
Notes on Sacks Splitting Theorem

Rod Downey
Victoria University

Wellington, New Zealand
(Joint with Klaus Ambos-Spies, Martin Monath and Ng Keng Meng)

March, 2022

Motivation

I One of the fundamental results of computability theory is Sacks’
Splitting Theorem:

Theorem (Sacks, 1963)

1. If A is c.e. and noncomputable, then there exists a c.e. splitting A1 tA2 = A
with A1|TA2.

2. Indeed, if A is c.e. and ∅ <T C ≤T ∅′ then there exists a c.e. splitting
A1 t A2 = A with C 6≤T Ai for i ∈ {1, 2}.

I This fundamental result

1. Showed that there were no minimal c.e. degrees,
2. Ushered in one form of the infinite injury method (although it is not an

infinite injury argument, but finite injury of “unbounded type”.)
3. Was the basis of huge technical progress on the c.e degrees.

For Example

I The proof is the classic finite injury argument of this kind where Ai

are built by meeting

Re,i : Φe(Ai) 6= Aj , (j 6= i).

I The idea is to preserve

`(e, i , s) max{x | ∀y < xΦe(Ai) 6= Aj [s]}.

I You preserve one side up to `(e, s) and if this happens forever, then A
will be computable.

I This method is at the heart, of, for example, the Sacks Density
Theorem:

Theorem (Sacks 1963)

The computably enumerable degrees are dense.

I To my knowledge, every similar theorem for degree structures has
worked in an analous way.

For Example

Theorem (Robinson, 1971)

Everything c.e. If C <T A and C low, then A = A1 t A2 with
C ⊕ A1|TC ⊕ A2. Hence every c.e. degree split over each lesser low c.e.
degree.

Robinson’s Theorem was very influential in that it showed how to use
“lowness+c.e.” a theme we follow to this day.

Theorem (Lachlan, 1975)

There exist c < a such that a does not split over c.

That is, Sacks splitting and density cannot be combined. This legendary
result of Lachlan affected the architecture of computability theory
thereafter. E.g. definability, decidability etc. Invented the 0′′′ method to
prove this result. Harrington improved Lachlan’s Theorem to have a = 0′.

Re-examining this

I Lots of questions can be asked about the 60 year old result. One I
“recently” looked at with Guohua Wu is the following.

Question

Is the natural analog for avoiding lower cones valid?

I The answer is no.

Theorem (Downey, Wu)

There are c.e. sets B <T A such that whenever A1 t A2 = A is a c.e.
splitting, then for some i ∈ {1, 2}, Ai ≤T B.

I The proof is very complex.

I The degree analog is true because either a splits over b, or b cups a2
to a for some a2 and we can then choose b < a1 < a by Sacks’s
Density Theorem. (i.e. lower cone avoidance happens)

This Talk

I The question I examine here is

Question

How unbounded is the finite injury?

I What do we even mean by this?

I One possible way to do this is to use “Reverse Recursion Theory” (or
maybe “Converse Computability Theory”) by asking what amount of
induction is needed for proving Sacks’ Splitting Theorem in fragments
of arithmetic.

I The setting is P− = PA− induction. Then P− + IΣn adds induction
for Σ0

n formulae, and P− + BΣn adds Σ0
n bounding:

∀x < a∃yϕ(x , y)→ ∃b∀x < a∃y < bϕ(x , y),

where ϕ is Σ0
n.

I Paris and Kriby (1978) showed

BΣn+1 ⇒ IΣ0
n ⇒ BΣ0

n,

and all implications are proper.

Theorem (Mytilinaios 1989)

You can prove Sacks Splitting Theorem in P− + IΣ1.

Analog of earlier work in higher recursion theory IΣ1 ≈ ”Σ1−admissible”,
and Shore’s Thesis.

Theorem (Chong and Mourad, 1992)

1. Friedberg-Muchnik can be proven in P− + BΣ1.

2. There is a model of P− + BΣ1 where Sacks Splitting Theorem fails.
(both forms)

I Here the interpretation is that the system with BΣ1 corresponds to
computably bounded injury. (See Chong, Li and Yang, BSL, 2014)

I There is a nice open question here of whether there is a theorem of
classical computability theory equivalent to BΣ0

2 over IΣ0
1. Perhaps

the hierarchy below might provide some new insights here. This is
unexplored.

This Talk

I In this talk we will try to understand ”finite injury of unbounded
type” in classical terms.

I Perhaps we might see to understand how complex the splits A1,A2

must be. Certainly they can be chosen low, but can we quantify “how
low” they can or must be? That is, in terms of computational power.

I To do this, we will use the Downey-Greenberg Hierarchy which is a
classification tool for the complexity of computability constructions.

I This is based on “mind changes” for the functions sets Ai can
compute. If X can compute a function with only complicated
approximations given by the Limit Lemma, we regard it as
computationally powerful. (Details below.)

I This is an old idea going back to Miller and Martin and the like, often
outside of the ∆0

2 degrees.
I In the ∆0

2 degrees likely beginning with Martin’s characterization of
the high degrees in terms of domination.

I Revitalized in algorithmic randomness.

I In terms of this classification we have the following. (to be defined)

Theorem (Ambos-Spies, Downey, Monath, Ng)

If A is c.e. then A can always be split into a pair of totally ω2-c.a. c.e. sets.

I Sacks’ proof only gives ωω-c.a..

I Earlier Selwyn and I showed that this is tight:

Theorem (Downey and Ng, 2018)

There is a c.e. degree a such that if a1 ∨ a2 = a then ai is not totally
ω-c.a. for i ∈ {1, 2}.

Truly Unbounded

I The upper cone avoiding version of Sacks Splitting Theorem is truly
unbounded according to this classification tool because of the
following:

Theorem (ADMN)

Let α < ε0. Then there exists c.e. sets A and ∅ <T C such that for all
splittings A1 t A2 = A of A, if A1 is α-c.a. then C ≤T A2.

I Indeed, this holds for degrees:

Theorem (ADMN)

Let α < ε0. Then there exists c.e. degrees a and c such that for all c.e
degrees a1, a2 6= 0 with a1 ∨ a2 = a, if a1 is α-c.a. then c ≤T a2.

The Hierarchy

I Recall

Theorem (Shoenfield 1959)

A ≤T ∅′ iff there is a computable f (·, ·) with A(x) = lims f (x , s). This
also holds for functions g ≤T ∅′.

I Interestingly, also re-proven by Gold and by Putnam in 1965 (JSL).

I Recall that g ≤wtt ∅′ if there is a procedure Φ∅′
= g with use ϕ(x) a

computable function. The proof of Shoenfield’s Limit Lemma shows
that g ≤wtt ∅′ iff it is ω-c.a.; that is there is a computable
approximation g(x , s) and computable h such that
lims g(x , s) = g(x) and

|{s | g(x , s + 1) 6= g(x , s)}| ≤ h(x).

The Hierarchy

I The DG-hierarchy is based on measuring the mind changes of such
approximations.

I (J. Miller) A is totally ω-c.a. if for all total f ≤T A, f is ω-c.a..

I The next level of the hierarchy is to consider B such that every
function f ≤T B is computable with the mind-change function
provided by the previous level, that is the mind change function is
ω-c.a..

I The DG-hierarchy extends this to computable ordinals < ε0. Those
with effective Cantor Normal Forms.

I That is, for the second level, it would have the form ωk + r , k, r ∈ ω.
So we count down r many mind changes and then we could move to
ω(k − 1) + r ′, etc.

I For α < ω3, say, will be given as ω2k2 + ωk1 + k0, with ki ∈ ω.

I The basic definition.

Definition (Downey and Greenberg)

A is totally α-c.a. if for all total f ≤T A, f is α-c.a.. That is, there is an
approximation f of A, as above, with |{s | f (x , s + 1) 6= f (x , s)}| α-c.a..

I For example, for α = ω2, we’d replace “g -computable” by g -ω-c.a. so
that g(x) = lims g(x , s) with |{s | g(x , s + 1) 6= g(x , s)}| ≤ h(x) for
some computable h.

I In effect, if h(x) = 3, then for x , f (x)’s original ordinal would be
ω · 3 + k0. It would get k0 many mind changes, and then would need
to change to ω · 2 + k ′0, etc.

I This hierarchy can be used to classify, unify various constructions and
gives rise to a number of new definability results.

Two examples

Theorem (Downey, Greenberg and Weber, 2007)

A c.e. degree a bounds a critical triple (a certain definable configuration)
iff a is not totally ω-c.a.

Theorem

A c.e. degree a bounds a 1-3-1 iff it is not totally < ωω-c.a. (This means
that for an n < ω, there is a g ≤T a such that g is not ωn-c.a.)

I There is a nice book full of fascinating material on such results, and
lots of intersting open questions....

Earlier work

I An earlier notion which has been extensively studied, is the notion of
array computability, of Downey, Jockusch and Stob (1989,1996).

I a is array computable iff there is a g ≤wtt ∅′ such that for all
h ≤T a, h(x) can be approximated with at most g(x) many mind
changes for almost all x . If a is not array computable it is called array
noncomputable.

I This is the uniform version of being totally ω-c.a..

I In the same way that there are many characterizations equivalent to
being totally ω-c.a., this is true of array noncomputability.

Theorem

The following are equivalent for a a c.e. degree a.

(i) a is array noncomputable

(ii) a is the degree of a perfect thin Π0
1 class (Downey, Jockusch and

Stob+Coles, Downey, Herrmann and Jockusch),

(iii) a bounds a disjoint pair of c.e. sets with no Turing complete
separating set. (Downey, Jockusch and Stob)

(iv) a contains a c.e. set A such that ∃∞n(C (A � n) ≥ 2 log n − O(1)
where C denotes plain Kolmogorov complexity. (Kummer)

(v) a contains a set of packing dimension 1. (Downey and Greenberg)

(vi) There are left-c.e. reals α0, α1 ∈ a which have no common upper
bound in the cl-degrees of left-c.e. reals (Barmpalias, Downey and
Greenberg)

(vii) There is a left-c.e. real α ∈ a which is not cl-reducible to any random
left-c.e. real. (Barmpalias, Downey and Greenberg)

(viii) There is a set A ∈ a which is not cl-reducible to any random left-c.e.
real. (Barmpalias, Downey and Greenberg)

The ω-case

Theorem (Downey and Ng, 2018)

There is a c.e. degree a such that if a1 ∨ a2 = a then ai is not totally
ω-c.a. for i ∈ {1, 2}.

I Before we sketch the proof, we remark that a can be chosen to be
high2. This is interesting since the following holds

Theorem (Downey and Ng, 2018)

If a is high then any c.e. set of degree a can be split into a pair of array
computable c.e. sets. (Array computable is a strengthening of being
totally ω-c.a.)

I Downey and Ng show also that array computable cannot be improved
to superlow in this result.

I We meet the requirements:

Ne : If A = ΓWe⊕Ve
e and We ⊕ Ve = ∆A

e , then one of

We or Ve is not totally ω-c.a..

I Drop ”e”. We e need to ensure that there are total functions
FW ,GV computable from W and V respectively, such that one of
FW or GV is not ω-c.a..

I Effective enumeration 〈ai , bi 〉 of all possible ω-c.a. approximations.
That is, each ai (−,−) is a total computable function, and bi (−) is a
partial computable function. We say that a function F is
i-approximated if bi is total and for every x , the number of mind
changes on ai (x ,−) is bounded by bi (x), and lims ai (x , s) = f (x).

I To make, for example, FW is not totally ω-c.a., the idea would be to
defeat all pairs ai , bi , by finding some argument x where we can
change FW (x) more than bi (x) = k many times; waiting for the
approximation ai (x , s) to agree with the current approximation
FW (x)[s] before each such change. (You “beat it to death”.)

I Now, when we define FW (x) we cannot know bi = k , as the
opponent will play this after we define the use of F , at the mother
node for the requirement.

I This is important since if we knew the bounds in advance we could
have a series of agitators we could put into A in reverse order to kill
one of the approximations (showing that, for example, one of V or W
is not superlow).

I This problem is overcome by making the construction nonuniform.

I The requirement N will build a pair of functions 〈FW ,GV 〉 which will
be total in the case when the N-hypothesis is true.

I The requirement N is divided into infinitely many subrequirements
Ni ,j , and each of these subrequirements Ni ,j will build a pair of
functions 〈FW

i ,j ,G
V
i ,j 〉.

I The subrequirement Ni ,j will itself be divided into infinitely many
sub-subrequirements Ni ,j ,k,l , which are each aiming to ensure that, if
the N-hypothesis is correct, then either FW is not i-approximated, or
GV is not j-approximated, or FW

i ,j is not k-approximated, or GV
i ,j is

not l-approximated.

I Pick a follower (agitator) x for A, and fresh numbers n1, n2, n3, n4.
Wait for γ(δ(x))[s] ↓, and then define all of
FW (n1),GV (n2),FW

i ,j (n3),GV
i ,j (n4) convergent with use γ(δ(x))[s].

Freeze A. The role of the follower will be to induce changes into A
and thus, indirectly, into one of W or V .

I Wait for all of bi (n1), bj(n2), bk(n3), bl(n4) to converge. Enumerate x
into A and wait for W ⊕ V -change.

I One of W or V will have changed, and the following is completely
symmetric. So suppose that W changed in step 2, so that now both
FW (n1) and FW

i ,j (n3) are undefined. Now pick x1, · · · , xbi (n1) (b1(n1)
many new agitators) such that xm+1 > γ(δ(xm)) for all m; define
FW (n1) on new use γ(δ(xbi (n1))). Pick a fresh follower ñ2 > n2, and

define GV (ñ2) with use γ(δ(xbi (n1))). Leave FW
i ,j (n3) ↑. Increase

restraint on A. Note that now, if we put the agitators into A in
reverse order, provied that all the changes occur in W , we have
enough to now kill a1, b1 on n1.

I Wait for bj(ñ2) to converge. Once it converges run the basic beating
strategy to try and make FW not i-approximated at input n1. That
is, we put the followers in in reverse order each time we see a
reconvergence of the a1(n1) aproximation agreeing with FW (n1)[s].
This process will succeed unless it is interrupted by a V -change. Go
to next step if this happens.

I Now pick fresh followers y1, · · · yM (where M = bj(ñ2) + bk(n3)) such
that ym+1 > γ(δ(ym)) for all m; define FW

i ,j (n3) and GV (ñ2) with use
γ(δ(ybj (ñ2))). Increase restraint on A. Run the basic beating strategy

to make either FW
i ,j not k-approximated at input n3, or GV not

j-approximated at input ñ2.

Classical Proof

I The original proof of Sacks for A1|TA2 gives sets Ai which are totally
ωω-c.a..

I That is, each total f Ai for each x , we’d need to specify a d = d(x)
such that f Ai (x) is ωd -c.a.

I That is because, in the original proof, each time we get an injury from
below, we’d need to reset the use., resulting in an unknown number
of injuries, when the opponent re-sets the use.

I This would then force us to choose a new ordinal, and this is
multiplicative.

I For example, think about the second requirement. It must defer to
the other higher priority requirement, and the amount of deference is
determind only when a computation comes about for the higher
priority requirement. So this correlates to ω + 1

I The thrid requirement seems to need ω2 + 1, etc.

The ω2 proof

I We are constructing A1 t A2 = A, and need to make ΦAi
e (x) have a

count ωkx + dx , and think of this as Re,i ,x .

I These can be thought of as filtering numbers into Ai−1, since the
wish to preserve computations.

I Thus there is no conflict between 〈i , e, x〉 and 〈i , f , y〉.
I To keep the count down when 〈i , e, x〉 is injured, for the least x , it

grabs all the lower priority 〈i , e, x ′〉 (this is for a single e).

I This “blocking” technique makes the count adhere to being ω2 for a
single e’s and without too much trouble gives ω3.

I Then to make ω2 a you have to use a nonuniform version of the
argument built on a priority tree.

Unbounded type

I We begin with a simpler result:

Theorem

There exist c.e. sets ∅ <T C and A, such that if A = A1 t A2 is a c.e.
splitting of A, and A1 is ω2-c.a. then C ≤T A2.

I Let {〈fi (·, ·), oi 〉 | i ∈ ω} list all pairs of primitive recursive functions
which are ω2-c.a.. That is oi (x , s) lists two numbers ks(x), ps(x) ∈ N
meant to indicate that at stage s the mind change function for fi is
ωks + ps . This approximation obeys the rules that (dropping the “x”
when the meaning is clear)

1. if fi (x , s + 1) 6= fi (x , s) then oi (x , s) > oi (x , s + 1). That is, either
ks+1 < ks or ps+1 < ps , entailing that if ps = 0, then ks+1 < ks .

2. if ever oi (x , s) = 0, 0, then no further changes are allowed to fi (x , s).
I Note that if a function g is ω2-c.a. then there is some i with

g(x) = lims fi (x , s) with ordinal approximation oi .
I To prove this we meet

Re : Xe t Ye = A ∧ Xe ω
2-c.a. → C ≤T Ye

I For the sake of this requirement, at e-expansionary stages (i.e. when
`(e, s) = max{x | Xe t Ye � x = A � x [s]} increases, we will be
building a procedure ΓXe (x , s) with use γe(x , s) (in the proof at a
“mother” node τ = τe) which we use to challenge the claim that Xe

is ω2-c.a..
I Thus τ will have two outcomes ∞ <L f and Γτ will be built at
τ̂∞-stages.

I Child nodes ρ, which test:

Re,i : Xe t Ye = A ∧ (ΓXe = lim
s
fi with ordinal oi)→ ∃∆Ye = C .

A ρ-node has outcomes ∞ <L f .
I Of course in the background:

Pe : C 6= We .

These are met as usual, pick a follower x wait till x ∈We,s (i.e.
realized) and put x into C . The key problem is how to achieve these
goals whilst still meeting the Re ’s.

I We consider the situation of a single σ-node below ρ̂∞, trying to
get a follower into A after it is realized.

I σ indicates that it wants a follower. At the first τ̂∞ stage s after
this flag, we will appoint an anchor z and target this for σ. We define
Γ(z , s) to be large, say s0.

I We wait for a stage where `(ρ, s1) > z , and then ρ will have declared
its count k0(z), p0(z) = k , p. Thus fi (z) = ΓXτ (z) = s0[s1] is
henceforth permitted at most ωk0 + p0 many mind changes.

I At the next σ-stage we will appoint a fresh number x0 to follow Pσ.
Note that x0 > γ(z , s). At the next ρ̂∞-stage s1, stage we will
define ∆Yτ (x0) = 0 with use s1.

I Suppose that x0 is realized at stage s2.

I Now at the first σ-stage after s2, we will put n = γ(z , s) into A. It
must enter Xe or Ye .

I If n enters Ye we can put x0 into C meeting Pσ since Ye can
comprehend the entry.

I It n enters Xe , then (at the next τ̂∞-stage s4) we will re-define
ΓXe (z) = s4, say, and lift γXe (z , s4 + 1) to a fresh number (such as
s4) and at the next σ-stage, pick a new follower x1 > γ(x , s4 + 1) and
begin to repeat the cycle.

I Key point: We will only visit σ at the next ρ̂∞-stage s5, where it
must be that fi (z , s5) = γXe (s, s4 + 1), and hence oi (z)[s5] has
decreased.

I We repeat this cycle at most ωk0 + p0 many times, since any more
than that, fρ, oρ are not the correct functions witnessing that ΓXe is
ω2-c.a..

I Dealing with two mothers involves a complicated combinatorial
argument, but is okay in the end. (The final write up does the
argument somewhat differently, but the timing difficulties are the
same.)

I After the fact, you realize that the construction only really needs that
we know the level below ε0. This gives the full theorem, and then you
observe that it actually works for degrees using “agitated intervals”.

Questions

I Clearly lots of nice questions:

I Relationships of converse computability theory with the hierarchy.

I (conjecture, likely true), you can combine the construction of a
degree that does not bound a Slaman triple with one that is not the
join of totally ω-c.a. c.e. degrees. This is a elementarily definable
class which consists of only high2 non-low2 degrees. This likely also
works for contiguous degrees.

I Is there totally ω c.a. computably enumerable degree with no
maximal totally ωn-c.a. degrees above it?

I A new hierarchy was introduced by Ambos-Spies, Downey, Monath
where we looked at mind changes for wtt-functionals. This allowed
for classification of the sets wtt-reducible to maximal ones. It is
fundamentally unexplored.

Thank You

I (Downey and Greenberg) A Hierarchy of Turing Degrees: A
Transfinite Hierarchy of Lowness Notions in the Computably
Enumerable Degrees, Unifying Classes and Natural Definability, (with
Noam Greenberg), Annals of Mathematics Studies, Vol. 206
Princeton University Press

I Splitting into degrees of low computational strength, (Downey and
Ng), APAL, 2018, Vol. 169, 803-834.

I Notes on Sacks Splitting Theorem, (Ambos-Spies, Downey, Monath
and Ng), in preparation.

I A Hierarchy of Computably Enumerable Degrees II: Some Recent
Developments and New Directions, with Noam Greenberg and Ellen
Hammatt, New Zealand Journal of Mathematics, Vaughan Jones
Special Issue. Vol. 52 (2021), 175-231.

