
Alan Turing and Computation

Rod Downey
Victoria University

Wellington
New Zealand

Santander, August 2012

Plan

I In this first lecture I will talk about some of Turing’s contributions to
the theory and practice of computation.

I A couple of developments from this legacy.

I The a little break of 5 minutes.

I In lecture 2, I will look at how his ideas from computation have been
applied in the theory of algorithmic randomness.

I Also in lecture 2 I will look at his anticipation of this theory with his
work on normality.

The Scope of Turing’s Work

I Turing worked famously on the Entscheidungsproblem
I How this had the key idea of stored program computers via universal

machines....ACE
I Ideas in cryptography both breaking cryptosystems and making them

for voice.
I Word problems in cancellation semigroups.
I Cryptography and Statistics.
I “Checking a Large Routine” symbolic model checking and program

verification. His thesis was in this “Systems of logic based on
ordinals” and looked at transfinite methods of verification.

I ”Local Programming Methods and Conventions,” programming
methodology.

I ”Rounding-off Errors in Matrix Processes” Ill-posed problems and
“the other” theory of computation. (not discussed here, see the
article by Lenore Blum)

I Intelligent Machinery and the Turing test
I Computer chess (before stored program computers)
I Absolute normality (lecture 2)
I Morphogenesis and the first numerical nonlinear PDE’s. (Not

discussed here)

Plan

I Clearly, I cannot discuss all of this here. For more refer to the archive
http://www.turing.org.uk/sources/biblio.html and various upcoming
Turing volumes.

I I will try to do some of these in some detail and use a broad sweep for
others.

I I will begin with the birth of the digital computer, and the Turing
Machine.

Born of logic

I Thanks to Moshe Vardi for this and the next quote (my highlighting).

I Cosma R. Shalizi, Santa Fe Institute.

If, in 1901, a talented and sympathetic outsider had
been called upon (say by a granting agency) to survey the
sciences an name a branch that would the the least fruitful
in the century ahead, his choice might well have settled
upon mathematical logic, and exceedingly recondite field
whose practicioners could all have fit into a small
auditorium. It had no practical applications, and not even
that much mathematics to show for itself: its crown was an
exceedingly obscure definition of cardinal numbers.

More recently

I Martin Davis (1988) Influences of mathematical Logic on Computer
Science.

When I was a student, even the topologists regarded
mathematical logicians as living in outer space. Today the
connections between logic and computers are a matter of
engineering practice at every level of computer organization.

I Read a somewhat dated but wonderful collection in the Bulletin of
Symbolic Logic: On the Unusual Effectiveness of Logic in Computer
Science (Halpern, Harper, Immerman, Kolaitis, and Vardi).

I Echoes Wigner’s 1960 article “The unreasonable effectiveness of
mathematics in the natural sciences,” and Galileo’s “The book of
nature is writ in the language of mathematics.”

Entscheidungsproblem

I The most famous mathematician of his generation, David Hilbert,
famously asked for a decision procedure for number theory.

I This was born of 19th centure determinism which imagined the
universe as a big machine whose path was completely determined.

I Of course this version is still open: is the universe mechanical; can the
universe produce incomputability?

I Still others ask can the universe produce anything that is computable,
or is everything random?

I This is too big for my brain and I will stick with questions in formal
logic and number theory.

I Notice a weaker question is can everything that is true of some formal
system be proved in such a system? (completeness)

A history of impossibility proofs

I You are taught at school that your can solve the quadratic
ax2 + bx + c = 0.

I Ingredients: numbers, +,− ×, division,
√

, maybe cube roots,
powers etc.

I Operations : Combine in sensible ways.

I Can we do the same for degree 3, the “cubic”

ax3 + bx2 + cx + d = 0?,

what about degree 4, etc.

I This was one of the many questions handed to us by the Greeks.

I The answer is yes for degree 3 and degree 4.

The Sorry Tale

I For degree 3 this was first proven by Ferro (1500).

I Ferro left it to his son-in-law Nave and pupil Fiore.

I Fiore challenged Tartaglia (in 1535) who then re-discovered the
solution with a few days to spare, leaving Foire in ignomy.

I Tartaglia also kept it secret, but told Cardano, who promised by his
Christian faith to keep it secret, but....

I in 1545 Cardano published it in his great text Ars Magna

I Additionally Cardano published how to extend to degree 4, being
discovered by a student Ferrari.

Abel

I Finally, in 1823, a young Norwegian mathematician, Abel proved that
there is no recipe using the given ingredients for the degree 5 case,
the quintic.

I (The paper was called “Memoir on algebraic purifications...” rather
than “Memoir on algebraic equations...” due to a typsetting error.)

I (My favourite error in one of my own papers referred to a journal
“Annals of Mathematical Logic” as “Animals of Mathematical
Logic.”It made me think of some of my colleagues!)

I Nobody believed him, for a long time. (There had been an earlier
announcement by Ruffini, which contained “gaps”.)

Galois

I Evariste Galois (1811-32) eventually gave a general methodology for
deciding if a given degree n equation admits a solution with the
ingredients described.

I This work laid the basis for group theory.

I Galois method is to associate a group with each equation, so that the
equation is solvable in terms of the given ingredients (arithmetic
operations and radicals) iff the group has a certain structure on its
subgroups. This is one of the gems of m athematics.

Changing Ingredients

I It is not true to say that the quintic has no solution, just none with
the given ingredients.

I We can add some new operations “elliptic functions” and show that
there is a method of solving the general degree n equation.

I These operations are “mechanical” so there is a an algorithm for
solving all such equations.

Hilbert

I David Hilbert, 1900, working from a background of 19th century
determinism basically asked the question of whether mathematics
could be finitely “mechanized”.

Hilbert

I David Hilbert, 1900, working from a background of 19th century
determinism basically asked the question of whether mathematics
could be finitely “mechanized”.

I Can we create an algorithm, a machine, into which one feeds a
statement about mathematics or at least in a reasonable “formal
system” and from the other end a decision emerges: true or false.

I Or, for a given formal system, can we eventually produce proofs all
the “truths” of that system.

I Hilbert also proposed that we should prove the consistency of various
formal systems of mathematics.

Formal System

I Leibnitz’s dream, the first order logic Frege 1879.

I It is not important what this is, save to say the type envisioned would
be a bunch of axioms, saying things like

I for all numbers x, x+1 exists,

I for all numbers x and y x + y = y + x ,

I and other “obvious truths.”

I plus rules of inference, like “if whenever P is true then Q is true, and
whenever Q is true then R is true; then whenever P is true R is true.”

I induction.

Gödel

I Hilbert’s dreams were forever shattered by a young mathematician,
Kurt Gödel.

Gödel

I Hilbert’s dreams were forever shattered by a young mathematician,
Kurt Gödel.

I He prove the two incompleteness theorems.

I The first incompleteness theorem says that any sufficiently rich formal
system has statements

I expressible in the system

I true of the system, but

I cannot be proven in the system.

I Secondly no sufficiently rich formal system can prove its own
consistency.

I The collective intuition of a generation of mathematicians was wrong.

I Of course, Tarski proved that some rich systems like Euclidean
Geometry are decidable.

The confluence of ideas in 1936

I First Church, then Turing and Post proposed models for computation.
In retrospect, it is clear that since the models are equivalent that
Church first showed that that Entscheidungsproblem is undecidable
(by lambda definable functions).

I Proposed his thesis that these modelled all effectively computable
processes.

I Church λ-definable functions. Herbrand-Gödel general recursive
functions (proved the same by Kleene in 1936).

I Post a Turing machine like model.

I Turing : Turing machine.

Why Turing?

I The arguments by Church for the acceptance of λ-definability as
capturing were (i) by example (i) confluence (ii) step by step
arguments echoing logical proof systems and (iii) failure of
diagonalization.

I These were not accepted at the time. See e.g. Davis, Gandy 1995,
Soare 2012, Kleene 1995.

I First and foremost Turing has a conceptual analysis giving what many
regard as a proof of the thesis that TM’s capture what is computable.

I This analysis is the fundamental contribution of Turing’s paper.

I See “The Universal Turing Machine: A Half Century Survey” R.
Herken (ed) Springer 1995 (2nd Ed).

Turing’s analysis

I He considers an abstract human computor

I By limitations of sensory and mental apparatus we can (i) Fixed
bound for the symbols. (ii) fixed bound for number of squares (iii)
fixed bound to the number of actions at each step (iv) fixed bound on
the movement. (v) fixed bound on the number of states.

I This justifies TM’s

I Also examples like Bessel functions.

I Gandy, Soare (and others) argue that Turing proves any function
calculable by an abstract human is computable by a TM.

I For instance, Turing’s analysis was the only thing that convinced
Gödel.

I Gandy (1995):

What Turing did, by his analysis of the processes and
limitations of calculations of human beings, was to clear
away, with a single stroke of his broom, this dependency on
contenporary experience, and produce a
characterization-within clearly percieved limits- which will
stand for all time..... What Turing also did was to show that
calculation can be broken down into the iteration
(controlled by a “program”) of extremely simple concrete
operations; so concrete that they can easily be described in
terms of (physical) mechanisms. (The operations of
λ-calculus are much more abstract.)

The Universal Machine

I The other major contribution was the notion of a universal machine, a
compiler.

I Turing has the first universal machine. The idea that there could be a
single machine which interpreted programs to emulate any other
machine.

I Church’s ingeneous solution did not use the “halting problem”
encoded.

Prehistory and posthistory

I Babbage said of his Analytical Engine (not a stored program
machine) “it could do anything except compose country dances.”
(quoted in Huskey and Huskey 1980, p 300)

I Actually now computers do compose country dances.

I The idea that a computer could be universal was a long time
penetrating.

I Howard Aitken (1956)

If it should turn out that the basic logics of a machine
designed for numerical solution of differential equations
coincide with the logics of a machine intended to make bills
for a department store, I would regard this as the most
amazing coincidence that I have ever encountered.

I Read more on this in Martin Davis’ or Herken’s books.

The birth of computers

I Turing was aware of the possibilities of using stored program
machines.

I The war intervened and Turing famously was involved in Hut 8.
Identified as one of the key codebreakers.

I Bletchley park had 10,000 members during the war, but it was widely
regarded that the people in Hut 8 and, in particular Tutte, Foss, and
notably Tuuring were key players.

I For example, the Bombe modified from Polish ideas, kind of running
the Enigma machine backwards

I Incidentally, I learned only recently that the codes used in the war
were actually secure, but brought down by humans, who provided the
ingresses for the cracking.

The Birth of Computers

I Turing learnt of the possibilities for large scale computers through the
work of Tommy Flowers on the Colossus machine. A several tonne
valve machine, the first large scale computer. (NB This is not what
you read in texts, but now known after declassified documents.)

I McCulloch and Pitt used Turing ideas to show the control mechanism
for a TM could be simulated by a finite collection of gates with
delays. (1943)

I Von Neumann knew of Turing’s ideas and with two other co-authors
prosed a practical architecture for stored program machines. He uses
the McCulloch and Pitt ideas. (1945) EDIAC.

I Later ENVAC.
I Turing proposed ACE (automated computing engine), Architecture

very influential.
I However, first stored program computer in Manchester, in lab run by

his lifetime friend Max Newmann.
I Turing wrote the (first) programming manual.

A Basic Undecidable Question

I Using the fact that all Turing machines can be enumerated we can use
a beautiful argument of Cantor about differing sizes of infinite sets(!)
to show that there is no algorithm to decide to following question.

I INPUT Turing machine number x and an input y .
QUESTION Does the machine x halt on input y .

I (Proof. Suppose that we could decide this algorithmically. We can
then use the decision procedure to construct a machine M that halts
on input n if Tn does not halt on input n, and our machine M does
not halt if machine Tn does halt on input n. Then M would be some
machine Tm, but then Tm(m) halts if and only if M(m) halts iff
Tm(m) does not halt....)

I We code this problem into others.

Example-Conway’s Theorem

I Collatz-type functions. f (x) = x
2 if x is even, and f (x) = 3x + 1 if x

odd.

I e.g. f (3) = 10 f (f (3)) = 5, get the sequence, 3,10,5,16,8,4,2,1

I Do you always get to 1? (Still open)

I General type of question : e.g g(x) = 1/2x if x divisible by 4,
g(x) = 5x − 1 if x has remainder 1 when divided by 4, etc.

I John Conway (1980’s) showed that there is no general algorithm to
decide
INPUT A system like the above, and a number x .
QUESTION Does x get back to 1?

Wang Tiles

I INPUT a set of square coloured tiles of the same size. Only same
colour borders next to one another.
QUESTION Can an initial configuration be extended to colour the
plane?

I Wang in the 60’s showed that there is no algorithm to decide this.

Hilbert’s 10th problem

I INPUT A polynomial P in variables x1, ..., xn
QUESTION Is there a positive solution to the equation P = 0?

I Matijasevich, after Julia Robinson in the 70’s showed there is no
algorithm to decide such questions.

I But there is now a polynomial whose only positive rational zeroes are
the primes!

Hilbert’s 10th problem

I INPUT A polynomial P in variables x1, ..., xn
QUESTION Is there a positive solution to the equation P = 0?

I Matijasevich, after Julia Robinson in the 70’s showed there is no
algorithm to decide such questions.

I But there is now a polynomial whose only rationals zeroes are the
primes!

Recent Examples

I Recently it was shown by Braverman and Yampolsky (STOC, 2007)
that Julia sets can be noncomputable, any halting problem being
codable. (Also Blum-Smale-Shub, but that’s another story.)

I Julia set: z 7→ z2 + αz , where α = e2πiθ.

I Nabutovsky and Weinberger (Geometrica Dedicata, 2003) showed
that basins of attraction in differential geometry faithfully emulated
certain computations. Refer to Soare Bull. Symbolic Logic.

I Remark: Earlier and ignored work by Lee Rubel on universal PDE’s.

I The answer is inescapable: these diverse mathematical objects, tiles,
Conway sequences, and polynomials can be used to simulate
computations.

Using computation to show No Invariants

I Much of mathematics is concerned with classification of structures
(groups rings, DE’s etc) by invariants.

I Bases for vector spaces, Ulm invariants for abelian groups.

I How can we show that no invariants are possible?

I A computability theorists’s view.

Analytic=Σ1
1

I The halting problem is called Σ0
1 in that ϕx(y) halts iff

∃t ∈ Nϕx(y)

halts in t steps. (And ϕx(y) halts in t steps is computable.) This is
arithmetic, where the quantifier searches over N.

I Almost all problems in normal mathematics are analytic.

I A is analytic or Σ1
1 iff deciding x ∈ A entails asking if there is a

function f from N to N such that some computable relation holds for
all f (n).

I E.g. isomorphism is typically in Σ1
1.

Σ1
1 completeness

I Many problems in Σ1
1 are much easier. E.g. isomorphism for finitely

presented groups is Σ0
3. (Is there a matching of generators for which

every equation in the first holds in the second?)

I If some problem is shown to be Σ1
1 complete, then no simpler set of

invariants is possible.

I E.g. (Downey and Montalbán) the problem of deciding if two finitely
presented groups have Hi (G) ∼= Hi (Ĝ for i ≤ 3 is Σ1

1 complete.

I Uses the result that the isomorphism problem for computable torsion
free Abelian groups is Σ1

1 complete. (DM)

But does it matter?

I Most problems in real life seem to be tractable.

I For example: why do sat solvers work so well on real problems?

I For example: word problems are generically decidable.

I For example: big hardware is routinely verified.

I Your challenge: explain this.

Other work of Turing

I Lots of technical work in logic.

I Proofs of equivalence of the models. (JSL papers)

I Undecidability of the word problem for cancellation semigroups.

I Proposed methods for symbolic verification of programs. This has
grown into modern model checking.

I Proposed methods of logically constructing programs.

I First computer chess program (1950). See the webcast of Kasparov’s
talk in Manchester, Turing 100 conference.

Machine Intelligence

I Famous unpublished paper on this from a sabbatical at Cambridge.

I His boss thought it was a “schoolboy paper”. Now it is regarded as a
classic.

I Later famously posed the Turing Test.

I Often mis-quoted as saying machine intelligence by the end of the
20th century. Actual quote (from a radio discussion with Max
Newmann) “at least 100 years.”

I Emphasized optimization as a key strategy for artificial intelligence,
and realized in his chess program.

Some Other Things Left Out

I ”Rounding-off Errors in Matrix Processes” Ill-posed problems and
“the other” theory of computation.

I He was the first to properly study complexity of matrix algorithms like
determinant computations when dividing by near zero quantities.

I This was centered in numerical analysis

I Morphogenesis: How do leopards get their spots?

I Suggests a simple mechanism based on partial differential equations.

I diffusion/reaction equations.

I Basically stable, but under peturbation creates a feedback loop.

Thank You

