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ON HYPER-TORRE ISOLS
ROD DOWNEY!

§1. Introduction. As Dekker [3] suggested, certain fragments of the isols can
exhibit an arithmetic rather more resembling that of the natural numbers than the
general isols do. One such natural fragment is Barback’s “tame models™ (cf. [2].]6]
and [ 7]), whose roots go back to Nerode {8]. In this paper we study another variety
of such fragments: the hyper-torre isols introduced by Ellentuck [4]. Let Y denote
an infinite isol with D(Y) the collection of all isols 4 < f4(Y) for some recursive and
combinational unary function f. (Here, as usual, £ is the Myhill-Nerode extension
of f to the isols).

(1.1) DErFINITION [4]. Anisol Y is called hyper-torreif Y is infinite, regressive and
for all m = 1, recursive sets @ = (@)™ and 4 e (D(Y))" we have A e ay U 7.

The pretty fact discovered by Ellentuck concerning such Y’s is

Tueorem (ELLENTUCK [4]). If Y is hyper-torre then the universal theory of
(DY), +, -) is the same as (w, +, *).

Although Ellentuck directly constructed such isols, it was subsequently discov-
ered that in 1976 Harrington (cf. [5, Chapter 20]) had constructed a hyper-torre
isol. In a remarkable theorem Barback [1] (see [5, Chapter 207) showed that Y is
hyper-torre iff Y is infinite, regressive, and heriditarily odd-even (ie. forall A< Y
either 4 is even or 4 is odd). Harrington constructed a beriditarily odd-even isol.
Harrington’s construction is a quite elaborate minimal-degree type tree con-
struction, and Ellentuck’s is a modification of this. Both constructions seem very
different from the types of construction that lead to I1, or 2, sets. It has since become
a well-known open question in isol theory whether or not hyper-torre isols can exist
in the co-simple isols. This appears as Question 9 in {5]. In this paper we solve
McLaughlin’s question affirmatively by proving

(1.2) THEOREM. There exists a co-simple hyper-torre isol.

In §2 we give the proof. In §3 we discuss some variations. Qur construction uses a
0"-priority argument, and we refer to reader to Soare [9] for any unexplained
notation or terminology, and for motivation for this technique. The heart of the
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paper is the discussion preceeding the formal construction. As usual all com-
putations etc. are bounded by s at stage s.

We let {¢.}.co be a standard enumeration of all one-to-one partial recursive
functions, and we let A denote the empty string,

§2. The proof. We shall build an r.e. set 4 = | s 4, in stages. At each stage s, we
let {a;;:ie w} enumerate 4,. The desired set will be 4 = {a;:i € w}, where g
= lim, a; ;. We must build A co-retracable satisfying the requirements below:

N,:lim;a, ; = a, exists.

R.:If dom @, o A then ¢,(A) N 2w is either even or odd.

Pcard(W,) =0 > W, n A # .

To ensure that A is co-retraceable we use a dump construction for A. Namely if
a;=pz{z € A,y — A then i <s and A,y = A; U {a;1i < j < s}. It is then easy
to see that A is retraceable. The relevant retracing function g can be defined as
follows. Let z be given. To define g(z), go to stage z. If z ¢ A, define g(z) arbitrarily.
If ze A, then z = a;, for some i. If i =0 define g(z) = z, and otherwise define
9(z) = a;_ 4.

To meet the F, we wait for an unrestrained element x to occur in W, ; (whilst
W,s N A, = &) and enumerate x into 4, , causing W, ., , N A # . As we shall
see, this requirement interacts quite strongly with the N, and R; of higher priority. As
a consequence there will be several “guessed” versions of the restraint “r(e,s)”
attempting to protect a; ; for j < e. The lim inf of the overall restraint r(e, s) is finite,
$0 we can eventually meet™P,.

Now we turn to the key requirements, the R,. First we give the basic module.

The fundamental idea we use to meet R, is what we call binding. Define

[(87 S) = max{x: (Vy < x)(@e,s(ay.s)l)}'

The process is quite simple for a single R, . For the sake of R, we shall wait till there
occurs a stage s and least unbound numbers g; ;, a; ; with i < j < I{e,s) and such that
®ela; 5), ¥ela;,5) € 2. We call such a stage e-expansionary since we know we have two
new numbers to deal with. At this stage s we declare a; ; and a; ; as bound (together);
we then promise that a;; € A iff a;; € A (or, in effect, we extend a partial recursive
function h we are defining for the sake of R, by setting h(a; ;) = a; ;). The reader
should note that for a single R, the effect is that if card (¢,(4) N 2w) = co then
®.(4) N 2w is even. This follows since if 4, € A and ¢,(a;) € 2w then a; is bound to
some unique a;.

How does this strategy cohere with the other requirements? For the F, and N,
cooperating with R, the problem is this. Suppose P, has lower priority than N, so
that F, does not wish to move g, ;. Suppose P, has been assigned restraint r(j,s) and
s > ¥(J,5), s0 that a,, , is currently free to be used to P.. Now perhaps R, acts and
binds a,  to a,,, but the problem is that n < k. Now if we enumerate z < a,, , into
Asy 1 — A we must fulfil our R, commitments (perhaps e < k). Thus we must also
enumerate g, ; into A too allowing P, to injure N, due to its interaction with R,.

The solution to this dilemma is to simply reset the restraint and so ensure that if z
enters 4., — A, fort > sthenz = a,,for some p > msuch that, forall g > p, a, , is
not bound to some g; , for j < k.
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For the sake of the “a-module” below we shall introduce a little more
terminology. In the “a-module®, it is no longer possible to use pairs bound together.
Rather we will use even finite collections of elements bound in a block. To facilitate
this we refer to the least element x of a collection that is e-bound (in the pair situation
above this refers to a; ;) as the lower boundary of its block. Let x = a; ;. If g, s is the
least element with k > i such that a, , is not in x’s e-block then we refer to a,_, ; as
the upper boundary of x’s e-block. Note that we will try to ensure that there are an
even number of y between these boundaries, that is, in x’s e-block with ¢,(y) € 2w.
Also the upper boundary of a block is determined by the next block. We shall prom-
ise that if any element of an e-block enters, all of the e-block enters together.

(2.1) The a-module and coherence of the R,. Now we discuss the o-module, that is,
the modifications to the basic module to allow it to cohere with all the other R;along
the “true path” of the construction. Consider two versions R,, R; with ¢ < f. The
problem with the basic module is this.

Consider the situation which might occur where, for example, for all j < s with j
=0, 1 (mod4), ¢, (a;,) € 2w, and with j = 2,3 we have ¢(q; ) € 2. There may
occur some 7 such that, if we bound e and f as in the basic module, we would have
G, s e-bound t0 Gy s 4 g; Qs s 1O Gyigss Onso,s LO yy 12 5 €IC; and perhaps a,5 5 f-
bound t0 @, 46 s Gt 7.5 £O Gn+ 10,55 Gnr 11,5 1O Gus 12,4» €1C. Then it is easy to see that
these bindings have become interlocked, and if, for example, we enumerated a,, . 14,
into A ., — A, then this would cause a,.,, , and so (by the dump) @, , and
eventually a, ; to enter A, — A;.

Situations like this mean that R, must be more careful with its bindings. The
fundamental idea for the a-module is that, if R, is guessing infinitary R, behaviour,
then R, must attempt to bind within e-boundaries. R, views this as follows. If x < y
are e-bound, then if zis f-bound to some g with z < y then R, has really bound all of
X, z, y,qgevenif x <z

Now if x lies within a previously defined f-block we have, in turn, really extended
a previously set f-block. Suppose that the e-blocks (at stage s) appear as (x;, yy),
(X5, Va)y- -+ (Xa» Yn)» Where x; (¥;) denotes the lower (upper) e-boundary. Thus we
note that y, = a;_,, if x, = a;,. Our task is to try to define our f-blocks so as
not tointerlock all of A.

Now the reader should note that if for each i there are only an even number
of z with z = g, ; some k, x; < z < y; and @ (z)] € 20, there is no real problem.
We can simply use the same boundaries as e to be the boundaries of the f-blocks.
Then we keep happy whilst getting no interlocks since none of ¢’s boundaries are
crossed by f-bindings. The only remaining problem is if for some i, (x;, y;) contains
only an odd number of z = a, , with ¢,(z) € 2w. The key rule is that we only ever
bind even numbers of such z. Without loss, we may suppose that (x,, y;) is the least
such e-block with an odd number. Our solution to this problem is this. We begin
anew defining a new blocking predicated on the assumption that (x,, y,) is the only
such f-odd e-block. Thus provided (x5, y,),... all turn out to be f-even we do not f-
block (x,, .} at all but simply work on (x;, y;) for j > 2. Obviously if this outcome is
the correct one then again there are no problems; ¢,(A) will be even plus a finite
number. Finally, should we see some least (x;, y;) for j > 2 with (x;, y;) also f-odd, we
shall cancel our previous f-blockings and define our new f-block as (x;, ;). Note
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1at although our new f-block consists of j e-blocks the trade-off is that we have no
:nding commitment to (x,,y,) any more. (It is this outcome which necessitates
1anging our strategy from the basic module.) There is obviously no problem with n
- 2 strategies since they will be inductively defined as above. Since each of the above
determined by infinite recursive collections of 2 -events, the strategies can be, as
sual, handled by a standard I1, guessing tree. We expect that readers familiar with
ich arguments will provide the details for themselves. However, for completeness,
¢ give some formal details below.

Let A = {0e,0,e,w} ordered in the manner given (i.e. oe < 0 <, e <,w). The
terpretation here is that w means “wait”, e means “even”, o means “one odd the rest
ren” and oe means “infinitely many changes from odd to even”. The priority tree is

= A%, ' .

We refer to o, t € T as guesses and let ¢ € 7 mean that o 1s an initial segment of <.
he priority ordering <, is the standard lexicographic ordering: thus o <, 7 iff
cror yytico&kyjet&i<,j) If ceT and lh{c) = e we devote ¢ to
tisfying R, and g "ifor i € A are the outcomes of 6. We replace the idea of e-bound
y o “i-bound for such ¢. Of course ¢ encodes the guess as to the behaviour of the
gher priority requirements (which act infinitely often). For j e {oe,0,¢} we let
¢"j, i,5)and y(g "}, i, ) denote, respectively, the lower and upper boundaries of the
irrent ith block. For ¢ * o we will also define a critical block Q(o, s) which will be the
1que pending odd block for which we are waiting for another odd block. We let

B(c*j, i,8) = {z: z = a, , for some k & x(c"},1,5) < z < (6"}, i, s)}-

In the construction to follow we use the phrase “initialize ¢”. This means cancel all
straints r(g, s) and declare as undefined all x(o, i, 5), y(0, i, 5), etc. Also define c(o, s)
ae current state of the control of the o-module) to be w. Note that in the
mstruction to follow any parameter not specifically reset is simply extended to the
:xt stage without change.

If (for example) x = x(o, ¢, s) is defined and we enumerate x into A4, , it then (of
urse) becomes undefined. Moreover if ¢ = 7”0 in the above and x € Q(t, s), then
e reset ¢(t, s + 1) = oe (from o).

We say F, requires attention at substage t of stage sif W, ;, n A, = & and

Ix(x e W, ; & x > r(o,s), where ¢ = o(t,s) and e + 1 = 1h(q)).

(t,5) is defined in the construction.)

Construction. Stage 0. Define g, = 1 and initialize all o € T.

Stage s + 1. At stage s + 1 we proceed in substages t < s + 1.

Substage 0. Define 0(0,s + 1) = A

Substage t + 1, part 1. Let ¢ = o(t, s + 1) and Ih{o) = f. Adopt the first case
:low to pertain to o, defining m(G, s + 1) = max{r(y,u), a,,, y(p.hu):y < 6 &
- = 1h(G) & x(p, h, s + 1) < max{r(6,u),a,;,} &u<s+ 1}.

Case 1. V1 S o(t"w < a).

Subcase 1. c(o,s) = w. Sec if there exist least k> j>i> m(s,s + 1) with
.sldg.s)l and @ (a, ) € 20 for all g € {i, j, k}. If so define y(c"e, 0,5 + 1) = a,_,
d x(g"e, 0,5 + 1) = min{a,: m(o, s + 1) < a,,}. Note that p < i and we have
xfined B(o"e, 0,5 + 1).
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Now set ot + 1,5+ 1) = 6% and if t = s define 0,41 =0"¢. Set ric"e, s + 1)
=yc"e, 0,5+ 1) (=m(c"e,s + 1)) and c(o, s + 1) = e. Go to part 2.

If no k, j,i-exist as above then define o(f + 1, s -+ 1) = ¢”w and keep c(o, s + 1)
= w.Nowsetr(s, s + 1) = m(c"w, s + 1)and if ¢ = s define 01 =0t + 1,5 + 1).
Now go to part 2.

Subcase 2. c(o,s) # w. We claim c¢(o,5) = e in this case. (The reader should
verify this as an easy induction on the construction.) There will be a greatest block
B(c"e, g,s) defined at stage s. Let y(c"e, g, 5) = a,s- See if there exist least k > j >
i > p such that ¢, (a, )| and ¢.(a, ) € 2w for g € {i, j, k}. If so, define

x(che, g+ Ls+)=a,.,, and y(ote, g+ Ls+ )=a_,,.

Now set o(t + 1,5+ 1)=0"e. (t =5 is impossible here. To have c(o,8) = e
necessitates a previous visit to ¢.) Now go to part 2.

If no such k, j, i exist as above, then define o(t + 1, s + 1) = 6w and go to part
2. (Note that here c(s,s + 1) = e and r(c"q, s + 1) remain the same for all ¢.)

Case 2. 37 ¢ (7" w & o). Let 1 denote the longest such 7 and let 1"g € o. Note
that g € {0e, 0,¢}. Adopt the first case below to pertain.

Subcase 1. ¢(o, s + 1} = w. See if there exists a least block B(z"g,i,s + 1) with
f,s+1)>y=y(r"q i s+ 1) and x(c’q, i, s + 1) > mfo, s + 1). If none exists
define o(t + 1,5+ 1) = 6w and r(c"w,s + 1)=m(e"w,s + 1). If t =35 define
Os4y = 0" w. Go to part 2.

If one exists, let d = card{z: o) e2w&ze A ,&x<z<y}. If dis even,
define x(c"e, 0, s + 1) = x and y(c’e, 0, s + )=y, setolt + 1,5+ 1) = "¢ and
¢lo,s+ )=candr(c"e, s + 1) =m(c"e, s + 1), and go to part 2. If t = s, define
U1 =0 e

If d is odd define x(c%0,0,s + 1) = x; ("0, 0,5 + 1)=y and ro"0,s + 1)
=m(c"0,5s+1). Set ot + 1,5 + 1) = 60, Q(c"0, s + 1)=B(c"0,0,s + 1) and
Clo,s +1)=0.1f t = sdefine 6,, , = 0"0. Go to part 2.

Subcase 2. ¢(o, s + 1) = e. Let B(o"e,i, s) be the largest currently defined ¢”e-
block. Then y(¢”e,i,5) = y(z*q,j, s + 1) for some j. If

Kfis+ D) >y=py g j+1,s+1)
(and this is defined), let
d=card{z: /(2)e20 & ze 4, & x(z"q, j+ L, s+ )<z < v}

If d is even, define x(6"e,i+ 1,5+ 1) = x and ylo"e,i+ 1,5+ 1) =y and set
ot + 1,5+ 1) = g"e. If d is odd, define

x(c"o,k,s + 1) =x(c"e, k, s + 1), oo ks + 1) =y(c"e, k, 5+ 1)

for all k < i, and ¢(a, s + 1) = 0. Also define x(¢%0,i + 1, s + 1) = x and y(6*o,
i+1,s+1)=yand Q(o,s + 1) = B(s"0,i + 1,5 + 1). Go to part 2. ‘

IFI(f,s+1)> ydefinea(t + 1,5 + 1) = o*w.

Subcase 3. ¢(g, s + 1) = 0. Let B(g"o, i, s) denote the largest currently defined
o"o-block. Then y(c*o0,1,5) = y(t*q, j, s + 1) for some joSeeif {f,s+1)>y=
y("q,j + 1,5 + 1).If not, define o(t + 1, s + 1) = ¢"w and go to part 2.

If so,let d = card{z: @/(2) e 20 & x(1"q, j+ L, s+ )<z < y & z € A4}
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Subsubcase 1. d is even. Define y(c*0,i + 1,5+ 1) =y and x(¢”0,i + 1,5 + 1)
=x.Seto(t+ 1,5+ 1) = ¢"o and go to part 2.
Subsubcase 2. d is odd. Now Q(o, s + 1) is defined and

O, s+ 1)=B(c"0, k, s + 1)
for some k < i. Define '
x(6he, i+ Ls+ )=x{6"0e,i+ 1,5+ 1) =x(c"0,k, s + 1),
and y(c*e,i+ 1,s+ 1) = y(c"0e,i + 1,5+ 1) = y. For all m < i define
x(c"oe,m s+ 1) =x(c"e,m,s+ 1)=x(c"0,m, s + 1)

and similarly y. Note that under this identification we give x(¢"e, n, s + 1) the same
priority as x(c " oe, n, s + 1), and so we do not cancel x(c " e, n, s + 1) henceforth unless
we also cancel x(c"oe, n, s + 1). Set r{c"oe, s + 1) = m(c*oe, s + 1). Now define
cdhoe=c(t+ 1,5+ 1)andc(o, s+ 1) =e.

Part 2. Having computed ¢ = o{t + 1, s + 1), see if Py, requires attention.
Let f = lh(e) — 1. If not, go to substage ¢ + 1 unless t = 5. If t = 5 go to part 3. If
Pf requires attention via z, say, let z=a;,. For any t"¢ < 0 and g e {o,e, 0e},
if a; , < y(r"q, n, s + 1) declare a; ; as bound to x(t* g, n, s + 1). Find the least such
x. Then (by induction) x = g, ,forsomeg. Weset 4,,, = A, U {ag4p,s p < s}. Now
set 0,5, =a(t + 1,5 + 1). Go to part 3.

Part 3. Initialize all y £, o, ;.

End of construction.

Verification (sketch). Let f denote the true path of the construction. Thus f € [T]
is defined inductively via A € . If = < B then ¢~i = § iff there are infinitely many
7" i-stages (that is, when % = o(t + 1,5 + 1)) and only finitely many 1 *j-stages for
7°j < t"i To see that B exists, first note that P, can receive attention at most once.
Thus f exists since once lh(o,,,) > 2, we can havc Ih(o;+,) < z only if P, receives
attention for somej < z — 1. To see that P,is met it suffices to argue that for j =1h(z)
if ¢ =1"n < B then lim, r(y,s) exists for y <, " n.

For an induction, ﬁnd a stage s, such that for all s > s,

a)y<,0 &y & B —sisnot a y-stage,

b) Vj < lh(o)(P, does not receive attention at stage s), and

c) (V/)(r(y,5) = r(¥, 50)).
Note that a), b) and c) ensure that for all y <, ¢ if y # ¢ then r{y,s) = r(, so).
Restraints are only reset at y-stages for those y <; ¢ with y & 0. If ¢ = 7w then
(0,50} = r(g). Let R = max{ay, r(7,50): 7 <. 0}. If 6 # 1”0, compute a o-stage
§ > 8o where x(o,n,5) > R. Then r(o,s) = r(o), since this will be specifically pro-
tected in the construction.

It is implicit here that in the construction, until we see such an x(q, n, 5), the P,
of lower priority than ¢ are restrained from enumerating x({z, i, 5). It follows that
lim, (o, s) = r(o) exists and similarly all the N, are met.

Finally, the R, are met for exactly the reasons discussed before the formal con-
struction. If o”e or ¢” oe are on the true path then almost all elements are in even
blocks. If 6" 0 S §, then one block lim, Q{s, s) = Q(¢) is odd and all those exceeding
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it are even. The formal verification of this provides absolutely no further insight,
and we leave it to the reader.

§3. Variations and comments. One can add permitting to the above construc-
tion as follows. For the sake of P, one defines followers. For example, use x =
x(0,i,5) to indicate x is the current ith follower at guess ¢, where e = lh(g). A
follower is realized when X € W, for some x(o,i — 1,5) < X < x(0,i,5). Whilst
A, n W, = &, when x(g,1,s) becomes realized we initialize all y <; ¢ and define a
new follower x(a, i + 1, 5) in such a way that it does not violate x{g, I, s)’s block and
ensure thaty <; ¢ cannot violate x(o, i + 1, s) by restraint. To meet F, we enumerate
ye W, as before; if W, , n A, = &, y is unrestrained (as before), and additionally
ask that y > X for some realized x with X permitted we will enumerate as before
(defining g, to be ¢). With this modification we get

(3.1) TueorEM. Let C be any r.e. nonrecursive set. Then there exists a co-simple
hyper-torre isol A <. C.

Here, of course, we use the fact that retraceable isols have well-defined degrees
(see [5, Chapter 5]).

I do not know if all nonzero r.e. degrees contain IT, hyper-torre isols. Indeed it
is not even clear if 0’ contains such an isol. It seems to me that a new construction
would be needed to get this. I conjecture that not all r.e. nonzero degrees contain
such isols.
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