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ABSTRACT. In this article we solve two questions of Odifreddi on the r.e.
tt-degrees. First we construct an r.e. tt-degree with anticupping property. In
fact, we construct r.e. tt-degrees a,b with 0 < a < b and such that for all
{not necessarily r.e.} tt-degrees ¢ if atle > b then a < c. This result also has
ramifications in, for example, the r.e. wtt-degrees. Finally we solve another
question of Odifreddi by constructing an r.e. tt-degree with no greatest r.e.
m-~degree.

1. Introduction. The goal of this paper is to answer two questions of Odifreddi
concerning r.e. tt-degrees. For background we refer to Odifreddi [9, 10] or Rogers
[12]. The relevant questions are: _

(1.1) [9, Problem 11} Does every r.e. tt-degree have greatest r.e. m-degree.

(1.2) Does 0}, have the anticupping property? Namely, is there an r.e. tt-degree
a # 0 such that for all r.e. tt-degrees b, if bUa = 0, then b = 0;,?

We solve (1.1) negatively. The method extends to construct on r.e. tt-degree a
containing no n-r.e. m-degree exceeding all r.e. m-degrees in a. .

We solve (1:2) affirmatively. This question was particularly interesting in view of
the fact that the analogous questions had been solved for all other (major) reducibil-
itics. The method we use is very different from those used for other reducibilities.
Although it is not difficult this method is quite powerful. In fact we are able o
show that 0, has the global anticupping property: let P}y denotes the collection of
all tt-degrees. We say an r.e. tt-degree d # O has the global anticupping property
if there exists an r.e. tt-degree a with 0 < a < d such that

The technigue used to establish that 0f, = d satisfies (1.3) is also applicable-to
various other situations and reducibilities. To demonstrate this, a minor variation
of the construction establishes a result from [1]: if d is any nonzero r.e. wtt-degree,
there exists an r.e. wtt-degree a with 0 < a < d such that for all wit-degrees b, if
aUb > d then a < b. In particular, all nonzero r.e. wtt-degrees have the global
anticupping property. This last result does not hold for the r.e. tt-degrees since, for
example, there are minimal r.e. tt-degrees (Kobzev [7]). The reader should note
that the analogue of (1.3) does not hold for d = Of in the T-degrees since the
upper semilattice of T-degrees > 0%, is complemented (Posner [11]).
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It seems convenient to adopt a variation of the notation of Fejer and Shore [4].
Thus if {e}{z} | then [e] is the truth table with index {e}{z). For a set A we define

1 if{e}(z) | and AFE [¢](z),
[eJ(4;2) = ¢ 0 if {e}(z) | and — (AF [¢](2)),
T if{e}(z) T.

Similarly, we define [e};(As; z) according to whether or not {e},(z) |. When the
context is clear, we shall write [e](As; z) for [e]s(As; ) to simplify notation. We let
u(—) denote the use of (—). We let Az} = {z € A: z <z}, and use {, } to denote
a standard pairing function, we assume ( , ) is monotone in both variables. We
assume that all computations, etc. are bounded by s at stage s. All other notation
and terminology is standard and we refer the reader to [9, 10, or 12).

The author wishes to thank Carl Jockusch, Barry Cooper and Christine Haught
for helpful conversations regarding this material.

2, Anticupping.

(2.1) THEOREM. There exists an r.e. ti-degree d with the global anticupping
property.

REMARK. As a corollary we see that 0}, has the global anticupping property
since 0f; > d. However the reader should note that the construction below is more
flexible and we can, for instance, make d low. In the notation of our construction,
this involves the use of many “entourages of followers”. We do not pursue such
variations as they do not seem central to the issues of this paper.

PROOF. We shall construct r.e. sets A =|J, A, and D = |J, D, to satisfy the
requirements below

Po: A#W,,

N,: If B is any set then [¢](A & B) = D implies A <i; B.

Additionally, we arrange that A <y D (in fact the construction ensures A <,,
D). We shall use o, 7,7 etc. to denote strings (i.e. 0,7 € 2<%) and lh(o) will denote
the length of o. Let

l{e, s) = max{x: oVy < z([e)(As ® o;%) = Ds(v))}.

Define
w(e,y,5) = { u(le](As @ o;y)) for any o with [¢](A; @ o;y) | and lh(o) < s,
TN i Vo(ih(o) < 5 — [(4s @ 039) D).
Note that the use of tt-reductions means that it is irrelevant which ¢ we use in the
first case above. Now let
mi(e, s) = max{i(e,t): t < s},
mu(e,s) = max{u(e,y,s): y < le,8)}.
We shall satisfy the P, by followers. Each follower of P, is targeted for A and is
attached to a unique prefoliower targeted for D. E + 3 prefollowers are appointed
to P, at the beginning of the construction and are used to satisfy the N; for j < e.

The number e + 3 comes from the quantity of N; with which P, must cooperate.
(More on this later.)
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We shall first briefly describe our basic strategy for satisfying V.. It is important
to note that B is unknown during the construction and we must play for all possible
B. Our fundamental idea—for a single N.—is to use the prefollower y(z) of 2
follower z to force a B-predictable change in D via [¢]. The implementation is
roughly as follows.

We have, at each stage, a least unused prefollower y € E(5) (to be defined later)
targeted for D. We shall wait until a stage s such that {(e,s) > y, declare P; as
e-confirmed and reset a new follower x of P; targeted for A and attached to y. We
appoint z > s and so obtain the situation described in the diagram below.

5 X
l mu(e ' S} l l A
1 s
® €l
| /l "potential” B
| 1 Ds
y{(x)

We now promise that for all stages ¢ = s
(2.2) € A1 — Ag iff y(:c) €Dy~ D;. .

Now suppose that we have built our reduction procedure so that B can tt-compute
Alz — 1], which we write as “Afz — 1] <y B”. It follows by (2.2) and the fact that
z > mu(e, s), that if [e](A® B) = D then

(2.3) ze A iff [¢](Alz — 1] ® B;y(z)) = 1.

But (2.3) and the assumption that Afz — 1] <y B mean that Afz} <i; B. In this
way we show that A <4 B.

The reader should note that it is necessary to use more than one prefollower for
a single P, for the following reason. Suppose in the situation of the diagram we
are concerned with two N, say N, and N.,. Now when we see {(e1,5) < y(z) we
attached z to y(z). Now this gives us a permanent commitment to enumerate z
into A iff y(z) € D. The trouble is that perhaps at some § > s for ez it may be that
u(lea](As @ o;y(z))) > @ This means that  is no longer a good follower for Fy
from N,,’s point of view, since the driving force is to have followers beyond the use
regions of the prefollowers. The solution is to pick a new follower & which we must
attach to some prefollower § # y{z) (since we must still respect the ey commitment).
Since we wish now to respect e; and e; commitments we would like £ to exceed
both u([e;](A0 ;) and u([e2](A®0; §)). To do this we need to have already seen
I(e1,t) > ¢ some ¢ < §. Our basic idea is to set aside as many potential prefollowers
as we will need in advance and only act when i(e, 5) exceeds all of them. Then if we
ever need to switch we will. know that previous N, commitments remain respected.

We now give the formal details of the argument. First to each P, for e € w we
assign an entourage of prefollowers

E(e) = {(83 1)? [ | (e’e + 3)}“
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In the course of the construction numbers in E(e) may be used or unused {or also
cancelled). If z € E(e) and z is used and uncancelled then z is attached to some
follower y of Pe. Initially all of E{e) except (e,1) are unused.

We shall say that P, requires attention at stage s + 1 if A, N Wes = & and
z € W,,s where z is the current follower of P..

Construction.

Stage 0. Declare each P; for j € w as not e-confirmed for all ¢ < j. Assign {7, 0)
as a follower of P; targeted for A and attached to {7,1). Declare (5,1} as used.

Stage s+ 1.

Step 1. For each unsatisfied P;and eache<jif j < sandif

(i) {e,s) > (5,5 +3), and

(i) P; is not yet e-confirmed,
declare P; as e-confirmed. Find the least unused member (5, 1) of E(7). (This will
exist.) Declare (5,4) as used. Appoint = = (7,5 + 1) as a follower of P;. Declare
y(z) = (j,) as attached to z. Cancel the previous follower of P; together with its
prefollower.

Step 2. For each j < s if P; requires attention find the appropriate follower z
and enumerate z into Ag1; — A, and y(z) (z's prefollower) into Dyqy — D,

- End of Construction.

(2.4) LEMMA. All the P, are met and not all of the members of E(e) are used.

PROOF. It is clear that P, always has a follower provided we don’t run out of
prefollowers. We need to reset P,’s follower at most once for each N; with 7 <,
and so most e + 1 times. Thus at most ¢ + 2 members of E(e) are used. Once we
reach a stage after which step 1 never again pertains to Fe, P, will have a final
follower z. For this follower, as usual, either P, never receives attention (and so
W # A by fiat) or step 2 pertains to z ensuring WesNA, 0. D

(2.5) LEMMA. All the N, are met.

PROOF. Let B be any set and suppose [e}{A@® B) = D. Then I{e, 8) — oo since
the appropriate initial segments o of B will satisfy the definition for l{e,s). We
must show that A <i; B. Let sg be a stage such that

(2.6) Vs 2 50 Vj < e (P does not receive attention at stage s).

Our procedure is inductive. Let z be given. Suppose A[z —1] <4 B. Now numbers
may enter A after stage so only if they follow some P; for some 7 > e. Let
s1 = max{z, so}. If z does not follow some P; for j > e at stage s; then z € A iff
2z € A;,. Assuming z follows P;, say, find the least stage so > s; such that one of
the following options holds.

(i) P; is e-confirmed at stage s9,

(ii) z € As,,

(i) We s NAs £ D, or

(iv) z is cancelled.
If (ii), (iii} or (iv) hold then 2 € A iff z € A,,. If (i) holds we proceed as follows.
Find the stage ¢t < s at which z is appointed. By (i) above as z is uncancelled P;
is e-confirmed at stage t. This means z is given a prefollower y(z) = (7,7} for some
t with I(e,t) > (7,7) and

(2.7) z > u(lel{A ® B; {5,1))).
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Now z € A iff {J,7) € D and by (2.7) (if case (i) holds) we see

(2.8) z€A iff [e](Alz—-1}® B;{5,7))=1.

Hence by induction B can tt-compute A[z} and hence A <y B. O
(2.6) LEMMA. A <, D.

PROOF. To compute if z € A, see if z is a follower by stage z. If not then 2 ¢ A.
If z is a follower then z has a prefollower y(z). Then z€ Aiff y(z) € D. DO

There is nothing special here about tt-reductions. We remark that the same
proof also shows:

(2.7) COROLLARY [1}. There exzist r.e. wit-degrees with the global anticupping
property.

We remark that by using an infinite collection of {E({e)} for each P, in place of
E(e) a standard permitting argument (on D) shows. :

(2.8) COROLLARY [1]. Each nonzero r.e. wti-degree has the global anticupping
property.

PROOF. Left to reader. 0O

Of course (2.8) fails in the r.e. tt-degrees since Kobzev [7] has constructed a
minimal r.e. tt-degree. Jeanleah Mohrherr [8] has asked the related question of the

extent which Friedberg’s [3] completeness criterion holds in Zi;. In [8], Mohrherr
showed (fOI' 9},1;) ’

(2.9) ' va > 0 Ib(b’ = a).
The question is whether there exists a tt-degree d (= 0'?) such that
(2.10} VYa > d 3b(b < a&bud = a).

In view of our results, I conjecture that (2.10) fails for Z.

3. M-tops. Our result for this section is to solve Odifreddi’s question [9,
Problem 11].

(3.1) THEOREM. There exists an r.e. tt-degree without greatest r.e. m-degree.

PROOF. We shall build A = J, A, with auxiliary r.e. sets B, = s Be,s 0
satisfy the requirements (taken over 3-tuples ([e], W, %:})

Rei: [e](A) =W, implies B, <y A and — (B; < W, via ~i)-

The reader should note that meeting all the R, ; gives (3.1). For suppose W, is an
r.e. set of greatest r.e. m-degree in tt-degree of A. Now as B, < A, B.® A = A.
Since B $m W in particular B, & A £m We. In fact, we ensure that Be <piz A
with norm 2. The reduction is

) z is a follower target for B, be stage = and
re B, iff '
2z € Aand 20+ 1 ¢ A,

This reduction is predicated, of course, on the assumption that [¢](A4) = W,. Fol-
lowers of R.; may be active or passive. If a follower z of R, ; is active (and so
targeted for B.) then if z is cancelled at stage s, we automatically enumerate z
into B,. “Activity” therefore involves a “pending commitment” to B,.
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We shall say that R, ; requires atiention at stage s + 1 if Re i is not (declared)
satisfied and one of the following options holds.

(3.2) R.; has no follower.
(3.3) R.; has a follower z and
(1) (Yi,s(z) -lva
(ii) (e, 8} > =, vi(z); where
Ie, s) = max{z: Vy < z([e](As; y) = We,o(y))}

Construction.

Stage s + 1. Find a least (e,7) such that R, ; requires attention. First cancel
the satisfaction of all Ry for {e,) < (5, k). If Rjx is currently active and z is its
follower enumerate r into Bjex1 ~ Bj,s. Now cancel all followers of R; .

Now attack the R, ; by adopting the appropriate case below.

Case 1. (3.2) holds; Assign z = s as a follower of R, ;. Declare R, ; as passive.

Case 2. (3.3) holds and R, ; is passive. Define C, = A, U {2z}.

Subcase (a). [e)(Cs; 1)) = 0. Set Ay = A, U {22} and B, 411 = B, , U {z}.
Declare R, ; as satisfied.

Subcase (b). [€](Cs;vi(z)) = 1. Set Aspy = A; U {2z} and B, g1 = Bis.
Declare R, ; as active.

Case 3. (3.3) holds and R, ; is active. Set A,q; = A;U{2z +1} and B, 541 =
B s. Declare R, ; as satisfied.

End of construction.

Verification. The argument is finite injury. Let so be a stage such that

Vs > sg¥m > (e,1) (R, does not receive attention at stage s).

By our cancellation procedure we may suppose that R, ; has no follower at stage
50. Now if R, ; is to fail then (e, s) — co.

At some stage s; > 59, Re,; receives attention and gets a follower z. If R, ;isto
~ fail, then (3.3} must hold at some stage s; > s1. At stage s, we see

(3.4) ' [e](Ass;vi(2)) = We s (vilz)).

By our cancellation procedure, the only numbers {possibly} < s whic;h'ca.n ever enter
A — A, are 2z and 2z 4 1. Hence the only numbers (possibly) < u([e](4; v (z)))
which can ever enter A — A,, are 2z and 2z + 1. Now if subcase (a} holds then

[el(A; ¥i(z)) = 0 = We(vi(z))

and — (B <m W, via v;(2)) since B.(z) = ! and v;(z) ¢ W,.
If subcase (b ( ) holds we set A;y; = 4,U{2z} and activate z. Since [¢](Cs; vi(z))
=1, when (3.3) next (say at stage sq > 82) pertains to R, ; we must have

[e)(A;7i(z)) = 1 = We,s5 (i ()

But now «;(x) € W, s, and so v(z) € W, as W, is r.e. But now we win since
z ¢ Be and v;(x) € We. It is clear that B, <4 A if I{e, s) — co and so all the R, ;
are met. O :

(3.5) Variations and comments.

The reader should note that we win above for one of two reasons. In subcase (a)
by enumerating 2z into A we cause [¢] (A4) to believe v (z) & W, yet enumerating
z into B, causes 7y;(z) € W,. In subcase (b) we first set A so that [¢] (A) believes
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~;(z) € W, but does not enumerate z into B,. Thus once we see y;(x) € W,,; at
some s we then use 2z + 1 to allow us to keep = out of B, while ;(z) € We.

The “punch line” here is that once y;(z) enters W, it cannot be retracted. Let
n be given. An easy modification {using a larger norm for the B, <py W,) will
construct an r.e. tt-degree with no n-r.e. m-degree exceeding all r.e. m-degrees.
By dovetailing and using full tt-reductions, it is also possible to construct an r.e.
tt-degree a with no k-r.e. m-degree exceeding all r.e. m-degrees in a for any k. I
do not know if all nonzero r.e. T-degrees contain r.e. tt-degrees without r.e. m-
tops. We should point out that Rogers and Jockusch (cf. [12]) have shown that
all tt-degrees contain a greatest m-degree. Thus the restriction “r.e. m-degree”
is necessary. Finally it seems conceivable that the methods of this section might.
be useful in solving the following question implicit in [2]: Is there tt-topped r.e.
T-degree that is not m-topped?

ADDED IN PROOF. The result above can be extended to construct an r.e. T-
degree a such that if b is any r.e. tt-degree within a, then b has no greatest r.e.
m-degree. See {13].
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