles are on the ends of the branches. But then x1 = x2, a

contradiction since we assumed x2 is a distinct point.

Similarly if d(x0, x1) = d(x0, x2) =
√
2r and d(x1, x2) = 2r, a simple

calculation gives rise to a contradiction.

Subcase 2: all points are on circles

Let x0, x1 be on the nth circle and x2, x3 be on the mth circle. These

circles have radius at most 1
2n

and 1
2m

respectively (if the space does not

50 CHAPTER 2. POLISH GROUPS

have an n-component or m-component. If it does, the radii will be 3
4
this).

Then since x0, x1 are both on the same circle, d(x0, x1) ⩽ 2
2n
. Further, x0

and x2 are on separate components and must each be on the circle part.

That is, x0 is at least 4
2n

(the length of the branch) away from the origin,

and similarly x2 is at least 4
2m

away from the origin. Thus by Pythagoras’

theorem, d(x0, x2) ⩾ 4
√

1
22n

+ 1
22m

. Without loss of generality, assume n ⩾

m. Consider when d(x0, x2) = d(x0, x1) =
√
2r and d(x0, x3) = 2r. Now we

have a contradiction:

4
√
2

2n
⩽ 4

√
1

22n
+

1

22m
⩽ d(x0, x2) = d(x0, x1) ⩽

2

2n

The other case, where d(x0, x2) = d(x0, x3) =
√
2r and d(x0, x1) = 2r

gives a similar contradiction. The point is that the lengths of the branches

combined with the relative size of the circles make this case impossible.

Case 3: Each of the 4 points is in a different component

Consider the first three points x0, x1, x2, which collectively have at most

6 non-zero coordinates, 2 per point, and consider the plane on which they

lie. Any non-zero coordinate of any point on this plane must be one of the 6

coordinates aforementioned. As in Case 1, the fourth point must lie on this

plane in order to satisfy the described distances, and so by perpendicularity

of components it must be within the same component as one of the first

three points. That is, in a component space, four points with the distances

described cannot all be in different components.

This covers all the possible cases, and shows that 4 points in a component

space with the described distances must indeed come from a circle of radius

r and not anywhere else.

In a computable presentation, at each finite stage we do not know the

distances exactly, so it may still be ambiguous where a point is in the space.

For instance if we have 4 points whose distances at the current stage are

known to within an accuracy of 2r, or even to within an accuracy of r
2
, and

2.1. AN ALMOST COMPUTABLE METRIC SPACE 51

could have the described distances (as far as we know currently with this

level of accuracy), we cannot conclude that they actually are from a circle

of radius r, or of radius 3
4
r, etc. However, in component spaces, we have

a discrete jump between the possible radii that circles can have, and the

smaller the radius, the smaller this jump is. Because of this, if we compute

the distances to a high enough accuracy and find the described distances, for

instance up to r
100

(although of course a lower accuracy would do just fine

too as long as it is not too low), it is clear that the points must be from a

circle of radius r and not from anywhere else in the space nor from a circle of

a different radius. The accuracy that we need to compute the distances to,

in order to be certain that the points are what they appear to be, depends

on the radius of the circle – the smaller the radius, the more accurate we

need to be.

Lemma 23. If a component space M has a computable presentation, then

the set SM = {n ∈ N : M has an n-component} is computably enumerable.

Proof. Suppose M is a component space with a computable presentation.

Enumerate SM as follows. At stage s, for each n ⩽ s not already enumerated

into SM, consider every quadruple of points xi, xj, xk, xl that have shown

up in the computable construction of M by stage s. If the following two

conditions hold for these points xi, xj, xk, xl, then enumerate n into SM:

1. The distances between xi, xj, xk and xl have been computed to an ac-

curacy as described in the Lemma 22.

2. The distances are, to within this accuracy, d(xi, xj) = d(xj, xk) =

d(xk, xl) = d(xl, xi) =
√
2r and d(xi, xk) = d(xj, xl) = 2r where

r = 3
4

1
2n
.

Then if M has a circle of radius 3
4

1
2n
, at some stage there will be four

points that satisfy the two conditions. When this happens, n gets enumerated

into SM. Further, if at some stage n is enumerated, then by Lemma 22 the

52 CHAPTER 2. POLISH GROUPS

computable presentation must have a circle of radius 3
4

1
2n
. Thus the c.e. set

SM constructed is indeed SM = {n ∈ N : M has an n-component}.

Lemma 24. For any co-c.e. set S, there is a left-c.e. component space M
with SM = S.

Proof. Let S be an infinite co-c.e. set. Observe that in a left-c.e. presentation

of a component space, we can start constructing what appears to be a circle

of radius r on the end of a branch, and then at some stage s, increase the

distances so that the circle now has a bigger radius. This can be done while

still maintaining that the space is left-c.e. (this is not necessarily true for any

arbitrary shape, but is for circles). For a point y on the circle, as in Figure

2.3, imagine a ray through y that starts where the circle meets the branch.

Then the place where this ray hits the larger circle is where we send y to.

Figure 2.3: Expanding a circle at stage s in a left-c.e. manner

The points on the branch stay fixed, and so distances of any points within

the component only get larger. For any point x anywhere else in the space,

consider just the points x and any point y on the circle we are expanding.

Each only has at most 2 non-zero coordinates, and these coordinates must

be different since x and y are within different components. So the distance

between them is d(x, y) =
√
x20 + x21 + y20 + y21, where x0, x1 are the (possibly)

2.1. AN ALMOST COMPUTABLE METRIC SPACE 53

non-zero coordinates of x, and y0, y1 are the (possibly) non-zero coordinates

of y. In expanding the circle, the absolute values of y0 and y1 can only

increase, and hence d(x, y) must increase too. That is, expanding a circle in

a component space in this manner is a left-c.e. process.

Build the n-th component to occupy the coordinates 3n and 3n + 1, so

for any point in the component, these are the only two coordinates with

(potentially) non-zero entries.

Construction.

Stage s Add two or three new points to the construction for each n ⩽ s as

follows, by enumerating the appropriate numbers into the left cuts of

the distances between points.

Case 1 n is in S at stage s. Add a new point each to the circle

and to the branch in the coordinates 3n and 3n + 1, to continue

constructing an n-component.

Case 2 n leaves the set S at stage s, so n ∈ Ss−1 \ Ss. Expand the

circle in the coordinates 3n and 3n + 1 to have a radius of 1
2n

instead of 3
4

1
2n
, as in Figure 2.3. Add a new point to the expanded

circle and a new point to the branch in the coordinates 3n and

3n+ 1.

Case 3 n left the set S at an earlier stage t < s. Add a point each to

the expanded circle and to the branch in the coordinates 3n and

3n + 1. Add a third point in the coordinate 3n + 2, building an

empty branch of length 4
2n

in this coordinate.

Then M has an n-component exactly for the n that are in S, so SM = S,

and M has ‘junk’ for each n that is not in S. In particular, M is exactly

the component space MS built from the set S.

Lemma 25. For any co-c.e. set S, there is a right-c.e. component space M
with SM = S.

54 CHAPTER 2. POLISH GROUPS

Proof. Let S be an infinite co-c.e. set. Observe that in a right-c.e. pre-

sentation of a component space, we can collapse a circle into a point in a

right-c.e. manner.

Figure 2.4: Collapsing a circle at stage s in a right-c.e. manner

As in Figure 2.4, distances of points within the component only get

smaller. For any point x anywhere else in the space, consider just the points x

and any point y on the circle we are collapsing. Again, each only has at most

two non-zero coordinates which must be different. So the distance between

them is d(x, y) =
√
x20 + x21 + y20 + y21, where x0, x1 are the (possibly) non-

zero coordinates of x, and y0, y1 are the (possibly) non-zero coordinates of y.

In collapsing the circle, the absolute values of y0 and y1 only decrease, and

hence d(x, y) must decrease too. As such, this collapse is a right-c.e. process.

Build the n-th component to occupy the coordinates 3n and 3n + 1, so

for any point in the component, these are the only two coordinates with

(potentially) non-zero entries.

Construction.

Stage s Add one, two or three new points to the construction for each n ⩽ s

as follows, by enumerating the appropriate numbers into the right cuts

of the distances between points.

2.2. SEQUENTIAL COMPUTABILITY AND EFFECTIVE CONTINUITY55

Case 1 n is in S at stage s. Add a new point each to the circle

and to the branch in the coordinates 3n and 3n + 1, to continue

constructing an n-component.

Case 2 n leaves the set S at stage s, so n ∈ Ss−1 \ Ss. Collapse the

circle in the coordinates 3n and 3n+1 onto the branch (which only

occupies the coordinate 3n), as in Figure 2.4. Add a new point

to the now empty branch in the coordinate 3n. Note that there

are no longer any points with a non-zero entry in the coordinate

3n+ 1.

Case 3 n left the set S at an earlier stage t < s. Add a point to

the empty branch in coordinate 3n. Add two more points in the

coordinates 3n+1 and 3n+2, building a branch of length 4
2n

and

a circle of radius 1
2n

on the end of the branch.

As in the previous lemma, M has an n-component exactly for the n that

are in S and hence SM = S, and it has ‘junk’ for each n that is not in S.

That is, once again we have constructed a presentation of the component

space MS built from the set S.

To complete the proof of Theorem 21, take S = K, the complement of

the halting problem. Consider the component space MS. Construct a left-

c.e. and a right-c.e. presentation of this space using Lemma 24 and Lemma 25.

By Lemma 23, if M had a computable presentation then K would be com-

putably enumerable, hence M cannot have a computable presentation.

2.2 Sequential Computability and Effective

Continuity

In this section we compare different notions of effective presentability for

Polish groups. The notions differ in general, but for our main result it makes

56 CHAPTER 2. POLISH GROUPS

no difference which of the two non-equivalent notions we choose. To see that,

we need to analyse these notions carefully.

To define an effective presentation of a Polish group, we require the do-

main and the group operation to be effective in some sense. For the domain,

it is natural to consider the notions of left-c.e., right-c.e. and computable

Polish metric presentations. As for the operations, one could use either ef-

fectively continuous or sequentially computable operations, as defined below.

Definition 26. Let X, Y be Polish spaces. A function f : X → Y is said to

be sequentially computable, if there is a Turing functional Φ such that given a

fast Cauchy name (xi)i∈ω for some x ∈ X, Φ ((xi)i∈ω) outputs a fast Cauchy

name (yi)i∈ω for f(x) = y ∈ Y . Recall that a fast Cauchy name is a sequence

(xi)i∈ω of special points such that for each i ∈ ω, d(xi, xi+1) ≤ 2−i−1, or

equivalently, d(xi, xj) ≤ 2−i for all j ≥ i.

Definition 27. Let X ,Y be topological spaces with effective listings of their

basic open sets, each of which are nonempty, (Xn)n∈ω and (Yn)n∈ω, respec-

tively. Then a function f : X → Y is said to be effectively continuous if

there is some c.e. set W such that for each j, f−1(Yj) =
⋃

i∈I Xi, where

I = {i : (i, j) ∈ W}.

Note that we do not require X and Y to be computable topological spaces.

In a computable topological space, the intersections of basic open sets is uni-

formly computably enumerable, and each basic open set must be nonempty;

see [33]. It is well-known that basic open balls in a right-c.e. Polish space

form a computable topological space. In a left-c.e. Polish space, we can

list basic open balls, however, this will not necessarily induce a computable

topological presentation of the space1.

It is known that being sequentially computable is equivalent to being

effectively continuous in right-c.e. Polish spaces [19]. We now prove that

this equivalence fails for the group operations in left-c.e. Polish groups. In

1It has recently been shown in [7] that every ∆0
2 Polish space is homeomorphic to a

computable topological space.

2.2. SEQUENTIAL COMPUTABILITY AND EFFECTIVE CONTINUITY57

the following lemmas we use the product metric on the domain of the group

operation.

Lemma 28. There is a Polish group with a left-c.e. presented domain for

which the group operation and inverse operation are sequentially computable

but not effectively continuous.

Recall that a function being effectively continuous imply that given any

basic open set Y , we may effectively enumerate its preimage f−1(Y). In

particular, to enumerate Ny, assuming we have Nx for some f(x) = y, first

enumerate the preimage f−1(Y) for each basic open set Y . Here the names

Nx, Ny are sets containing exactly the codes of all basic open sets which

contain x, y respectively. For each Y such that f−1(Y) enumerates some

code for a basic open set also enumerated by Nx, we enumerate (the code

of) Y into Ny. That is, if f(x) = y, and f is effectively continuous, then Ny

is enumerable in Nx. We state this as a fact below.

Fact. If f is effectively continuous, f(x) = y, and Nx is c.e., then Ny is

computably enumerable.

Proof of Lemma 28. Consider the discrete group G =
⊕

i∈ω Z3 with elements

represented as sequences consisting of 0, 1, and 2, with cofinitely many 0s,

using these as our special points {αi}i∈ω, fixing α0 to be a non-identity ele-

ment.

Now, consider the following metric on G, assuming w.l.o.g. that i ≤ j.

d(αi, αj) =

2 if i = 0 and j ∈ ∅′ \ {0}

0 if i = j

1 otherwise.

Evidently, d(αi, αj) is left-c.e.. Notice that both the group operation and

the inverse operation are sequentially computable in (G, d,+,−1). This is

because every Cauchy name for an element αi must be constant from the

second term onward, and will output i. Once we obtain i, we know exactly

58 CHAPTER 2. POLISH GROUPS

what element αi is and so we can compute the index for α−1
i . A similar

argument holds for the group operation +. However, we claim that neither

the group operation nor the inverse are effectively continuous.

To see this, notice first that α0 is the only non-computable point (in the

sense that Nα0 is not c.e.). Suppose for a contradiction that there exists

a c.e. W = Nα0 . This implies that the predicate ‘α0 ∈ Bd(αi, 2)’ is c.e..

However, for each i > 0, by definition of d, α0 ∈ Bd(αi, 2) iff i /∈ ∅′. This

would make the complement of ∅′ computably enumerable, a contradiction.

On the other hand, if i ̸= 0, it is clear that for any j ̸= 0, αi ∈ Bd(αj, r)

for any r > 1. By non-uniformly fixing whether or not i ∈ ∅′, we can then

decide whether or not to include (the code of) Bd(α0, r) in Nαi . Thus, for

each i ̸= 0, Nαi is c.e..

Since α0 is not the group identity, we may conclude that there exists

i > 0 such that α−1
i = α0 and there exists j, k ̸= 0 such that αj + αk = α0.

Now the inverse function, and the group operation sends αi, and (αj, αk)

respectively to α0. By applying the Fact, neither the group operation nor

the inverse operation may be effectively continuous, because α0 is the only

non-computable point in the sense described above.

Lemma 29. There is a Polish group with the following properties.

• The domain is left-c.e. presented.

• The group operation is effectively continuous but not sequentially com-

putable.

• The inverse is both effectively continuous and sequentially computable.

Proof. We construct a left-c.e. presentation of our space X =
⊕

i∈ω Z2 as

follows. Let {αi}i∈ω∪{e} be the dense set of special points. The distinguished
special point e will serve as the group identity. We satisfy the following

requirements, where (x, y) ∈ X × X .

Rn : (xi, yi)i∈ω is a Cauchy name for (x, y) but Φn ((xi, yi)i∈ω) ̸= x+ y.

2.2. SEQUENTIAL COMPUTABILITY AND EFFECTIVE CONTINUITY59

During the construction, define a left-c.e. approximation of the standard

uniform (distance 1) discrete metric on X by keeping the ‘=’ relation co-

c.e.. In particular, all points start at distance 0, and when two points are

defined to be different, we increase the distance to 1. At the beginning of the

construction, define e to be different from every other special point (increase

the distance from 0 to 1).

Figure 2.5: Sketch of the basic strategy

Strategy for Rn The gadget to satisfy Rn consists of the special points α3n

and α3n+1. Define α3n, α3n+1 to be different from αi for all i ̸= 3n, 3n+1

and for the time being, keep α3n = α3n+1. Compute Φn on the constant

name (α3n, α3n+1)i∈ω. While waiting, we maintain that α3n = α3n+1. If

Φn never converges, then Rn is met since Φn is not total. Otherwise,

at some stage s it converges on the name (α3n, α3n+1)i∈ω. Furthermore,

since the metric we define on X is the standard discrete metric, we may

further assume that Φn((α3n, α3n+1)i∈ω) produces a constant name2.

We now consider the following possibilities.

• If Φn((α3n, α3n+1)i∈ω)[s] ↓ and produces the constant name (e)i∈ω,

then define α3n ̸= α3n+1 and α3n+α3n+1 = α3m+2, for some freshm

2If the output is not constant from the second term onwards, then Φn immediately fails

as it failed to give a Cauchy name despite getting a Cauchy name as input.

60 CHAPTER 2. POLISH GROUPS

not yet seen in the construction, thus satisfying Rn since α3m+2 ̸=
e.

• If Φn((α3n, α3n+1)i∈ω)[s] ↓ and produces the constant name (αj)i∈ω

for some j, do nothing and then Rn must be satisfied as α3n +

α3n+1 = e ̸= αj.

The special points α3n, α3n+1 for each n will act as the generators for our

group, and we use α3n+2 to ensure our group operation + is well-defined.

To this end, during the construction, we maintain a set stage-wise, defined

as Θs = {α3n : n < s} ∪ {α3n+1 : n < s ∧ α3n ̸= α3n+1 at stage s}. We

think of each α3n+2 as being the sum of a collection of generators from Θs.

Observe that since our group is abelian and all elements have order two,

we can in fact think of each α3n+2 as some subset of Θs. While we need

not explicitly define any sum consisting of α3n+1 while α3n = α3n+1, we shall

artificially do so in order to ensure that the operation is effectively continuous.

More specifically, if we define α3n + αi0 + αi1 + · · · + αik = α3m+2 where

α3n, αi0 , αi1 , . . . , αik are distinct elements of Θs and α3n+1 /∈ Θs, then we

define α3n+1+αi0 +αi1 + · · ·+αik = α3(m+1)+2. Evidently, while α3n = α3n+1,

we should also keep α3m+2 = α3(m+1)+2. However, once α3n is defined to be

different from α3n+1, we need also define α3m+2 ̸= α3(m+1)+2. To facilitate

this process in the description of the construction, for each n and each stage

s, let En,s denote the collection of m for which α3n+αi0 +αi1 + · · ·+αik has

been defined to be α3m+2 by stage s and α3n+1 /∈ Θs.

We arrange the construction as follows. At a stage s, we say that Rn

requires attention if Φn converges on the constant name (α3n, α3n+1)i∈ω and

outputs a name for e. During the construction, we also maintain Ψ(i, j) a

left-c.e. approximation to the distance between αi and αj. At the beginning

of the construction, let

Ψ(i, j)[0] =

0 if i = 3n and j = 3n+ 1 for some n

0 if i = 3n+ 2 and j = 3m+ 2 for some m,n

1 otherwise.

2.2. SEQUENTIAL COMPUTABILITY AND EFFECTIVE CONTINUITY61

Unless stated during the construction, Ψ(i, j)[s+ 1] = Ψ(i, j)[s]. For conve-

nience, once we have defined Ψ(i, j)[s], we also let Ψ(j, i)[s] = Ψ(i, j)[s].

Construction.

Stage s ≥ 0 Let n be the least index such that Rn requires attention. Then

define Ψ(3n, 3n + 1)[s] = 1, and for each m ∈ En,s, define Ψ(3m +

2, 3(m+ 1) + 2)[s] = 1.

For each tuple ⟨αi0 , αi1 , . . . , αil⟩ for some l ≤ s and αij ∈ Θs (distinct)

such that the sum αi0+αi1+· · ·+αil has yet to be defined, let the sum be

α3m+2 for some freshm. For each i < 3m+2, define Ψ(i, 3m+2)[s] = 1.

Recall that if one of the αij = α3k for some k where α3k+1 /∈ Θs, then

we would also define αi0 +αi1 + · · ·+α3k+1 + · · ·+αil to be α3(m+1)+2.

If we do so, then define Ψ(i, 3(m+ 1) + 2)[s] = 1 for each i < 3m+ 2.

If Rn never requires attention, then Φn((α3n, α3n+1)i∈ω) does not produce

a name for the identity. This implies that lims Ψ(3n, 3n + 1)[s] = 0 and

α3n + α3n+1 = e. On the other hand, if Rn requires attention at some stage,

then it is eventually the highest priority requirement which does so. At such

a stage s, we would have attended to Rn by letting Ψ(3n, 3n + 1)[s] = 1,

thus making α3n ̸= α3n+1 and therefore α3n+α3n+1 ̸= e. Since the strategies

do not interact, it follows that each Rn is satisfied, so + is not sequentially

computable.

It is easy to see that Ψ(i, j) is left-c.e. for each i, j. During the con-

struction, we only ever define Ψ(i, j) = 1; either Ψ(i, j) stays at 0 forever

or it is increased to 1 and never again decreased. Observe also that given

any i, j, lims Ψ(i, j)[s] ∈ {0, 1}, and also that lims Ψ(i, j)[s] = 0 iff αi = αj.

Thus, the group constructed has a left-c.e. presented domain.

It remains to show that the operation + as defined is effectively con-

tinuous. We define a c.e. set W as follows. Let αk be given. For any

αi, αj defined to be αi0 + αi1 + · · · + αip and αj0 + αj1 + · · · + αjq where

αk has also been defined to be the sum of all the unique elements from

{αi0 , αi1 , . . . , αip , αj0 , αj1 , . . . , αjq}, enumerate ⟨B(αi, 1)×B(αj, 1), B(αk, 1)⟩

62 CHAPTER 2. POLISH GROUPS

into the c.e. setW . Also enumerate the elements ⟨B(αk, 1)×B(e, 1), B(αk, 1)⟩
and ⟨B(e, 1) × B(αk, 1), B(αk, 1)⟩ into W . This witnesses the effective con-

tinuity of + since everything that sums to αk will be covered by some αi, αj.

Finally, consider the inverse operation. In this example, the inverse is

very simple (for every α we have −α = α), and so is clearly both sequentially

computable and effectively continuous.

Remark 30. For a Polish group with a uniform isolating radius (as in our

example), if the inverse is effectively continuous then it must also be sequen-

tially computable. To elaborate, let r be the isolating radius. Given a sequence

(xi)i∈ω, enumerate the inverse preimages of B(xi, r) (which necessarily con-

tains only xi). This should produce only open sets of the form B(−xi, s) for
some 0 < s ≤ r, as each element has a unique inverse. We may then simply

output (−xi)i∈ω as given by these enumerations. If (xi)i∈ω is a Cauchy name

for x, then the output is a Cauchy name for −x, thus making the inverse

operation sequentially computable.

We showed that the notions of effective continuity and sequential com-

putability differ for Polish groups with left-c.e. presented domains, for a fixed

presentation. However, if a discrete Polish group has a left-c.e. presented

domain and the multiplication and inverse operations are sequentially com-

putable, then there is some other topologically isomorphic presentation on

which the operations are effectively continuous. This will be shown in Propo-

sitions 32 and 33. These propositions imply that in our next result, Theorem

37, it does not matter if we use sequential computability or effective conti-

nuity.

Definition 31. A discrete countable group G is

• computable if the domain of G is a computable set of natural numbers

and the operations are computable functions on this set;

• c.e. presented if G ∼= H/K, whereH is a computable countable discrete

group and K ⊴ H is c.e. as a subset of H;

2.2. SEQUENTIAL COMPUTABILITY AND EFFECTIVE CONTINUITY63

• co-c.e presented if G ∼= H/K, where H is a computable countable

discrete group and K ⊴ H is co-c.e. as a subset of H.

Note that for the following propositions we do not assume our groups to

be commutative. As such we use multiplicative notation.

Proposition 32. Let G be a discrete countable group. The following are

equivalent.

1. G is co-c.e. presentable.

2. There is a metric d such that (G, d) is a left-c.e. Polish space and the

group operations are sequentially computable with respect to d.

Proof. Let G be a discrete countable group with a left-c.e. Polish presenta-

tion ({αi}i∈ω, d) on which the group operations are sequentially computable.

Define a co-c.e. presentation of F/H ∼= G as follows. Let F be the free

group generated by the special points {αi}i∈ω. It is clear that multiplication

and the inverse operations are both computable in F and thus F/H. Given

two words u, v ∈ F , the multiplication u · v is simply the concatenation uv

and taking a simplification using the usual rules. The inverse of a word

u = u0u1 . . . un is simply u−1
n u−1

n−1 . . . u
−1
0 . The intention here is obviously to

map each word u = u0u1 . . . un to the product u0 · u1 · . . . · un ∈ G. Rather

than defining and proving that H is a co-c.e. subset of F , we instead show

the equivalent condition that ‘=’ is co-c.e..

Since G is a discrete countable group, then there must be some r > 0

such that d(e, g) > r for any g ̸= e. Non-uniformly fix a special point

that represents e and also the isolating radius r. To tell if two words, u =

u0u1 . . . un and w = w0w1 . . . wm are equal, do the following. Since the group

operations are assumed to be sequentially computable with respect to d, then

we are able to produce a Cauchy name for

uw−1 = u0 · u1 · . . . · un · w−1
m · w−1

m−1 · . . . · w−1
0 .

Recall that each letter ui and wj are special points of G. We can use the

constant names as the required input to produce a name for uw−1. Let

64 CHAPTER 2. POLISH GROUPS

(βi)i∈ω be a Cauchy name in d for uw−1. Compute the name for uw−1 up to

accuracy r/2; βk such that d(βk, uw
−1) < r/2. Note that d is not computable,

however, since (βi)i∈ω is a name for uw−1, then k can be found computably

in r. Once such a βk is found, enumerate the left cut of d(βk, e). Note that

d(βk, e) > r/2 iff d(uw−1, e) > r. In other words, d(βk, e) > r/2 iff u ̸= w.

Thus, it is co-c.e. to tell if ‘u = w’.

Now suppose that G is co-c.e. presentable. To construct a Polish pre-

sentation (G, d1), let u,w be two words in F/H ∼= G. Define the metric

d1(u,w) = 0 iff uw−1 ∈ H, and d1(u,w) = 1 otherwise. Since the operations

in F are computable and H is a co-c.e. subset, then d1 is evidently a left-

c.e. metric on G. Construct a left-c.e. presentation of (G, d1) by letting every

word w ∈ F be a special point. It remains to check that the group operations

are sequentially computable with respect to the presentation (F, d1). Let the

names of two points α, β be given, say (αi)i∈ω and (βj)j∈ω. Any two points

in our presentation are either distance 1 apart, or must be equal, and for a

Cauchy name of α we have that d(αj, α) < 2−j, so it must be that α1 = α,

and similarly β1 = β. As such, given two names, define the output of the

operation to be the constant name (α1β1)n∈ω. This is a Cauchy name for αβ,

and so the operation is sequentially computable. A similar argument can

be applied for the inverse operation. Therefore, if G is co-c.e. presentable,

then (G, d1) is a left-c.e. Polish space on which the group operations are

sequentially computable.

Proposition 33. If a discrete countable group has a co-c.e. presentation,

then its domain has a left-c.e. Polish presentation on which the group oper-

ations are effectively continuous.

Proof. Suppose that G has a co-c.e. presentation, F/H. Define a left-c.e. Pol-

ish presentation of (G, d1) on which the group operations are effectively con-

tinuous as follows. Let each word of F be a special point of the left-c.e. Pol-

ish presentation. As before, define d1(u,w) = 0 if u = w and 1 otherwise.

Since the relation ‘=’ is co-c.e., the metric d1 defined on the words of F is

2.2. SEQUENTIAL COMPUTABILITY AND EFFECTIVE CONTINUITY65

a left-c.e. metric. (Note that this is the same left-c.e. Polish presentation as

constructed in the Proposition 32.)

Let B(w, r) be given. To enumerate the preimage of B(w, r) under −1, do

the following. If r ≥ 1, then we enumerate every basic open ball B(u, q) for

each word u ∈ F and each q ∈ Q+. If r < 1, then using the assumption that

the group operations are computable, compute w−1 (in F) and enumerate

the ball B(w−1, r) for each r < 1 into the preimage of B(w, r) under −1. Note

that this gives exactly the desired preimage.

In order to show that · is effectively continuous, consider the function

f(x, y) = x · y−1. Let B(w, r) be given. For each word u ∈ F , compute

f(w, u). By the assumption that the group operations are computable, it

follows that f is also computable. Once f(w, u) ↓= v, then enumerate the

open ball B(v, p)×B(u, q) for each rational 0 < p, q < 1 into the preimage of

B(w, r) under ·. We now check that this procedure produces the preimage. If

B(v, p)×B(u, q) is ever enumerated into the preimage, then it must be that

f(w, u) = w · u−1 = v which gives w = v · u. That is, every ball enumerated

must be contained in the preimage. Now let v, u be such that v · u = w.

We note here that given the words w and u, the word given by w · u−1 need

not literally be v. However, it must give some word v′ which is equivalent

to v. Then the procedure must have enumerated the ball B(v′, p) × B(u, q)

for each rational 0 < p, q < 1 into the preimage of B(w, r). In other words,

(v, u) = (v′, u) is contained in the preimage.

Since we are dealing with discrete groups, and constructing c.e. and co-

c.e. presentations for these groups, for our second main result it does not

matter whether we choose sequential computability or effective continuity.

In the following definition, we take all our groups and spaces to be discrete

and countable.

Definition 34. A Polish group (G, ·,−1) is computably presented if the do-

main is a computable Polish space and the operations are effectively continu-

ous. Similarly, if the domain is a left-c.e. presentable (right-c.e. presentable)

66 CHAPTER 2. POLISH GROUPS

Polish space, and the operations are effectively continuous, then we say that

the Polish group is left-c.e. (right-c.e.) presented. We call such Polish groups

computable, left-c.e. or right-c.e. respectively.

In order to show our second main result in the next section, we recall a

couple of lemmas from [45].

Lemma 35. (Lemma 6.1 in [45]) A discrete countable group is computably

presentable iff it is a computably presented Polish group.

Lemma 36. (Lemma 6.2 in [45]) A discrete countable group is c.e. pre-

sentable iff it is a right-c.e. presented Polish group.

2.3 An Almost Computable Polish Group

As discussed in the previous section, the following result holds regardless of

whether we require the operations to be sequentially computable or effectively

continuous. This is because the group G that we construct is discrete and

has both c.e. and co-c.e. presentations.

Theorem 37. There is a Polish group G that has a left-c.e. presentation,

a right-c.e. presentation, but no computable presentation up to topological

isomorphism.

Proof. We start by showing that a particular kind of group constructed from

any ∆0
2 set S always has a co-c.e. presentation and a c.e. presentation, and

then by taking an infinite S that is ∆0
2 but not limitwise monotonic we get

such a group that has no computable presentation. In the following lemmas,

we fix p to be a prime number.

Lemma 38. A group GS
∼=

⊕
n∈S Zpn ⊕

⊕
ω Z has a c.e. presentation for

any ∆0
2 set S.

Proof. We have that S is ∆0
2 so S = rng(lims f(x, s)) for f computable and

the limit exists for every x. We construct a c.e. presentation of GS = H/K.

2.3. AN ALMOST COMPUTABLE POLISH GROUP 67

Take H =
⊕

ω Z. In order to turn the ith copy of Z in our group into a copy

of Zpn , we will enumerate elements into K of the form (0, . . . , 0,mpn, 0, . . .),

m ∈ Z where the term mpn is in the ith entry and all other entries are 0.

This corresponds to turning the ith copy of Z into Zpn and leaving all other

groups in the direct sum unaffected. We also need to ensure that at the end

we have infinitely many copies of Z so that our presentation is a presentation

of GS. To do this, we will keep all even indexed groups in the product as

copies of Z, and encode S into the odd indices. Fix some enumeration of S

such that for all t ∈ ω, at most one element either enters or leaves S at stage

t.

Construction.

Stage 0 Let H =
⊕

ω Z. Enumerate the all-zero sequence into K.

Stage t For each element currently in K, say the elements currently in K

are x1, x2, . . . , xm, enumerate
∑m

i=1 σ(i)(xi) into K, where σ runs over

all binary strings of length m. Then consider the following cases.

Case 1 If n enters S at stage t, we turn the (2t)th copy of Z into

Zpn . That is, for all s ≥ 0, at stage t+s, enumerate (0, 0, . . . , (s+

1)pn, 0, . . .) and (0, 0, . . . ,−(s+1)pn, 0, . . .) into K, where the only

non-zero entry is at index 2t.

Case 2 If n leaves S at stage t, let t0 be the stage at which n was

last enumerated into S, and turn the (2t0)
th group in the direct

sum into the trivial group. That is, for all s ≥ 0, at stage t + s,

we enumerate for each 1 ≤ i < pn (0, 0, . . . , i + spn, 0, . . .), and

(0, 0, . . . ,−(i+ spn), 0, . . .) into K.

By construction, H is a computable group, andK is computably enumerable.

To see that K is a subgroup, notice that the identity of H is enumerated into

K at stage 0, and all finite sums of elements are enumerated eventually,

making it closed under the group operation. Finally, since the inverse of an

element x is always enumerated at the same stage as x, K is also closed

68 CHAPTER 2. POLISH GROUPS

under inverses. Thus K is a subgroup, and since H is abelian, then H/K

is c.e. presentable. Furthermore, since S is ∆0
2, n ∈ S iff ∃T ∈ ω s.t. ∀t ≥

T, n ∈ St. Then pick the least such T and notice that the 2T th group in

the direct sum is isomorphic to Zpn as every multiple of pn is eventually

enumerated into K (at the 2T th coordinate) by maintaining the procedure

in case 1. Similarly, if n /∈ S, then after some stage T , n will not show up

again in St for all t ⩾ T , and so no new copy of Zpn will be created (of course

if n never entered S in the first place, no copy was created to begin with).

Also see that each time n leaves S at some stage t, the copy of Zpn being

maintained is then turned into the trivial group as in case 2 of the above

construction. Finally, since only even-numbered copies of Z are turned into

Zpn or the trivial group, there will still be infinitely many copies of Z that

are left untouched.

Lemma 39. A group GS
∼=

⊕
n∈S Zpn ⊕

⊕
ω Z is co-c.e. presentable for any

∆0
2 set S.

Proof. We have that S is ∆0
2 so S = rng(lims f(x, s)) where the limit exists

for every x and f is computable. We construct a co-c.e. presentation of GS

by constructing an H and K and take GS = H/K. Initially, we take K = H

and throughout we will remove elements from K (K is co-c.e.). In order to

turn the ith copy of Z in our group into a copy of Zpn , we will enumerate

elements of H =
⊕

ω Z that do not have a multiple of pn in the ith entry into

H \K. We also need to ensure that at the end we have infinitely many copies

of Z so that it is isomorphic to GS. To do this, we will build all even indexed

groups in the product as copies of Z, and encode S into the odd indices. Fix

some enumeration of S such that for each t ∈ ω at most one element either

enters or leaves S at stage t.

Construction.

Stage 0 Begin with H =
⊕

ω Z. We enumerate elements into H \K. Since

H is a direct sum, our elements are infinite sequences with finitely many

non-zero entries.

2.3. AN ALMOST COMPUTABLE POLISH GROUP 69

Stage t Enumerate sequences (j0, 0, j1, 0, . . . , 0, jt, 0, 0, 0, . . .) into H \ K
where ⟨ji⟩0≤i≤t are all possible t-tuples which are not identically 0 con-

taining entries at most t. Take all finite sums of distinct elements

x1, x2, . . . , xm currently in H \K, such that if i ̸= j, then xi and xj do

not both have a non-zero entry at the same index for any index of the

sequence. This is to construct the copies of Z, ensuring we do not enu-

merate the all-zero sequence into H \K. Then consider the following

cases.

Case 1 If n enters S at stage t, we turn the (2t + 1)th group into

Zpn . That is, for all s ≥ 0, at stage t+ s, enumerate (0, 0, . . . , i+

spn, 0, . . .) and (0, 0, . . . ,−(i+ spn), 0, . . .) for all 1 ≤ i < pn into

H \K where the only non-zero entry is at index 2t+ 1.

Case 2 If n leaves S at stage t, let t0 be the stage at which n was last

enumerated into S, and turn the (2t0+1)th group in the direct sum

into a copy of Z. That is, for all s ≥ 0, at stage t+ s, enumerate

(0, 0, . . . , (s+1)pn, 0 . . .), and (0, 0, . . . ,−(s+1)pn, 0 . . .) into H \
K, where the non-zero entry is at the (2t0 + 1)th index.

Again, H is a computable group, and H \K is computably enumerable. If

n ∈ S, then take the largest stage t such that n ∈ St \ St−1, that is, the last

stage t at which n entered S. Up until now, no elements with a non-zero

entry at index 2t+ 1 have been enumerated into H \K, so up until now the

(2t+ 1)th coordinate of the structure just looks like the trivial group. From

this stage on, by case 1 of the construction, we enumerate every element with

non-zero entries in index 2t + 1, where the entries are not multiples of pn,

into H \K. During the summation step at each stage t, because we do not

add elements that share a non-zero entry in the same index, we cannot create

the all-zero sequence or an element (. . . ,mpn, . . .) for some m ̸= 0, with mpn

in the (2t+ 1)th entry. In this way we create a copy of Zpn in the (2t+ 1)th

coordinate. If n enters S at stage t′ and later leaves S, then case 1 continues

to enumerate the elements that would make the (2t′ + 1)th coordinate into a

70 CHAPTER 2. POLISH GROUPS

copy of Zpn , but now case 2 enumerates the remaining elements (the multiples

of pn), turning the (2t′ + 1)th coordinate into a copy of Z.
The only entries that are not enumerated into H \ K are the all-zero

sequence and elements of the form (. . . ,mpn, . . .) where the entry mpn cor-

responds to the location of a Zpn group in H/K (and sums of such elements).

HenceK contains only and all such elements, makingK a subgroup andH/K

co-c.e. presentable.

All even indices in the direct sum correspond to copies of Z and some of

the odd indices are the trivial group, some are Z, and infinitely are various

Zpn for different n. In particular, if n ∈ S then the (2t + 1)-th index has a

Zpn , for t the last stage at which n was enumerated into S. Furthermore, if

n /∈ S, then there will not be any copy of Zpn in H/K. Thus H/K ∼= GS, so

GS is co-c.e. presentable.

Remark 40. Note that Lemmas 38 and 39 also hold for Σ0
2 sets.

Proposition 41. There is an abelian group GS that has both c.e. and co-

c.e. presentations but no computable presentation.

Proof. Consider GS
∼=

⊕
n∈S Zpn ⊕

⊕
ω Z where S is an infinite ∆0

2 set that is

not limitwise monotonic and p is a prime. It is known [55, 41] that
⊕

n∈S Zpn

has a computable presentation iff S is limitwise monotonic. By taking S not

limitwise monotonic, we know that GS is not computable. Using Lemmas 38

and 39, GS has a c.e. presentation and a co-c.e. presentation.

To complete the proof of Theorem 37, take GS from Proposition 41, that

is, a group with both c.e. and co-c.e. presentations but no computable pre-

sentation. Apply Lemma 35 to GS to obtain that it has no computable Polish

presentation, Lemma 36 to get that it has a right-c.e. Polish presentation,

and finally Proposition 33 to obtain that GS has a left-c.e. Polish presenta-

tion. To obtain the same result but with a definition that uses sequentially

computable operations instead of effectively continuous operations, apply

Proposition 32 instead of Proposition 33 to get that GS is left-c.e. with se-

quentially computable operations. As discussed, the other two Lemmas are

2.3. AN ALMOST COMPUTABLE POLISH GROUP 71

still applicable when using sequentially computable operations. Thus we ob-

tain a Polish group GS with a left-c.e. presentation, a right-c.e. presentation

but no computable presentation, up to topological isomorphism.

72 CHAPTER 2. POLISH GROUPS

Chapter 3

Q-degrees

3.1 Existing literature

The structure of the Q-degrees has been studied by Omanadze [66, 61, 62]

since the 1970s, as well as Downey, LaForte and Nies [17], Batyrshin [4, 5, 1],

Soloviev [73], Arslanov [2, 1], and others. There are also a number of variants

of Q-reducibility that have emerged, and seem to be gaining more interest

[11, 66, 67, 65, 63, 13, 12]. Omanadze wrote a comprehensive survey of results

about the Q-degrees in 2003 [62]. We will give a brief outline of some of the

work done on Q-degrees to date.

Earlier studies on the Q-degrees were mostly concerned with structural

problems, with few results comparing Q-reducibility to other reducibilities.

For instance, Omanadze studied nowhere simple sets. A c.e. set A is nowhere

simple if for every c.e. set B with B \ A infinite, there is an infinite c.e. set

W ⊆ B \A. Shore proved in 1978 [72] that every c.e. Turing degree contains

a nowhere simple set. In 1987 Omanadze proved that every non-computable

c.e. Turing degree contains a c.e. set whose Q-degree contains neither simple

nor nowhere simple sets. He also showed that any c.e. set that is Q-reducible

to a nowhere simple set is itself nowhere simple. As a result, every c.e. set

contained in the Q-degree of a nowhere simple set is nowhere simple. That

is, a c.e. Q-degree consists either entirely of nowhere simple sets, or does

73

74 CHAPTER 3. Q-DEGREES

not contain any nowhere simple sets. Further, to obtain a set that contains

neither simple nor nowhere simple sets, one can take A ⊕ B where A is not

a nowhere simple set and B is a nowhere simple set, and the Q-degrees of

A and B are incomparable. Much more recently, in 2019, Omanadze [64]

showed that every non-computable c.e. wtt-degree contains a c.e. set A such

that the Q-degree of A contains neither simple nor nowhere simple sets.

A number of other structural problems were also studied, as well as var-

ious complexity problems for the c.e. Q-degrees. These are discussed in

Omanadze’s survey [62]. Then in 1984 Omanadze studied maximal sets, and

the relationship between m-degrees and Q-degrees of maximal sets. He found

that the Q-degree of a maximal set is not the least upper bound of any pair

of incomparable Q-degrees, and that among all m-degrees contained in the

Q-degree of a maximal set there is a least m-degree. Further, the Q-degree

of a maximal set does not contain any c.e. semirecursive sets. Complexity

problems of c.e. sets have also been studied. In particular, Blum and Mar-

ques introduced the notions of subcreative and effectively speedable sets in

1973. A number of interesting results about these sets and Q-reducibility

have been shown, including by Gill and Morris in 1974 and by Omanadze in

1987 and 1988 [62].

A particularly interesting result is that of Fischer and Ambos-Spies in

1987 [26], who showed that the c.e. Q-degrees are not distributive, and also

are not a lattice. This is in contrast to the wtt-degrees which form a dense,

distributive upper semilattice. The c.e. Q- and sQ-degrees are also dense,

with the sQ-degrees density result being shown by Omanadze in 1991 [61].

The result for the density of the Q-degrees was obtained by Downey, LaForte

and Nies in 1998 [17], and required a much more difficult proof than the sQ-

degrees density result.

Since the 1990s, more studies have been concerned with the relationship

of the Q- and sQ-degrees to other strong reducibilities, though there are still

relatively few results about this. For example, in 1991 Omanadze showed

that every non-computable c.e. wtt-degree contains infinitely many pairwise

3.1. EXISTING LITERATURE 75

sQ-incomparable c.e. sets. Along a similar vein, he showed in 1995 that if

A,B are c.e. sets, where A ≡sQ B and A <m B, then the sQ-degree of A

contains infinitely many pairwise m-incomparable c.e. sets. This is in some

sense opposite to the notion of contiguity, which has classically been studied

for wtt-degrees within Turing degrees. We say that a c.e. Turing degree is

contiguous if it contains a single c.e. wtt-degree (that is, all the sets in the

Turing degree are also wtt-equivalent), and that a c.e. Q-degree is contiguous

if it contains a single sQ-degree. In 1994 Omanadze showed that a c.e. Turing

degree a is contiguous if and only if all semirecursive sets contained in a are

sQ-equivalent. That is, there are interesting interactions between the Q-

and sQ-degrees and the wtt- and Turing degrees. Around the same time

Omanadze also showed that there is a c.e. set which is simultaneously Q-

and wtt-complete but not sQ-complete.

In 1998 Downey, LaForte and Nies [17] studied the Q-degrees and ob-

tained a number of interesting results. For example, they showed that there

is a non-computable c.e. set A and a c.e. set B with A ≡T B such that A

and B form a minimal pair in the Q-degrees. They also showed that the

elementary theory of the upper semilattice of Q-degrees has an undecidable

first order theory, amongst other results.

As well as c.e. Q-degrees, n-c.e. Q-degrees have also been studied, for

example by Arslanov and Omanadze in 2007 [2]. They proved that if n is

even, then there is an n-c.e. set whose Q-degree does not bound any Q-

degree of a non-computable c.e. set; but if n is odd, then every properly

n-c.e. set Q-computes a non-computable c.e. set. They also discuss density:

they show that the Q-degrees of properly n-c.e. sets are dense in the Q-degrees

of c.e. sets, but that the Q-degrees of c.e. sets are not dense in the Q-degrees

of d.c.e. sets. Arslanov, Batyrshin and Omanadze in 2008 [1] studied the

distribution of incomparable Q-degrees, and minimal pairs. In particular,

they showed that there is a c.e. Q-degree that is not half of a minimal pair.

Isolated and non-isolated degrees where studied in 2009 by Batyrshin [4].

A degree d is called isolated from below if there is a c.e. degree b <Q d such

76 CHAPTER 3. Q-DEGREES

that for all c.e. degrees a, if a ⩽Q d, then a ⩽Q b. Otherwise, it is called

non-isolated from below. Similarly, d is called isolated from above if there

is a c.e. degree b >Q d such that for all c.e. degrees a, if a ⩽Q d, then

b ⩽Q a, otherwise d is called non-isolated from above. Batyrshin proved

that non-isolated from below 2-c.e. Q-degrees are dense in the structure of

c.e. Q-degrees, and that below any c.e. Q-degree there is a 2-c.e. Q-degree,

which is non-isolated from below and from above.

Batyrshin [5] also studied the relationship between Q- and m-reducibilities

in 2014. He proved that there exists a non-computable and m-incomplete

c.e. set B such that for any c.e. set A, A ⩽Q B implies A ⩽m B. Such

a degree is called m-topped, so Batyrshin showed the existence of a non-

computable and m-incomplete m-topped Q-degree. He also showed that for

any c.e. non-computable set A there exists a c.e. set B such that A ⩽Q B

but A ̸⩽m B, and that for any simple set B there is a c.e. set A such that

A ⩽Q B but A ̸⩽m B. It follows that the Q-degree of any simple set contains

infinitely many c.e. m-degrees.

We note that the structure of the Q-degrees and their relationship to other

reducibilities has not been studied nearly as extensively as some of the other

reducibilities and degree structures. In this chapter we study the structure

of the Q- and sQ-degrees and their relationship to other reducibilities.

3.1.1 Our results

Since ⩽sQ implies ⩽wtt, we might have anticipated there to be similarities

between the wtt-degrees and the sQ-degrees. However, in this chapter we

show that the c.e. sQ-degrees are not distributive, and that we can embed the

lattice N5 into them. We show that the c.e. sQ- and Q-degrees don’t have any

initial segments that form a lattice. In contrast, the c.e. wtt-degrees do have

initial segments that form lattices, as Fischer showed in 1986 [25]. This is

particularly surprising because the proof for the wtt-degrees seems to mainly

rely on the fact that the uses are computably bounded, which we also have

in the sQ-degrees. The difference comes in permitting: in our argument we

3.2. LATTICES 77

need to use a more complicated ‘permitting’ technique customized to work in

the sQ-degrees, because permitting in general fails badly. In particular, we

show that there is a non-computable c.e. set with no c.e. simple set Q-below

it. We show this directly through a construction, although it is also implied

by Omanadze’s result about nowhere simple sets.

Studying the relationship between wtt-degrees and sQ-degrees, we show

that the sQ-degree of a semirecursive set A is maximal among the sQ-degrees

of c.e. sets of the same wtt-degree as A, and that if A ≡wtt B and the infimum

of A and B exists in the Q- or sQ-degrees, it will have the same wtt-degree

as A.

We also study minimal pairs and half minimal pairs, and show that there

is a minimal pair of sQ-degrees within the same Q-degree. Finally, we prove

that if the degree of b is half of a minimal pair in the Q-degrees, it is also

half of a minimal pair in the Turing degrees.

3.2 Lattices

Theorem 42. The c.e. Q- and sQ-degrees are not distributive.

Proof. We show this for sQ-reductions and note that it works for Q too. We

build c.e. sets A1, A2 and B ⩽sQ A1 ⊕ A2 via q and meet requirements

Re : If Ue ⊕ Ve ≤sQ B via me and B ≤sQ Ue ⊕ Ve via ne then for all i, Re,i.

Re,i : Ue ≰sQ A1 via φi or Ve ≰sQ A2 via ψi.

Note that these Re,i requirements suffice, because the pair Ve ⊕ Ue will

show up as some other Re′,i′ requirements, with Ue′ = Ve and Ve′ = Ue, so we

will not have that Ue ⩽sQ A2 and Ve ⩽sQ A1.

We use a tree and meet Re at nodes τ during expansion stages, where the

length of agreement ℓ(e, s) between Ue ⊕ Ve and B via me and ne increases.

The tree is sculpted so that we have all the Rτ,i-nodes σ devoted to meeting

Re,i below τ̂∞. At a τ̂∞ stage we activate the subrequirements Rτ,i, and

78 CHAPTER 3. Q-DEGREES

these Rτ,i-nodes σ have two outcomes, 1 <L 0, with 1 meaning we have

digonalized against φi or ψi.

Basic Strategy for Rτ,i. Pick a fresh follower x targeted for B and set

q(x, s) = 2a for some a, so x is pointing at A1, and wait for a stage t ⩾ s

where ℓ(e, t) > x. Now at stage t we know that ne(x, t) is defined, and if x

enters B, ne(x, t) must enter Ue (if ne(x, t) is pointing at an element of Ue)

or Ve (if it is pointing at Ve).

Suppose that ne(x, t) is pointing at Ue. Now we wait for the length

of agreement ℓ(e, i, s′) associated with Re,i (between Ue and A1 via φi and

between Ve and A2 via ψi) to go above ne(x, s
′), so that φi(ne(x, s

′), s′)

must be defined and pointing at an element that is not currently in A1.

If φi(ne(x, s
′), s′) ̸= q(x, s′) = 2a, then we win by putting x into B, q(x, s′)

into A1 and keeping φi(ne(x, s
′), s′) out of A1. Otherwise if φi(ne(x, s

′), s′) =

q(x, s′), then we put q(x, s′) into A1,s′+1 and define q(x, s′ + 1) to be some-

thing new and odd, that is, targeted for A2. Now if φi is to recover, at the

next expansionary stage t′ > s′ it will have had to retarget, so φi(ne(x, s
′), t′)

is an element not currently in A1. Then we win by putting x into B and

q(x, t′) into A2, and restraining φi(ne(x, s
′), t′) out of A1. Then Rτ,i is met.

If instead ne(x, t) is pointing at Ve, then when the length of agreement

ℓ(e, i, s′) > ne(x, s
′), we have that ψi(ne(x, s

′), s′) is defined and pointing

at an element not currently in A2. This element cannot possibly be q(x, s′)

(which is targeted for A1), and so we treat this like the first case above: put

x into B and q(x, s′) into A1 and restrain ψi(ne(x, s
′), s′) out of A2. Now Rτ,i

is met.

Definition 43. We say a requirement Rτ,i at node σ requires attention at

stage s if s is a σ-stage (so is e-expansionary), Rτ,i has not been met yet and

one of the following holds.

(i) Rτ,i has no follower.

(ii) Rτ,i has a follower x and ℓ(e, s) > x and ℓ(e, i, s) > ne(x, s).

3.2. LATTICES 79

Construction. At stage s, compute TPs. Initialise all requirements Rτ

where τ ̸⩽L TPs. Find the highest priority requirement Rτ,i that requires at-

tention at stage s. If Rτ,i has no follower, assign a fresh follower x and define

q(x, s) = 2a (so targeted for A1) for some fresh number a. Otherwise, Rτ,i

already has a follower x, ne(x, s) is defined and targeted at Ue (or at Ve), and

φi(ne(x, s)) (or ψi(ne(x, s)) in the case that ne is targeted at Ve) is defined and

pointing at A1. If φi(ne(x, s), s) = q(x, s), then we put q(x, s) into A1,s+1

and define q(x, s + 1) to be something new and odd, so targeted for A2.

Otherwise, φi(ne(x, s), s) ̸= q(x, s) (respectively, ψi(ne(x, s), s) ̸= q(x, s)),

then we put x into B, q(x, s) into A1 or A2 respectively, whichever it is tar-

geted for (depending on if we have taken action for this requirement already

and retargeted q(x) to A2 or not), and restrain φi(ne(x, s), s) (respectively,

ψi(ne(x, s), s)) out of A1. Initialise all lower priority requirements.

Verification. Let the true path TP be the leftmost path visited infinitely

often. We show that all Re are met. Let τ be the node on the true path

assigned to Re. If τ̂f is on the true path there are only finitely many e-

expansionary stages, so Ue⊕Ve ̸≡sQ B and hence Re is met. Suppose τ̂∞ is

on the true path. Then we claim all Rτ,i are met, and thus Re is met. Go to

a stage s after which TPt, t ⩾ s is never to the left of τ , so Rτ has priority.

Such a stage exists because each of the finitely many requirements above Rτ

requires attention and acts a finite number of times before being met. Go to

the first stage t ⩾ s where all requirements above Rτ,i have finished acting,

so now Rτ,i has priority and requires attention. Then Rτ,i receives a fresh

follower x at stage t, and this follower is never initialised. Since there are

infinitely many expansionary stages, eventually we will have ℓ(e, s) > x and

so ne(x, s) is defined. Now monitor the length of agreement ℓ(e, i, t), t ⩾ s.

If ℓ(e, i, t) is never bigger than ne(x, s), then Rτ,i is met because φi or ψi got

stuck. Otherwise, at some stage t > s we have ℓ(e, i, t) > ne(x, s), and at this

stage Rτ,i again is the highest priority requirement that requires attention.

Now as per the basic strategy, either Rτ,i is satisfied at stage t, or it will

be satisfied at the next e-expansionary stage and does not require attention

80 CHAPTER 3. Q-DEGREES

again.

Theorem 44. N5 embeds into the c.e. Q- and sQ-degrees.

Proof. We build c.e. sets A, B and B⊕C forming the relevant degrees. The

negative requirements are

N1
e : ΦA

e = ΨB
e = f implies f is computable.

N2
e : ΦA

e = ΨB⊕C
e = f implies f is computable.

These are standard minimal pair requirements that monitor the length of

agreement ℓ1(e, s) = max{z : ∀x ⩽ z,ΦAs
e (x) ↓= ΨBs

e (x)} for N1
e , and simi-

larly for N2
e we have the length of agreement ℓ2(e, s) between A and B ⊕ C

via Φe and Ψe. We also have positive requirements

Pe : ¬(C ⩽Q B via me).

Qe : A ̸= We.

Re : B ̸= We.

Finally, we need the overall coding requirements

A⊕B ⩽Q A⊕ (B ⊕ C) via q1.

A⊕B ⩾Q A⊕ (B ⊕ C) via q2.

Note that simply making q1 the identity will satisfy our first coding require-

ment. The Qe, Re are met by standard Friedberg strategies cooperating

with minimal pair requirements. The minimal pair requirements monitor

the length of agreement between A and B (respectively, B ⊕ C), and only

let elements enter one side at a time. That is, during an expansion stage

things below the length of agreement are allowed to enter one side only, say

A, and the other side (B or B ⊕ C) is restrained to preserve the current

computation. Then at the next expansionary stage A must have recovered

its computation and at this stage we can again put elements into one of A or

3.2. LATTICES 81

B (respectively, B ⊕ C), while restraining the other. The Friedberg strate-

gies pick a follower x, targeted for A in the case of Qe, and targeted for B

in the case of Re and wait for x to enter We. If x enters We, the strategy

wants to put x into A (respectively, B). Enumerating x into A (or B) is

only allowed at an expansion stage where A (or B) is not restrained by the

minimal pair requirements. Here we are only putting elements into A and B,

so the second coding requirement can use the identity for the Q-reduction q2

on these elements.

Finally to satisfy the Pe requirements, consider Pe at some node σ. We

pick a fresh follower x targeted for C, and a fresh trace q2(x, s) targeted for

A in the coding of A⊕ (B⊕C) into A⊕B. Now we wait for me(x, s) /∈ B to

be defined. At the next σ-stage t, we would want to put q2(x, s) into A and x

into C while restraining m(x, s) out of B. However, because of the minimal

pair requirements we cannot put elements both into A and C simultaneously.

We don’t know if σ’s guess is correct: it is possible that this is the last time

we ever visit σ, in which case if we only put one of q2(x, s) and x into A or

C, our q2 reduction fails since we never reach another σ-stage to correct it

(by putting the other element, x or q2(x, s), into C or A respectively). To

overcome this, we put q2(x, s) into A, and pick any small number targeted for

B that is different to me(x, s), and define q2(x, t) to be that number. Then

at the next σ-stage we put x and q2(x, t) into C and B respectively. For

elements in A and B, we can set q2 to be the identity.

We use a tree and assign all of our requirements to their own nodes: N1
e

and N2
e requirements on nodes τ with outcomes ∞ <L f (with the infinite

outcome, as usual, indicating that the relevant length of agreement has in-

creased since the last expansionary stage), and Pe, Qe and Re requirements

on nodes σ with outcomes 1 <L 0, with 1 indicating that the requirement

has enumerated a follower x into its target set.

Definition 45. We say that a Pe requirement at node σ requires attention

at stage s if s is a σ-stage, and one of the following holds.

(i) Pe has no follower.

82 CHAPTER 3. Q-DEGREES

(ii) Pe has a follower x and me(x, s) is defined, me(x, s) /∈ Bs, and

q2(x, s) /∈ As ⊕Bs.

We say that a Qe (respectively, Re) requirement at a node σ requires

attention at stage s if s is a σ-stage,We,s∩As = ∅ (respectively,We,s∩Bs = ∅),
and one of the following holds.

(i) Qe (respectively, Re) has no follower.

(ii) Qe (respectively, Re) has a follower x and x ∈ We,s.

Construction. At stage s, compute TPs and initialise all requirements

at nodes τ ̸⩽L TPs. Find Pσ, Rσ or Qσ with highest priority that requires

attention at stage s. Initialise all requirements at nodes τ ̸⩽L σ. If the

requirement is a Qσ or Rσ requirement that has no follower, assign it a fresh

follower x. If it is a Qσ or Rσ requirement with follower x, enumerate x into

its target set. If it is a Pσ requirement with no follower, assign it a fresh

follower x and define x’s trace q2(x, s) /∈ As to be a fresh number targeted

for A. If it is a Pσ requirement with follower x and q2(x, s) is targeted for A,

enumerate q2(x, s) into A and define q2(x, s + 1) to be any smaller number

targeted for B that is not me(x, s) (and of course is not in Bs nor a follower

for any higher priority requirement). Finally if it is a Pσ requirement with

follower x and q2(x, s) is targeted for B, enumerate x and q2(x, s) into C and

B respectively.

Coherence. As with a standard minimal pair argument, we want to ‘nest’

our N requirements, so a lower priority N requirement guessing the infinite

outcome for some higher priority N ′ requirement will only consider stages

that are N ′-expansionary (for instance in its computation of the length of

agreement). That way everyN -expansionary stage is also anN ′-expansionary

stage. Then all theN requirements drop their restraint simultaneously, allow-

ing us to enumerate something into either A or into B⊕C without breaking

a restraint.

Verification. Let the true path TP be the leftmost path visited infinitely

often.

3.2. LATTICES 83

Lemma 46. All the Pe, Qe and Re requirements have versions that are met,

and each Pσ, Qσ and Rσ acts at most finitely often.

Proof. We prove this by simultaneous induction on e for Pe and for Qe, the

same argument as for Qe applies to Re.

Let Pe be assigned to a node σ ⊂ TP . Go to the least σ-stage s0 where

for all τ <L σ and s ⩾ s0, if τ ̸⊂ σ then s is not a τ -stage, and any Q, R or P

requirement assigned to τ will not act at stage s. Now Pσ requires attention

and has priority at stage s0 so it receives a fresh follower x and defines q2(x, s0)

to be a fresh number targeted for A. If me does not converge on x or if it

does but me(x, s) ∈ Bs, then Pσ never requires attention again and Pe is met.

Otherwise, at the next σ-stage s1 > s0 (after me(x, s) is defined), Pσ again

has priority and requires attention. Now me(x, s1) /∈ Bs1 is defined. Notice

that if me(x, s1) is a follower for a higher priority positive requirement, this

requirement will never enumerate me(x, s1), and if it is a follower for a lower

priority positive requirement, this lower priority requirement is initialised

at stage s1 and its follower is thus cancelled. At stage s1 Pσ enumerates

q2(x, s1) = q2(x, s0) into As1+1, and defines q2(x, s1+1) to be a small number

different to me(x, s1) targeted for B. At the next σ-stage s2 > s1, Pσ again

has priority and requires attention. Any followers assigned to lower priority

positive requirements between stages s1 and s2 are fresh big numbers and

so are different to me(x, s1) (and are initialised if they were not enumerated

before stage s2), and so me(x, s2) = me(x, s1) /∈ Bs2 . Now Pσ enumerates

x into Cs2+1 and q2(x, s2) into Bs2+1. Since any new follower assigned to a

positive requirement hereafter will be fresh, me(x, s2) never gets enumerated,

and so Pe is met and Pσ never requires attention again. Note also that Pσ

has acted only finitely many times.

Now let Qe be assigned to a node ρ, with σ ⊂ ρ ⊂ TP . At stage s2, Qρ is

initialised, and at stage s2+1, if Qe is not already met (i.e. ifWe,s2+1∩As2+1 =

∅) then Qe requires attention and has highest priority, and so receives a

fresh follower x. Note that similar to stage s0, we also have that for all

τ <L ρ and s ⩾ s2, if τ ̸⊂ ρ then s is not a τ -stage, and any Q, R, or P

84 CHAPTER 3. Q-DEGREES

requirement assigned to τ does not act at stage s. As such, the follower x

is never initialised. If x never enters We then Pe is satisfied. Otherwise, if x

enters We,s then at the next ρ-stage s3 > s, s2, Qρ requires attention and has

priority, and enumerates x into As3+1. Thus Pe is satisfied and Pρ has acted

only finitely often. The same argument now applies to the version of Re on

the true path (which is immediately after Qρ).

Lemma 47. All the N1
e and N2

e requirements have versions that are met.

Proof. We prove this by induction on e forN2
e , the argument forN1

e is similar.

Let N2
e be assigned to a node τ ⊂ TP . Go to a stage s0 where for all σ <L τ

and s ⩾ s0, if σ ̸⊂ τ then s is not a σ-stage, and any Q, R or P requirement

assigned to σ will not act at stage s. That is, we are never again to the

left of τ and all higher priority positive requirements have finished acting. If

τ̂f ⊂ TP then N2
e is met, since lims ℓ2(e, s) <∞ so ΦA

e ̸= ΨB⊕C
e .

Suppose then that ℓ2(e, s) goes to infinity, so τ̂∞ ⊂ TP . We claim

ΦA
e = ΨB⊕C

e is computable. To compute ΦA
e (x), go to a τ -stage s > s0 where

ℓ2(e, s) > x. Now ΦA
e (x)[s] = ΦA

e (x). To see this, note that at stage s of the

construction we initialise all requirements at nodes σ ̸⩽L TPs, and that any

new followers assigned will be fresh (large) numbers, and so will not be able

to affect the computation of ΦA
e (x)[s]. Then the only followers that could

have been appointed before stage s and not been initialised, and so could

enter A, B or C after stage s are followers appointed to requirements at

nodes σ where τ̂∞ ⊂ σ. These followers can only be enumerated at τ̂∞-

stages s′ > s0, and at each such stage at most one follower is enumerated

(or in the case of a Pe requirement, a follower in C and a trace in B). As

a result, at any τ̂∞-stage s′ > s0, at most one of A or B ⊕ C can change

below the use of ΦA
e (x)[s], and no further changes occur before the next τ̂∞-

stage. Thus ΦA
e (x)[s] = ΨB⊕C

e (x)[s] = ΦA
e (x) = ΨB⊕C

e (x). Note that these

are Q-reductions (so we could have cast all this in terms of Q-like functions),

although we haven’t used anything specific to Q-reductions here and so we

could equally make this work for Turing functionals.

3.2. LATTICES 85

This shows that all our positive and negative requirements are met. The

mapping q1 that takes each element in A⊕B to itself in A⊕ (B⊕C) clearly

satisfies the first coding requirement. Similarly for elements x in A and B

the mapping q2(x) = x is a valid Q-reduction. For elements x in C, when

q2(x, s) is first defined it is a fresh number in A, and so is not a follower

for any other positive requirement. Further, any followers later appointed to

positive requirements and targeted for A will be big numbers and so will be

different to q2(x, s). Thus the only requirement that can enumerate q2(x, s)

and x is the Pe requirement for which x is a follower. By the two actions that

Pe may take, clearly lims q2(x, s) = q2(x) ∈ A ⊕ B iff x ∈ C, and so overall

q2 is a valid Q-reduction witnessing our second coding requirement.

Finally, notice that all of the Q-reductions we constructed are also sQ-

reductions, so this result holds in the sQ-degrees as well as the Q-degrees.

Theorem 48. There is no nontrivial initial segment in the c.e. (s)Q-degrees

that is a lattice.

Proof. We prove the theorem for Q-degrees and note that the proof also

works for sQ-degrees.

Fix a non-computable c.e. set C. We will build A and B below C so that

A and B do not have an infimum. We satisfy the requirements

Re : If Ue ≤Q A via me and Ue ≤Q B via ne

then there is a c.e. set Z ≤Q A,B via qA and qB so that for all i, Re,i.

Re,i : Z ≰Q Ue via pi.

First consider how to build A and B (without thinking about C). We use

a tree and meet Re at nodes τ during expansion stages, where the length of

agreement between Ue,m
−1
e (A) and n−1

e (B) increases. At such a τ̂∞ stage

we will build Z = Zτ . We also need to build Q-reductions qA and qB to

witness Z ⩽Q A,B respectively. The tree is sculpted so that we have the

Rτ,i-nodes σ devoted to meeting Re,i below τ̂∞. At σ we have two outcomes

1 <L 0, with 1 meaning diagonalization.

86 CHAPTER 3. Q-DEGREES

Definition 49. A follower x for a requirement Re,i is realized if pi(x) is

defined, below the length of agreement, and not in Ue.

Basic Strategy for Rτ,i. Assume the length of agreement ℓ(e, s) goes to

infinity, so Rτ has infinitely many expansionary stages. At a σ stage we pick

a fresh follower x targeted for Z, and note that at the next τ̂∞ stage s

we will define qA(x)[s], qB(x)[s] = x. Now Rτ,i wants to use x to diagonalize

against pi and show that pi is not a Q-reduction witnessing Z ⩽Q Ue. So

Rτ,i waits for a stage s′ where pi(x)[s
′] is defined. If this never happens, pi is

not total and so cannot be a Q-reduction. If pi(x) ∈ Ue[s
′], then Rτ,i simply

keeps x out of Z forever, and succeeds.

Otherwise, at some stage t > s we see that pi(x)[t] ⩽ ℓ(e, t) is defined and

not in Ue,t. Now Rτ,i wants to enumerate x into Z while keeping pi(x) out

of Ue, and at the same time preserving all the Q-reductions. So Rτ,i asserts

control of At ↾ t and Bt ↾ t to preserve this current computation, using the

convention that the stage number t bounds everything. In particular, we are

keeping me(pi(x)) and ne(pi(x)) out of A and B respectively, and this forces

pi(x) (which is below the length of agreement) to stay out of Ue.

At the next τ̂∞ stage v > t, we finish the stage by putting x = qA(x)

into Av+1. We do nothing else, continuing to preserve the B-side until the

next τ̂∞ stage r. At this stage we need to redefine qA(x). Note that because

we froze the B side and r is a τ̂∞ stage, we have that pi(x)[r] = pi(x)[t] /∈
Ue,r and if me(pi(x))[t] entered A (say if it was equal to qA(x)), it must

have retargeted in order for the length to have returned, and so the new

value me(pi(x))[r] is not in A. Now pick some a ̸= me(pi(x)) and redefine

qA(x)[r] = a.

At the next σ-stage, we put a into A, qB(x) = x into B and x into Z,

while keeping me(pi(x)) out of A. This forces pi(x) to remain out of Ue

while x has entered Z, and this disagreement is preserved. Thus we have

diagonalized against pi.

Note that here we did not actually need to change the value of qA(x) if

it already differed from me(pi(x)) and could have enumerated x into B and

3.2. LATTICES 87

Z at stage r before, however, once we incorporate permitting we may not be

able to enumerate qB(x) in B immediately, and so this allows for a delay.

Now we need to incorporate permitting from a non-computable c.e. set

C.

Basic Strategy for Rτ,i, with C-permitting. We will build A ⩽Q C via

cA and B ⩽Q C via cB. From our strategy above, we can put our follower

x into A if cA(x) enters C. Knowing that C is non-computable only means

that C has to change late, but we have no control over which elements enter

C. So Rτ,i will need many followers, one of which will eventually get C-

permission. The Rτ,i requirement will work in cycles, and at cycle n it will

have followers xk,j, x
1
k,j, x

2
k,j for each possible k, j ⩽ n configuration. Then

the follower xk,j will succeed in diagonalizing against pi if k enters C and

later j enters C. Here xk,j is our initial follower, then once we put xk,j in

(with permission), it is possible that me(pi(xk,j)) retargets. That is why we

have two more followers x1k,j and x
2
k,j. If me(pi(xk,j)) retargets to a follower,

we still have another follower to enumerate instead (also with permission),

while letting us keep pi(xk,j) out of Ue.

Initially, we set cA(xk,j) = k and cB(xk,j) = j, and qA(xk,j) = qB(xk,j) =

xk,j. Then wait until all followers xk,j are realized, that is, pi(xk,j) is defined,

below the length of agreement and is pointing at an element not in Ue.

Now the strategy waits for permission from C. If k ⩽ n enters C then we

enumerate in A all qA(xk,j) = xk,j for every j, while preserving B, and reset

cA(x
1
k,j) = cA(x

2
k,j) = j. Now we wait again for the next τ̂∞ expansionary

stage v, so the length of agreement has returned, and reset qA(xk,j) to be one

of x1k,j or x2k,j, which is not me(pi(xk,j))[v]. Should j ever enter C, we can

enumerate qB(xk,j) = xk,j into B, qA(xk,j) into A and xk,j into Z, and thus

meet Re,i with the disagreement that this creates. While we are waiting for

permission from C (either for the first or second time), we start a new cycle

n+ 1 and define a new batch of fresh followers.

Notice that our requirements are pretty much independent of one an-

other. Each follower is a follower for a single requirement only, and when it

88 CHAPTER 3. Q-DEGREES

is assigned it is a fresh big number, and so is bigger than any existing com-

putations that are being preserved. The only interaction that can happen is

if some me(pi(xk,j)) from requirement Re,i retargets to a follower w of a dif-

ferent requirement Re′,j. This is not a problem, for if Re′,j has lower priority

than Re,i, this follower w is initialised, and if Re′,j has higher priority and

at some stage wants to enumerate w, then Re,i will be initialised. Further,

each requirement only acts a finite number of times, and so each requirement

can only be initialised finitely many times by the finitely many requirements

above it.

Definition 50. We say a requirement Rτ,i at node σ requires attention at

stage s if s is a σ-stage (and thus a τ̂∞ expansionary stage), Rτ,i has not

diagonalized against pi yet, and one of the following holds.

(i) Rτ,i is in cycle n waiting for C-permission, and some k ⩽ n enters Cs.

(ii) Rτ,i is in (or after) cycle n and has previously received a C-permission

k and acted for it, so qA(xk,j) ∈ A for all j ⩽ n and qA(xk,j)[s] is one

of x1k,j, x
2
k,j, and now some j ⩽ n enters Cs.

(iii) Rτ,i is in cycle n, all existing Rτ,i followers have been realised and the

strategy is waiting for permission from C.

(iv) Rτ,i does not have any followers.

Define TPs to be the unique σ of length s with s a σ-stage.

Construction. Fix some small c /∈ C. At stage s, compute TPs. Initialise

all requirements Rτ where τ ̸⩽L TPs. Find the highest priority requirement

Rτ,i that requires attention at stage s and act for it according to the case by

which it requires attention.

(i) Rτ,i has received C-permission k, i.e. k has entered Cs. Enumerate in

A all qA(xk,j) for every j, and assert control of Bs ↾ s to preserve the

current computations. Reset cA(x
1
k,j) = cA(x

2
k,j) = j. For each j, reset

cB(xj,k) = c ̸∈ C. These will not be enumerated because they did not

3.2. LATTICES 89

get C-permission j first. At the next τ̂∞ expansionary stage v, reset

qA(xk,j) to be one of x1k,j or x
2
k,j which is not me(pi(xk,j))[v].

(ii) Rτ,i has received a second C-permission j after having received C-

permission k. Enumerate qB(xk,j)[s] = xk,j into B, qA(xk,j)[s] into A,

and xk,j into Z, keeping me(pi(xk,j))[s] out of A. Then for whichever

one of x1k,j or x
2
k,j that is not qA(xk,j)[s], redefine cA(x

i
k,j) = c. And for

the other one, xi
′

k,j = qA(xk,j)[s], retarget qA(x
i′

k,j) = xik,j. For each k,

reset cA(xj,k) = cA(x
1
j,k) = cA(x

2
j,k) = c. These will not be enumerated

because they received permissions in the wrong order.

(iii) Rτ,i is in cycle n waiting for C-permission, and all existing Rτ,i fol-

lowers have been realised. Assuming n + 1 /∈ C, begin cycle n + 1

(otherwise begin cycle n + 2 instead) by defining fresh new followers

xn+1,j, x
1
n+1,j, x

2
n+1,j and xk,n+1, x

1
k,n+1, x

2
k,n+1 for each k, j < n+ 1 that

are not already in C. For every new triple of followers xk,j, x
1
k,j, x

2
k,j,

define cA(xk,j) = cA(x
1
k,j) = cA(x

2
k,j) = k, cB(xk,j) = j, cB(x

1
k,j) =

cB(x
2
k,j) = c, and qA(xk,j) = xk,j, qB(xk,j) = xk,j and similarly for x1k,j

and x2k,j (point them at themselves in A and B via qA, qB).

(iv) Rτ,i has no followers. Begin the first cycle and define the first batch of

followers similar to case (iii) above.

End of Construction.

Verification. Let the true path TP be the leftmost path visited infinitely

often.

Lemma 51. Every Re is met. That is, if Ue ⩽Q A via me and Ue ⩽Q B via

ne, then all Re,i are met below some τ node assigned to Re, and qA, qB are

valid Q-reductions.

Proof. Suppose Re is at a node τ on the true path, and Rτ does not have

infinitely many expansionary stages, that is, τ̂f is on the true path TP .

Then ℓ(e, s) gets stuck and there must be a disagreement somewhere. That

90 CHAPTER 3. Q-DEGREES

is, either Ue ̸⩽Q A via me, or Ue ̸⩽Q B via ne, and so Re is met. Notice that

in this case it is possible that qA is not a valid Q-reduction, say if qA(xk,j)

is enumerated into A after a first k permission, but there are no further

τ̂∞ expansionary stages and so qA(xk,j) is not retargeted and xk,j is not

enumerated into Z. However, because the premise of Re failed to hold, we

do not need to build Z or qA or qB, so this does not matter.

Suppose Rτ does have infinitely many expansionary stages, so τ̂∞ is on

the true path. Go to a stage s after which TPt, t ⩾ s is never to the left of

τ , so Rτ has priority (and is not initialised again). Then for each Rτ,i below

τ , we claim Rτ,i is met. There are infinitely many τ expansionary stages,

so Rτ,i must eventually receive followers and begin its cycles. Should Rτ,i at

any point have a follower x for which pi is never defined on, or is defined

and pi(x) ∈ Ue, then as discussed in the basic strategy, Rτ,i succeeds by

simply doing nothing. In this case x is never enumerated, pi is either not a

Q-reduction or is not valid (it is wrong on x), x is never realised and so Rτ,i

succeeds (and stops at some cycle n).

Otherwise, if every follower of Rτ,i gets realised, then Rτ,i eventually

has a successful cycle, because C is non-computable. To see this, suppose

that we have infinitely many cycles with no success. There are two cases,

either infinitely many cycles get one permission but never get the second

permission, or only finitely many cycles get one permission. No cycle gets

a second permission. Then we claim C is computable. In the first case, to

compute C(i), wait for a cycle k > i and one C-permission j for a follower

from cycle k. Such a k exists because there are infinitely many cycles that get

one permission. From now on C(i) will not change because otherwise cycle

k gets a second permission and succeeds. In the second case, to compute

C(i) wait for a cycle k > i when there are no more permissions. Then C(i)

again does not change from now on, because otherwise cycle k will get a

permission.

Thus because C is non-computable, some cycle must eventually succeed

and Rτ,i is met.

3.3. SQ-DEGREES AND WTT-DEGREES 91

Further, notice that qA and qB are always valid, regardless of if some

xk,j gets no permissions, one permission, or two permissions. If xk,j gets no

permissions or a j permission but not a k permission, then none of xk,j, x
1
k,j

or x2k,j enter A, B or Z, and qA and qB on each of these simply points at

itself, i.e. qA(xk,j) = xk,j, and so on. If xk,j gets a k permission but not a j

permission, then only xk,j = qA(xk,j) enters A, no other element enters and

qA(xk,j) is retargeted to one of x1k,j or x
2
k,j, because there are infinitely many

τ expansionary stages and so at the next one, qA recovers, and qA, qB on the

rest of the followers remains correct. Finally if both a k and a j permission

are received at stages s and t > s respectively, then qA(xk,j)[s] = xk,j and

qA(xk,j)[t] enter A, and xk,j = qB(xk,j) enters both Z and B maintaining

that qB is a valid Q-reduction, and finally one of qA(x
1
k,j) or qA(x

2
k,j) gets

retargeted and thus maintains that qA is a valid Q-reduction. Hence Re is

met.

Notice also that cA and cB are valid Q-reductions. At each stage in

the construction, if any element cA(x) (or cB(x)) enters C then either the

corresponding element x enters A (or B) immediately, or cA(x) (respectively,

cB(x)) immediately retargets to an element not currently in C. Thus the

reductions are always consistent, that is, valid Q-reductions, independently

of (and without knowing) whether any individual ℓ(τ, s) goes to infinity or

gets stuck.

Finally, notice that qA, qB, cA, cB are clearly also sQ-reductions. For

qA(xk,j) ⩽ max{xk,j, x1k,j, x2k,j} and qB(xk,j) = xk,j, and similarly for x1k,j and

x2k,j. And cA(xk,j), cB(xk,j) ⩽ max{c, k, j}, similarly for x1k,j and x
2
k,j.

3.3 sQ-degrees and wtt-degrees

In this section we look at the relationship between the sQ-degrees and the

wtt-degrees. Despite the fact that the sQ-degrees are non-distributive, we

can sometimes transfer results from the wtt-degrees to the Q-degrees through

the sQ-degrees.

92 CHAPTER 3. Q-DEGREES

Lemma 52. If a is a c.e. wtt-degree and A ∈ a is a c.e. semirecursive set,

then W ⩽wtt A implies that W ⩽sQ A, for any c.e. set W .

Proof. Suppose A is semirecursive via f(x, y), and that ΓA = W is the

wtt-procedure with use function γ. Define the length of agreement ℓ(s) =

max{x : ∀y ⩽ x, ΓAs(y) = Ws(y)} and maximum length of agreement

mℓ(s) = max{ℓ(t) : t < s}. We call a stage s expansionary if ℓ(s) > mℓ(s).

Suppose that the wtt-procedure Γ has been accelerated so that every stage

is expansionary. We define a Q-like function m(x, s) for x ⩽ ℓ(s) as follows.

Suppose at stage s we are definingm on x for the first time and ΓAs(x) = 0

(say if x is below the length of agreement for the first time), or that m(x, s−
1) ∈ As but Γ

As(x) = 0. In order for ΓAs(x) to change and thus for x to enter

W , (at least) one element below the use γ(x) must enter A. Compute f(x, y)

for x, y ∈ N ↾ γ(x) \As and use this to determine the most preferred element

z, which must enter A if any other element(s) below γ(x) enter. This element

exists because whenever f(x, y) = x, x is preferred over y (and conversely if

f(x, y) = y), because if y enters A, x must also enter A. Now setm(x, s) = z.

If instead m(x, s − 1) ̸∈ As is defined and ΓAs(x) = 0, set m(x, s) =

m(x, s− 1).

Otherwise, ΓAs(x) = 1 (so x ∈ Ws). If this is the first time we are defining

m on x, let m(x, s) = x0 for some fixed x0 ∈ A. If not, m(x, s−1) is defined,

so set m(x, s) = m(x, s − 1). Now either m(x, s − 1) ∈ As already, or some

other small number entered As and caused ΓAs(x) to change, but m(x, s−1)

hasn’t entered As. However, because m(x, s − 1) is a preferred element, it

must enter A at some stage t and we will have ΓA
t (x) = ΓA

s (x) = 1, since

every stage is expansionary.

Then m(x) = limsm(x, s) exists and m(x) ∈ A if and only if x ∈ W ,

and furthermore m(x) ⩽ max{γ(x), x0}. Thus we have an sQ reduction

W ⩽sQ A.

Theorem 53. If A ⩽wtt B are c.e., then there exists D ≡wtt A with D ⩽sQ

A,B. Hence if A ≡wtt B then if the infimum of A and B in the Q-degrees

or sQ-degrees exists, it will have the same wtt-degree as A.

3.3. SQ-DEGREES AND WTT-DEGREES 93

Proof. Suppose that ΓB = A is the wtt-procedure with use function γ, and

this is accelerated so that every stage is expansionary, via ℓ(s).

Construction: For each i we define a set Pi,j = {xi,j : 0 ⩽ j ⩽ γ(i)}. At

stage s+ 1 we put xi,j into D if one of the following occurs.

1. Both i ∈ As+1\As and j ∈ Bs+1\Bs. That is, i and j both enter between

stages s and s+ 1, simultaneously changing A and the computation of

Γ.

2. i ∈ As, j ∈ Bs+1 \Bs and ΓBs(i) ̸= ΓBs+1(i) = 1 for the first time. That

is, i was already in A at stage s but ΓBs(i) = 0. Note that this means

i > ℓ(s). Then j ⩽ γ(i) entered Bs+1 making the computation match.

If there is no i′ < i causing a disagreement, now i ⩽ ℓ(s+ 1).

3. i ∈ As+1 \ As but Bs ↾ γ(i) = Bs+1 ↾ γ(i), and ΓBs(i) = 1. Further,

j ⩽ γ(i) is the last such j to have entered B. That is, i enters making

the computations match, but B did not change below the use γ(i) since

the computation was already correct. Again we have i > ℓ(s) and if

there is no i′ < i causing a disagreement, then i ⩽ ℓ(s+ 1).

End of Construction.

Then D ⩽sQ A,B. To see this, construct Q-like functions m and n, with

m targeted for A and n for B.

Define m(xi,j, 0) = i and fix a /∈ A. Unless otherwise stated, we keep

m(z, s+ 1) = m(z, s).

Suppose i ∈ As+1 \As. If j ∈ Bs+1 \Bs, define m(xi,k, s+1) = a for each

k ̸= j, and keep m(xi,j, s+ 1) = m(xi,j, s) = i. If instead Bs+1 ↾ γ(i) = Bs ↾

γ(i) and ΓBs(i) = 1, look at the enumeration of B up to stage s+ 1 and let

j be the last j ⩽ γ(i) to enter B during this time. Let m(xi,k, s+ 1) = a for

each k ̸= j, and keep m(xi,j, s+ 1) = m(xi,j, s) = i.

Now suppose j ⩽ γ(i) enters B at stage s + 1 and i is already in As. If

ΓBs+1(i) = 0, define m(xi,j, s+1) = a. If ΓBs+1(i) = 1 ̸= ΓBs and m(xi,k, s) =

k, definem(xi,k, s+1) = a for each k ̸= j and keepm(xi,j, s+1) = m(xi,j, s) =

i.

94 CHAPTER 3. Q-DEGREES

It is not difficult to verify that xi,j ∈ D iff lims(m(xi,j, s)) = m(xi,j) ∈ A.

Further, m(xi,j) ⩽ max{i, a} and so this is an sQ-reduction, thus D ⩽sQ A.

Now for our second reduction, define n(xi,j, 0) = j and fix b /∈ B. Unless

otherwise stated, we keep n(z, s+ 1) = n(z, s).

Suppose j ∈ Bs+1 \ Bs. If i ∈ As+1 \ As, let n(xi′,j, s + 1) = b for all

i′ ̸= i, and keep n(xi,j, s+1) = n(xi,j, s) = j. If i /∈ As, define n(xi,j, s+1) =

b. Finally if i ∈ As and ΓBs+1(i) = 1 ̸= ΓBs(i) and n(xi,k, s) = k, let

n(xi,k, s+ 1) = b for all k ̸= j and keep n(xi,j, s+ 1) = j.

Then xi,j ∈ D iff lims(n(xi,j, s)) = n(xi,j) ∈ B, and n(xi,j) ⩽ max{γ(i), b}.
Thus we have an sQ-reduction D ⩽sQ B.

Finally, since D ⩽sQ A we have D ⩽wtt A, so to see that A ≡wtt D we

need to show that A ⩽wtt D. To decide if i ∈ A, wait for a stage s where

i ⩽ ℓ(s) and Ds ↾ max{x : x ∈ Pi,j} = D ↾ max{x : x ∈ Pi,j}. Then i ∈ A iff

i ∈ As, since every stage being expansionary implies that if i enters At at a

later stage t, some j ⩽ γ(i) must also enter B at the same stage.

3.4 Simple sets and Q-degrees

Theorem 54. There exists a c.e. set B such that B is not computable and

no c.e. Ve ≤Q B is simple.

Proof. We construct a c.e. set B to meet

Pe : B ̸= We

Additionally, we must meet the requirements

Re : if Ve ⩽Q B via me then Ve is not simple

To meet the Pe requirements we use a standard Friedberg-Muchnik strat-

egy. That is, we pick a follower xe and wait for xe to show up in We. If xe

never enters We, then xe ̸∈ (We ∪ B), hence B ̸= We and Pe is satisfied. If

xe enters We at stage s then we put xe into B and again Pe is satisfied.

3.4. SIMPLE SETS AND Q-DEGREES 95

For the Re requirements, if Ve ⩽Q B via me and Ve is not computable,

then Re will construct a c.e. set Ae that witnesses that Ve is not simple. That

is, |Ae| = ∞ but Ae ∩ Ve = ∅.
To do this, Re uses the reduction me to put elements x ̸∈ Ve into Ae by

restraining me(x, s) out of B. Then x cannot enter Ve, provided x is below

the length of agreement function at stage s:

ℓ(e, s) = max{x : ∀y ⩽ x, y ∈ Ve,s iff me(y, s) ∈ Bs}

We also define the maximum length of agreement function to be:

mℓ(e, s) = max{ℓ(e, t) : t < s}

Define mℓ(e, 0) = 0. If the length of agreement gets stuck, that is

lims ℓ(e, s) < ∞, then Ve ̸⩽Q B and Re is satisfied. Suppose ℓ(e, s) goes

to infinity, so Re wants to build an infinite set Ae where Ae ∩ Ve = ∅. It is

possible that |Ve| < ∞, in which case Re cannot build an infinite Ae, but

is still satisfied since Ve is not simple. Another possibility is that me only

points to a finite number of elements not in B. In this case |Ve| could be

infinite, but Ve is computable and therefore not simple. Because of these

two computable outcomes, as well as requiring the length of agreement to

increase, we also require there to be new elements me(x, s) ̸∈ B for which

x ⩽ ℓ(e, s) in order for s to be an expansionary stage. This will allow Re to

act and put an element into Ae at every expansionary stage. Define q(e, s)

to be the number of distinct elements me(x, s) that are not in Bs, whose x

is below the length of agreement. That is,

q(e, s) = |{me(x, s) : x ⩽ ℓ(e, s),me(x, s) ̸∈ Bs}|

In order for s to be an e-expansionary stage, we require q(e, s) to have

increased by at least 2 since the last e-expansionary stage, which will allow

Pe′ requirements below Re to pick a follower that is respected. For the first

e-expansionary stage we require q(e, s) ⩾ e+ 2.

96 CHAPTER 3. Q-DEGREES

The Priority Tree. We define the tree T inductively on |σ|. If |σ| is even
then σ has 3 children, σ̂∞, σ̂c and σ̂f . If |σ| is odd then σ has 2 children,

σ̂0 and σ̂1. We assign Re to σ iff |σ| = 2e, and assign Pe to σ iff |σ| = 2e+1.

Write Mσ for the version of requirement M at guess σ and use lexicographic

ordering with ∞ <L c <L f and 0 <L 1. Then Mσ has higher priority than

Mτ if σ <L τ .

Consider some Pσ below the infinite outcome of Rτ , that is, τ̂∞ ⊆ σ.

Let 2e = |τ | and 2e′ + 1 = |σ|. When Pσ is assigned a follower, it is assigned

an element that is not currently restrained by Rτ . At each subsequent τ -

expansionary stage, Rτ sees at least 2 new elements, and only a single new

follower may be appointed. Thus even if Pσ’s follower has been seen by Rτ or

is one of the elements that Rτ sees at some subsequent expansionary stage,

Rτ always sees enough elements that it can pick a non-follower to restrain. In

particular, Pσ’s follower never gets restrained by Rτ . A similar thing happens

when we have more requirements, say

Rτ1 and Pσ1 where τ̂∞ ⊆ σ̂1 ⊆ τ1̂∞ ⊆ σ1. Each time Rτ and Rτ1

have an expansionary stage, they leave at least one unrestrained element

that they have seen. Thus even if all the unrestrained but seen elements are

assigned as followers, at the next expansionary stage both Rτ and Rτ1 will

be able to restrain an element that is not a follower. This is true even if Rτ

has restrained every element that Rτ1 has seen, or if all the elements seen by

Rτ are restrained by Rτ1 .

Now suppose τ <L σ but τ ̸⊂ σ, so Rτ is on a branch further to the

left than Pσ. When Pσ is appointed a follower at stage s, Rτ has restrained

some number of elements, and Pσ’s follower is not allowed to be any of these

elements. If Rτ is visited again before Pσ has acted, then Pσ is initialised. If

Pσ acts and puts its follower in B, Rτ could not have been visited between

when Pσ’s follower was appointed and when the follower is enumerated, and

so Rτ could not have later restrained that follower. If Rτ is visited again, this

follower will not be one of the elements it considers (since it is now in B),

and thus Pσ does not cause any problems for Rτ . Also, if σ <L τ and Pσ has

3.4. SIMPLE SETS AND Q-DEGREES 97

a follower, Rτ can restrain this follower, since if the follower is enumerated

then Rτ is initialised.

Definition 55. We define the notions of σ-stage and σ-expansionary by

induction on |σ|.

(i) Every stage s is a λ-stage.

(ii) Suppose s is a σ-stage with |σ| = 2e. Then say s is σ-expansionary if

ℓ(e, s) > mℓ(e, s) and q(e, s) ⩾ n(e, s) (we will define n(e, s) during the

construction) and declare s to be a σ̂∞-stage.

If ℓ(e, s) > mℓ(e, s) but q(e, s) < n(e, s), declare s to be a σ̂c-stage.
If ℓ(e, s) ⩽ mℓ(e, s) then declare s to be a σ̂f -stage.

(iii) Suppose s is a σ-stage with |σ| = 2e + 1. If no Pτ where |τ | = |σ| has
acted yet and put a follower into B (including Pσ itself), then declare

s to be a σ̂1-stage. If some Pτ , |τ | = |σ| has already acted, or Pσ acts

at stage s then declare s to be a σ̂0 stage.

Define TPs to be the unique σ of length s with s a σ-stage.

We say that Pσ requires attention at stage s ifWe,s∩B = ∅, s is a σ-stage
and either:

(i) Currently Pσ has no follower; or

(ii) Pσ has a follower x ∈ We,s.

Construction. Define n(e, 0) = e+ 2 for every e.

At stage s, compute TPs. Initialise allMτ where τ ̸⩽L TPs. Run through

substages t for t ⩽ s as follows.

• If t = 2e and s is σ-expansionary for σ ⊆ TPs, |σ| = t, act for Rσ

as follows. Consider all me(x, s) ̸∈ Bs where x ⩽ ℓ(e, s) which Rσ

has not yet restrained (at previous expansionary stages). If one of

these me(x, s) is already restrained by some Rτ , restrain it. Otherwise,

restrain an me(x, s) that is not a follower for any Pσ where σ ̸≤L τ .

98 CHAPTER 3. Q-DEGREES

Claim 1. Such an me(x, s) exists.

Enumerate the corresponding x into Aσ,s+1 and define n(e, s + 1) =

n(e, s) + 2.

• If t = 2e + 1, consider Pσ where σ ⊆ TPs and |σ| = t. If Pσ requires

attention and does not have a follower, then appoint the smallest un-

restrained x that is not currently a follower for any Pσ′ as the follower

for Pσ. Define n(e, s + 1) = n(e, s) for all e where n(e, s + 1) is not

already defined and end stage s.

Claim 2. The element x following Pσ is never restrained by any higher

priority Rτ .

If Pσ requires attention and already has a follower, enumerate the

follower into Bs+1, initialise all requirements Mτ for τ ̸≤L σ, define

n(e, s + 1) = n(e, s) for all e where n(e, s + 1) is not yet defined, and

end stage s.

End of Construction.

Verification. Let TP be the leftmost path visited infinitely often.

Lemma 56. Truth of outcome lemma: all Re and Pe requirements are met.

Proof. Suppose ξ ⊆ TP . We will prove the following by simultaneous induc-

tion on |ξ|:

(i) If |ξ| = 2e and ξ̂∞ ⊆ TP then

(a) |Aξ| = ∞ and Aξ ∩ Ve = ∅ and thus Re is satisfied,

(b) If s is the dth ξ-expansionary stage, there is at least one element

me(x, s) /∈ Bs which is not a follower for any Pσ, σ ̸⩽L ξ and Rξ

can restrain this element. That is, Claim 1 holds.

(ii) If |ξ| = 2e and ξ̂c ⊆ TP then Ve is computable.

(iii) If |ξ| = 2e and ξ̂f ⊆ TP then Ve ̸≤Q B.

3.4. SIMPLE SETS AND Q-DEGREES 99

(iv) If |ξ| = 2e+ 1 and ξ̂1 ⊆ TP then Pe is satisfied.

(v) If |ξ| = 2e+ 1 and ξ̂0 ⊆ TP then some Pσ with |σ| = |ξ| (potentially
σ = ξ) enumerates its follower into B, satisfying Pe. In particular, Pξ’s

follower and the followers of Pσ, |σ| = |ξ| are not restrained by any Rτ ,

τ ⩽L ξ, and thus Claim 2 holds.

Notice that once some Pσ (where |σ| = 2e + 1) acts and puts a follower

in B, then Pe is satisfied and no other version of Pe ever requires attention

again.

Base case: ξ = λ. Here we are considering R0.

Suppose f ⊂ TP . Since TP is the leftmost path visited infinitely often,

this means that after some stage s0, ℓ(0, s) < mℓ(0, s0) for all s > s0. This

can only happen if one of the following occurs. There is a disagreement

between V0 and B (so z = ℓ(0, s0) + 1 is in V0 but m0(z) ̸∈ B, or z ̸∈ V0 but

m0(z) ∈ B) in which case V0 ̸⩽Q B. Or, m0(z) is undefined, so m0 is partial,

and thus again V0 ̸⩽Q B. In both cases R0 is satisfied.

Now suppose c ⊂ TP . In this case there are infinitely many stages s for

which ℓ(0, s) > mℓ(0, s), so V0 ⩽Q B, however the infinite outcome is only

visited finitely many times so after some stage s0, m0 does not point at any

new elements that are outside of B. That is, for some n, if m0(x) ̸∈ B then

m0(x) < n. In this case, V0 is computable: go to a stage s0 after which

the infinite outcome is not visited and Bs0 ↾ n = B ↾ n. To compute if x

is in V0, go to a stage s > s0 where x < ℓ(0, s) and compute m0(x, s). If

m0(x, s) < n and m0(x, s) ̸∈ Bs then x ̸∈ V0, otherwise x ∈ V0 (it is possible

m0(x, s) > n and m0(x, s) ̸∈ Bs but then m0(x, s) later goes into B). This

covers both the computable cases, when m0 has a finite range and when m0

has an infinite range but only finitely many things in the range are not in B.

Since computable sets are not simple, R0 is again satisfied.

Finally suppose ∞ ⊂ TP , so there are infinitely many 0-expansionary

stages. At each expansionary stage, m0 must be pointing at 2 more elements

outside of B than what it did at the previous expansionary stage. That

100 CHAPTER 3. Q-DEGREES

is, at the dth expansionary stage s, there are at least (2d)-many distinct

elements x ≤ ℓ(0, s) for which m0(x, s) ̸∈ Bs. Of these, d − 1 have been

restrained, one at each of the previous expansionary stages, and at most d−1

followers have been appointed below ∞. Thus at stage s, Rλ has at least 2

non-follower elements that it can choose from to restrain (the unrestrained

one may then potentially be assigned as a follower before the stage ends).

Since the elements that Rλ restrains are never later assigned as followers, the

restraints are respected. The elements x corresponding to restrained elements

m0(x, s) are enumerated into A0, and the length of agreement ensures the x

never enter V0. Thus |Aλ| = ∞ and Aλ ∩ V0 = ∅, witnessing that V0 is not

simple. Hence R0 is satisfied.

Inductive step: Suppose |ξ| > 0 and (i) through (v) hold for all σ ⊂ ξ.

Case 1: |ξ| = 2e + 1. Go to the least ξ-stage s0 where for all τ <L ξ and

s > s0, if τ ̸⊂ ξ, then s is not a τ -stage, and if τ ⊂ ξ then Pτ does not require

attention at stage s. That is, we do not visit any path to the left of ξ after

stage s0, and any Pτ requirement above Pξ has either already acted and put

a follower into B, or if it is to receive a follower (that never goes in) then it

has already received said follower.

Suppose ξ̂1 ⊂ TP . If Pξ does not require attention for any t > s0, then

it must be that We ∩ B ̸= ∅ and thus Pe is already satisfied. Otherwise, go

to the first stage s ⩾ s0 for which Pξ requires attention. At this stage Pξ has

priority and receives a follower x. Then Pξ never again requires attention and

so x is never enumerated into B (if Pξ did require attention at some stage

t > s then it would have highest priority at stage t and enumerate x into B,

contradicting that ξ̂1 ⊂ TP). This means that the element x following Pξ

never enters We, and thus Pe is satisfied.

Now suppose ξ̂0 ⊂ TP . If s0 (as chosen above) is a ξ̂0-stage, then some

Pσ with |σ| = |ξ| must have already acted and put a follower in, satisfying Pe.

Otherwise, Pξ requires attention and receives a follower x at stage s0. At this

stage, x is not restrained by any Rτ , τ <L ξ. By induction, each Rτ above

Pξ always has a non-follower element to restrain at each subsequent expan-

3.4. SIMPLE SETS AND Q-DEGREES 101

sionary stage, and so Pξ’s follower is never restrained by a higher priority

requirement. Now there are two possibilities. First, some Pσ with |σ| = |ξ|
further to the right receives a follower and enumerates this follower in be-

tween ξ-stages. In this case Pξ never requires attention again because Pe is

satisfied. Otherwise, at some stage s > s0, x enters We,s. At this stage, Pξ

requires attention and has highest priority, and so will enumerate x into B,

satisfying Pe.

Case 2: |ξ| = 2e. Go to the least ξ-stage s0 where for all τ <L ξ and

s > s0, if τ ̸⊂ ξ, then s is not a τ -stage. So we do not visit any path to

the left of ξ after stage s0. Note that any Pσ requirements above ξ that will

ever enumerate a follower into B must have already done so by stage s0, and

as such Rξ is never initialised again. Now the argument is similar to the

base case. For the infinity outcome, Rξ is allowed to restrain followers of

higher priority Pτ as these will never be enumerated after stage s0. At each

ξ-expansionary stage, Rξ and all other Rτ where τ̂∞ ⊂ ξ see at least 2 new

elements each, while only a single new follower may be appointed below Rξ

(after Rξ has chosen which element it restrains). Then no matter how the

elements seen by the Rτ ’s and Rξ overlap, Rξ will have a non-follower element

it can restrain. Once restrained, this element will never be appointed as a

follower and so the restraint is respected. As such Rξ succeeds in building

an Aξ which witnesses that Ve is not simple and so Re is satisfied.

This shows that all the Re and Pe requirements are met.

102 CHAPTER 3. Q-DEGREES

3.5 Minimal pairs and half minimal pairs in

the Q-degrees

Downey and Stob showed in 1984 that there is a minimal pair of wtt-degrees

within the same Turing degree [20]. A similar argument gives the same result

but with the sQ- and Q-degrees. For this proof we use a pinball machine,

which is more well-suited to this argument than a tree of strategies because

of how we ‘trace’ elements to ensure the minimal pair has the same Q-degree.

Theorem 57. There is a minimal pair of sQ-degrees within the same Q-

degree.

Proof. We construct A1 and A2 on a pinball machine so that A1 ≡Q A2 and

they satisfy the requirements

Re : if Ve ⩽sQ A1, A2 then Ve is computable

To make A1 and A2 non-computable we further satisfy

Pe : A1 ̸= We

Note that it suffices to make only one of A1, A2 non-computable since they

have the same degree. We will have Q-like functions γ and δ that witness

A1 ⩽Q A2 and A2 ⩽Q A1, respectively. We use a standard Friedberg strategy

to meet the Pe requirements.

As in figure 3.1, the pinball machine has holes He for Pe requirements,

and gates Ge for Re requirements. Next to each gate Ge there is a corral Ce.

These are arranged from bottom to top in order of priority, G0, H0, G1,

Below the first gate G0 are the enumeration pockets for A1 and A2.

Basic strategy. Pick a1 targeted for A1 to be a follower for Pe. At

every stage s, we define γ and δ on all existing elements. So if a1 does

not enter A1 at the next stage, we give it a trace γ(a1)[s] which is a fresh

big number. Now for a1 to go into A1, we need γ(a1)[s] to go into A2. So

3.5. MINIMAL PAIRS ANDHALFMINIMAL PAIRS IN THE Q-DEGREES103

Figure 3.1: Sketch of the pinball machine

at the next stage, either γ(a1) goes in or we give it a trace δ(γ(a1)[s])[s +

1] which is a fresh number. We call these elements the traces of a1, and

denote γ(a1) by t(a1), δ(γ(a1)) by t2(a1), γ(δ(γ(a1))) by t3(a1) and so on.

At some later stage, suppose a1 gets realised. That is, it enters We, so now

Pe wants to put a1 into A1. At this stage, a1 has a trace entourage with

n elements, a1, t(a1), . . . , t
n(a1). All of the traces (given by γ and δ) need

to be enumerated into their respective sets (A1 or A2) in order for a1 to be

enumerated into A1. Initialise all lower priority balls already on the machine

and drop a1 along with its trace entourage down the hole He and to the first

unoccupied gate Gj. Put a1, . . . , t
n−1(a1) into the corral Cj and place the

last element of the trace, tn(a1), at the gate Gj. While tn(a1) is at the gate

Gj, we give it a trace at each stage as we did for a1. We say T n(a1) is the

primary ball to which the new traces are associated with. The gate will open

at the next j-expansionary stage, letting tn(a1) along with its traces drop to

the next unoccupied gate, initialising all lower priority balls. As before, we

104 CHAPTER 3. Q-DEGREES

put tn(a1) along with all but the last trace into the new gate’s corral, and put

the last trace at the gate (this last trace is now a primary ball too). If there

is no unoccupied gate below, then tn(a1) and its traces all get enumerated

into their target sets, A1 or A2. Once tn(a1) and all of its traces have gone

in to their target sets, we take the next element tn−1(a1) from the corral

Cj to the gate Gj. While there is no element at the gate Gj we consider

Gj to be unoccupied (even if there are elements in the corral). We do not

take tn−1(a1) out of the corral before tn(a1) has gone in, since it could be

that tn(a1) gets stuck at a gate forever and never goes in. In that case we

can’t enumerate tn−1(a1) in either, but had we moved it out to the gate it

is possible it would have been allowed to go in, making either δ or γ wrong.

When Pe releases its follower a1, it is assigned another follower a′1 in case a1

never gets enumerated. Should this follower be realised while a1 is still in the

machine, it and its trace entourage have a lower priority to a1 and its traces.

Once Pe gets a follower enumerated, it stops receiving new followers.

Definition 58. We say that a ball x requires attention at stage s if one of

the following holds.

(i) x is a follower for a Pe requirement and has been realised (so We,s ∩
A1,s = ∅ and x ∈ We,s)

(ii) x is a primary ball at a gate Gj and s is a j-expansionary stage.

Construction. At stage s, find the highest priority ball x which requires

attention. Cancel all lower priority balls. Drop x along with its trace en-

tourage to the first unoccupied gate Gj below it. Place x and all but the last

trace tn(x) in the corral Cj, placing t
n(x) on the gate Gj. Declare tn(x) to

be a primary ball. If there are no unoccupied gates, enumerate x and all of

its traces into their target sets. Appoint a fresh large number to the highest

priority Pe requirement that does not have a follower and has not yet been

satisfied. Appoint a fresh large number as the next trace to each follower

waiting at a hole and to each primary ball waiting at a gate (that is, extend

the definitions of γ and δ).

3.5. MINIMAL PAIRS ANDHALFMINIMAL PAIRS IN THE Q-DEGREES105

Verification.

Lemma 59. Each gate has finitely many primary balls that are permanent

residents.

Proof. Each gate receives at most one primary ball at a time. When a pri-

mary ball is at a gate, that gate is occupied and no new balls stop at this

gate. The primary ball receives traces, but these are themselves not primary

balls, they are only associated to the primary ball. Thus the gate can have

at most one primary ball that is a permanent resident.

Lemma 60. Each Pe is met.

Proof. Suppose not. Let e be smallest such that Pe is not met. Let s0 be the

least stage where all higher priority Pj requirements have been met. At stage

s0 (if not sooner), Pe receives a follower x0. Then at some stage s1 > s0, this

follower must get realised. For if it doesn’t, Pe is met since x0 ∈ A1 but not

in We. Since all higher priority Pj have already been met, x0 must be the

highest priority ball that requires attention at stage s1. Thus x0 along with

its trace entourage are dropped to the first unoccupied gate, and all lower

priority balls are cancelled. Now Pe gets assigned a new follower x1 since it is

the highest priority requirement that has not yet been satisfied and does not

have a follower at its hole. Meanwhile, since we assume that Pe does not get

met, x0 cannot ever be enumerated into A1. So x0 or one of its traces must

get stuck forever at some gate Gj, j < e, and so is a permanent resident of

Gj. By the same argument as for x0, at some stage s2 > s1 we must have

that x1 is realised, and so x1 and its trace entourage are dropped to the

next unoccupied gate. This process can repeat at most e + 1 many times

before every gate below He has a permanent resident. Now Pe is assigned yet

another follower x, and by the same argument this follower must get realised

at some later stage t. Now all the gates below He are occupied, and so x

and its trace entourage are dropped all the way down and enumerated into

their target sets. But then Pe is satisfied. Thus every Pe requirement must

be met.

106 CHAPTER 3. Q-DEGREES

Lemma 61. For each e, there are infinitely many clear stages. That is,

stages for which the only residents at gates Gj, j ⩽ e, are permanent resi-

dents.

Proof. Go to a stage s0 at which all permanent residents below Ge are already

at their gates. For any stage t > s0, let x be the ball of highest priority that

is not a permanent resident at its final gate. When x moves at stage s > t,

it will initialise all lower priority balls, in particular any ball at gates Gj for

j ⩽ e which are not permanent residents. If x is above gate Ge, then s is a

clear stage for gate Ge. Otherwise, x must get enumerated and the stage s′

in which this happens is a clear stage.

Lemma 62. Each Re is met.

Proof. If Ve ̸⩽sQ A1, A2 then Re is met. In this case the length of agreement

gets stuck at some stage s, after which the gate Gj never opens.

Suppose Ve ⩽sQ A1, A2, then Ge has infinitely many expansionary stages.

Go to a stage s0 at which all Pj requirements below Ge have finished acting.

Since all P requirements are met, such a stage exists. To compute Ve ↾ z,

go to a clear stage s > s0 for which ℓ(e, s) > z. Then Ve,s ↾ z = Ve ↾ z.

To see this, consider how Ve,s ↾ z could change after stage s. The only way

this can happen is if some balls p, q get enumerated into each of A1 and A2

between e-expansionary stages. To affect the computation of Ve,s ↾ z, p and

q must be below the use of this computation. Since the Pj requirements

with j < e have finished, p and q must have originated from a lower priority

requirement above Ge. Any number assigned as a follower or a trace after

stage s will be a fresh big number that cannot affect the computation, and

so p and q must have already existed on the machine before stage s. Suppose

p has higher priority than q, so q must enter before p can move, otherwise p

will initialise q. Now, q must stop at gate Ge. For if a ball were to occupy

gate Ge after the clear stage s, this ball must have lower priority to p and

q else it would have initialised them when it moved to gate Ge. But then

this ball is initialised when q moves, so q must stop at Ge. Then q moves

3.5. MINIMAL PAIRS ANDHALFMINIMAL PAIRS IN THE Q-DEGREES107

at the next e-expansionary stage, and q (and its traces) must enter before p

can move. This means that when p moves, it must also stop at gate Ge. But

then p cannot enter before another e-expansionary stage occurs, and thus

the computation of Ve,s ↾ z is preserved. Hence Ve is computable and Re is

met.

Definition 63. A set A is R-cappable if there exists a non-computable set

B such that degR(A) ∩ degR(B) = 0. That is, A is half of a minimal pair in

the R degrees, where R is a reducibility.

Definition 64. A set A is promptly simple if there is a computable function

g such that ∀e(|We| = ∞ → ∃∞x, s(x ∈ We,s and x ∈ Ag(s))).

Notice that in this definition it suffices to have a single x where x ∈ We,s

and x ∈ Ag(s), and this immediately gives us infinitely many such x in the

intersection. To see this, consider We′ = We \ x. Then there are z, s such

that z ∈ We′,s∩Ag(s) and z is also in We,s, and this can be iterated to obtain

infinitely many such z.

Theorem 65. If A is a c.e. set that is half of a minimal pair in the Q-degrees

then A is half of a minimal pair in the Turing degrees.

Proof. Fix A that is not half of a Turing minimal pair. By a Theorem of

Ambos-Spies et. al, we know that A has promptly simple degree. We describe

the idea in case A is promptly simple. We need to show that A is not half of

a minimal pair in the Q-degrees.

Let A be promptly simple via g and let B be a given non-computable

c.e. set. We build a set Z ⩽sQ A,B with sQ-reductions m and n respectively,

to meet requirements

Re : Z ̸= We

Basic Strategy: Pick followers z0, . . . , zn ̸∈ Zs and set m(zi, s) = n(zi, s) =

i. Once zn has been realised (has entered We), we define a new follower zn+1,

108 CHAPTER 3. Q-DEGREES

so long as Re is not yet met. To meet Re we need to put a single zi into Z. In

order to keep Z sQ-below A and B, we can only put zi in if both m(zi) and

n(zi) enter A and B respectively. Here we use that A is promptly simple.

Since B is an infinite c.e. set, for infinitely many x, s we will have x ∈ Bs and

x ∈ Ag(s). Since B is non-computable, at some stage s we must have some

small i < n enter Bs, where at stage s we have followers z0, . . . , zn. Compute

g(s) and check if i ∈ Ag(s). If it is, which infinitely often it will be, then we

can enumerate zi and meet Re.

Construction: Fix some a /∈ A and b /∈ B. At stage s, run through

substages e for e ⩽ s as follows. If Re is already met, ze,i is defined, then if

i ∈ Bs+1 \Bs, set n(ze,i, s+1) = b, and if i ∈ As+1 \As, set m(ze,i, s+1) = a.

Otherwise if Re is not yet met:

• If Re does not have a follower, assign a new follower ze,0 to Re.

• If Re has followers ze,0, . . . , ze,n that have all been realised, assign a new

follower ze,n+1 to Re.

• For new followers ze,i, definem(ze,i, s) = n(ze,i, s) = i. Unless otherwise

stated, keep m(ze,i, s+ 1) = m(ze,i, s) and n(ze,i, s+ 1) = n(ze,i, s).

• Suppose i ∈ Bs+1 \ Bs. Compute g(s + 1), and check if i ∈ Ag(s+1) or

i ∈ As+1. If not, then set n(ze,i, s + 1) = b. Otherwise, enumerate ze,i

into Z, meeting Re. Keep m(ze,i, s+1) = n(ze,i, s+1) = i, and for any

other j ⩽ n for which j ∈ As+1 \Bs+1, define m(ze,j, s+ 1) = a.

• Suppose i ∈ As+1 \ As but n(ze,i, s) = b (for instance if i entered B at

an earlier stage t, but s > g(t) so that ze,i did not get permission at

stage t). Then define m(ze,i, s+ 1) = a.

Verification:

Lemma 66. Every Re is met.

Proof. Suppose Re is not met. Then every follower ze,i that is assigned to

Re is eventually realised (enters We), because if ze,i is not realised then it is

3.5. MINIMAL PAIRS ANDHALFMINIMAL PAIRS IN THE Q-DEGREES109

not in We and not in Z, and thus Re is satisfied. So ze,i gets realised and

Re gets assigned yet another follower ze,i+1, however none of these followers

are ever enumerated, so Re is assigned a follower ze,i ̸∈ Z for every i ∈ N.
For ze,i to remain outside of Z, either i does not enter one or both of A and

B, or i enters B at some stage s but only enters A after stage max{s, g(s)}.
However, each ze,i is targeted at i by m and n, which means that for every i,

either i does not enter both A and B, or if it does enter both then it enters

A after stage max{s, g(s)}, where s is the stage when i entered B. This

contradicts that A is promptly simple, and thus Re must be met.

Further, m and n are valid Q-reductions: If ze,i has been enumerated

into Z then i is in both A and B, and in this case m(ze,i) = n(ze,i) = i.

If ze,i is never enumerated, then either m(ze,i) = i ̸∈ A, or m retargets to

m(ze,i) = a /∈ A depending on when and if i enters A, and similarly for

n. Finally, m(ze,i) ⩽ max{i, a} and n(ze,i) ⩽ max{i, b} and so these are

sQ-reductions.

110 CHAPTER 3. Q-DEGREES

Bibliography

[1] Arslanov, M. M., Batyrshin, I. I., and Omanadze, R. S. Struc-

tural properties of Q-degrees of n-c. e. sets. Ann. Pure Appl. Logic 156,

1 (2008), 13–20.

[2] Arslanov, M. M., and Omanadze, R. S. Q-degrees of n-c.e. sets.

Illinois J. Math. 51, 4 (2007), 1189–1206.

[3] Ash, C., and Knight, J. Computable structures and the hyperarith-

metical hierarchy, vol. 144 of Studies in Logic and the Foundations of

Mathematics. North-Holland Publishing Co., Amsterdam, 2000.

[4] Batyrshin, I. I. Non-isolated quasi-degrees. MLQ Math. Log. Q. 55,

6 (2009), 587–597.

[5] Batyrshin, I. I. Q-reducibility and m-reducibility on computably

enumerable sets. Sibirsk. Mat. Zh. 55, 6 (2014), 1221–1239.

[6] Bazhenov, N., Harrison-Trainor, M., and Melnikov, A. Com-

putable Stone spaces. Ann. Pure Appl. Logic 174, 9 (2023), Paper No.

103304, 25.

[7] Bazhenov, N., Melnikov, A. G., and Ng, K. M. Every ∆0
2 polish

space is computable topological. Proceedings of the American Mathe-

matical Society (2024).

[8] Belegradek, O. V. Algebraically closed groups. Algebra i Logika 13

(1974), 239–255, 363.

111

112 BIBLIOGRAPHY

[9] Boone, W. The word problem. Annals of Math 70 (1959), 207–265.

[10] Cĕitin, G. S. Algorithmic operators in constructive complete separable

metric spaces. Dokl. Akad. Nauk SSSR 128 (1959), 49–52.

[11] Chitaia, I. Hyperhypersimple sets and Q1-reducibility. MLQ Math.

Log. Q. 62, 6 (2016), 590–595.

[12] Chitaia, I., Ng, K. M., Sorbi, A., and Yang, Y. Minimal degrees

and downwards density in some strong positive reducibilities and quasi-

reducibilities. J. Logic Comput. 33, 5 (2023), 1060–1088.

[13] Chitaia, I., Omanadze, R., and Sorbi, A. Notes on conjunctive

and quasi degrees. J. Logic Comput. 31, 5 (2021), 1317–1329.

[14] Cholak, P., Downey, R., and Stob, M. Automorphisms of the

lattice of recursively enumerable sets: promptly simple sets. Trans.

Amer. Math. Soc. 332, 2 (1992), 555–570.

[15] Church, A. An Unsolvable Problem of Elementary Number Theory.

Amer. J. Math. 58, 2 (1936), 345–363.

[16] Downey, R., and Jockusch, C. G. Every low Boolean algebra is

isomorphic to a recursive one. Proc. Amer. Math. Soc. 122, 3 (1994),

871–880.

[17] Downey, R., LaForte, G., and Nies, A. Computably enumerable

sets and quasi-reducibility. Ann. Pure Appl. Logic 95, 1-3 (1998), 1–35.

[18] Downey, R., and Melnikov, A. Computable structure theory: A

unified approach. Unpublished book.

[19] Downey, R., and Melnikov, A. Computably compact metric

spaces. preprint (2023).

BIBLIOGRAPHY 113

[20] Downey, R. G., and Stob, M. Structural interactions of the re-

cursively enumerable T- and w-degrees. Ann. Pure Appl. Logic 31, 2-3

(1986), 205–236. Special issue: second Southeast Asian logic conference

(Bangkok, 1984).

[21] Ershov, Y., and Goncharov, S. Constructive models. Siberian

School of Algebra and Logic. Consultants Bureau, New York, 2000.

[22] Eršov, J. L. Positive equivalences. Algebra i Logika 10 (1971), 620–

650.

[23] Feiner, L. Orderings and Boolean algebras not isomorphic to recur-

sive ones. ProQuest LLC, Ann Arbor, MI, 1968. Thesis (Ph.D.)–

Massachusetts Institute of Technology.

[24] Feiner, L. Hierarchies of Boolean algebras. J. Symbolic Logic 35

(1970), 365–374.

[25] Fischer, P. Pairs without infimum in the recursively enumerable weak

truth table degrees. The Journal of symbolic logic 51, 1 (1986), 117–129.

[26] Fischer, P., and Ambos-Spies, K. Q-degrees of re sets. In JOUR-

NAL OF SYMBOLIC LOGIC (1987), vol. 52, ASSN SYMBOLIC

LOGIC INC 1325 SOUTH OAK ST, CHAMPAIGN, IL 61820, pp. 317–

317.

[27] Fowler, D., and Robson, E. Square root approximations in old

babylonian mathematics: Ybc 7289 in context. Historia Mathematica

25, 4 (1998), 366–378.

[28] Friedberg, R. M. Two recursively enumerable sets of incomparable

degrees of unsolvability (solution of Post’s problem, 1944). Proc. Nat.

Acad. Sci. U.S.A. 43 (1957), 236–238.

114 BIBLIOGRAPHY

[29] Friedberg, R. M. Three theorems on recursive enumeration. I. De-

composition. II. Maximal set. III. Enumeration without duplication. J.

Symbolic Logic 23 (1958), 309–316.

[30] Garey, M. R., and Johnson, D. S. Computers and intractability. A

Series of Books in the Mathematical Sciences. W. H. Freeman and Co.,

San Francisco, CA, 1979. A guide to the theory of NP-completeness.

[31] Gödel, K. über formal unentscheidbare Sätze der Principia Mathe-

matica und verwandter Systeme I. Monatsh. Math. Phys. 38, 1 (1931),

173–198.

[32] Goncharov, S. S., and Knight, J. F. Computable structure and

non-structure theorems. Algebra and Logic 41, 6 (2002), 351–373.

[33] Grubba, T., Schroder, M., and Weihrauch, K. Computable

metrization. Mathematical Logic Quarterly 53 (2007), 381–395.

[34] Harrington, L., and Soare, R. I. Post’s program and incomplete

recursively enumerable sets. Proc. Nat. Acad. Sci. U.S.A. 88, 22 (1991),

10242–10246.

[35] Harrison-Trainor, M., and Melnikov, A. An arithmetic analysis

of closed surfaces. Preprint (2021).

[36] Harrison-Trainor, M., Melnikov, A. G., and Ng, K. M. Com-

putability of Polish spaces up to homeomorphism. Journal of Symbolic

Logic 85 (2020), 1664–1686.

[37] Hilbert, D. Mathematical problems (1900). In Ideas that created the

future—classic papers of computer science. MIT Press, Cambridge, MA,

[2021], pp. 45–50. Reprinted from [1557926].

[38] Hisamiev, N. G. Criterion for constructivizability of a direct sum of

cyclic p-groups. Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.-Mat., 1 (1981),

51–55, 86.

BIBLIOGRAPHY 115

[39] Kach, A. M., and Turetsky, D. Limitwise monotonic functions,

sets, and degrees on computable domains. J. Symbolic Logic 75, 1 (2010),

131–154.

[40] Kalimullin, I., Khoussainov, B., and Melnikov, A. Limitwise

monotonic sequences and degree spectra of structures. Proc. Amer.

Math. Soc. 141, 9 (2013), 3275–3289.

[41] Khisamiev, N. Constructive abelian groups. In Handbook of recur-

sive mathematics, Vol. 2, vol. 139 of Stud. Logic Found. Math. North-

Holland, Amsterdam, 1998, pp. 1177–1231.

[42] Khisamiev, N. G. Hierarchies of torsion-free abelian groups. Algebra

i Logika 25, 2 (1986), 205–226, 244.

[43] Khoussainov, B., Nies, A., and Shore, R. Computable models

of theories with few models. Notre Dame J. Formal Logic 38, 2 (1997),

165–178.

[44] Kleene, S. C. Introduction to Metamathematics. P. Noordhoff N.V.,

Groningen, 1952.

[45] Koh, H. T., Melnikov, A., and Ng, K. M. Computable topological

groups, 2022.

[46] Koh, H. T., Melnikov, A. G., and Ng, K. M. Counterexamples

in effective topology. Submitted.

[47] Kreisel, G., Lacombe, D., and Shoenfield, J. R. Partial recur-

sive functionals and effective operations. In Constructivity in mathe-

matics: Proceedings of the colloquium held at Amsterdam, 1957 (edited

by A. Heyting) (1959), Stud. Logic Found. Math., North-Holland, Am-

sterdam, pp. 290–297.

[48] Lachlan, A. H. On the lattice of recursively enumerable sets. Trans.

Amer. Math. Soc. 130 (1968), 1–37.

116 BIBLIOGRAPHY

[49] Lupini, M., Melnikov, A., and Nies, A. Computable topological

abelian groups. J. Algebra 615 (2023), 278–327.

[50] Macintyre, A. Omitting quantifier-free types in generic structures.

J. Symbolic Logic 37 (1972), 512–520.

[51] Mal′cev, A. Constructive algebras. I. Uspehi Mat. Nauk 16, 3 (99)

(1961), 3–60.

[52] Mal′cev, A. I. On recursive Abelian groups. Dokl. Akad. Nauk SSSR

146 (1962), 1009–1012.

[53] Marčenkov, S. S. A certain class of incomplete sets. Mat. Zametki

20, 4 (1976), 473–478.

[54] Melnikov, A., and Ng, K. M. Separating notions in computable

topology. Submitted, 2023.

[55] Melnikov, A. G. Computable abelian groups. Bull. Symb. Log. 20, 3

(2014), 315–356.

[56] Metakides, G., and Nerode, A. Effective content of field theory.

Annals of Mathematical Logic 17, 3 (1979), 289–320.

[57] Moschovakis, Y. N. Recursive metric spaces. Fund. Math. 55 (1964),

215–238.

[58] Muˇ cnik, A. A. On the unsolvability of the problem of reducibility

in the theory of algorithms. Dokl. Akad. Nauk SSSR (N.S.) 108 (1956),

194–197.

[59] Novikov, P. On the algorithmic unsolvability of the word problem in

group theory. Trudy Mat. Inst. Steklov 44 (1955), 1–143.

[60] Odifreddi, P. Strong reducibilities. Bull. Amer. Math. Soc. (N.S.) 4,

1 (1981), 37–86.

BIBLIOGRAPHY 117

[61] Omanadze, R. S. On the upper semilattice of recursively enumerable

sQ-degrees. Algebra i Logika 30, 4 (1991), 405–413, 507.

[62] Omanadze, R. S. Quasi-degrees of recursively enumerable sets. In

Computability and models, Univ. Ser. Math. Kluwer/Plenum, New York,

2003, pp. 289–319.

[63] Omanadze, R. S. Some properties of r-maximal sets and Q1,N -

reducibility. Arch. Math. Logic 54, 7-8 (2015), 941–959.

[64] Omanadze, R. S. On the connections between wtt- and Q-

reducibilities. J. Logic Comput. 29, 1 (2019), 37–51.

[65] Omanadze, R. S., and Chitaia, I. O. Q1-degrees of c.e. sets. Arch.

Math. Logic 51, 5-6 (2012), 503–515.

[66] Omanadze, R. v. S. A form of reducibility. Sakharth. SSR Mecn.

Akad. Moambe 83, 2 (1976), 281–284.

[67] Omanadze, R. v. S. On bounded Q-reducibility. Soobshch. Akad.

Nauk Gruzin. SSR 100, 1 (1980), 57–60.

[68] Post, E. L. Recursively enumerable sets of positive integers and their

decision problems. Bull. Amer. Math. Soc. 50 (1944), 284–316.

[69] Rabin, M. Computable algebra, general theory and theory of com-

putable fields. Trans. Amer. Math. Soc. 95 (1960), 341–360.

[70] Rice, H. G. Recursive real numbers. Proc. Amer. Math. Soc. 5 (1954),

784–791.

[71] Rogers, Jr., H. Theory of recursive functions and effective com-

putability. McGraw-Hill Book Co., New York-Toronto-London, 1967.

[72] Shore, R. A. Nowhere simple sets and the lattice of recursively enu-

merable sets. J. Symbolic Logic 43, 2 (1978), 322–330.

118 BIBLIOGRAPHY

[73] Soloviev, V. D. Q-reducibility, and hyperhypersimple sets. In Prob-

abilistic methods and cybernetics, No. X-XI (Russian). Izdat. Kazan.

Univ., Kazan′, 1974, pp. 121–128.

[74] Specker, E. Nicht konstrucktiv beweisbare Sätze der Analysis. Journal

of Symbolic Logic 14 (1949), 145–158.

[75] Turing, A. M. On Computable Numbers, with an Application to

the Entscheidungsproblem. Proc. London Math. Soc. (2) 42, 3 (1936),

230–265.

[76] Turing, A. M. On Computable Numbers, with an Application to the

Entscheidungsproblem. A Correction. Proc. London Math. Soc. (2) 43,

7 (1937), 544–546.

[77] Yates, C. E. M. Three theorems on the degrees of recursively enu-

merable sets. Duke Math. J. 32 (1965), 461–468.

