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THREE TOPOLOGICAL REDUCIBILITIES FOR

DISCONTINUOUS FUNCTIONS

ADAM R. DAY, ROD DOWNEY, AND LINDA WESTRICK

Abstract. We define a family of three related reducibilities, ≤T, ≤tt and
≤m, for arbitrary functions f, g : X → R, where X is a compact separable
metric space. The ≡T-equivalence classes mostly coincide with the proper
Baire classes. We show that certain α-jump functions jα : 2ω → R are ≤m-
minimal in their Baire class. Within the Baire 1 functions, we completely
characterize the degree structure associated to ≤tt and ≤m, finding an exact
match to the α hierarchy introduced by Bourgain [Bull. Soc. Math. Belg. Sér. B
32 (1980), pp. 235–249] and analyzed in Kechris & Louveau [Trans. Amer.
Math. Soc. 318 (1990), pp. 209–236].

1. Introduction

1.1. Reducibilities. Computability theory seeks to understand the effective con-
tent of mathematics. Ever since its beginnings in the work of Gödel, Turing, Post,
Kleene, Church and others, the idea of a reduction has been a central notion in this
area. Turing [Tur39] formalized what we now call Turing reducibility which can
be viewed as the most general way of allowing computation of one set of natural
numbers from another using oracle queries.

In the last 60 years, we have seen the introduction of a large number of reducibil-
ities A ≤ B. These different reducibilities reflect different oracle access mechanisms
for the computation of A from B. Different oracle access mechanisms give different
equivalence classes calibrating computation. The measure of the efficacy of such
reductions is the extent to which

(i) they give insight into computation, and
(ii) they are useful in mathematics.

Examples of (ii) above include the use of polynomial time reductions to enable
the theory of NP -completeness, but also include the use of Π1

1-completeness to
demonstrate that classical isomorphism problems like the classification of countable
abelian groups cannot have reasonable invariants (Downey-Montalbán [DM08]),
Ziegler reducibility to classify algebraic closures of finitely presented groups (see e.g.
Higman-Scott [HS88]), truth-table reducibility to analyze algorithmic randomness
for continuous measures (Reimann-Slaman [RS]), and enumeration reducibility for
the relativized Higman embedding theorem (see [HS88]). There are many other
examples.
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1.2. Reducibilities in type II computation. The narrative above really only
refers to notions of relative computability for infinite bit sequences (or objects, such
as real numbers, which can be coded by such sequences). That is, the objects whose
information content is being compared have function type A : ω → ω or similar.

What if instead we wanted to compare the information content of functions
f : [0, 1] → R? The collection F([0, 1]) of all such functions has cardinality greater
than the continuum, so it is not possible to use infinite bit sequences to code all
these objects. In Section 2 we will say a bit more about some approaches to the
problem of relative computability for higher type objects, the most prominent of
which is the Weihrauch computable reducibility framework.

In this paper, we introduce and analyze three notions of reduction for F(X),
where X is a compact Polish space. Two of our notions are completely new and
one has had little previous attention. We argue that that they meet the criteria
(i) and (ii) above, and provide computational insight into the hierarchies previ-
ously introduced in classical analysis for the classification of the Baire classes of
functions.1

We first concentrate upon what we define to be f ≤T g. This reduction is
interpreted to mean that f is continuously Weihrauch reducible to the parallelization
of g. In Section 2, we define what we mean by this, and argue that this is the most
natural (continuous) analog of Turing reducibility for higher type objects. We
introduce the new notions of f ≤tt g and f ≤m g by restricting the oracle use
of the functionals in the Weihrauch reduction in an appropriate way described in
Section 5.

It seems to be folklore that the ≤T degrees of the Baire functions are linearly
ordered, and these degrees correspond to the proper Baire classes. Our main results
concern the ≤m and ≤tt degrees. We show that the αth jump operator2 jα is ≤m-
minimal in its Baire class.

Theorem 1.1. If a Baire function f is not Baire α, then f ≥m jα+1 or f ≥m

−jα+1.

Then we restrict attention to the Baire 1 functions. In [KL90], Kechris and
Louveau consider three ranking functions α, β and γ, which take Baire 1 functions
to countable ordinals. These ranks are especially robust at levels of the form ωξ.
Letting ξ(f) denote the least ξ such that α(f) ≤ ωξ, in our main theorem we
characterize the ≤m and ≤tt degrees of the Baire 1 functions as follows.

Theorem 1.2. For f and g discontinuous Baire 1 functions,

(1) f ≤tt g if and only if ξ(f) ≤ ξ(g).
(2) If |f |α < |g|α, then f ≤m g.
(3) If ν is a limit ordinal, {f : |f |α = ν} is an ≤m-degree.
(4) If ν is a successor, {f : |f |α = ν} contains exactly four ≤m-degrees arranged

as in Figure 1.

The smallest ≤m-degrees are recognizable classes: constant functions, continuous
functions, upper semi-continuous functions, and lower semi-continuous functions.
See Figure 2.

1We define these terms in Section 3.
2We will define jα later, but for example j1 : 2ω → R is j1(X) :=

∑
i∈X′ 2−(i+1).
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Figure 1. The ≤m degrees of functions f with |f |α a successor
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Figure 2. The smallest ≤m degrees are recognizable classes

1.3. History and subsequent related work. Several authors have previously
considered various notions of reducibility to compare discontinuous functions. The
most commonly considered are continuous Weihrauch reducibility, strong contin-
uous Weihrauch reducibility, and a rigid form of Wadge reducibility defined by
f ≤w g if and only if f = g ◦ h for some continuous h. These reducibilities are
applied in various combinations to the problem of discontinuous functions, for ex-
ample in [Her96b,Bra05,Myl06, Pau10,Car13]. What all these reducibilities have
in common is that the outputs of the functions f and g are considered as indivisible
packets of information. By contrast, in this paper, we make rigorous the notion
of one “bit” of information about the output of such a function, and this choice is
what makes possible the correspondence with the α rank.

As there has been some gap between the time this work was done and the present
time, we include a short note about how it developed over time and some work
which followed it. Almost all results of this paper were obtained by the authors in
2015 and 2016 while the third author was a postdoctoral fellow at the University of
Victoria Wellington. The first major presentation of these results was made by the
third author at the February 2017 Dagstuhl Workshop on Computability Theory.
At that time, Takayuki Kihara and Arno Pauly each suggested some equivalent
definitions; we have included them, with credit as appropriate, and included proofs
of their equivalence.

As communicated in multiple correspondences beginning in the summer of 2017,
Kihara took some of the main results of the paper and generalized them in various
ways. The generalizations, under the additional assumption of AD, extended The-
orem 1.2 (about Baire 1 functions) and the folklore Proposition 4.10 (about Baire
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functions) to apply to all real-valued functions on Polish spaces. The generalization
goes in two directions, extending both the complexity of the functions considered
and the class of domains considered. (Following [KL90], the present paper only
considered compact Polish spaces as the domains of the functions.) In order to do
the more substantial generalization to make these results apply to all functions re-
gardless of complexity, Kihara incorporated diverse techniques including his recent
analysis with Montalbán of the Wadge degrees of bqo-valued functions [KM19],
as well as older theory surrounding the uniform Martin’s conjecture. We will note
these extensions as appropriate, and refer the reader to Kihara’s forthcoming paper
[Kih] for details.

In the same paper, Kihara also clarifies the relationship between the results of
this paper and the work of Elekes, Kiss and Vidnyánszky [EKV16], which was not
known to the authors at the time this work was done. They defined a generalization
of the α, β and γ ranks of [KL90] into the higher Baire classes. Interestingly, they
were able to apply their extension of the β rank to solve an open problem in cardinal
characteristics.

The original proof of Theorem 1.1 was done by a relativization of Montalbán’s
theory of α-true stages [Mon14] which produced continuous functions of the type
required by our ≤m reductions. In early 2019, the first author presented a sketch
of the argument at UCLA, prompting a collaboration with Andrew Marks. In
summer 2019 they announced a resolution, conditional on some mild determinacy,
to the longstanding Decomposability Conjecture (which was conjectured by several
authors—see [Kih15] for a list). They used the relativized α-true stages technique
as one of several key ingredients [DM19].

Around the same time, the authors realized that the α-true stages could be re-
placed with an appeal to a result made famous by Louveau and Saint-Raymond
[LSR87,LSR88], which is Proposition 6.4 in this paper. Proposition 6.4 itself is a
straightforward consequence of Borel determinacy, but the work of Louveau and
Saint-Raymond revealed that this result actually holds in second-order arithmetic.
An important consequence is that Borel Wadge determinacy also holds in second-
order arithmetic. The arguments of [LSR87, LSR88] were notorious for being im-
penetrable, but something like Proposition 6.4 had essentially been achieved in the
original version of this paper via the relativized α-true stages technique, a technique
which can be carried out in second-order arithmetic. The question then naturally
arose whether this technique could give a more understandable second-order arith-
metic proof of Proposition 6.4. Indeed, in 2021 the first author, with collaborators
Greenberg, Harrison-Trainor, and Turetsky, announced success in this endeavor
[DGHTT21].

Because the method of the original proof played a role in these developments,
we have included it in Appendix A. To cut down on space and improve readability,
only the finite case is included.

2. Motivations in defining ≤T

2.1. Weihrauch/computable reducibility. Suppose we want to define f ≤ g
for functions f and g, with the meaning that g can compute f . The search for a
natural notion of f ≤ g leads directly to Weihrauch reducibility. For A, B ∈ 2ω,
it is clear what it means to “know” A. An algorithm or oracle knows A if, given
input n, it outputs A(n). Accordingly, a computation of A from B is an algorithm
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which can answer these questions about A when given query access to an oracle for
B. So, what kinds of questions should we be able to answer if we claim to “know”
f : [0, 1] → R? At a minimum, an oracle for f ought to be able to produce f(x)
when given input x. We take this ability as the defining feature of an oracle for f .

Now, what should it mean for an algorithm to have query access to an oracle
for g? Clearly, given input x, the algorithm should be able to pass it through and
query g(x). If g(x) were the only permitted query, the algorithm could not really
be said to have access to an oracle for all of g, so we should allow some other
queries as well. For example, one would hope for a theory in which the functions
x '→ f(x) and x '→ f(x + c) always compute each other, where c is a computable
real. Generalizing this idea, an algorithm with query access to g should be able to
ask about g(y) for any y ≤T x. Therefore, the notion of Weihrauch reducibility is a
natural starting candidate for a notion of f ≤ g. Roughly speaking, f is Weihrauch
reducible to g (f ≤W g) if f(x) can be computed by a machine with oracle access
to g(∆(x)), where ∆ is some fixed computable operation. We refer the reader to
Section 3.3 for the full definition.

The name “Weihrauch reducibility” was coined by Brattka and Gherardi [BG11],
whereas earlier Weihrauch had called it computable reducibility. Brattka [Bra05]
proved effective versions of classical theorems linking the Borel and Baire hierarchies
using this reducibility.

2.2. Parallelized Weihrauch reducibility. The above account seems to miss
the feature of ordinary ≤T computation in which the algorithm may use the oracle
repeatedly and interactively. We would not like to limit the reduction algorithm to
a single use of the g oracle.

However, if the algorithm had access to all of g(x) based on its first query, it
would be able to feed this back into the g oracle, obtaining g(g(x)) and in general
the sequence of g(n)(x). And if we accept some algorithm is uniformly producing the
sequence g(n)(x), it could be simultaneously engaged in writing down a summarizing
output g(ω)(x), where g(ω)(x) is for example defined as

⊕
n g(n)(x).3 So we are led

to accept g(ω) ≤ g. If we accept this, and also wish our notion to be transitive,
we must accept g(ω+1) ≤ g, otherwise transitivity will be violated in the sequence
g(ω+1) ≤ (g(ω) ⊕ g) ≤ g. In the end, we are forced to say g computes all its iterates
up to ωck

1 . The notion just described, complete with all the transfinite iteration,
was studied by Kleene [Kle59]. However, this reducibility is coarser than we want
(for example, we would not want the jump operator on 2ω to be able to compute
the double-jump operator) and so we choose to go by another route.

Suppose instead we make the following seemingly minor adjustment to our con-
cept of what an oracle for g should do. Instead of querying g with an input ∆(x),
we query with a pair (∆(x), ε), where ε ∈ Q+. Instead of returning the entire
g(∆(x)), the oracle returns some p ∈ Q with |g(∆(x)) − p| < ε. Now an algorithm
which on input x has made finitely many queries to g has only acquired a finite
amount of new information, so its future queries are still restricted to those y with
y ≤T x. This breaks the cycle above. In order to get more and more precision on
f(x), such an algorithm may query g(y) for many different values of y. But there
are at most countably many queries to g associated to the computation of a single

3Imagine for the purposes of this hypothetical that g is an operator on 2ω , so that a joining
operation ⊕ is available to us; a similar situation could be concocted for operators on the unit
interval.
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f(x). Therefore, we can naturally express the kind of reducibility described above
in the Weihrauch framework: f ≤ g could mean f ≤W ĝ, where ĝ : Xω → Y ω is
the parallelization of g, defined by applying g componentwise.

2.3. What is a single bit of information about f? Accepting parallelized
Weihrauch reducibility as a higher-type notion of ≤T , what should ≤tt and ≤m be?
It is particularly informative to consider ≤m. In classical computability theory,
A ≤m B means that there is an algorithm which, on input n, outputs m such that
A(n) = B(m). For us the important features are:

(1) The oracle’s response is accepted unchanged as the output, and
(2) The question is a yes/no question.

Allowing a more demanding question (such as “approximate f(x) to within ε”)
seems unfair, ruling out m-computations between functions of disjoint ranges that
are otherwise computationally identical. (Notions of m-reducibility without point
(2) have been considered however, for example by Hertling [Her96b], Pauly [Pau10]
and Carroy [Car13].)

Our previous decision on how to finitize the oracle was, upon reflection, rather
arbitrary. We could restrict ourselves to yes/no questions with the following con-
vention about oracles, and still end up with a ≤T notion equivalent to parallelized
Weihrauch reducibility. An oracle for f accepts as input a triple (x, p, ε), with
p ∈ Q and ε ∈ Q+, and ε-approximately answers the question “is f(x) < p”? The
exact version of this question would be too precise for a computable procedure, so
we accept any answer as correct if |f(x)−p| < ε. Now that each query to the oracle
yields exactly one bit of information, we can define ≤m and ≤tt for the higher type
objects by placing corresponding restrictions on the oracle use. We give the formal
definitions in Section 5.

2.4. Parameters. Another natural question we might ask ourselves is “what pa-
rameters would be reasonable for such reductions”? For reductions between objects
of type A : ω → ω, we usually allow integer parameters in computation procedures.
Therefore, for reductions between objects of type f : [0, 1] → R, perhaps we should
allow real parameters. We take this approach, which has a substantial simplifying
effect. Every continuous function is computable relative to a real parameter, so
Weihrauch computability relative to a real parameter is the same as continuous
Weihrauch reducibility, the formal definition of which can be found in Section 3.
Therefore, our reducibilities have a topological rather than computational char-
acter. In particular, we shall define f ≤T g to mean f ≤c

W ĝ, and make similar
topological definitions for ≤tt and ≤m in Section 5. We plan to address the question
of the lightface theory in future work.

3. Preliminaries

3.1. Notation. We use standard computability-theoretic notation. Brackets 〈m, n〉
denote a canonical pairing function identifying ω × ω with ω. The expression 0ω

refers to an ω-length string of 0’s. Concatenation of finite or infinite strings σ and
τ is denoted by σ!τ , which may be shortened to στ in cases where it would cause
no confusion. If τ is a string with a single entry n, we also denote concatenation
by n!σ or σ!n. The n column of an element X ∈ ωω is denoted X [n].

The composition of two functions f and g is denoted fg. If multiplication is
intended, the notation f · g is used. We usually use X and Y to denote compact
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separable metric spaces, A, B, Z, W to denote elements of 2ω or ωω, C, D, P, Q to
denote subsets of 2ω, and C, D to denote subsets of P(X). Usually f, g, and j are
arbitrary functions from X to R (the ones whose complexity we seek to categorize),
while h, k, u, v, H and K are typically continuous functions from ωω to ωω.

3.2. Computability and descriptive set theory. We assume the reader is fa-
miliar with Kleene’s O (but without it, one could still understand the results at the
finite levels of each of the hierarchies). The standard reference on this subject is
Sacks [Sac90]. The nth jump of a set A ∈ ωω is denoted A(n). For any a ∈ OA, if
|a| = n then let A(a) denote A(n), and if |a| is infinite then let A(a) denote HA

2a . If
a ∈ O with |a| = α, we will often simply write α instead of a. Thus an expression
like A(α) is technically ambiguous, but since all the sets which it could refer to are
one-equivalent, no problems will arise.

The reason for numbering the jumps in this lower-subscript way is to make them
align correctly with the Borel hierarchy. Recall that a set is Σ0

1 if it is open, Π0
α if

it is the complement of a Σ0
α set, and Σ0

α if it is of the form ∪n∈ωCn where each
Cn is Π0

βn
for some βn < α. Then a set C ⊆ ωω is Σ0

α if and only if there is a
parameter Z ∈ ωω and an index i such that for all A ∈ ωω,

A ∈ C ⇐⇒ i ∈ (A ⊕ Z)(α)

(and if no parameter is needed, we say C is Σ0
α).

Still, at least once we will want to refer to the sets HA
a , where |a| is a limit

ordinal. In this case, we write A(a) to denote HA
a .

3.3. Representations. Although our results were motivated by considering f :
[0, 1] → R, they are also applicable in a wider context. If the domain of f is
any compact separable metric space,4 then computations using this domain can
be carried out through the theory of represented spaces. Hence, for completeness,
we will briefly give an account of such spaces. A standard reference is Weihrauch
[Wei00], and a more up-to-date survey is [BGP17].

In order for a machine to interact with a mathematical object, the object must
be coded in a format a machine can read, such an element of 2ω or ωω. For example,
an element of R could be coded by a rapidly Cauchy sequence of rational numbers
(which is itself coded by an element of ωω using some fixed computable bijection
ω ↔ Q). It is not too hard to see that a similar method will also work for any
computable metric space, where the role of the rationals is taken by (codes for) a
computable dense subset.

A representation of a space X is a partial function δ :⊆ ωω → X, so that
elements x ∈ X have δ-names Ax (strictly a set {Ax | δ(Ax) = x}). Note that
x can have many names Ax, and not every element of ωω is a name. Then if X
and Y are represented spaces and f : X → Y , we say f is computable if there is
a computable function F : ωω → ωω such that whenever Ax is a name for x, then
F (Ax) is a name for f(x). We say that F realizes f . Because x and f(x) each have
many names, in general realizers are not unique.

4The setting of compact separable metric spaces is surely not the most general domain which
could be considered. We thank the anonymous referee for pointing out that one could consider
Polish spaces, Quasi-Polish spaces, or even drop the condition of separability. Although we do not
consider those generalizations here, we refer the reader to [Kih] for the generalizations of many of
the results of this paper to Baire space and general Polish spaces.
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Not all representations are created equal. For example, the base 10 represen-
tation for reals is a valid representation according to the above definition, but
the function f(x) = 3x is not computable with respect the base 10 representa-
tion on both sides (what digit should the algorithm output first when seeing input
.33333. . . ?). However, it is computable with respect to the Cauchy name repre-
sentation on both sides. This difference is captured in the following definition: a
representation δ :⊆ ωω → X is admissible if δ is continuous and for every other
continuous δ′ :⊆ ωω → X, there is a continuous function G :⊆ ωω → ωω such that
for all A ∈ dom δ′, we have δ(A) = δ′(G(A)). That is, G transforms δ′-names to
δ-names. Observe that it is possible to continuously transform a base 10 name for
x into a Cauchy name for x, but not vice versa. Some definition chasing shows
that the Cauchy name representation for R is admissible. Restricting attention to
admissible representations allows continuity properties of f to be reflected in its
realizers.

Theorem 3.1 (Kreitz and Weihrauch [KW85], Schröder [Sch02]). If X and Y are
admissibly represented separable T0 spaces, then a partial function f :⊆ X → Y has
a continuous realizer if and only if f is continuous.

All of the pain and suffering involving representations is rewarded when we
want to compare functions f and g in topologically incompatible areas, like Cantor
space and R. When comparing f : X → Y and g : U → V , we can do so via
their representations in ωω. Given two represented spaces X and Y , a Weihrauch
problem is a multivalued partial function f : X ⇒ Y . The ⇒ indicated that
this definition concerns multivalued partial functions. We will restrict attention to
single-valued functions f : X → R. Note, however, that each real number has many
names.

We conclude this section with the precise definition of Weihrauch reducibility
on represented spaces. First, if f, g ⊆ ωω ⇒ ωω, then we say that f is Weihrauch
reducible to g, written f ≤W g, if and only there are computable functions ∆,Ψ :⊆
ωω → ωω such that for all A ∈ dom(f), if B ∈ g(∆(A)), then Ψ(A, B) ∈ f(A).
We say f is strongly Weihrauch reducible to g, written f ≤sW g, if Ψ(A, B) can
be replaced by Ψ(B) above. The notions of continuous Weihrauch reducibility and
continuous strong Weihrauch reducibility, denoted ≤c

W and ≤c
sW respectively, are

obtained by allowing ∆ and Ψ to be merely continuous rather than computable.
Let X, Y be represented spaces with representations δX and δY , and suppose

f :⊆ X ⇒ Y . One can then compare f with other functions using Weihrauch
reducibility by composing it with the given representations. So in particular f can
be identified with the multivalued function F :⊆ ωω ⇒ ωω defined so that B ∈
F (A) if and only if δX(A) ∈ dom(f) and δY (B) ∈ f(δX(A)). Of course, different
choice of representations may in general result in different Weihrauch complexity
of the function F , so some care is needed in the most general case. However, if
δX and δY are admissible representations, which representation is chosen does not
matter, as the following well-known proposition shows. (We show it only for the
continuous Weihrauch reducibility, as that is what is used in this paper, but similar
statements could be made for Weihrauch reducibility and computably admissible
representations.)
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Proposition 3.2. Suppose X and Y are represented spaces and f :⊆ X ⇒ Y . If
δX , δ′X are admissible representations for X and δY , δ′Y are admissible representa-
tions for Y , then F ≡c

sW F ′, where B ∈ F (A) if and only if δX(A) ∈ dom(f) and
δY (B) ∈ f(δX(A)), and similarly for F ′ but using δ′X , δ′Y .

Proof. By symmetry it suffices to show that F ≤c
sW F ′. By admissibility, let ∆ be

such that δ′X ◦∆ = δX , and let Ψ be such that δY ◦Ψ = δ′Y . "
The parallelization ĝ : Zω → Wω is the function that applies g countably many

times simultaneously: ĝ((zi)i∈ω) = (g(zi))i∈ω.
In this paper, we will be dealing for the most part with situations where the

coding is clear, and hence suppress the δX notation whenever possible. In particular,
unless otherwise specified, if X ⊆ R, then δX is the Cauchy representation discussed
in the previous subsection.

3.4. Baire functions. Baire functions are the most tractable functions we might
consider after continuous ones. Baire 1 functions are those which are defined as
pointwise limits of a countable collection of continuous functions; f(x) = lims fs(x)
with each fs continuous. More generally, let X be a compact separable metric space.
By C(X), we mean the continuous functions f : X → R. The Baire hierarchy of
functions on X is defined as follows. Let B0(X) = C(X). For each α > 0, let Bα(X)
be the set of functions which are pointwise limits of sequences of functions from
∪β<αBβ(X). The functions in Bα(X) are also referred to as the Baire α functions
when X is clear.

It is well-known that a function f on a separable metrizable space X is Baire α
if and only if the inverse image of each open set under f is Σ0

α+1 [Kec95, Theorems
24.10 & 24.3]. When X = 2ω, the Baire α functions can also be characterized via
the jump.

Proposition 3.3 (Folklore). For each ordinal α and f : 2ω → R, f ∈ Bα(2ω) if
and only if there is a Turing functional Γ and B ∈ 2ω such that

f(A) = δRΓ((A ⊕ B)(α)).

Proof. When such Γ and B exist, one can readily check that the inverse images
of open sets are Σ0

α+1. Conversely, if f is Baire α, then the sets f−1((p, q)) for
p, q ∈ Q can each be written as

f−1((p, q)) = {A : ip,q ∈ (A ⊕ Bp,q)(α+1)}.

Therefore, if B is an oracle containing each Bp,q and ip,q in a uniformly accessible
manner, one can use an (A⊕B)(α) oracle to enumerate the rational intervals (p, q)
containing f(A), which is enough to make a Cauchy name for f(A). "
3.5. Ranks on Baire 1 functions. In [KL90], Kechris and Louveau defined three
ranks α, β and γ on the Baire 1 functions. These ranks had been used either
explicitly or implicitly in the literature analyzing this class of functions. Given a
Baire 1 function f : X → R, the following derivation process is used to define the
α rank. Given rational numbers p, q with p < q and a closed set P ⊆ X, let

P ′
p,q = P \ ∪{U ⊆ X : U is open and f(U) ⊆ (p,∞) or f(U) ⊆ (−∞, q)}.

For a fixed pair p, q, define an ω1-length sequence {Pν}ν<ω1 as follows. Let P0 = X,
Pν+1 = (Pν)′p,q, and Pν = ∩µ<νPµ if ν is a limit ordinal. Since X is separable, it
has a countable basis, so the sequence must stabilize below ω1. Let α(f, p, q) be
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the least ν such that Pν = ∅; one can show that such ν exists if and only if f is
Baire 1.

Finally, the α rank is defined by α(f) = supp<q α(f, p, q). The β and γ ranks
are also defined by different transfinite derivation processes. Kechris and Louveau
show that the levels of the form ων are especially robust in the following sense.

Theorem 3.4 ([KL90]). For any countable ξ and any bounded Baire 1 function f ,

α(f) ≤ ωξ ⇐⇒ β(f) ≤ ωξ ⇐⇒ γ(f) ≤ ωξ.

4. Topological Turing reducibility on 2ω

First we define the topological Turing reducibility as mentioned in Section 1.
First we give the definition for the special case where X = 2ω.

Definition 4.1. For f, g : 2ω → R, let f ≤T g if f ≤c
W ĝ.

Equivalently, f ≤T g if and only if there is a countable sequence of continuous
functions ki : 2ω → 2ω and a continuous function h :⊆ 2ω → 2ω such that whenever
{Bi}i<ω are Cauchy names for {g(ki(A))}i<ω, h(A ⊕

⊕
i<ω Bi) is a Cauchy name

for f(A). Observe that all continuous functions are equivalent under ≤T.
The restriction of the domain to 2ω is not essential, but helps keep the notation

manageable. If X is a compact separable metrizable space and f : X → R, then
in order to compare f with other functions, we may replace f with fδX : 2ω → R,
where δX : 2ω → X is any total admissible representation. It is well-known that
every compact metric space X has a total admissible representation. We give one
standard and simple example. This example will also come in handy later.

We recursively define a function L, whose domain is a subset of 2ω, and which
maps an input string σ to an open ball L(σ) = B(xσ, εσ) ⊆ X, as follows. Let
L(〈〉) = X. Given that L(σ) has been defined, let r be a large enough number and
let 〈xστ 〉τ∈2r be a finite sequence of points of L(σ) such that the balls B(xστ , 2−|σ|)
cover the topological closure of L(σ). Then define, for each τ ∈ 2r, L(στ ) =
B(xστ , 2−|σ|). Now, given A ∈ 2ω, it is clear that if σ1 ≺ σ2 ≺ A and σ1,σ2 ∈
dom(L), then xσ1 and xσ2 are within distance 2−|σ1|+1 of each other. Thus each
A ∈ 2ω can be identified with a Cauchy sequence in X.

Definition 4.2. Given a compact separable metric space X, let the function L be
defined as above, and define δL : 2ω → X by

δL(A) = lim
σ≺A

σ∈dom(L)

xσ.

It is easy to check that δL is a total admissible representation for X. There-
fore, there is a well-defined extension of the notion of ≤T to compact separable
metric spaces because, as Proposition 4.3 makes explicit, it does not matter which
representation we choose.

Proposition 4.3. Let X, Y be compact separable metrizable spaces and let δX , δ′X :
2ω → X and δY , δ′Y : 2ω → Y be any total admissible representations for X and Y
respectively. Let f : X → R and g : Y → R. Then

fδX ≤T gδY ⇐⇒ fδ′X ≤T gδ′Y .
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Proof. Suppose that (ki)i<ω and h witness that fδX ≤T gδY . By admissibility, let
φ,ψ : 2ω → 2ω be continuous functions such that δ′X = δXφ and δY = δ′Y ψ (note
the asymmetry). Then (ψkiφ)i<ω and h witness that fδ′X ≤T gδ′Y . The reverse
implication follows by symmetry. "

So we have Definition 4.4.

Definition 4.4. Let X, Y be compact metric spaces and f : X → R, g : Y → R.
Then we say that f ≤T g if and only if fδX ≤T gδY , where δX : 2ω → X and
δY : 2ω → Y are any total admissible representations of X and Y respectively.

In most cases we will restrict our attention to functions f, g : 2ω → R, and obtain
more general results as corollaries. A result of Saint-Raymond shows that the Baire
class of a function is unchanged by composing it with a representation.

Proposition 4.5. For any compact separable metric space X, any f : X → R, and
any continuous onto function δX : 2ω → X, f ∈ Bα(X) if and only if fδX ∈ Bα(2ω).

Proof. It is a result of Saint-Raymond ([SR76], see also [Kec95, Exercise 24.20])
that if X and Y are any compact metric spaces, Z a separable metric space, and
δ : Y → X is continuous and onto, then f : X → Z is of Borel class α if and only if
fδ : Y → Z is of Borel class α. (A function has Borel class α if the inverse image of
each open set is Σ0

α+1.) In our application Z = R and X and Y are both separable,
so the Borel class and Baire class of f and fδ coincide [Kec95, Theorems 24.10 &
24.3]. "

Note that one could also consider the notion defined by f ≤c
sW ĝ. However, this

is almost the same notion as the one defined. If f ≤T g via {ki} and h, and if g
is a non-constant function, then letting B0 and B1 be such that g(B0) 6= g(B1),
one could additionally consider the continuous functions {k′

i} which map A to B0

if A(i) = 0 and map A to B1 otherwise. Then A itself is continuously recoverable
from

⊕
i k′

i(A), so by adding these to the original {ki}, a small modification to the
original h will do the job in the strong Weihrauch setting.

Therefore, if g is non-constant, then f ≤c
sW ĝ if and only f ≤T g. On the other

hand, if g is constant, then {f : f ≤c
sW ĝ} is just the set of constant functions. So

there is no need to consider the strong variant separately.
Now let us define some jump functions to characterize the ≤T degrees of the

Baire functions. The jump functions we consider are real-valued, because of our
original motivation to study functions from [0, 1] to R. But the jump operator can
be represented as a real-valued function in a standard way.

Definition 4.6. For a ∈ O, let ja : 2ω → R be defined by

ja(A) =
∑

i∈A(a)

2−(i+1).

Because each ja(A) is irrational, its binary expansion can be continuously recov-
ered from any Cauchy name for it. Therefore, by Proposition 3.3, if f is Baire α,
then f ≤T ja for all a with |a| = α.

Observe that the definition just given does not give any name to a function which
maps A to (a real number version of) A(λ), where λ is any limit ordinal. That was
done so that ja would always be of Baire class |a|. Since we do occasionally want
to refer to a jump operator which takes a limit number of jumps, we also define a
notation for this.
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Definition 4.7. If a ∈ O is a limit notation, let ja : 2ω → R be defined by

ja(A) =
∑

i∈A(a)

2−(i+1).

The following properties are clear.

Proposition 4.8. For any notations a, b ∈ O,

(1) ja ≤T jb if and only if |a| ≤ |b|.
(2) If a and b are limits with |a| = |b|, then ja ≡T jb.
(3) If a is a limit, ja <T ja.

Proof. All parts of the proposition which claim that a reduction exists follow from
the fact that |a| ≤ |b| implies HA

a ≤T HA
b , uniformly in A. For the non-reductions,

suppose for the sake of contradiction that ja ≤T jb with |a| > |b| or ja ≤T ja.
Let Z ∈ 2ω be an oracle strong enough to compute the continuous functions 〈ki〉
and h used in the reduction. Then HZ

2a ≤T HZ
2b or HZ

2a ≤T HZ
a , which are not

possible. "
Proposition 4.8 justifies the use of notation jα to refer to ja for some unspecified

a ∈ O with |a| = α. By relativization, we can go further up the ordinals.

Definition 4.9. For any Z ∈ 2ω and any a ∈ OZ , define

jZ
a (A) =

∑

i∈(A⊕Z)(a)

2−(i+1),

and similarly for ja,Z .

Proposition 4.8 can then be generalized to replace ja and jb with jZ
a and jW

b ,
under the assumption that a, b ∈ OZ ∩ OW . We leave both the statement and
proof of this generalization to the reader, but for example, part (1) follows from the

fact that H(A⊕Z)
a ≤T H(A⊕Z)⊕W

b uniformly in A; in the generalization the forward
reduction is the continuous map A '→ A⊕Z, rather than the identity map as it was
in the original. Therefore, for any α < ω1, we may use jα to refer to jZ

a for some
pair Z, a with Z ∈ 2ω and a ∈ OZ with |a|ZO = α, and it does not matter which
such Z, a we use because they are all in the same ≤T equivalence class.5 Similar
remarks apply to the expression jα.

We conclude by showing that every Baire function in F(2ω, R) is topologically
Turing equivalent to one of the jα or jα. To reduce the notational clutter, we prove
the version where α is constructive, and leave the relativization to the reader.

Proposition 4.10 (Folklore). Let α be a constructive ordinal and f ∈ B(2ω). If
f 6∈ Bα(2ω), then jα+1 ≤T f . If α is a limit and f 6∈ Bβ(2ω) for any β < α, then
either f ≡T jα or jα ≤T f .

Proof. Since f is not Baire α, there is an open set U ⊆ R such that f−1(U) is
not Σ0

α+1. Since f is Baire, f−1(U) is Borel, so by Wadge determinacy Cα+1 ≤w

f−1(U), where Cα+1 is a canonical complete Π0
α+1 subset of 2ω, and ≤w is Wadge

reducibility. Let v be a continuous function such that for all Z,

Z ∈ Cα+1 ⇐⇒ v(Z) ∈ f−1(U).

5Given a, Z and b, W with |a|ZO = |b|WO but a %∈ OW or b %∈ OZ , first fix a′ ∈ OZ ∩ OW with

|a′|ZO = |a′|WO = |b|WO , then observe jZ
a ≤T jZ

a′ ≤T jW
a′ ≤T jW

b .
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We now show how to reduce jα+1 to f . It suffices to be able to compute each bit
of A(α+1) on input A. Given A and i, uniformly compute Z such that i 6∈ A(α+1)

if and only if Z ∈ Cα+1. Expressing i ∈ A(α+1) as the statement ∃k[u(i, k) ∈ A(α)]
for some computable u, compute also a sequence Zk such that u(i, k) ∈ A(α) if
and only if Zk ∈ Cα+1. Then asking for more and more precision on the values of
f(v(Z)) and f(v(Zk)), wait until you see one of these enter U . This proves the first
part.

Now suppose that α is a limit, α = limn αn. If f is not Baire β for any β < α,
then f ≥T jαn for each n. From this it is clear that f ≥T jα. Suppose that there is
an open set U such that f−1(U) is not Σ0

α. Then by the same argument as above,
f ≥T jα. On the other hand, if f−1(U) is Σ0

α for each open U , then jα ≥T f as
follows. Let W be an oracle such that {(A, p, q) : f(A) ∈ (p, q)} is Σ0

α(W ). Given
access to the oracle jα(A ⊕ W ), we can enumerate {(p, q) : f(A) ∈ (p, q)}. This
suffices to compute a Cauchy name for f(A). "
Corollary 4.11. Let α be a constructive ordinal, X a compact separable metric
space, and f ∈ B(X). If f 6∈ Bα(X), then jα+1 ≤T f . If α is a limit and f 6∈ Bβ(X)
for any β < α, then either f ≡T jα or jα ≤T f .

Proof. Let δX be any total admissible representation for X. By definition, f ≡T

fδX , and by Proposition 4.5, f and fδX have the same Baire class. "
So that is the complete picture for ≤T. The particularly strong way in which

each Baire α function is reducible to jα is in fact a continuous Weihrauch reduction.
However, the reduction of Proposition 4.10 is not a continuous Weihrauch reduction
since we query different values of f for each bit of A(α+1). So the parallelization is
certainly used.

After hearing of these results, and under the assumption of AD, in [Kih] Kihara
has fully characterized the ≡T degrees of functions f : ωω → R. A function
f : 2ω → 2ω is called uniformly order preserving (UOP) if there is a function
u : ω → ω such that for all A, B ∈ 2ω, A = φe(B) implies that f(A) = φu(e)(f(B)),
where φe denotes the eth Turing functional. Given f, g : 2ω → 2ω, f is Martin
reducible to g, written f ≤"

T g, if f(X) ≤T g(X) on a cone. Let UOP denote those
UOP functions f : 2ω → 2ω which are not constant on a cone, and let F denote
the non-constant functions f : ωω → R.

Theorem 4.12 ([Kih]). The identity map induces an isomorphism between quo-
tients of (UOP,≤"

T ) and (F ,≤T).

As it is known that the UOP classes are well-ordered with the successor operation
given by the jump, this result significantly generalizes the structural content of
Proposition 4.10.

5. Definition of topological tt- and m-reducibilities

The classical notions of tt- and m-reducibility on infinite binary sequences oper-
ate by restricting the number of bits of the oracle used and the manner in which
they are used. In the case of a tt-reduction, in order to get the nth bit of the output,
one specifies in advance, using only the number n, finitely many bits of the oracle
that will be queried. For each possible way the oracle could respond, one commits
to an output for the nth bit. Only then is the oracle queried and the commitment
carried out. The m-reducibility is even more restrictive. In order to get the nth
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bit of the output, one specifies in advance a single bit of the oracle to query, and
commits to copy whatever the oracle has there as the nth bit.

As explained in Section 1, we have adopted the convention that one bit of in-
formation about f is an ε-approximate answer to the question “Is f(A) greater or
less than p?” where A ∈ 2ω and p ∈ Q.

Given A ∈ 2ω, p ∈ Q, and ε ∈ Q+, we define the question

“f(A) #ε p”?

so that “yes” or “1” is a correct answer if f(A) < p+ ε and “no” or “0” is a correct
answer if f(A) > p − ε. Observe that either answer is considered correct if f(A) is
within ε of p.

We then define a representation of R whose domain is a subset of 2ω, where each
bit of a name for y ∈ R corresponds to a correct answer to a question of the form
y #ε p.

Definition 5.1. We say A ∈ 2ω is a separation name for y ∈ R if for every
p ∈ Q, ε ∈ Q+, we have A(〈p, ε〉) correctly answers y #ε p.

One can verify that the function δsep :⊆ 2ω → R mapping separation names to
reals is an admissible representation. Now if we take the definition of ≤T from the
previous section, use the δsep representation for real numbers, and further spec-
ify that h be either an m-reduction or a tt-reduction respectively, we obtain the
following topological definitions of ≤m and ≤tt.

Definition 5.2. For f, g : 2ω → R, we say f ≤m g if and only if for every pair of
rationals p, ε, there are rationals q, δ and a continuous function k : 2ω → 2ω such
that whenever b is a correct answer to g(k(A)) #δ q, b is also a correct answer to
f(A) #ε p.

Definition 5.3. For f, g : 2ω → R, we say f ≤tt g if and only if for every pair of
rationals p, ε, there are

• finitely many rationals (qi, δi)i<r

• continuous functions ki : 2ω → 2ω, and
• a truth table function h : 2r → {0, 1}

such that whenever σ ∈ 2r is a string where each σ(i) correctly answers

g(ki(A)) #δi qi,

then h(σ) correctly answers f(A) #ε p.

It is clear that the reducibilities ≤m and ≤tt are reflexive and transitive, and
that

f ≤m g =⇒ f ≤tt g =⇒ f ≤T g.

Exactly as in Proposition 4.3, these reductions may be more generally applied to
functions whose domain is any compact separable metrizable space, using admissible
representations.

Proposition 5.4. Let X, Y be compact separable metrizable spaces and let δX , δ′X :
2ω → X and δY , δ′Y : 2ω → Y be any admissible representations for X and Y
respectively. Let f : X → R and g : Y → R. Then

fδX ≤tt gδY ⇐⇒ fδ′X ≤tt gδ′Y

and
fδX ≤m gδY ⇐⇒ fδ′X ≤m gδ′Y .
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Proof. If k : 2ω → 2ω is any function used to translate an fδX question into a
gδY question as a part of the reduction fδX ≤tt gδY (resp. fδX ≤m gδY ), then
replacing each such k with ψkφ witnesses that fδ′X ≤tt gδ′Y (resp. fδ′X ≤m gδ′Y ),
where ψ and φ are as in Proposition 4.3. "

Therefore, the following extensions are well-defined.

Definition 5.5. Let X, Y be compact metric spaces and f : X → R, g : Y → R.
Then we say that

• f ≤tt g if and only if fδX ≤tt gδY , and
• f ≤m g if and only if fδX ≤m gδY ,

where δX : 2ω → X and δY : 2ω → Y are any total admissible representations of X
and Y respectively.

Finally, all these reductions are primarily suitable for comparing discontinuous
functions.

Proposition 5.6. If f is continuous and g is non-constant, then f ≤m g.

Proof. Since g is non-constant, let B0, B1 ∈ 2ω be such that g(B0) < g(B1). Given
p, ε, let k be a continuous function which is equal to B0 on f−1((−∞, p − ε]) and
equal to B1 on f−1([p+ ε,∞)). Since f is continuous, these sets are closed, so such
a k exists. Let q, δ be such that g(B0) < q−δ < q+δ < g(B1). Then q, δ, k satisfies
the part of the m-reduction associated to p, ε. "

5.1. Equivalent definitions. After hearing these results, the following equivalent
definitions for ≤tt and ≤m reducibilities were observed by Arno Pauly and Takayuki
Kihara, respectively.

First some standard notation. If g :⊆ X ⇒ Y is a Weihrauch problem, gn is
defined as the problem g × g : Xn ⇒ Y n where (y0, . . . yn−1) ∈ gn(x0, . . . , xn−1) if
and only if g(xi) = g(yi) for all i < n. Then g∗ is defined as g∗ :⊆ ∪nXn ⇒ ∪nY n

where ȳ ∈ g∗(x̄) if x̄ and ȳ are the same length n and ȳ ∈ gn(x̄).
For any function f : 2ω → R, let Sf : ωω ⇒ {0, 1} be defined by

b ∈ Sf ((p, ε)!A) ⇐⇒ b correctly answers f(A) #ε p.

Proposition 5.7 (Pauly). For f, g : 2ω → R, f ≤tt g if and only if Sf ≤c
sW S∗

g .

Proof. If g is constant, then each reducibility holds if and only if f is constant as
well. So assume that B0, B1 ∈ 2ω and q, δ ∈ Q are inputs for which g(B0) < q−ε <
q + ε < g(B1).

If f ≤tt g, then for each p, ε, let (qi, δi, ki)i<r and h be witness to this. For each
p, ε, let r′ be the number of bits sufficient to describe h according to some canonical
self-delimiting coding. Then define a strong Weihrauch reduction from Sf to S∗

g as
follows:

• Given (p, ε)!A, determine r, r′ from (p, ε) and set up a query to Sr′+r
g .

• Use r′-many queries to ask about (q, δ)!B0 and (q, δ)!B1 in a sequence
which encodes h.

• Ask about (qi, δi)!ki(A) for each i < r.
• Given the sequence of answers to these r′ + r-many questions, read off h

from the first r′ bits and apply it to the remaining r bits.
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The other direction uses the compactness of 2ω. Suppose that Sf ≤c
sW S∗

g via K
and H. Fix p and ε. By compactness, there are finitely many strings (σi)i<+ and
for each i there are finitely many rationals (qij , δij)j<ri such that the cylinders [σi]
cover 2ω, and for each A ∈ 2ω, if σi ≺ A, then K((p, ε)!A) has length ri, and its
jth coordinate begins with (qij , δij).

Let Kj be the function which computes the Cantor space part of the jth coor-
dinate of K, when that coordinate exists. That is, Kj is defined by

K((p, ε)!σiC)(j) = (qij , δij)
!Kj(σiC).

Let (kij)j<ri be functions that do the following:

kij(A) =

{
B0 if σi 6≺ A,

Kj((p, ε)!A) if σi ≺ A.

Define also k′
i(A) = Bj where j = 1 if σi ≺ A and 0 otherwise, and let (q′i, δ

′
i) be

all equal to (q, δ). Let r be the total number of kij and k′
i functions defined above.

Let h : 2r → {0, 1} be the truth table which uses the k′, q, δ answers to determine
which σi ≺ A, then uses the kij , qij , δij answers to simulate the reverse reduction
H. "

Kihara has also observed an equivalent definition of ≤m related to partial order
valued Wadge reducibility. We refer the reader to [Kih] for details.

6. Properties of ≤m

In this section we prove our first main result concerning the ≤m degrees of the
jump functions jα within the Baire α functions. We start with some easier facts
about the structure of the ≤m degrees. The proof of Proposition 6.1 is due to
Kihara.

Proposition 6.1. For all f, g ∈ B(2ω), we have either f ≤m g or g ≤m −f .

Proof. We can understand the statement f ≤m g as saying that Player II has a
winning strategy in the following game. Player I plays a target bit 〈p, ε〉. Player II
plays its intended oracle bit 〈q, δ〉. Player I then starts playing bits of the input A;
Player II also plays bits of a sequence B in response, but Player II can pass (however
they must ultimately produce an infinite sequence in order to win.) Player II wins
if any correct answer to g(B) #δ q is also a correct answer to f(A) #ε p. If
Player II has a winning strategy, then q, δ and the continuous function k defined by
k(A) = B are as in the definition of ≤m. But if Player I has a winning strategy, then
for any q, δ, there are p, ε (in fact, the same p and ε each time, chosen according
to the winning strategy of Player I) and a continuous function k′ which, following
the winning strategy of Player I against Player II playing an arbitrary B, outputs
A = k′(B) such that either g(B) < q + δ and f(A) ≥ p + ε or g(B) > q − δ and
f(A) ≤ p− ε. Therefore, if −f(A) < −p + ε, we must be in the first case and thus
g(B) < q + δ. Similarly, if −f(A) > −p− ε then we must be in the second case, so
g(B) > q − δ. This shows that g ≤m −f via k′ (observe that (−p, ε) is the bit of
f(A) actually queried). "
Corollary 6.2. If f ∈ Bα2ω, then f ≤m jα+1.

Proof. If not, then by Proposition 6.1 we would have jα+1 ≤m −f ≤T jα, impos-
sible as jα+1 is not Bα(2ω). "
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Our first theorem shows that the jump functions are the weakest functions in
each Baire class.

Theorem 6.3. If f ∈ B(2ω) and f 6∈ Bα2ω, then either jα+1 ≤m f or −jα+1 ≤m f .

It is easy to see Theorem 6.3 is true when α = 0. If f is not continuous, let
(zn)n∈ω → z be a convergent sequence of inputs for which f(z) 6= limn f(zn).
Without loss of generality, there is some δ > 0 such that for all n, f(zn) > f(z)+δ,
or for all n, f(zn) < f(z)−δ. In the first case, we have that j1 ≤m f via the following
algorithm. On input (p, ε), choose (q, δ′) so that [q − δ′, q + δ′] ⊆ (f(z), f(z) + δ).
Then let h be the function which, on input x, outputs bits of z while computing
approximations to j1(x). If it ever sees that j1(x) > p−ε, it switches to outputting
bits of zn for some n large enough that z and zn agree on all bits which were already
committed to. The case where f(zn) < f(z) − δ for all n is similar, only in that
case we find that −j1 ≤m f .

To prove Theorem 6.3 in the general case we will make use of the following
generalization of Borel Wadge determinacy. We provide a simple proof of this
generalization using Borel determinacy, but it is interesting to note that Louveau
and Saint-Raymond [LSR87,LSR88] showed that this generalization is provable in
second order arithmetic via a much more intricate argument. Therefore, the use of
Borel determinacy here can be avoided.

Proposition 6.4. Let D, E0, E1 ⊆ ωω be Borel. Then one of the following holds:

(1) There is a continuous function ϕ : ωω → ωω such that ϕ(D) ⊆ E0 and
ϕ(ωω \ D) ⊆ E1.

(2) There is a continuous function ψ : ωω → ωω such that ψ(E0) ⊆ ωω \D and
ψ(E1) ⊆ D.

Proof. Define a two player game, where at turn n player I (who plays first) plays
x(n) and player II plays y(n). At the end of the game, II wins if

(x ∈ D ∧ y ∈ E0) ∨ (x 6∈ D ∧ y ∈ E1).

By Borel determinacy, one of the two players has a winning strategy. A winning
strategy for II gives a continuous function meeting outcome (1).

If on the other hand I has a winning strategy, then for every play of the game
according to I’s winning strategy we have that

(x 6∈ D ∨ y 6∈ E0) ∧ (x ∈ D ∨ y 6∈ E1).

This gives a continuous function meeting outcome (2). "
We give a new corollary to this theorem.

Corollary 6.5. Let V ⊆ ωω be Π0
α. Let W ⊆ ωω be Π0

α-hard and let {Wi}i∈N be
a partition of W into Borel sets. Then there is a continuous function ϕ : ωω → ωω

and i ∈ N such that:

(1) ϕ(V ) ⊆ Wi.
(2) ϕ(ωω \ V ) ⊆ ωω \ W .

Proof. For each i, we can apply Proposition 6.4 with D = V , E0 = Wi and E1 =
ωω \ W . Assume that for each i, the second option of the theorem holds, i.e. there
is a continuous function ψi such that

ψi(Wi) ⊆ ωω \ V and ψi(ω
ω \ W ) ⊆ V.
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Now take Ki = ψ−1
i (ωω \ V ). Note that Ki is Σ0

α and we have that W =
⋃

i Wi ⊆⋃
i Ki. Further, for all i we know that Ki ∩ (ωω \ W ) = ∅. Hence W =

⋃
i Ki and

so W is Σ0
α. This is a contradiction as we are given that W is Π0

α-hard.
Hence for some i we have that the first option of Theorem 6.4 holds. That is,

there is a continuous ϕ such that ϕ(V ) ⊆ Wi and ϕ(ωω \ V ) ⊆ ωω \ W . "

Proof of Theorem 6.3. Since f is not Baire α, let U ⊆ R be an open set such
that f−1(U) is not Σ0

α+1. Without loss of generality, U is of the form (u, +∞) or
(−∞, u). If U is of the form (−∞, u), then we will have jα+1 ≤m f , and in the
other case jα+1 ≤m −f (or equivalently, −jα+1 ≤m f). Replacing f with −f if
necessary let us assume U = (−∞, u).

Denote f−1(U) by W . Since f is Borel, W is Wadge determined, so it is Π0
α+1-

hard. We can partition W into the following sets W0 = f−1((−∞, u − 1]) and for
all i ≥ 1,

Wi = f−1

((
u − 1

i
, u − 1

i + 1

])
.

Take any p, ε ∈ Q with ε > 0. Let V = j−1
α+1((−∞, p− ε]). The set V is Π0

α+1. (We

have A ∈ V if and only if for all finite F ⊆ ω such that
∑

i∈F 2−(i+1) > p− ε, there
is some i ∈ F such that i 6∈ A(α+1). Recall from Section 1 that {A : i ∈ A(η)} is a
Σ0

η set.)
Thus by Corollary 6.5 there is a continuous map ϕ and an i ∈ N such that

ϕ(V ) ⊆ Wi and ϕ(2ω \ V ) ⊆ f−1([u, +∞)). Hence taking δ = 1
2(i+1) and q = u− δ

we have that for any A ∈ 2ω, there is only one correct answer to f(ϕ(A)) #δ q.
Further, this is also a correct answer to jα+1(A) #ε p. "

Corollary 6.6. Let X be a compact separable metric space. If f ∈ B(X) and
f 6∈ Bα(X), then either jα+1 ≤m f or −jα+1 ≤m f .

Proof. Identical to the proof of Corollary 4.11. "

Corollary 6.7. Let X, Y be a compact separable metric space. If g ∈ B(X), g 6∈
Bα(X) and f ∈ Bα(Y ), then f ≤m g.

Proof. By Proposition 6.1, if f 6≤m g, then g ≤m −f . But this is impossible by the
combination of the following three facts. First, either jα+1 ≤m g or −jα+1 ≤m g
by Corollary 6.6. Second, if h ≤m k and k is Baire α, then so is h. Finally, neither
jα+1 nor −jα+1 is Baire α. "

As discussed in Section 1, Theorem 6.3 was first proved without reference to
Proposition 6.4. We include the finite case of the original proof in Appendix A.

7. The Bourgain rank on B1

The structure of the ≤m-degrees and ≤tt-degrees within the Baire 1 functions
is related to the α rank, also known as the Bourgain rank [Bou80], which was
studied by Kechris and Louveau [KL90]. Here we place that rank in a slightly more
general setting that will be suitable for describing both the ≤m and ≤tt degrees,
and establish some notation that will be used throughout. We begin by considering
an arbitrary compact separable metric space X, so that these definitions directly
coincide with those given in [KL90].
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Definition 7.1. For any collection C ⊆ P(X), a derivation sequence for C is defined
for ν < ω1 by

• P 0 = X.
• P ν+1 ⊇ P ν \ ∪{U open : for some C ∈ C, P ν ∩ U ⊆ C}
• Pλ ⊇ ∩ν<λP ν .

By replacing ⊇ with = in two places, we obtain the definition for the optimal
derivation sequence for C.

Here are some properties of derivation sequences which will be useful and which
follow directly from the definitions.

Proposition 7.2. Let Qν be a derivation sequence for C ⊆ P(X).

(1) If P ν is the optimal derivation sequence for C, then P ν ⊆ Qν for all ν.
(2) If k : X → X is continuous, then Rν := k−1(Qν) is a derivation sequence

for {k−1(C) : C ∈ C}.
(3) If D ⊆ P(X) is such that for every C ∈ C, there is a D ∈ D such that

C ⊆ D, then Qν is a derivation sequence for D.

Definition 7.3 (Bourgain rank, also known as α rank). For f ∈ B1(X) and
rationals p, ε, let P ν

f,p,ε be the optimal derivation sequence for {f−1((−∞, p +

ε)), f−1((p− ε,∞))}. Let α(f, p, ε) be least ordinal ν such that P ν
f,p,ε = ∅. Let the

Bourgain rank of f be
|f |α = sup

p,ε∈Q
α(f, p, ε).

If f, p, ε are clear from context, we may write P ν or P ν
f instead of P ν

f,p,ε. Observe
that the compactness of X implies that α(f, p, ε) is always a successor, but in general
|f |α may be either a limit or a successor.

In the course of the optimal derivation process, individual points leave at various
stages, and we would like to keep track of this.

Definition 7.4. Let x ∈ X. If P ν is the optimal derivation sequence for sets C
and P ν is eventually empty, let |x|C denote the least ν such that x 6∈ P ν . Given
f ∈ B1(X), and p, ε, let |x|f,p,ε be the least ν such that x 6∈ P ν

f,p,ε.

If f, p, ε and/or C are clear from context, we may just write |x|f or |x|. Observe
that |x| is always a successor ordinal.

We will need to consider the case when |f |α is a successor with special care.
Supposing we have such an f , let ν, p, ε be defined so that ν +1 = α(f, p, ε) = |f |α.
Of course, we may also have ν + 1 = α(f, p′, ε′) for some other rationals p′, ε′.

Definition 7.5. Given f ∈ B1(X) with |f |α = ν + 1, and p, ε ∈ Q, say (p, ε) is
maximal if f(P ν

f,p,ε) \ (p − ε, p + ε) 6= ∅ and α(f, p, ε) = ν + 1.

Observe that maximal (p, ε) always exist. If P ν
f,p,ε 6= ∅, but f(P ν

f,p,ε) \ (p− ε, p+
ε) = ∅, then by decreasing ε, one may shrink (p− ε, p + ε) to include an element of
f(P ν

f,p,ε) (which grows in size).

Definition 7.6. Let f ∈ B1(X) with |f |α = ν + 1. We say f is

• two-sided if there is a maximal (p, ε) such that f(P ν) 6⊆ (p − ε,∞) and
f(P ν) 6⊆ (−∞, p + ε);

• one-sided otherwise;
• left-sided if for every maximal (p, ε), f(P ν) ⊆ (−∞, p + ε);
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• right-sided if for every maximal (p, ε), f(P ν) ⊆ (p − ε,∞).

For example j1 is left-sided, as is any discontinuous lower semi-continuous func-
tion. If f is left-sided, then −f is right-sided, and vice versa. However, there are
one-sided f : 2ω → R which are neither right-sided nor left-sided. For example,
consider

f(A) =






1 if A ∈ [0] \ {01ω},

−1 if A ∈ [1] \ {10ω},

0 otherwise.

We now restrict attention to the case where X = 2ω. More general results for
compact separable metric spaces will then follow from Proposition 7.7, which verifies
that all the important properties of a function f : X → R are shared by fδX : 2ω →
R.

Proposition 7.7. Let X be any compact separable metric space, let δX : 2ω → X
be any total admissible representation, and let f ∈ B1(X). Then

(1) For all ν, p, ε, we have δX(P ν
fδX ,p,ε) = P ν

f,p,ε,
(2) For all p, ε, we have α(fδX , p, ε) = α(f, p, ε),
(3) |fδX |α = |f |α,
(4) For all p, ε, for all x ∈ X, |x|f,p,ε = max{|A|fδX ,p,ε : δX(A) = x}.
(5) If |f |α is a successor, fδX is two-, one-, left-, or right-sided if and only if

f has the same property.

Proof. First observe that statement (4) immediately implies all the others. Second,
we claim it suffices to consider the special case when δX is the representation δL from
Definition 4.2. To see this, observe that if h : 2ω → 2ω is any continuous function,
then h−1(P ν

f,p,ε) is a derivation sequence for the composition fh, and therefore

(fixing and dropping now the p and ε), P ν
fh ⊆ h−1(P ν

f ). So by admissibility of δX ,
if we now let φ : 2ω → 2ω be a continuous function such that δL = δXφ, we may
apply this observation to f and δX , and to fδX and φ. This yields φ(P ν

fδL
) ⊆ P ν

fδX

and

δL(P ν
fδL

) ⊆ δX(P ν
fδX

) ⊆ P ν
f .

From this we can see that for all A ∈ 2ω we have

|A|fδL ≤ |φ(A)|fδX ≤ |δL(A)|f .

Therefore, showing item (4) for δL suffices to show it in general.
Let us say that A ∈ 2ω is interior if δL(A) ∈ L(σ) for every σ ∈ dom(L) with

σ ≺ A. Since each point of X has an interior δL-name, it now suffices to show that
if A is interior, then |A|fδL ≥ |δL(A)|f . So, proceeding by induction, we shall show
that for all interior A, if |δL(A)|f > ν, then |A|fδL > ν. Suppose that A is interior,
A ∈ P ν

fδL
, and δL(A) ∈ P ν+1

f . We must show that A ∈ P ν+1
fδL

. Since δL(A) ∈ P ν+1
f ,

there must be sequences of points bn, cn ∈ P ν
f such that limn bn = limn cn = δL(A),

and such that for each n, f(bn) ≤ p − ε and f(cn) ≥ p + ε.
Observe that if A is interior, and if y ∈ L(σ) with σ ≺ A, then there is an

interior B ∈ L(σ) such that σ ≺ B and δL(B) = y. Therefore, there are sequences
of interior points Bn, Cn such that δL(Bn) = bn, δL(Cn) = cn, and limn→∞ Bn =
limn→∞ Cn = A. By induction, Bn, Cn ∈ P ν

fδL
. Therefore, A ∈ P ν+1

fδL
, as needed.

"
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7.1. Some intuition and tools. The Bourgain hierarchy can be understood as a
higher type version of the Ershov hierarchy. Recall the Ershov hierarchy stratifies
the ∆0

2 subsets of ω according to the amount of mind-changes needed in an optimal
limit approximation to that set. In general, ordinal-many mind-changes can be
needed. For a ∈ O, a function A : ω → ω is a-computably approximable if there is
a partial computable ϕ(n, b) such that A(n) = ϕ(n, bn), where bn is the ≤O-least
ordinal bn ≤O a for which the computation converges. We picture this process
dynamically – a computable procedure makes a guess about A(n) associated to a
certain ordinal. If it changes its guess, it must decrease the ordinal. This limits the
number of mind-changes.

We can understand each open set removed as a part of the Bourgain derivation
process as a guess about the answer to the question f(x) #ε p. The open sets
removed later in the derivation process have a high associated ordinal rank and
correspond to early guesses; the open sets removed at the beginning of the derivation
process correspond to the latest guesses. The following object, a mind-change
sequence, is nothing more than a derivation sequence annotated with the guesses
that justified the derivation. It can also be viewed as a higher-type analog of ϕ
as above. To simplify the notation, we assume C = {Ci : i < k}, where k could
be finite or ω. Recall in this section we have fixed X = 2ω. Let Ord denote the
ordinals.

Definition 7.8. Given C = {Ci : i < k} ⊆ P(2ω), a mind-change sequence for C is
a countable subset of M ⊆ Ord×2<ω × k for which

(1) The sequence Qν defined by

Qν = 2ω \




⋃

(µ,τ,j)∈M
µ<ν

[τ ]





is a derivation sequence for C, and
(2) For all (ν,σ, i) ∈ M , [σ] ∩ Qν ⊆ Ci.

An optimal mind-change sequence for C is one in which Qν is the optimal derivation
sequence for C.

Observe that an optimal mind-change sequence always exists, since it just keeps
track of the open sets [σ] which are removed at stage ν of the construction of the
optimal derivation sequence, and keeps track of which set C ∈ C caused [σ] to be
removed at stage ν.

Two “mind-change” based encodings of the Baire 1 functions are suggested by
this idea. One encoding of f ∈ B1(2ω), following the α rank, would consist of a
countable collection of mind-change sequences Mp,ε, one for each

Cp,ε = {f−1((p − ε,∞)), f−1((−∞, p + ε))}
for p, ε ∈ Q. Another encoding, following the β rank, would consist of a different
countable collection of mind-change sequences Mε, one for each

Cε = {f−1((q − ε, q + ε)) : q ∈ Q}
for each ε ∈ Q+. We will not need to use such encodings explicitly, so we avoid
further technical definitions, but this way of thinking about a Baire 1 function
motivates all the arguments which follow.
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A mind-change sequence can serve as evidence of an upper bound on the length
of an optimal derivation sequence for a collection C. The next notion provides
evidence of a lower bound. The idea is that if [σ] was not removed at stage ν of
the derivation process, then for each C ∈ C, there was some element Aν,σ,C which
witnesses that P ν ∩ [σ] 6⊆ C. If C is countable and the derivation process lasts
only countably many stages, then only countably many A are needed to witness
the necessity of an optimal derivation sequence being as long as it is. Below, we
define a scaffolding sequence to be any countable collection of A’s which can supply
all necessary witnesses, together with a record of where in the process these A are
slowing things down.

Definition 7.9. Given C = {Ci : i < k} ⊆ P(2ω), let P ν be its optimal derivation
sequence. A scaffolding sequence for C is any enumeration of a countable subset
S ⊆ 2ω × Ord×2<ω × k such that

(1) If (A, ν,σ, i) ∈ S, then A ∈ P ν ∩ [σ] \ Ci, and
(2) If P ν ∩ [σ] 6⊆ Ci, there is A ∈ 2ω with (A, ν,σ, i) ∈ S.

Letting S′ be the projection of S onto its first coordinate, observe that for all
µ < ν and σ, if P ν ∩ [σ] 6= ∅, then Pµ ∩ [σ] ∩ S′ 6= ∅.

We conclude this subsection with a remark about another notion of “mind-
change” that has been considered in the literature in the context of functions.
Hertling’s notion of level [Her96a, Her96b] is defined as follows. A function f :
X → R has level α if there is a sequence of continuous functions 〈fβ〉β<α which
have open domains such that f(x) is equal to fβ(x) for the least β such that fβ(x)
is defined. By the Hausdorff-Kuratowski theorem, the functions which have a well-
defined level in this sense are precisely the ∆0

2-piecewise continuous functions. (A
function f is ∆0

2-piecewise continuous if there is a partition of the domain of f into
countably many ∆0

2 pieces such that the restriction of f to each piece is continuous.)
These are a proper subset of the Baire 1 functions, so this notion of mind-change
sequence is different than the one considered here. The difference lies precisely
in the fact that for Hertling’s level, one can only change one’s mind finitely often
about what continuous operation is going to be applied to the input x to produce
the output f(x). In contrast, in the mind-change process defined here, for each
bit of f(x), one can change one’s mind only finitely often about the value of that
bit. However, f(x) has infinitely many bits and the amount of mind-changing is
permitted to vary from bit to bit.

8. Characterization of the ≤m equivalence classes in B1

In this section we prove parts (2)-(4) of Theorem 1.2, characterizing the structure
of the ≤m degrees within the Baire 1 functions. We begin by proving Theorem 8.1,
which establishes (2)-(4) in case X = 2ω.

Theorem 8.1. For f, g ∈ B12ω, |f |α < |g|α implies f ≤m g. If |f |α = |g|α, then
f ≤m g if and only if at least one of the following holds:

(1) |f |α is a limit ordinal.
(2) g is two-sided.
(3) f is one-sided and g is neither right-sided nor left-sided.
(4) f and g are either both right-sided or both left-sided.
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Proof. We begin with a general observation. Suppose that p, ε, q, δ ∈ Q and k :
2ω → 2ω is a continuous function such that any correct answer to g(k(A)) #δ q
is also a correct answer to f(A) #ε p. Then for any A, g(k(A)) < q + δ implies
f(A) < p+ε, so k−1(g−1((−∞, q+δ)) ⊆ f−1((−∞, p+ε)). Similarly, k−1(g−1((q−
δ,∞)) ⊆ f−1((p − ε,∞)). Therefore, the sets Qµ defined by

Qµ = k−1(Pµ
g,q,δ)

are a derivation sequence for {f−1((−∞, p+ε)), f−1((p−ε,∞))}. Therefore Pµ
f,p,ε ⊆

Qµ for each µ, so α(f, p, ε) ≤ α(g, q, δ). Furthermore, for all A ∈ 2ω, we have
|A|f,p,ε ≤ |k(A)|g,q,δ.

Now suppose f ≤m g. Then for any p, ε, there are q, δ and k as above, so
|f |α ≤ |g|α. The first statement of the theorem now follows by Proposition 6.1 and
the observation that |g|α = | − g|α for all g.

From now on we consider the case where |f |α = |g|α.
Suppose that f ≤m g. We claim that if |f |α = ν + 1 (a successor) then one of

(2)-(4) in the statement of the theorem holds.
Let (p, ε) be maximal for f . Since f ≤m g, let q, δ and k be as in the first

paragraph. By the choice of p and ε, there is an A ∈ 2ω with |A|f,p,ε = |k(A)|g,q,δ =
ν + 1 and f(A) < p− ε, or there is a B ∈ 2ω with |B|f,p,ε = |k(B)|g,q,δ = ν + 1 and
f(B) > p + ε, or perhaps both occur. If such A exists, then g(k(A)) < q − δ and if
such B exists, then g(k(B)) > q + δ.

Therefore, if g is not two-sided, then f is not two-sided; in that case, if g is
right-sided or left-sided, then f must match. This completes the proof that f ≤m g
implies the disjunction of (1)-(4).

Assuming now the disjunction of (1)-(4), let p, ε be given. First we choose a
pair q, δ which gives us enough room to work. If |f |α = ν + 1, choose (q, δ) to
be maximal for g. Additionally, if g is two-sided, make sure q and δ witness the
two-sidedness of g. Or, if f is one-sided and g is neither left-sided nor right-
sided, then if f(P ν

f,p,ε) ⊆ (p − ε,∞) (respectively f(P ν
f,p,ε) ⊆ (−∞, p + ε)) make

sure g(P ν
g,q,δ) ⊆ (q − δ,∞) (respectively g(P ν

g,q,δ) ⊆ (−∞, q + δ)). If f and g
are both right- or both left-sided, a maximal choice of q and δ suffices without
further restrictions. If |f |α is a limit, choose q, δ so that α(f, p, ε) < α(g, q, δ) and
g(P ν

g,q,δ) \ (q − δ, q + δ) 6= ∅ (decreasing δ if necessary to achieve the latter). In this
case, define ν so that α(g, q, δ) = ν + 1.

We now define a continuous function k such that any correct answer to g(k(A))#δ

q also correctly answers f(A) #ε p. Given A, its image k(A) will be defined
in stages according to an algorithm which uses oracle information about a mind-
change sequence related to f and a scaffolding sequence related to g. By defining
k(A) in stages, we guarantee k is continuous.

Let C = {C0, C1}, where C0 = f−1((−∞, p + ε)) and C1 = f−1((p− ε,∞)). Let
D = {D0, D1}, where D0 = g−1((−∞, q + δ)) and D1 = g−1((q − δ,∞)). Let Z be
an oracle which contains the following information:

• A well-order W long enough that ν has a code in OW (a technical point
which allows us to use OW in place of Ord in the mind-change and scaf-
folding sequences).

• An optimal mind-change sequence M for C.
• A scaffolding sequence S for D.
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Letting A denote the input, at each stage s, we will have defined an initial
segment τs of k(A). We will be keeping track of an ordinal µs, an index is ∈ {0, 1},
and an element Bs ∈ 2ω, where τs ≺ Bs. We will always maintain the following:

(i) that |A|C ≤ µs + 1 ≤ |Bs|D,
(ii) that is is the only correct answer to g(Bs) #δ q, and
(iii) if |A|C = µs + 1, then is correctly answers f(A) #ε p.

The idea always is that as long as it seems like |A|C = µs + 1, we are working
towards making k(A) = Bs. If we later see the bound on |A|C drop, and is no longer
looks like a suitable answer, then because |Bs|D is large, no matter how much of
Bs has been copied, we can switch to a nearby Bt for which it = 1 − is is the only
correct answer to g(Bt) #δ q, and |Bt|D is still large.

Let λ denote the empty string. Let τ0 = λ. We begin differently depending on
whether g is two-sided. In both of the following cases, the reader can verify that
conditions (i)-(iii) are satisfied at stage s = 0.

If g is two-sided, we first wait until we see A leave Pµ
f,p,ε for some µ ≤ ν. That is,

we see (µ,σ, i) in M with σ ≺ A. Let µ0 = µ and i0 = i. Now, since g is two-sided,
regardless of i, P ν

g,q,δ \D1−i is non-empty, and we can find an element B in this set
(by looking in S for something of the form (B, ν,λ, 1 − i)). Let B0 = B.

If g is not two-sided, then for some j, P ν
g,q,δ \ Dj is non-empty, so first we wait

until we see an element B and a j to witness this (by looking in S for something
of the form (B, ν,λ, j)). Let µ0 = ν, i0 = 1 − j, and B0 = B. By the choice of q
and δ, if |A|C = ν + 1, then i0 correctly answers f(A) #ε p.6

At stage s + 1, set µs+1 to be the least µ for which we have seen A leave Pµ
f,p,ε.

If µs+1 < µs, that is because (µs+1,σ, i) just entered M for some σ ≺ A. If i = is,
let Bs+1 = Bs and is+1 = is. But if i 6= is, then set is+1 = i, and look through S
to find a B so that

B ∈ Pµs+1

g,q,δ ∩ [τs] \ Dis .

Such a B must exist because Bs witnesses that Pµs

g,q,δ ∩ [τs] is non-empty. Let
Bs+1 = B. Finally, let τs+1 = Bs+1 $ |τs| + 1. That completes the construction.

At each stage the properties (i)-(iii) are maintained. Now if |A|C = µ + 1, there
is a stage s at which it is seen that A leaves Pµ

f,p,ε. The µs, is and Bs defined at
that stage never change again. Then k(A) = Bs, and the only correct answer to
g(k(A)) #δ q is is, which also correctly answers f(A) #ε p, as desired. "
Corollary 8.2. Theorem 8.1 holds also if f ∈ B1(X) and g ∈ B1(Y ), where X and
Y are compact separable metric spaces.

Proof. Let δX and δY be any total admissible representations for X and Y respec-
tively. By Propositions 5.4 and 7.7, replacing f and g with fδX and gδY does
not result in any change to any of the properties of f and g mentioned in Theo-
rem 8.1. "

The initial segment of the ≤m-degrees contains some naturally recognizable
classes which are blurred together by the α rank. The lowest ≤m degree con-
sists of the constant functions; right above that is the degree of the continuous

6In case (1), by the choice of ν, P ν
f,p,ε = ∅, so |A|C < ν + 1. In case (3), f is one-sided, so

P ν
f,p,ε ⊆ Ci for some i. Note that in this case, we have chosen q, δ specifically to make sure that

j = 1 − i. In case (4), we also have P ν
f,p,ε ⊆ C1−j (note that j = 1 if f and g are both left-sided

and j = 0 if f and g are both right-sided).
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non-constant functions. Next above that are two incomparable ≤m-degrees: the
upper semi-continuous functions and the lower semi-continuous functions.

Proposition 8.3. Let g be a lower semi-continuous, discontinuous function (for
example, g = j1). The following are equivalent for f ∈ B12ω:

(1) f ≤m g
(2) f is lower semi-continuous.
(3) For some e and some parameter Z, f(A) = δsep(WA⊕Z

e )

where δsep is the separation name representation from Definition 5.1.

Proof. (1 =⇒ 2) Given a ∈ R, we wish to show that f−1((a,∞)) is open. Let
(pi, εi)i<ω be an infinite sequence of rationals such that a < pi − εi and lim pi = a.
Let qi, δi and ki witness the defining property of f ≤m j1 for each i. Now suppose
that f(A) > a. For some i, f(A) > pi + εi. Then the only correct answer to
f(A) #εi pi is 1, so it must be that g(ki(A)) > qi−δi. The set C := {B : g(ki(B)) >
qi − δi} is open by the lower semi-continuity of g, and since 1 is a correct answer
to f(B) #εi pi for every B ∈ C, we have C ⊆ f−1((pi − εi,∞)) ⊆ f−1((a,∞)).

(2 =⇒ 3) Assume Z is an oracle which lists, for each p, the collection of
rational balls contained in f−1((p,∞)). To define WA⊕Z

e (〈p, ε〉), wait to see if A
enters f−1((p − ε,∞)). If it does, enumerate the bit. The result is a separation
name of f(A) which has the additional property that it always answers 1 when 1
is a permissible answer.

(3 =⇒ 2) If f(A) = δsep(WA⊕Z
e ), then f(A) > a if and only if for some p, ε,

a < p − ε and 〈p, ε〉 ∈ WA⊕Z
e , which is an open condition.

(2 =⇒ 1) This follows from Theorem 8.1 because g has rank 2 and is left-sided,
and f is either discontinuous and shares these properties or f is continuous, in
which case f ≤m g by Proposition 5.6. "

The authors observed to Kihara that if the lattice structure of the Baire 1 ≤m-
degrees would continue to higher Baire classes in the same pattern described in
Theorem 8.1, the ≤m reducibility could be used to extend the definition of the α
rank into higher Baire classes. After seeing these results, Kihara used the theory of
Wadge degrees of BQO-valued functions to fully describe the structure of the ≤m-
degrees beyond the Baire 1 functions [Kih], and confirmed that the pattern does
continue, even beyond the Baire functions if AD is assumed. He also established
that Corollary 8.2 remains true even if X and Y are arbitrary Polish spaces.

Separately and independently of this, Elekes, Kiss and Vidnyánszky defined a
generalization of the α, β and γ ranks into the higher Baire classes [EKV16]. Inter-
estingly, they were able to apply their extension of the β rank to solve a problem
in cardinal characteristics, but an extension of the α rank was not suitable for that
problem. It does not seem easy to modify our work to get a generalization of the β
rank. For a discussion of the relationship between the various generalizations, see
[Kih].

9. A reducibility between ≤m and ≤tt

There is a reducibility notion which captures the α rank precisely. Consider a
truth table reduction f ≤tt g which looks at only one bit of g, but may use finitely
many bits of A.



884 A. R. DAY, R. DOWNEY, AND L. WESTRICK

Definition 9.1. For f, g : 2ω → R, we say f ≤tt1 g if for all rationals p, ε,
there is a continuous k : 2ω → 2ω, rationals q, δ, a number r, and a truth table
h : 2r+1 → {0, 1} such that for every A ∈ 2ω, if b is a correct answer to g(k(A)) #δ q,
then h(A $ r, b) is a correct answer to f(A) #ε p.

Proposition 9.2. The relation f ≤tt1 g is transitive.

Proof. Suppose f1 ≤tt1 f2 and f2 ≤tt1 f3. Given p, ε, let δ, q, k, r and h be as
guaranteed by the fact that f1 ≤tt1 f2. Given p′ = q, ε′ = δ, let k′, q′, δ′, r′ and h′

be as guaranteed by the fact that f2 ≤tt1 f3. Let r′′ > r′ be also large enough that
r′′ bits of any input A are enough to compute r′ bits of k(A) (using compactness).
Define

h′′(τ, b) = h(k(τ ) $ r′, h′(τ $ r′′, b)).

Then the reader can verify that k′ ◦ k, q′, δ′, r′′ and h′′ witness f1 ≤tt1 f3. "

As before, we may extend this notion to any compact separable metrizable space.

Proposition 9.3. Let X, Y be compact separable metrizable spaces and let δX , δ′X :
2ω → X and δY , δ′Y : 2ω → Y be any admissible representations for X and Y
respectively. Let f : X → R and g : Y → R. Then

fδX ≤tt1 gδY ⇐⇒ fδ′X ≤tt1 gδ′Y .

Proof. The proof is identical to the proof of Proposition 5.4. "

Therefore, the following extensions are well-defined.

Definition 9.4. Let X, Y be compact metric spaces and f : X → R, g : Y → R.
Then we say that f ≤tt1 g if and only if fδX ≤tt1 gδY , where δX : 2ω → X and
δY : 2ω → Y are any total admissible representations of X and Y respectively.

Theorem 9.5. If f, g ∈ B12ω, then f ≤tt1 g if and only if |f |α ≤ |g|α.

Proof. Suppose that f ≤tt1 g. Given p, ε, let k, q, δ, r and h witness f ≤tt1 g. We
claim that α(f, p, ε) ≤ α(g, q, δ). The proof is very similar to the ≤m case. Let
Qν = k−1(P ν

g,q,δ), we claim that Qν is a derivation sequence for {f−1((−∞, p +

ε)), f−1((p − ε,∞))}. If A ∈ Qν \ Qν+1, then k(A) ∈ P ν \ P ν+1, so for some
τ ≺ k(A), either g(P ν ∩ [τ ]) ⊆ (−∞, q + δ) or it is a subset of (q − δ,∞). Without
loss of generality, assume the former. Let σ ≺ A be long enough that k([σ]) ⊆ [τ ]
and |σ| ≥ r. Then for all A′ ∈ [σ]∩Qν , we have 0 correctly answers g(k(A′)) #δ q,
and h(σ $ r, 0) correctly answers f(A) #ε p. So f(Qν ∩ [σ]) ⊆ (−∞, p + ε) or
(p − ε,∞).

In the other direction, suppose |f |α ≤ |g|α. Since an ≤m reduction is a ≤tt1

reduction, Theorem 8.1 implies that it suffices to consider the successor case. Let ν
be such that |f |α = |g|α = ν + 1. It suffices to show that f ≤tt1 g while assuming
that g is left-sided. (The case where g is right-sided is similar.)

Given p, ε, let q, δ be maximal for g. Let C = {C0, C1} and D = {D0, D1} be as
in the proof of Theorem 8.1. Exactly as there, let Z be an oracle which contains a
well-order long enough to code ν, an optimal mind-change sequence M for C, and
a scaffolding sequence S for D.

Let r be long enough that r bits of any input A are enough to see when A first
leaves some Pµ

f,p,ε for some µ ≤ ν. This uses compactness.
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Equivalently, r is long enough that for some finite initial segment (ηj ,σj , bj)j<+

from M , ∪j [σj ] = 2ω, and each |σj | ≤ r. Without loss of generality, we can assume
that the σj partition the space.

Define k as follows. At stage 0, on input A, let j be the index for which σj ≺ A.
Let µ0 = ηj and i0 = bj and τ0 = λ. Now if bj = 0 (matching the natural left-
sidedness of g), search through S to find B ∈ P ν

g,q,δ \ D1, let B0 = B, and proceed
exactly as in the proof of Theorem 8.1. But if bj = 1, then unfortunately P ν

g,q,δ \D0

is empty. So in this case also let B0 = B (the same one found above), but this
means i0 is an incorrect answer to g(B0) #δ q. We will correct this later using h.
So if bj = 1, proceed almost exactly as in the proof of Theorem 8.1, except instead
of maintaining that is is the only correct answer to g(Bs) #δ q, now maintain that
is is incorrect for that question.

The same arguments as in Theorem 8.1 now guarantee that when µs, is and Bs

stabilize, then |A|C = µ∞ + 1, k(A) = B∞, and i∞ correctly answers f(A) #ε p. If
bj = 0, i∞ is the only correct answer to g(B∞) #δ q. If bj = 1, then 1 − i∞ is the
only correct answer to g(B∞) #δ q.

Define h(σ, b) as follows. Let j be the unique index such that σj ≺ σ. If
bj = 0, let h(σ, b) = b (letting the doubly correct answer through). If bj = 1, let
h(σ, b) = 1 − b (changing the only correct answer for g(k(A)) #δ q into a correct
answer for f(A) #ε p). "

Corollary 9.6. Theorem 9.5 also holds if f ∈ B1(X), g ∈ B1(Y ), where X and Y
are any compact separable metrizable spaces.

Proof. By Propositions 9.3 and 7.7. "

Pauly has alerted us that this notion is also quite natural in the Weihrauch
framework. Using the notation of Section 5.1, he asked us whether f ≤tt1 g if and
only if Sf ≤c

W Sg. One direction is immediate; below we prove the other using
Theorem 9.5. At a first glance, the problem with going directly from a Weihrauch
reduction to a ≤tt1 reduction is that a Weihrauch reduction, when restricted to
inputs starting with p, ε, might use several different choices of q, δ for different parts
of the domain. A more subtle point is that in a Weihrauch reduction, the reverse
function H does not need to be defined on all of 2ω × {0, 1}, just on the collection
of values that it could receive as input. Therefore, we cannot use compactness to
automatically transform H into a truth table of the kind used in a ≤tt1 reduction.

Proposition 9.7. For all f, g ∈ B12ω, we have f ≤tt1 g if and only if Sf ≤c
W Sg.

Proof. A ≤tt1 reduction is also a Weihrauch reduction, so one direction is imme-
diate. Suppose that Sf ≤c

W Sg. We claim that then |f |α ≤ |g|α. Let K and H be
the continuous functions witnessing the Weihrauch reduction. Note that H takes
two arguments, the original input (p, ε)!A, and one bit of output representing a
correct answer to Sg(K((p, ε)!A)). Given p, ε, by compactness there are finitely
many strings (σi)i<+, and for each i rational (qi, δi) such that ∪i[σi] = 2ω, and
σi ≺ A implies that K((p, ε)!A) starts with (qi, δi). Let K1 be defined so that

K((p, ε)!σiC) = (qi, δi)
!K1(σiC).

For each i, let P ν
i = P ν

g,qi,δi
, the optimal derivation sequence for g, qi, δi. Define

Qν
i = [σi] ∩ K−1

1 (P ν
i ),
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and Qν = ∪i<+Qν
i . We claim that Qν is a derivation sequence for {f−1((−∞, p +

ε)), f−1((p − ε,∞))}. It suffices to check this on the restriction to each [σi] sepa-
rately, as these are clopen sets.

Fix one i < 1. Suppose that A ∈ Qν
i \ Qn+1

i . Then σi ≺ A and K1(A) ∈
P ν

i \ P ν+1
i . So for some τ ≺ K1(A), either g(P ν

i ∩ [tau]) ⊆ (−∞, qi + δi) or it is a
subset of (qi − δi,∞). Without loss of generality, assume the former. Then (A, 0)
must be in the domain of H. Let b = H(A, 0). Let σ ≺ A be long enough that
H(A′, 0) = b whenever σ ≺ A′, and long enough that K1([σ]) ⊆ [τ ]. It is a matter
of definition chasing to verify that f(Qν

i ∩ [σ]) ⊆ Cb, where C0 = f−1((−∞, p + ε))
and C1 = f−1((p − ε,∞)). This shows that Qν

i is a derivation sequence on [σi],
and thus Qν is a derivation sequence.

It follows that α(f, p, ε) ≤ maxi<+ α(g, qi, δi), and therefore |f |α ≤ |g|α. "

10. Properties of ≤tt

In this section we characterize the ≤tt degrees inside B1 in terms of the Bourgain
rank, proving part (1) of Theorem 1.2. Define a coarsening of the order on the
ordinals as follows:

Definition 10.1. Let α # β if for every γ < α, there is δ < β and n ∈ ω such that
γ < δ · n.

This coarsening is quite robust. Recall Cantor normal form for ordinals: every
ordinal α can be written uniquely as a sum of the form α = ωη1 ·k1 + · · ·+ωηn ·kn,
where η1 > · · · > ηn and ki ∈ N+. Considering the existence of Cantor normal
form, one can see that α # β if for all η, β ≤ ωη implies α ≤ ωη.

The natural sum α#β is defined by α#β = ωξ1 · k1 + . . .ωξr · kr, where ξ1 >
· · · > ξr are exactly the exponents in the Cantor normal forms of α and β, and ki

is the sum of the coefficients of ωξi in α and β. One sees also that α # β if for
every γ < α, there is δ < β and n ∈ ω such that

γ < δ#δ# . . . #δ︸ ︷︷ ︸
n

.

We will show that the ≤tt degrees inside B1 correspond to functions whose ranks are
equivalent according to this relation. Lemma 10.2 describes the length of combined
derivation sequences.

Lemma 10.2. Let X be a compact metric space and let C, D ⊆ P(X). Let P ν
C

and P ν
D be the optimal derivation sequences for C and D. Let Qν be the optimal

derivation sequence for

{C ∩ D : C ∈ C and D ∈ D}.

Then for all ν and µ,
Qν#µ ⊆ P ν

C ∪ Pµ
D.

Proof. By induction on ν#µ. If ν#µ = 0, the statement is immediate. Suppose
the statement holds for all pairs of ordinals with natural sum less than ν#µ. Let
A 6∈ P ν

C ∪ Pµ
D. Then there are ordinals η < ν and ξ < µ, a neighborhood U of A,

and sets C ∈ C and D ∈ D such that P η
C ∩ U ⊆ C and P ξ

D ∩ U ⊆ D.
Let ζ = max(η#µ, ν#ξ). Then since η < ν and ξ < µ, we have ζ < ν#µ. So by

induction,
Qζ ⊆ Qη#µ ∩ Qν#ξ ⊆ (P η

C ∪ Pµ
D) ∩ (P ν

C ∪ P ξ
D).
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Rearranging the right hand side, we have

Qζ ⊆ P ν
C ∪ Pµ

D ∪ (P η
C ∩ P ξ

D).

Because P ν
C ∩ U = Pµ

D ∩ U = ∅ and P η
C ∩ P ξ

D ∩ U ⊆ C ∩ D, we have Qζ+1 ∩ U = ∅.
So A 6∈ Qν#µ, because Qν#µ ⊆ Qζ+1. "

The following is then immediate by induction.

Lemma 10.3. Let X be a compact metric space and let Ci ⊆ P(X) for all i <
r. Let P ν

i be the optimal derivation sequences for Ci, and let Qν be the optimal
derivation sequence for

{∩i<rCi : Ci ∈ Ci}.

Then for all (νi)i<r,
Q#i<rνi ⊆ ∪i<rP

νi
i .

Theorem 10.4. If f, g ∈ B12ω \ B02ω, then f ≤tt g if and only if |f |α # |g|α.

Proof. Suppose f ≤tt g. Given p, ε, let (ki, qi, δi)i<r and h be as in the definition
of ≤tt. For each i, define

Ci = {k−1
i (g−1((−∞, qi + δi))), k

−1
i (g−1((qi − δi,∞)))}.

Let
C = {∩i<rCi : Ci ∈ Ci}.

We claim that any derivation sequence for C is also a derivation sequence for

D := {f−1((−∞, p + ε)), f−1((p − ε,∞))}.

This follows because for every ∩i<rCi ∈ C, there is a σ ∈ 2r such that σ(i) correctly
answers g(k(A)) #δi qi, for every i < r and A ∈ ∩i<rCi. Therefore, for each
A ∈ ∩i<rCi, h(σ) is a correct answer to f(A) #ε p. Therefore, for some D ∈ D, we
have ∩i<rCi ⊆ D, and the claim follows by Proposition 7.2.

Define Qν
i = k−1

i (P ν
g,qi,δi

). By Proposition 7.2, Qν
i is a derivation sequence for

Ci. Let νi = α(g, qi, δi), so that Qνi
i = ∅. Let Qν be the optimal derivation sequence

for C. By Lemma 10.3,
Q#i<rνi ⊆ ∪i<rQ

νi
i .

Therefore, as Qν is also a derivation sequence for D, we have

α(f, p, ε) ≤ #i<rνi ≤ ν# . . .#ν︸ ︷︷ ︸
r

,

where ν = maxi α(g, qi, δi). Therefore, |f |α # |g|α.
Now suppose that |f |α # |g|α. We run a daisy-chain of the kind of argument used

in the ≤tt1 case. Given p, ε, let q, δ and n be such that α(f, p, ε) < α(g, q, δ) · n,
and α(g, q, δ) ≥ 2. Letting ν = α(g, q, δ), we may also guarantee that P ν−1

g,q,δ 6⊆
(q − δ, q + δ), by decreasing δ if necessary.

We will define 3n functions ki, all of them associated to this same pair q, δ.
The functions are defined computably relative to an oracle which contains enough
information to compute notations up to ν (and thus up to ν · n), a mind-change
sequence M for {f−1((−∞, p + ε)), f−1((p− ε,∞))}, and a scaffolding sequence S
for {g−1((−∞, q + δ)), g−1((q − δ,∞))}.

Fix B0 ∈ P ν−1
g,q,δ with g(B0) 6∈ (q − δ, q + δ), and let b0 be the unique correct

answer to g(B0) #δ q. Since ν ≥ 2, |B0|g,q,δ ≥ 2.
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Given input A, the first n functions {ki}i<n are used to figure out in which
interval

Ii = [ν · i + 1, ν · (i + 1)]i<n

|A|f,p,ε lies. Define ki(A) as follows. Copy B0 until such a time as you see A 6∈
P ν·(i+1)

f,p,ε . If this occurs, switch to copying a nearby input B1 with |B1|g,q,δ < |W |g,q,δ

and where the unique correct answer to g(B1) #δ q is 1 − b0. That completes the
description of the first n functions ki. By observing the answers for g(ki(A)) #δ q
for i < n, one can determine the unique i < n such that A ∈ Ii.

The next n functions {kn+i}i<n track the mind-changes of f(A) #ε p under the
assumption that A ∈ Ii. Given input A, and letting B0 and b0 be as above, first

copy B0 into the output until such a time as you see A 6∈ P ν·(i+1)
f,p,ε . If this occurs,

then we also know a rank µ0 < ν and bit i0 such that if |A|f,p,ε = (ν · i) + µ0 + 1,
then i0 correctly answers f(A) #ε p. Let τ0 be whatever amount of B0 has been
copied so far. Now proceed similarly as in Theorem 8.1, but maintain the following
at each stage:

(i) that |A|C ≤ (ν · i) + µs + 1 ≤ (ν · i) + |Bs|D,
(ii) that the only correct answer to g(Bs) #δ q is is if i0 = b0, and the only

correct answer is 1 − is if i0 6= b0.
(iii) if |A|C = (ν · i) + µs + 1, then is correctly answers f(A) #ε p.

Proceeding now just as in Theorem 8.1, the above can be maintained unless A
leaves P ν·i

f,p,ε. In that case, the output of this computation will not be used, so
one can continue to copy whatever Bs is active at the moment this is discovered.
But if µs, is and Bs stabilize to values µ∞, i∞ and B∞, then if A ∈ Ii, we have
|A|f,p,ε = (ν · i)+µ∞ +1, kn+1(A) = B∞, i∞ is a correct answer to f(A) #ε p, and
the only correct answer to g(B∞) #δ q is either is or 1 − is depending on whether
i0 = b0 or not.

The last n functions {k2n+i}i<n are simple indicator functions, with k2n+1 copy-
ing B0 and silently carrying out the same computation as kn+i until that com-
putation finds an i0 and a b0. If kn+i finds i0 6= b0, switch to a nearby B1 with
|B1|g,q,δ < |B0|g,q,δ and where the unique correct answer to g(B1) #δ q is 1 − b0.
Otherwise (including if i0 is never defined), continue copying B0.

Putting this all together, given A, a truth table which has access to separating
bits for each g(ki(A)) can correctly answer f(A) #ε p as follows. First use the
separating bits of g(ki(A)) for i < n to find the unique i such that |A|f,p,ε ∈ Ii.
Then query g(h2n+i(A)) to learn whether i0 = b0 in the computation of kn+i(A).
Finally, query g(kn+i(A)) to obtain a bit b which correctly answers f(A) #ε p if
i0 = b0. If i0 6= b0, then 1 − b will do for a correct answer. "

Corollary 10.5. Theorem 10.4 also holds for any discontinuous, Baire 1 functions
f and g on any compact separable metrizable spaces.

Proof. By Propositions 5.4 and 7.7. "

As a corollary we can give a short algorithmic proof of the following result of
Kechris and Louveau, which is a consequence of their Lemma 5 and Theorem 8,
and which allows them to conclude that their “small Baire classes” Bξ

1 are Banach
algebras.
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Corollary 10.6 ([KL90]). Let X be a compact separable metrizable space. If f, g ∈
B1(X) are bounded, then

|f + g|α, |f · g|α # max(|f |α, |g|α).

Proof. Let δX be any total admissible representation for X. Observing that fδX +
gδX = (f +g)δX and fδX ·gδX = (f ·g)δX , we may, by replacing f and g everywhere
by fδX and gδX , assume that X = 2ω.

Without loss of generality we may also assume that |f |α ≤ |g|α, so f ≤tt g.
Also, let M ∈ R be chosen so that all outputs of f and g lie in [−M, M ].

Then f+g ≤tt g via the following algorithm. Given A, p, ε, first ask finitely many
questions of f and g to determine both f(A) and g(A) to within precision ε/2 (by
asking each function 2M/(ε/2) questions of the form f(A) #ε/2 qi, where the qi are
evenly spaced at intervals of ε/2 in [−M, M ]). Adding the two approximations gives
an approximation to (f +g)(A) which is correct to within ε. Use this approximation
to answer f(A) #ε p.

Similarly, fg ≤tt g as follows. Given A, p, ε, first use finitely many questions to
approximate f(A) and g(A) to within precision ε/(2M). Multiplying the results
gives an approximation to (fg)(A) that is correct to within ε. "

11. Further directions and open questions

11.1. A road not taken. Recall that we used admissible representations to allow
our results about functions on 2ω to extend to arbitrary compact separable metriz-
able spaces. Another option for extending these reducibilities would be to transfer
the definitions literally to the new spaces, without using representations. For ex-
ample, one could define f ≤′

m g to mean that for every p, ε, there is a continuous
function k and rationals q, δ such that for all x, we have any correct answer to
g(k(x)) #δ q is a correct answer to f(x) #ε p.

This option behaves very differently from the one we chose, for if X is very
connected, then there are not enough continuous functions k : X → Y to get the
same results. For example, we can define two left-sided, rank 3 functions in B1([0, 1])
are not ≤′

m-equivalent under this alternate definition. Let f1 = χ{1/n:n∈ω}. And
let f2 = χS where

S = {x∗
I : I is a middle third},

where I is a middle third means that I belongs to the sequence (1/3, 2/3), (1/9, 2/9),
(7/9, 8/9), . . . of intervals removed to create the Cantor set in [0, 1], and x∗

I denotes
the midpoint of I.

To see that f2 6≤′
m f1 under this less robust definition of ≤′

m, fix p = 1/2
and ε = 1/3; q and δ will have to be similarly assigned since we are working with
characteristic sets. Then any continuous k that would work for the reduction would
have to send the Cantor subset of [0, 1] to 0. For if any z from the Cantor subset of
I satisfied k(z) ∈ (1/(n+1), 1/n), then by pulling back (1/(n+1), 1/n) via k, we’d
find a whole neighborhood of z mapped to (1/(n + 1), 1/n), impossible since every
neighborhood of z includes an element of S. So h(1/3) = h(2/3) = 0. Now, what is
k(1/2). It must be equal to 1/n for some n or the reduction fails. So k([1/3, 1/2])
includes both 0 and some 1/n. Since k is continuous and [1/3, 1/2] is connected,
its image is connected so also includes 1/m for all m > n. But who are getting
mapped to 1/m? The purported reduction is wrong on k−1(1/m) for such m.
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In fact f2 is not even ≤′
m the characteristic function of the rationals, for a similar

reason: if k(1/3) is irrational and k(1/2) is rational, then k([1/3, 1/2]) contains
many rationals.

Since the characteristic function of the rationals is Baire 2, this alternate gener-
alization produces a very different theory, which we did not pursue further.

11.2. Computable reducibilities for discontinuous functions. The original
motivation for this work was to devise a notion of computable reducibility between
arbitrary (especially discontinuous) functions. There is a well-established notion of
computable reducibility between continuous functions due to Miller [Mil04], based
on the notion of computable function due to Grzegorczyk [Grz55,Grz57] and La-
combe [Lac55a, Lac55b]. A truly satisfying notion of computable reducibility for
arbitrary functions would have its restriction to continuous functions agree with
this established notion. Unfortunately, the computable/lightface versions of our
reducibilities do not have this property. The reason for this, roughly speaking, is
that the Weihrauch-based reductions operate pointwise, whereas the established
computable reducibility on continuous functions makes essential use of global infor-
mation in the form of the modulus of continuity. Therefore, Question 11.1 remains
of interest, where of course satisfaction lies in the eye of the beholder.

Question 11.1. Is there a satisfying notion of computable reducibility for arbi-
trary functions, whose restriction to the continuous functions is exactly continuous
reducibility in the sense of Miller?

And of course, it would still be interesting to know more about the structure of
arbitrary functions under the computable versions of these reducibilities.

Question 11.2. What can be said about the degree structure of F(X, R) under
the computable versions of ≤T,≤tt and ≤m?

We will address further details and progress on these questions in a forthcoming
paper.

Appendix A. Original proof of Theorem 1.1

In this appendix, we give the original proof of the finite case of Theorem 1.1 (or
technically, Theorem 6.3 where X = 2ω), using a relativized version of Montalbán’s
theory of α-true stages [Mon14]. The true stages are a modern iteration of a
technique whose previous iterations include Ash’s η-systems [Ash86], Harrington’s
worker arguments, and Lempp and Lerman’s trees of strategies [LL95]. The most
readable presentation is in [GT].

From the development of the k-true stages we use the following metatheorem,
whose unrelativized version is given in [Mon14]. By the proof given there, it is easy
to see that the following relativized version of the metatheorem holds.

Theorem A.1 ([Mon14]). Relative to any oracle X, there is a uniformly X-
computable sequence of partial orders ≤k on ω such that

• ≤0 is the usual ordering.
• If a ≤k+1 b, then a ≤k b.
• For each k, the relation ≤k defines a tree with a single infinite path, called

the ≤k-true path.
• X(k) is uniformly X-computable from the ≤k-true path.
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• If a ≤k b ≤k c and a ≤k+1 c, then a ≤k+1 b.

Now we state and prove the finite case of Theorem 6.3.

Theorem A.2. Assume f : 2ω → R is Baire, or assume Wadge Determinacy. If
f is not Baire class n, then either jn+1 ≤m f or −jn+1 ≤m f .

Proof. Since f is not Baire n, let U be an open set such that f−1(U) is not Σ0
n+1.

Without loss of generality, U is of the form (u,∞) or (−∞, u) for some rational u.
If U is of the form (−∞, u), then we will have jn+1 ≤m f , and in the other case
jn+1 ≤m −f . Replacing f with −f if necessary let us assume U = (−∞, u).

By Wadge determinacy, f−1(U) is Π0
n+1-hard. Define some canonical Π0

n-
complete sets Cn by C1 = {1ω} and Cn+1 = {X : ∀i(X [i] 6∈ Cn)}, where X [i]

denotes the ith column of X, and fix a continuous function h which reduces Cn+1

to f−1(U).
Now for each m define the following forcing Fm. A condition is a finite tree

T ⊆ ω<ω of rank m + 1 with labeled nodes which satisfies the following properties.

• If σ!(i + 1) ∈ T then σ!i ∈ T .
• Each node is labeled 1 (meaning ∃) or 0 (meaning ∀).
• If σ is labeled 1, at least one of its children must be labeled 0.
• If σ is labeled 0, all of its children must be labeled 1.

Condition T2 extends T1 if T2 ⊇ T1. Given a filter in this forcing, a real X is ex-
tracted by reading all the bits off the leaves, by letting the label given to 〈a1, . . . , am〉
determine the amth bit of X [a1,...,am−1], where we compactly express (X [a])[b] as
X [a,b], and similarly for deeper addressing.

By induction, for each forcing Fi, the condition (〈〉, 0) forces X ∈ Ci, while the
condition (〈〉, 1) forces X 6∈ Ci. This is without any genericity requirements on the
filter. The base case when i = 1 is easily seen. For the induction, observe that
(〈〉, 1) in Fi+1 forces (〈a〉, 0) to be included for some a, which forces X [a] ∈ Ci since
the filter below 〈a〉 is a filter of Fi. Similarly (〈〉, 0) forces each X [a] 6∈ Ci, and thus
X ∈ Ci+1.

Coming back now to f and considering the forcing Fn+1, we see that (〈〉, 0)
forces f(h(X)) ∈ U . Fix ε and T0 ∈ Fn+1 such that for any sufficiently Fn+1-
generic G ≺ T0, f(h(G)) ∈ (−∞, u − ε).

Now, let p < q be given, such that we wish to separate jn+1(X) for (p, q). There is
some initial segment of the binary expansion of jn+1(X) which, if we knew it, would
suffice to separate jn+1(X) for (p, q). In fact, it is enough to know only positive
information about that initial segment, since if σ is such that

∑
i:σ(i)=1 2−(i+1) > p,

then any τ whose positive information is a superset of σ’s also corresponds to the
case when jn+1(X) > p. Therefore, a correct answer to

P (X) ≡
∨

σ:
∑

i:σ(i)=1 2−(i+1)>p

[∀i ∈ σ(i ∈ X(n+1))]

would suffice as a separating bit for jn+1(X) for (p, q). The separating bit we will
seek is 1 if P (X) holds and 0 otherwise, and P (X) is Σn+1(X).

Now we show how to continuously transform X into a sufficiently Fn+1-generic
G such that P (X) implies G 6∈ Cn+1 and ¬P (X) implies G ≺ T0. The process is
an infinite injury priority argument, organized by the notion of k-true stages. Let
〈≤k〉k≤n be the uniformly X-computable orderings guaranteed by Theorem A.1.
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Define a sequence of Fn+1-conditions T0, T1, . . . . They are not a descending
sequence, but at the end we will identify a descending subsequence. The first
condition T0 is the same T0 identified above. We will maintain that for each s < r
and each k ≤ n, if s ≤k r then for each (σ, b) ∈ Ts with |σ| > n − k, (σ, b) ∈ Tr. If
Ts and Tr satisfy this labeling agreement condition, we write Ts ⊆k Tr.

Given Ts for s ≤ r already satisfying this condition, we construct Tr+1. For each
k = 0, 1, . . . , n, let sk ≤ r be greatest such that sk ≤k r + 1. Observe that s0 = r,
and for each k, sk+1 ≤k sk ≤k r + 1 so sk+1 ≤k+1 sk.

Start with T = Tr without the labels. Because we have sn ≤n sn−1 ≤n−1 · · · ≤1

s0, we also have Tsn ⊆n Tsn−1 ⊆n−1 · · · ⊆1 Ts0 . All the labels which are referenced
in the satisfaction of the latter sweep agree in all the trees Tsk . Populate T with
those labels. The result satisfies Tsk ⊆k T for each k. The result is consistent in
the sense that it never contains the forbidden combination of a node and its child
both labeled 0. (Consider any (σ!j, 0) ∈ Tsk which was copied into T as a part of
satisfying Tsk ⊆k T . Then if (σ, b) was copied into T , it either was copied from Tsk

or it was copied from Tsk+1 , in which case it still occurs in Tsk ; since it occurs with
a child labeled 0, it must be that b = 1.) The consistency of T can be maintained
while adding 1s in the place of every empty label except the root.

To determine the root label for T , use {s : s ≤n r+1} to attempt to compute an
initial segment of X(n) (which is a correct initial segment only if r+1 is actually on
the ≤n-true path). If, based on this initial segment, we would believe P (X), put 1
as the root label. Otherwise, put 0 as the root label. It will always be consistent
to use 0 if we want to, because if Tsn has a root labeled 1, then {s : s ≤n sn}
computes enough of its pseudo-X(n) to believe P (X), this is a Σ1(X(n)) event and
our computation coincides, so we will want to use a 1 at the root also. That means
if we want to use a 0, it must be that Tsn has root label 0, so all (〈a〉, b) ∈ Tsn

satisfy b = 1 (and these are copied into T ) and all remaining (〈a〉, b) ∈ T also have
b = 1 because that was how non-copied labels were filled in.

We now have a T which satisfies all properties of an Fn+1-condition except
perhaps that any node labeled 1 must have a child labeled 0. This can be fixed
by added new children labeled 0 as appropriate, resulting in our final T ∈ Fn+1.
Now let Tr+1 be the result of extending T in Fn+1 to meet the first r + 1 generic
requirements. Meeting the requirements does not alter the fact that Ts ⊆k Tr+1

whenever s ≤k r + 1. This completes the definition of the sequence Ts. Note
that leaves are always copied to the next condition, so this sequence uniquely and
continuously determines a real G. Now we check that G has the required properties.

Let R be the ≤n-true path. Then for each s ∈ R, the pseudo-X(n) segment
computed by it is correct. Suppose that P (X) holds and that s ∈ R computes
enough of X(n) to witness this. Then {Tr : r ∈ R, s ≤ r} defines a filter in Fn+1,
because each such r ≤ t ∈ R satisfies Tr ⊆n Tt, which, combined with the fact that
their roots both have label 1, gives that Tr ⊆ Tt. Since the root is labeled 1, we
have that G 6∈ Cn+1. On the other hand, if ¬P (X), then every s ∈ P puts 0 at the
root of Ts, including s = 0. Then again {Ts : s ∈ P} defines a filter in Fn+1, and it
induces a G with G ≺ T0. Furthermore, G is sufficiently generic, because each Ts

has also met the first s-many genericity requirements.
Therefore, given X, we can continuously produce this G, with the intended result

that f(h(G)) ∈ (−∞, u − ε) if ¬P (X), and f(h(G)) ∈ [u,∞) if P (X). Recalling
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that u and ε do not depend on anything but f , we can now separate jn+1(X) for
(p, q) with the same bit that separates f(h(G)) for (u − ε, u − ε/2). "

The original infinite case required a more delicate technical argument. The
limit case in Montalbán’s α-true stages is rather complicated and the fact that it
relativizes, while true, is not as obvious as with the finite case. Also, the “weak
extendability condition” of [Mon14] was not quite weak enough and needed to be
weakened further. Meanwhile, [GT] have simplified the limit case of the α-true
stages. So the original proof of the limit case of Theorem 6.3 is now deprecated.
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ou plusieurs variables réelles. II, III (French), C. R. Acad. Sci. Paris 241 (1955),
13–14, 151–153. MR72080

[LL95] Steffen Lempp and Manuel Lerman, A general framework for priority arguments,
Bull. Symbolic Logic 1 (1995), no. 2, 189–201, DOI 10.2307/421040. MR1335987

[LSR87] A. Louveau and J. Saint-Raymond, Borel classes and closed games: Wadge-type and
Hurewicz-type results, Trans. Amer. Math. Soc. 304 (1987), no. 2, 431–467, DOI
10.2307/2000725. MR911079

[LSR88] Alain Louveau and Jean Saint-Raymond, The strength of Borel Wadge determinacy,
Cabal Seminar 81–85, Lecture Notes in Math., vol. 1333, Springer, Berlin, 1988,
pp. 1–30, DOI 10.1007/BFb0084967. MR960893

[Mil04] Joseph S. Miller, Degrees of unsolvability of continuous functions, J. Symbolic Logic
69 (2004), no. 2, 555–584, DOI 10.2178/jsl/1082418543. MR2058189

[Mon14] Antonio Montalbán, Priority arguments via true stages, J. Symb. Log. 79 (2014),
no. 4, 1315–1335, DOI 10.1017/jsl.2014.11. MR3343540

[Myl06] U. Mylatz, Vergleich unstetiger Funktionen: “Principle of Omniscience” und
Vollstaendigkeit in der C-Hierarchie, 2006. Thesis (Ph.D.)–Feruniversitaet,
Gesamthochschule in Hagen.

[Pau10] Arno Pauly, On the (semi)lattices induced by continuous reducibilities, MLQ Math.
Log. Q. 56 (2010), no. 5, 488–502, DOI 10.1002/malq.200910104. MR2742884

[RS] Jan Reimann and Theodore A. Slaman, Effective randomness for continuous mea-
sures, J. Amer. Math. Soc. 35 (2021), no. 2, 467–512, DOI 10.1090/jams/980.
MR4374955

[Sac90] Gerald E. Sacks, Higher recursion theory, Perspectives in Mathematical Logic,
Springer-Verlag, Berlin, 1990, DOI 10.1007/BFb0086109. MR1080970
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