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Abstract. Π0
1 classes are important to the logical analysis of

many parts of mathematics. The Π0
1 classes form a lattice. As with

the lattice of computably enumerable sets, it is natural to explore
the relationship between this lattice and the Turing degrees. We
focus on an analog of maximality, or more precisely, hyperhyper-
simplicity, namely the notion of a thin class. We prove a number of
results relating automorphisms, invariance and thin classes. Our
main results are an analog of the Martin’s work on hyperhypersim-
ple sets and high degrees, using thin classes and anc degrees, and
an analog of Soare’s work demonstrating that maximal sets form
an orbit. In particular, we show that the the collection of perfect
thin classes (a notion which is definable in the lattice of Π0

1 classes)
form an orbit in the lattice of Π0

1 classes; and a degree is anc iff
it contains a perfect thin class. Hence the class of anc degrees is
an invariant class for the lattice of Π0

1 classes. We remark that
the automorphism result is proven via a ∆0

3 automorphism, and
demonstrate that this complexity is necessary.

1. Introduction

While there are many ways of defining Π0
1 classes, for the purposes

of the present paper, we regard a (computably bounded) Π0
1 class as

the collection of (infinite) branches through an infinite binary tree.
Alongside of computably enumerable sets and degrees, Π0

1 class occupy
a position as a fundamental notion in computability theory. In some
sense, this is because they can be thought of as coding possibly con-
structions. While this is very vague, a good illustration is provided by
the fact that if I is a computable ideal in a a computable ring R then
the collection of prime ideals containing I forms a Π0

1 class.
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Π0
1-classes have been studied for many years (for example, Jockusch

and Soare [18], Kreisel [19]) and are particularly associated with models
of Peano arithmetic (PA) and proof theoretical notions such as WKL0.
There are many ways of viewing Π0

1 classes and many connections of
computable mathematics with Π0

1 classes. The main connection we
have in mind is viewing Π0

1-classes as being Stone spaces of logical the-
ories, and in particular the Stone space associated with the lattice of
c.e. filters L(Q), in Q, a computable copy of the free Boolean alge-
bra. Here, literals {pi | i ∈ ω} can be viewed as propositions with
¬pi their negations, with ∧ and ∨ having their usual interpretations.
Then proper filters correspond to consistent theories, computable fil-
ters with decidable theories, and ultrafilters with complete theories.
We remind the reader that under the Stone duality, c.e. theories A cor-
respond to the collection of complete theories U(A) containing them,
and conversely to a Π0

1-class C, viewed as the complete extensions of
some theory, we can associate a theory A(C) = T, the intersection of
the members of C. (While this is all standard we will make some of
these important connections more explicit in the next section.) For
recent extensive surveys on Π0

1 classes and their applications, we refer
the reader to Cenzer [2], Cenzer-Jockusch [4], and Cenzer-Remmel [5].

The collection of Π0
1 classes form a lattice L(2ω). In this paper we

study this lattice and its connection with the computably enumerable
degrees, along the same lines as the well known Post program for the
computably enumerable sets.

While there are many natural degree classes associated with a given
Π0

1 class C ⊆ 2ω, there is a natural way to associate a canonical degree
with the class. The set of strings that have extensions in C is a co-
computably enumerable set. Therefore we define degT (C) to be the
degree of this co-c.e. set. Again we refer to section 2 for the reader who
is unfamiliar with this material

The inspiration for the material of the present paper is the work of
Soare and Martin who demonstrated deep connections between defin-
ability and degree notions along the lines of Post’s program. As is well
known, Post sought a thinness property of the lattice of computably
enumerable sets which guaranteed Turing incompleteness. In the deep
paper [28], Soare demonstrated that this was impossible since all maxi-
mal sets were automorphic, and Martin [21] had earlier proved that the
degrees containing maximal sets (indeed hyperhypersimple sets) were
precise the collection of all high degrees.

In the present paper we initiate a similar program to the above but
this time for the lattice L(2ω) of Π0

1-classes under set inclusion. Our
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principal philosophy is that the study of L(2ω) can yield significant
insight into computability in the same way that the study of E does.

The central concept of the present paper is that of a thin Π0
1-class,

which corresponds to a “maximal”, or perhaps “hyperhypersimple”
theory. Martin and Pour-El [22] constructed a perfect c.e. theory A
(that is, essentially undecidable, or, viewed as a c.e. filter in the free
boolean algebra, the quotient of Q by A would be isomorphic to Q)
which was maximal. That is, A has the property that any c.e. theory A′

containing A is a principal extension of A. In fact in the paper [22] Mar-
tin and Pour-El construct what seems a very special type of maximal
theory. They construct what we now call a Martin–Pour-El theory. A
Martin–Pour-El theory T is of the form 〈pi | i ∈ A,¬pj | j ∈ B〉 where
A and B are c.e. sets such that |N− (A∪B)| =∞ and each extension
of the theory T is principal over T.

It is easy to show that this type of theory is not definable in L(Q)
since it must not only be maximal but additionally must be well-
generated, that is generated by literals and their negations (Theorem
5.8), but as we see in section 4 the notion of (perfect) maximal theory
is definable.

Viewed via Stone duality, maximal theories correspond to thin classes.
Here we say C is thin if it is infinite and for all Π0

1 subclasses C ′ there
is a clopen U such that C ′ = C ∩ U.

What are the basic degree theoretical properties of thin classes.
In his thesis, Downey [9] proved that not every degree contains a

Martin–Pour-El theory. He showed that while all high degrees con-
tained Martin–Pour-El theories, and some low degrees, there were ini-
tial segments not containing them.

What was unusual was that there seemed something basic which
was stopping all c.e. degrees being realized, akin to the high permit-
ting needed to ensure maximality but somewhat different. To wit, the
Martin–Pour-El construction was a rather unusual one since it had
a certain “multiple permitting” character. In most arguments using
the permitting technique, one has a series of “followers”. For the j’th
attack, one waits for an event to occur, and, when the event occurs
(“realization”), one will begin a the j + 1-st attack on a bigger fol-
lower. If later any of the earlier followers gets permitted, then we win
with suitable priority. A mild variation of this is that for Re, we would
need g(e) many permissions for some function g, which is eventually
constant for each attack.

For the Martin-Pour-El construction, each follower of the require-
ment Re will need f(〈e, j〉)-many attacks, and f(n) > f(n − 1), for
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some computable function f. That is each follower needs more permis-
sions than its predecessor for followers of the same requirement.

Eventually a new degree class, called the anc degrees, was intro-
duced by Downey, Jockusch and Stob [12] to explain such arguments.
It turns out that the anc degrees are a class containing all nonlow2 de-
grees and are closed upwards. They are exactly the degrees realized by
many known constructions. We refer the reader to Downey, Jockusch
and Stob [12]. However it is unknown if they are invariant for the
computably enumerable sets, E or degrees R.

Of interest to us is that Downey, Jockusch and Stob proved that
each anc degree contains a maximal theory and in fact Martin–Pour-
El’s construction always yields a theory of anc degree. However as
mentioned above, the Martin–Pour-El construction needed the theory
to be generated by literals or their negations and this property is not
definable.

Our first result is an analogue of Martin’s theorem for L(2ω). We
prove that if C is a perfect thin class then C has anc degree. Hence the
anc degrees form an invariant class for L(2ω). [This result which that
the anc degrees occupy the position of the high degrees in the setting of
Π0

1-classes].
Naturally, having the analogue of Martin’s theorem we were inter-

ested in one to Soare’s theorem. Could it be that any two thin classes
are automorphic? To attack this question, our first problem was that
there were no results for constructing automorphisms of L(2ω). Evi-
dence from other structures said that the presence of additional al-
gebraic structure can lead to quite different situations. For instance,
Guichard [15] proved that the lattice of c.e. subspaces of an infinite di-
mensional fully effective vector space L(V∞) has only countably many
automorphisms, each induced by a computable semi-linear transforma-
tion of V∞. In particular, if V1 and V2 are automorphic then they have
the same 1-degree!

We show that any automorphism of L(Q) is induced by an automor-
phism of Q and further that if Φ is any automorphism of L(Q) induced
by taking a c.e. set of generators to another, then in fact Φ is induced
by a computable automorphism of Q. Moreover we can construct two
thin Π0

1-classes that are not automorphic via a ∆0
2 automorphism. This

seems to present an obstacle to our program.
Nevertheless, Remmel [24] has proved that L(2ω) has 2ℵ0 automor-

phisms. We give a proof of Remmel’s theorem in section 6. So there
is some hope of an analogue of Soare’s theorem. Indeed as we show,
this is the case. Using some new techniques we are able to prove that
if C1 and C2 are two perfect thin Π0

1 classes then C1 is automorphic to
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C2 via a ∆3 automorphism. As we have seen above this is the sharpest
result possible since there are thin C1 and C2 such that there is no ∆0

2

automorphism taking C1 to C2.
We see this paper as but a first step in an analysis of L(2ω) and its

relationship with E and C.
The plan of the paper is the following. Since we work in various

settings that are connected by dualities of structure, we begin with
a section detailing the correspondence between certain structures and
the notation we will use in each setting.

In section 3 we consider the lattice L(2<ω) of 2<ω-c.e. filters and
develop some useful definitions for use in later sections.

Section 4 is concerned with thin Π0
1-classes and their correspondence

to ∆0
2 Boolean algebras, and section 5 looks at perfect thin Π0

1-classes.
Automorphisms of L(Q), the lattice of theories of Q, are studied in

section 6. We prove
Theorem 6.1. Every automorphism of L(Q) is induced by a unique
automorphism of Q.
Theorem 6.3. Every automorphism L(Q) induced by an isomorphism
between two sets of c.e. generators of Q is computable.
Theorem 6.2. (Remmel) There are 2ℵ0 automorphisms of L(Q).

However we can also show
Theorem 6.5. There are two thin Π0

1-classes that are not ∆0
2 auto-

morphic.
Despite this negative result, in section 7 we are able to prove ana-

logues in L(Q) of Soare’s and Martin’s theorems for E , the lattice of
c.e. sets. We prove the theorems in the equivalent setting of Π0

1-classes.
Theorem 7.8. The anc degrees form an invariant class for the auto-
morphism group of Π0

1-classes.
Theorem 7.9. Every two perfect thin Π0

1-classes are automorphic.

2. Preliminaries

In this section we introduce our notation and some background re-
sults. It is a characteristic feature of the material that many of the
results are proven much more easily in a particular setting. This is
nothing new, and is the idea behind much of classical duality. We
essentially work in three settings;

(1) Q, a computable copy of the free countable Boolean algebra,
and its lattice of c.e. filters L(Q). We remind the reader that we
view these as axiomatizable theories and the like as we describe
below.
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(2) 2ω, and in particular Π0
1-classes, and its lattice of Π0

1 classes
L(2ω), and

(3) 2<ω, and in particular the lattice L(2<ω) of c.e. filters on 2<ω.

We write σ, τ for strings in 2<ω and λ denotes the empty string. For
the length of σ we write |σ| and if |σ| = k then for 0 ≤ i < k we write
σ(i) for the ith bit of σ. If τ is an extension of σ then we write σ ≺ τ,
and σ � τ denotes that either σ ≺ τ or σ = τ.

For σ ∈ 2<ω, ext(σ) = {τ | σ � τ} and, for nonempty σ, σ− denotes
the string of length |σ|− 1 contained in σ. If x ∈ 2ω then we write x � i
to denote the member σ of 2<ω such that σ = x(0)x(1) . . . x(i− 1).

To distinguish between filters on Q and filters on 2<ω we will think
of Q as the free Boolean algebra of propositional formulas modulo
tautological equivalence. It then makes sense to refer to c.e. filters on
Q as theories and ultrafilters on Q as complete theories. We regard Q
as generated by {pi | i ∈ ω}, a computable set of free generators with
pi and the negations ¬pi being referred to as literals.

Definition 2.1. Let T be a tree in 2<ω so that T ⊆ 2<ω closed un-
der initial segments. Then [T ] will, as usual, be the set of all infi-
nite branches x ∈ 2ω such that x � n ∈ T for all n ∈ ω. A subset
P of 2ω is called a Π0

1-class if there is a computable tree T in 2<ω

such that P = [T ]. Although the operation [·] is not 1-1, and hence
has no “inverse”, for a Π0

1-class P , we can naturally associate a tree
P< = {σ ∈ 2<ω | ∃x ∈ P (σ ≺ x)}. Note that P = [P<]. (The reader
should note that the definition of P< makes sense for any subset of 2ω

and the equality P = [P<] holds provided that P is closed.)

Notice that while P is a set of infinite objects, P< is a countable set
of strings, a Π0

1 set rather than a Π0
1 class. We remark that it is clearly

a Π0
1 set since one can take any computable tree T = ∪sTs representing

P , and note that, by König’s Lemma, for all σ ∈ 2<ω, σ ∈ P< if and
only if

∀s > |σ|∃τ ∈ T (|τ | = s ∧ σ ≺ τ).

It is very useful to view Π0
1 classes in 2<ω via their complements.

The idea is that while there are many trees representing a particular
class P , there is one tightest representation via the strings not in. For
instance, let T1 be the perfect tree above 1, and let T2 be the tree
consisting of the perfect tree above 1 together with a finite number of
strings extending 0. Then [T1] = [T2]. Such considerations give rise to
the following definition.

Definition 2.2. A subset G of 2<ω is called a 2<ω-filter if

• σ ∈ G&σ � τ =⇒ τ ∈ G,
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• σ ∗ 0 ∈ G&σ ∗ 1 ∈ G =⇒ σ ∈ G.
Furthermore, G ⊆ 2<ω is called a c.e. 2<ω-filter if G is a c.e. set and is
a 2<ω-filter. For a (c.e.) subset G of 2<ω, we let 〈G〉 denote the (c.e.)
2<ω filter containing G. (We also use the same notation in L(Q); that
is if G is a (c.e.) subset of Q then 〈G〉 denotes the (c.e.) L(Q) filter
containing G.)

For a computably enumerable subset G of 2<ω, 〈G〉 is c.e..
We have the following correspondence between Π0

1-classes and com-
putably enumerable filters. Its proof is straightforward and left to the
reader.

Lemma 2.3. A closed P ⊆ 2ω is a Π0
1-class if and only if P< is a c.e.

2<ω-filter.

If G is a 2<ω-c.e. filter then we may write [G] to denote the Π0
1-class

{x ∈ 2ω | ∀i (x�i+1 6∈ G)}. We will tend to denote filters on 2<ω by F,G
and H. We let U(A) denote the set of complete theories containing A.
We use T to denote a subset of 2<ω. We use P and Q to denote Π0

1-
classes. We now elaborate on the dualities between the three settings.

Definition 2.4. Let L(2<ω) denote the lattice of c.e. 2<ω-filters ordered
by set inclusion⊆ with + and ∩ denoting least upper and greatest lower
bounds respectively.

Note that L(2<ω) is a distributive lattice with least element ∅ and
greatest element 2<ω.

Actually, as we now see, L(2<ω) is really L(Q) in disguise. For the
discussion below we use the notation εipi to denote one of pi or ¬pi. We
have the following observation which is surely known to anyone who
has thought about it.

Lemma 2.5. L(Q) and L(2<ω) are computably isomorphic in a natural
way.

Proof. The theory T ∈ L(Q) corresponds to the c.e. filter FT = {σ : T ` σ∗}
where σ∗ is the conjunction of the pi with σ(i) = 1, and ¬pi with
σ(i) = 0. One can check that the map induces an automorphism from
L(Q) to L(2<ω). �

We remark, that despite the “obvious correspondence” given in Lemma
2.5, as we will see, there are a number of conceptual advantages in
sometimes thinking in terms of L(Q) and sometimes thinking of this
as L(2<ω).

Under the interpretation above, Π0
1-classes correspond to complete

theories in Q also in a very natural way. If x is a member of P then x is
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just an infinite binary path. We can then interpret this as a complete
theory A(x) equal to

{εipi | εipi = pi if x(i) = 1, and εipi = ¬pi if x(i) = 0}.
This is a complete theory on Q since precisely one of pi or ¬pi will be
in A(x).

The point of Stone duality is that a logical theory B can be identified
with the unique set U(B) of all complete theories containing it because
B = ∩{D | D ∈ U(B)}. Since we are coding c.e. theories by Π0

1

classes, we have a natural identification of theories B with Π0
1 classes.

Conversely, given a collection of complete theories E then one can
always form the unique theory T = ∩{M |M ∈ E}. If E is a Π0

1 class
then T will be computably enumerable.

It is perhaps worthwhile to articulate further the manner by which
this duality is obtained, since it is quite important for what is to follow.
Think of a c.e. theory as being given in stages. Say, B = ∪sBs. Then we
can build a natural representation of U(B) in stages, via a computable
tree T which is built inductively in stages. At stage 0, let T0 = {λ}.
At stage s + 1, we will have a tree Ts and will decide how to extend
Ts to make Ts+1. For a string σ, we can interpret σ as z(σ) = ∨iεipi
where εipi = pi if and only if σ(i) = 1. For ν on Ts, we simply put ν ∗ j
on Ts+1 (j ∈ {0, 1}) iff 0 6∈ 〈Bs+1, z(ν ∗ j)〉 (the theory generated by
Bs+1 and z(ν ∗ j) is not inconsistent). Conversely given a Π0

1 class P ,
with representing tree T = ∪sTs, one builds the theory B by putting
∨¬εipi into B, for εipi = pi iff σ(i) = 1, at the stage where there is no
extension of σ in Ts.

3. The Lattice of 2<ω2<ω2<ω-Filters

We now look at some key properties of this lattice. While, at least
in terms of L(Q), some of these are well known, we will give a fairly
detailed discussion for completeness.

Definition 3.1. Let L(2<ω)(G, ↑) denote the sublattice

{G′ ∈ L(2<ω) | G ⊆ G′}.
Let L(2<ω)(G, ↓) denote the sublattice

{G′ ∈ L(2<ω) | G′ ⊆ G}.
(Similarly for theories) We will drop the 2<ω and write, for instance,
L(G, ↓), when the context is clear.

We say G is complemented in L(2<ω) if there is some G ∈ L(2<ω)
such that G + G = 2<ω and G ∩ G = ∅. In this case we will write
G⊕G = 2<ω.
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In L(Q) the interpretation of complementation is that a c.e. theory
T has a complement T ′ if and only if 〈T ∪ T ′〉 = Q, and T ∩ T ′ = {1}
where 1 here denotes the symbol for truth.

The dualities above allow us to characterize the complemented filters
in 2<ω. First we work in Q. Notice that we have the correspondence,
that a complemented filter in 2<ω corresponds to a Π0

1 class which is
complemented in 2ω and hence to a complemented theory in Q.

Lemma 3.2. A c.e. theory T is complemented if and only if it is prin-
cipal.

Proof. ⇐ is clear, since the filter theory generated by θ is complemented
by that generated by ¬θ. Conversely, suppose that A is not finitely
generated and complemented by B. Thus the theory generated by A
together with B is Q yet A ∩ B = {1}. Since 0 ∈ 〈A ∪ B〉, for some
θ ∈ A, we have ¬θ ∈ B. However, since A is infinitely generated, there
is some ϕ ∈ A, with θ 6` ϕ. Consequently, 1 6= ¬θ ∨ ϕ ∈ A ∩B. �

Corollary 3.3. “T is principal” is definable in the lattice of c.e. the-
ories.

For the interpretation in 2<ω, we use the following.

Definition 3.4. Suppose G is a c.e. 2<ω-filter. Then we write r(G) for
the set of roots of G, that is

r(G) = {σ ∈ G | (∀τ)(τ ∈ G& τ � σ =⇒ τ = σ)}.

We have the following interpretation of Lemma 3.2.

Corollary 3.5. An element G of L(2<ω) is complemented if and only
if r(G) is finite.

Proof. Under the isomorphism of Lemma 2.5, the roots of G form a
finite set if and only if the associated theory is finitely generated, and
hence principal. �

Reasoning classically about the Stone space of a logical theory one
would use the set of roots. However, in our case, we need to con-
sider effective given objects. Therefore in place of the roots of G we
use an effective generating set, which is the idea behind the following
definition.

Definition 3.6. A basis of a 2<ω-c.e. filter G is a subset B of G gen-
erating G and such that any two elements are � incompatible.

Note that r(G) is a basis of G for any 2<ω-filter G. B ⊆ G is a basis
of G iff B generates G and no proper subset of B generates G. Also
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G is complemented iff some basis of G is finite iff every basis of G is
finite.

A useful fact is the following.

Lemma 3.7. Let G be a 2<ω-c.e. filter. Then there is a basis B of G
which is c.e.

Proof. Let {Gs} be a computable enumeration of G. We construct
a computable enumeration of a basis B of G as follows. Let B0 = ∅.
Given Bs, let n be the least natural number which exceeds the length of
all the members ofBs, and then letBs+1 = {τ ∈ 2<ω : |τ | = n∧τ ∈ Gs−〈Bs〉}.
It is easy to see that B = ∪sBs is a basis of G. �

The proof above gives rise to the following reduction principle be-
tween elements of L(2<ω).

Lemma 3.8. For all G0, G1 ∈ L(2<ω) there exist G′0, G
′
1 ∈ L(2<ω)

such that G′0 ⊆ G0, G
′
1 ⊆ G1, G

′
0 ∩G′1 = ∅ and G0 +G1 = G′0 +G′1.

Proof. Let (σ0
s)s≥0 and (σ1

s)s≥0 be computable enumerations of G0 and
G1 respectively. We construct c.e. bases B0 and B1 of G′0 and G′1. The
construction is virtually identical to the one in Lemma 3.7 with the
extra condition that elements of B0 and B1 are incomparable. (This is
to ensure that if σ ∈ G0 ∩G1 6= ∅ then σ 6∈ G′0 ∩G′1.)

Then the 2<ω-c.e. filters G′i = 〈Bi〉 for i = 0, 1 witness the desired
reduction. �

The lattice of c.e. subsets of an infinite c.e. set is always isomorphic
to the lattice of c.e. sets. It is still an open question whether the
analogous statement holds for L(G, ↓) for any G. It is pointed out in
Cenzer-Jockusch [4], Theorem 6.3, that the ∆0

3 version is false: there
are G1, G2 ∈ L(2<ω) such that there is no ∆0

3 isomorphism taking
L(G1, ↓) to L(G2, ↓). However, we do show that there are at most two
isomorphism types.

Theorem 3.9. (1) If nonempty G ∈ L(2<ω) and the root set r(G)
is finite then L(2<ω) ∼= L(G, ↓).

(2) If G0, G1 ∈ L(2<ω) with both root sets r(G0) and r(G1) infinite
then L(G0, ↓) ∼= L(G1, ↓).

(3) Furthermore, all the isomorphisms above are computable.

Proof. Let G be a 2<ω-c.e. filter.

(1) Suppose r(G) = {σ1, . . . , σk} for some k ≥ 1.
If k = 1 then let θ(τ) = σ1 ∗ τ for all τ ∈ 2<ω.
If k > 1 then for all τ ∈ 2<ω let θ(1k−1 ∗ τ) = σk ∗ τ and

θ(1i0 ∗ τ) = σi ∗ τ, for i = 0, 1, . . . , k − 2. Then θ generates the
required isomorphism between 2<ω and L(G, ↓).
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(2) Suppose that r(G) is infinite. Let Gm be the 2<ω-c.e. filter

{σ ∈ 2<ω | (∃i < |σ|)(σ(i) = 1)}.
Observe that r(Gm) is infinite and, in fact, r(Gm) = {0j1 | j ≥ 0}.
Let (σs)s≥0 be a c.e. basis of G. Then the mapping

θ : 0s1 ∗ τ 7→ σs ∗ τ
for τ ∈ 2<ω generates the isomorphism between L(Gm, ↓) and
L(G, ↓).

(3) It is clear that the isomorphisms above are computable.

�

Herrmann has conjectured that if r(G) is infinite then L(G, ↓) is not
isomorphic to L(2<ω).

4. Thin Π0
1-Classes and Boolean Algebras

The central notion for us in the rest of the paper is that of the thin
Π0

1-class. We like to think of Π0
1-classes as subsets of the Cantor space

2ω where the sets I(σ) = {x | σ ≺ x} form a basis of open intervals.
Then any clopen subset of 2ω is just a finite union of intervals.

Definition 4.1. (1) A Π0
1 class P is called thin if P is infinite and

for every Π0
1 class Q ⊆ P there is a clopen set F ⊂ 2ω such that

Q = P ∩ F.
(2) Suppose that T is a complete undecidable extension of T, but for

all c.e. extensions T ′ of T , there is θ ∈ Q such that T ′ = 〈T, θ〉.
Then, following Downey [9], we say T is a maximal theory.

(3) Note that a Π0
1 class is thin iff its corresponding theory is max-

imal.

Theorem 4.2. “P is thin or finite” is definable in L(2ω).

Proof. By Lemma 3.2, “T is principal” (and hence “C is clopen”) is so
definable. �

We remark that it is Open Question 6.3 in Cenzer-Jockusch [4] if “T
is finite” is definable in L(2ω).

For more results and background on thin Π0
1-classes see Cenzer,

Downey, Jockusch and Shore [3] and Downey [9].
The following says that, in a sense, thin classes are the precise ana-

logues of hyper-hyper-simple c.e. sets.

Lemma 4.3. A nonempty Π0
1-class P is thin if and only if L(2ω)(P, ↓)

is an infinite Boolean algebra. In other words, P is thin if and only if
the lattice of c.e. filters containing the associated theory T (P ) form a
Boolean algebra.
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Proof. To prove the “only if” part, assume that P is thin. Since P is
infinite L(P ) is infinite, and distributive, as we have already seen. (For
any two distinct x1, x2 ∈ P , there is a clopen C with x1 ∈ P ∩ C and
x2 6∈ P ∩C.) Also if Q ⊆ P then Q has the form C∩P for some clopen
C, so that Q ∩ (2ω − C) is the complement of Q in L(P ).

Conversely, assume that L(P ) is an infinite boolean algebra. Then
clearly P is infinite. Let Q be any Π0

1 subclass of P . By assumption, Q
is complemented in L(P ). Let R be the Π0

1 class such that R ∪Q = P
and Q ∩ R = ∅. By the reduction principle, dualized from c.e. 2<ω-
filters, there exist Π0

1 classes Q′ ⊇ Q, P ′ ⊇ P such that Q′ ∪ R′ = 2ω,
and Q′ ∩ R′ = Q ∩ R = ∅. Then Q′ is clopen and clearly Q′ ∩ P = Q.
Thus P is thin. �

Lemma 4.3 is quite suggestive. For c.e. sets Lachlan characterized
the lattice of supersets of a hyperhypersimple sets as precisely the Σ0

3

boolean algebras. Since we now know that for maximal theories, the
only supertheory lattices we get are Boolean algebras, perhaps, as in
the c.e. set case, there is some characterization of the Boolean algebras
that can be realized. Indeed this is the case.

Theorem 4.4. The following classes of Boolean algebras coincide up
to ∆0

2 isomorphism.

(i) {B | B is an infinite ∆0
2 Boolean algebra},

(ii) {L(T, ↑) | T is a c.e. maximal theory}.
(iii) {L(2ω)(P, ↓) | P is a thin Π0

1-class}.
(iv) {L(2<ω)(G, ↑) | [G] is a thin Π0

1-class}.

Proof. We do (i) ⇔ (iv), the others following by duality via Lemma
2.5. We first prove that (iv)⊆(i). Suppose L(2<ω)(G, ↑) is Boolean
algebra with P being the corresponding thin Π0

1-class.
Let B be the Boolean algebra (B,+,∩, ∗) where

B = {H | H ∈ L(2<ω)(G, ↑)}

and +,∩ and ∗ are the operations on the lattice L(2<ω)(G, ↑). We will
give a ∆0

2 presentation of B.
Now we know that each extension of G is determined by a finite

(root) set. The underlying set for B is the set of all finite subsets of 2<ω,
modulo the equivalence relation ≡ where F ≡ H iff 〈G∪F 〉 = 〈G∪H〉.
Note the ≡ is clearly c.e.. The induced +, ∩ and complementation are
obvious ones.

For the converse direction, let B be a ∆0
2 Boolean algebra. By a

result of Feiner [14] (see Downey [10] Corollary 3.10), we know that
B is isomorphic to a c.e. presented Boolean algebra. Hence we can



PERFECT THIN Π0
1 CLASSES 13

suppose, without loss of generality, that there is a c.e. theory F such
that B ∼= Q/F.

Remember here, that, as in section 2, we think of F = ∪sFs as being
a set of elements of the form θ = ∨iεipi. For this proof it is easiest to use
the topological view of Q/F as a Π0

1 class represented by a computable
tree T = ∪sTs.1

We will define a ∆0
2 map α from 2<ω to 2<ω and a Π0

1 class T̂ . For a
node σ(θ) in T we will ensure that

• α(σ(θ)) exists iff σ ∈ T ,
• α induces a homeomorphism from the Π0

1 class [T ] to the Π0
1

class [T̂ ],

• [T̂ ] is thin.

These three things will suffice for the theorem. (To see this, let F̂

represent T̂ in Q. The point is that any extension of F̂ in Q will be

finitely generated over F̂ as F̂ is thin. Hence the extensions of F̂ will

correspond to the α-pre-images of strings σ̂ representing θ̂ 6∈ F̂ . But
these are just the elements θ of F as α represents a homeomorphism.)

We will construct α = lims αs in stages. At stage 0, we simply
set α(σ) = σ for all σ ∈ 2<ω. We will need to meet the negative
requirements

Nσ : σ ∈ T iff lim
s
αs(σ) exists ∈ T̂ .

Before we look at the precise nature of the satisfaction of the Nσ, we
look at the thinness requirements. Let Pe ⊂ 2<ω be the eth primitive
recursive tree, so that [P0], [P1], ... is an effective enumeration of all Π0

1

classes.
We need to ensure that we meet the requirements below.

Re : [Pe] ⊆ [T̂ ]→ ∃C(C clopen & [Pe] = C ∩ [T̂ ].
Let We denote the 2<ω−[Pe], the c.e. set of strings in the complement

of [Pe]. The easiest way to understand the construction of a thin class

is in the case that [T̂ ] is perfect, which is covered by the case that
T = 2<ω. Thus, here we will assume that for all σ, σ ∈ F , and hence
we will need that for all σ ∈ 2<ω, lims αs(σ) exists.

Now for all σ with |σ| = e we regard Nσ as having higher priority
than Rj for j ≥ e.

1Recall that θ = ∨ki=1εipi is represented by a string σ(θ) as in Lemma 2.5. A
string σ(θ) representing θ = ∨iεipi and all of its extensions dies at stage t if we see
θ enter Ft.
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The construction is similar to a e-state maximal set construction.
The basic action is that we will try to define α(σ) ∈ W|σ| if possible.
Thus we will have a computable approximation αs(σ) to α(σ)

At stage s we will have an approximation to T̂s of a certain height

h(s) ≥ s, and [T̂ ]s being represented by those nodes ρ on T̂s such that

∃τ ∈ T̂s(|τ | = h(s) ∧ ρ � τ). h(s) will be chosen so that αs(σ) will be

defined in T̂s for all σ ∈ 2s. In fact, we simply ensure that 2s equals

α−1s ([T̂ ]s).
If no Re acts at stage s + 1 we simply extend α and its domain in

the obvious way. That is, we set h(s+ 1) = h(s) + 1, and for all strings
σ of length s+ 1 set αs+1(σ ∗ i) = αs(σ) ∗ i for i ∈ {0, 1}.

We act for the sake of R|σ| if we see some ν ∈ [T̂ ]s such that

• ν ∈ W|σ|s (since all its extensions in Pe,s are killed by stage s),
• ∃σ(|σ| = e + 1 ∧ αs(σ) ≺ ν, (so that ν is long enough to not

injure Nγ of higher priority),
• σ is not e-killed; that is, of the low e-state.

Note that we might as well take ν to have length s. The action is to
redefine αs+1(σ) = ν (forcing α(σ) ∈ We).

The details are then to extend the tree so that the partial isomor-
phism αs+1 is well defined. In detail, we then extend the tree so that

T̂s+1 pulls back to 2s+1. That is, for all τ not extending αs(σ) with τ
having length s, let αs+1(τ ∗ i) = αs(τ)∗ i, as above. Now for all β with
|αs(σ)|+ |β| ≤ s+ 1, define αs+1(σ ∗ β) = ν ∗ β. Declare σ as e-killed;
having the high e-state. Initialize all Rj for j > e.

Finally, declare as terminal any ρ on T̂s extending αs(σ) but incom-
parable with αs+1(σ). See Figure 1 where σ = 1 ∗ 0.

Notice that this action injures Nτ for all τ with σ � τ, and Rj

for j > e. The argument is finite injury. Since we e-kill σ when Re

receives attention via σ, one can see that once Re has priority, it can
only further receive attention 2e+1 many times. Therefore, lims αs(σ)
exists for all σ ∈ 2<ω, and the Ne are met. The Re are met as follows.
Go to a stage se such that for all s ≥ se, Re does not receive attention

at s, and Re has priority at stage se. Suppose that [Pe] ⊆ [T̂ ]. Then

we see that for each σ of length e+ 1, the paths in [T̂ ] above α(σ) are
either disjoint from or equal to the paths in [Pe] above α(σ). Hence

[Pe] = [T̂ ] ∩ C where C is the clopen set determined by the finite
collection of θ where the two classes are equal. This concludes the
proof that there is a perfect thin class.

Now to complete the proof at hand all we need to do is to indicate
the necessary modifications needed in the case that the domain of α is
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τ

Figure 1. Example of the mapping α.

not all of 2<ω but is also in a state of formation. First we say that σ is
active if σ has not yet been killed in T at stage s. That is, σ ∈ [T ]s. Our
action at stage s+1 is that if σ becomes killed then we will immediately

kill αs(σ) and all its extensions in [T̂ ]s, by declaring all its h(s)-long
extensions as terminal. Finally, for Re to receive attention, we replace

• σ is not currently e-killed, by
• σ is not currently e-killed and σ is active.

This concludes the proof of Theorem 4.4. �

Actually the proof above has a number of interesting corollaries.
For instance, we can get a cheap proof of a result of Cenzer, Downey,
Jockusch and Shore [3].

Corollary 4.5 (Cenzer et al [3], Theorem 2.2).

(i) For each computable ordinal β there is a countable thin Π0
1 class [T̂ ]

of Cantor Bendixson rank β.

(ii) Furthermore, if the rank is at least one, then we can take T̂ to be
a computable tree with no dead ends.

Proof. (i) Follows from the above construction by choosing as the tem-
plate class [T ] to have rank β. It is very well known that there are
countable Π0

1 classes of arbitrary rank. Now for (ii). Note that there
is something to prove here since even if we choose the template tree to

have no dead ends, it does not mean that the thin class [T̂ ] will have no
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dead ends. (ii) follows by modifying the construction as follows. When
Re receives attention at stage s+ 1, and we move αs+1(σ) from αs(σ)
to ν, don’t kill the strings ρ avoided, but just declare that they will
have the trivial extension henceforth: we directly put ρ ∗ 0 ∗ 0 ∗ ... into

[T̂ ] and allow no other extension of ρ, with priority e. The argument
still goes through. �

We also get the following corollary concerning the complexity of the
lattices of Π0

1 subclasses of a (thin) class.

Corollary 4.6. Let Pe denote the e-th primitive computable tree. Then
{〈e, i〉 : L([Pe], ↓) ∼= L([Pi], ↓)} is Σ1

1-complete.

Proof. It is well known that the pairs e, i such that the computable
boolean algebra Be is isomorphic to computable boolean algebra Bi is
Σ1

1-complete. Since we know of no explicit proof of this in the literature
here is a proof. It is well-known (e.g. Rogers [25]) that the collection of
paths through Kleene’s O is Σ1

1 complete. For each computable ordinal
β, construct a canonical computable boolean algebra as the interval
algebra Intal(ωβ). These algebras are isomorphic iff the corresponding
ordinals are the same. �

It would be interesting to know if the analog of the Slaman-Woodin
([27]) conjecture holds:

Open Question. Is {〈e, i〉 : Pe automorphic to Pi} Σ1
1 complete?

The analogous result for the lattice of computably enumerable sets
was proven by Cholak, Downey and Harrington [6].

5. Perfect Thin Classes

We now turn to perfect classes, our main concern. Recall that for a
topological space X, the set Xd of derived points of X is the set of x
such that x ∈ cl(X − {x}). If x ∈ X − Xd then we say that x is an
isolated point. A topological space is called perfect if it has no isolated
points, that is if X = Xd. In the Cantor space we have the following
lemma, as noted in Cenzer, Downey, Jockusch and Shore [3].

Lemma 5.1. For any thin Π0
1 class P and any x ∈ P , x is computable

if and only if x is isolated in P.

Proof. Clearly, if {x} is computable then {x} is a Π0
1 subclass of P.

Since P is a thin Π0
1 class, {x} is a relatively clopen subclass of P and

hence x is isolated.
The converse is trivial. �
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Lemma 5.2. P is a perfect thin Π0
1-class if and only if L(2ω)(P, ↓) is

an atomless Boolean algebra.

Proof. Let P be a perfect thin Π0
1 class. Then L(P, ↓) is a Boolean

algebra by Lemma 4.3. Suppose L(P, ↓) is not atomless and let G be
an atom. Then G = {x} for some x ∈ 2ω, and it follows that {x} is
computable. Hence by lemma 5.1, x is isolated in P , contradicting the
assumption that P is perfect. Conversely suppose that P is not perfect,
but L(P, ↓) is an atomless boolean algebra. Let x be an isolated point
of P . Then x is computable and hence {x} is an atom of L(P ). �

Let x be an element of a Boolean algebra B and let Ux be the set of all
ultrafilters on B containing x. Further, let S(B) be the set {Ux | x ∈ B}.
One version of the Stone representation theorem seen earlier is that, ev-
ery Boolean algebra B is isomorphic to a subset of P(S(B)), the power
set Boolean algebra of S(B). When we consider S(B) as a topological
space with basic open sets {Ux | x ∈ B}, called the Stone space, then
we get the following characterization of Boolean algebras.

Theorem 5.3. (Stone) A Boolean algebra B is atomless if and only if
the Stone space of B is perfect.

Interpreting L(Q) as the lattice of c.e. logical theories, we can sim-
ilarly say that a theory A is perfect if its corresponding Π0

1-class is
perfect.

We then have the interpretation of Lemma 5.3 in the setting of logical
theories.

Theorem 5.4. (1) A c.e. theory A is perfect if and only if A is
consistent and is essentially undecidable.

(2) “A is perfect” is definable in L(Q).

For our purposes, the consequence of Theorem 5.4 we need is the
following.

Corollary 5.5. “A is perfect maximal theory” is definable in L(Q).

In section 7 we use the fact that being a perfect maximal theory is
definable to obtain theorems for L(Q) that are analogous to Soare’s
and Martin’s theorems for E , the lattice of c.e. sets.

To finish this section we briefly discuss Martin-Pour-El theories,
which were the first maximal theories to be constructed.

Martin–Pour-El theories are maximal perfect theories with a special
set of generators. From Downey [9] we recall the following definitions
in L(Q).
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Definition 5.6. A c.e. theory T is well-generated if it is generated by
a pair of sets {pi | i ∈ A} and {¬pi | i ∈ B}. (Here if T is consistent
then A ∩B = ∅.)

Definition 5.7. A c.e. theory T is a Martin–Pour-El theory if it is
well-generated and maximal.

Notice that if T is Martin–Pour-El then it is essentially undecidable
since ω−(A∪B) is infinite. The reason that we concern ourselves with
maximal theories rather than Martin–Pour-El ones is the following.

Theorem 5.8. “ T is Martin–Pour-El” is not definable in L(Q). In
fact, there is an automorphism of L(Q) taking a Martin–Pour-El theory
to a theory which is not Martin–Pour-El.

This result is, of course, an immediate consequence of the main result
of Section 7 (every thin perfect Π0

1 class is automorphic; since a Martin–
Pour-El theory corresponds to a thin perfect Π0

1 class and there are
thin perfect Π0

1 class which did not corresponds to a Martin–Pour-El
theory).

However, there is a very straightforward proof which runs as fol-
lows, and which we give for completeness. First we note the following.
Let θ and ψ be any two nontrivial elements of Q. Then there is a
computable automorphism of Q sending θ to ψ. In particular, there
is a computable automorphism Φ of Q taking p1 to p1 ∨ p2 where
M = 〈pi : i ∈ A;¬pj : j ∈ B〉 is Martin–Pour-El and 1 ∈ A2. If the
image of M were well-generated, then one of p2 or p1 would need to be
in this image, and it is easy to argue that this cannot be the case.

6. Automorphisms of L(Q).

Take a computable copy of the free Boolean algebra Q. Recall that
L(Q) denotes the lattice of c.e. theories of Q. In this section we study
the automorphism group of L(Q).

2To see this piece of folklore, the easiest way is to use yet another represen-
tation of Q, namely the interval algebra representation. Recall that every com-
putable Boolean algebra is computably isomorphic to the algebra of left closed
right open subsets of a computable linear ordering. For the free algebra we can take
p1 7→ [0, 1/2), ¬p1 7→ [1/2, 1), p2 7→ [0, 1/4) ∪ [1/2, 3/4), etc. Rather than writing
out all the painful details, we demonstrate the relevant isomorphism for our pur-
poses. We show that p1 7→ p1 ∨ p2 is possible. So we send [0, 1/2) 7→ [0, 3/4). The
linear map defined piecewise by, for x ∈ [0, 1/2) map x to 3/2 · x. For x ∈ [1/2, 1)
map x to 1 − 1−x

2 . This will induce the desired automorphism of Q. (The general

case is essentially the same but has more pieces.)
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Theorem 6.1. Every automorphism of L(Q) is induced by a unique
automorphism of Q.
Proof. Suppose Φ : L(Q) 7→ L(Q) is an automorphism. Let p0, p1, . . .
be a countable set of generators for Q. Since being a principal theory
is definable in the language of theories of Q, if A is a principal theory,
then Φ(A) must also be a principal theory. Let A0 = 〈p0〉, A1 = 〈p1〉, . . .
and so on.

Define φ(pi) = θi where Φ(Ai) = 〈θi〉. We now extend φ in the
natural way to an automorphism of Q as follows. Let

φ(pi ∨ pj) = φ(pi) ∨ φ(pj)

φ(pi ∧ pj) = φ(pi) ∧ φ(pj)

φ(¬pi) = ¬φ(pi)

For a formula θ, define φ(θ) by induction from the above definitions.
Since “F is principal” is definable, and Φ is 1 − 1, we see that

φ(a) = φ(b) if and only if a = b. Now suppose a ∈ Q. Then 〈a〉 is
a principal theory. Since Φ is an automorphism there is a θ ∈ Q such
that Φ(〈θ〉) = 〈a〉. It follows that φ(θ) = a. Hence φ is 1− 1 and onto.

To show φ is order-preserving, let a, b ∈ Q. Then a ≤ b if and only if
〈b〉 ⊆ 〈a〉 if and only if Φ(〈b〉) ⊆ Φ(〈a〉) if and only if 〈θb〉 ⊆ 〈θa〉, where
〈θb〉 = Φ(〈b〉) and 〈θa〉 = Φ(〈a〉). Furthermore this occurs if and only if
θa ≤ θb. Since we must have φ(b) = θb and φ(a) = θa then φ(a) ≤ φ(b)
as required.

Therefore φ : Q 7→ Q is an automorphism.

We claim that φ induces Φ. That is, for Ŵ = {φ(θ) : θ ∈ W}, we

claim Φ(W ) = Ŵ . Otherwise there is some ν 6∈ Ŵ with ν ∈ Φ(W ); or

some ν ∈ Ŵ −Φ(W ). Either case results in a contradiction because of
the definability of principality and the definition of φ.

Finally we see that φ is unique. To see this, suppose φ1 and φ2

are automorphisms of Q inducing automorphisms of L(Q), Φ1 and Φ2

respectively. We must show that φ1 6= φ2 implies Φ1 6= Φ2. Suppose
φ1(a) 6= φ2(a). For a contradiction assume Φ1(〈a〉) = Φ2(〈a〉) = 〈θ〉.
Then 〈θ〉 is a principal theory and φ1(a) = θ = φ2(a).Hence Φ1(〈a〉) 6= Φ2(〈a〉).

�

Theorem 6.2 (Remmel). There are 2ℵ0 automorphisms of L(Q).

Proof. Remmel proves this theorem from the interval algebra perspec-
tive of Q adapting ideas from Lachlan [20] to the boolean setting. Here
we will also use similar ideas to construct 2ℵ0 automorphisms but in the
setting of L(2<ω). Then from the duality we obtain 2ℵ0 automorphisms
between Π0

1-classes, and hence 2ℵ0 automorphisms of L(Q).
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Let F0, F1, F2, . . . be a computably enumerable listing of all c.e. 2<ω-
filters in L(2<ω). We first construct a sequence of strings (σs)s≥0 as
follows. Recall that for σ ∈ 2<ω, ext(σ) = {τ | σ � τ} and, for
nonempty σ, σ− denotes the string of length |σ| − 1 contained in σ.

Let σ0 = λ.
Suppose σn is defined and define

σn+1 =

{
τ ∗ 0 for τ = (µν)(ν ∈ ext(σn) ∩ Fn) if ext(σn) ∩ Fn 6= ∅
σn ∗ 0 if ext(σn) ∩ Fn = ∅

Now let f : N 7→ {0, 1}. and define a mapping γf (ν) by strings,
inducing an automorphism Φf , as follows.

(1) Let γf (σ0 ∗ τ) = σ0 ∗ τ for all τ such that σ−1 6≺ σ0 ∗ τ.
(2) Suppose γf (σ) is defined for all σ with σ−n 6≺ σ. We define γf (σ)

for all σ with σ−n ≺ σ and σ−n+1 6≺ σ. Suppose σ = σ−n ∗ i ∗ τ.
Then let

γf (σ) =

{
γf (σ

−
n ) ∗ i ∗ τ if f(n) = 0

γf (σ
−
n ) ∗ (1− i) ∗ τ if f(n) = 1.

We then define Φf (F ) to be {γf (ν) : ν ∈ F}.
Then given a c.e. 2<ω-filter F, we claim Φf (F ) is also a c.e. 2<ω-filter,

and Φ−1f (F ), exists and is a c.e. 2<ω-filter. Observe that γ preserves ≺
and length. Suppose that F = Fn. First note that for all strings ν not
extending σn+1, we can effectively calculate γf (ν), by knowing γf (σj)
for j < n + 1. To demonstrate that Φf (F ) is c.e., it thus suffices to
argue for strings extending σn+1. There are two cases. Either there is
no extension of σn in Fn, in which case there is nothing to prove, or
there is some extension of σn in Fn. In the latter case, σn+1 = τ∗0 ∈ Fn,
and hence the action of Φf is the identity on the filter Fn ∩ ext(σn+1).
The argument for Φ−1 is similar. For F = Fn, the inverse is determined
by a finite number of computable partial maps given by the σi for i ≤ n.
Finally, if f 6= g and n is the least number such that f(n) 6= g(n), then
Φf (ext(σn)) 6= Φg(ext(σn)).

Hence there are 2ℵ0 automorphisms of L(2<ω) and hence of L(Q). �

We have seen that every automorphism of L(Q) is induced by an
automorphism of Q and hence by its action on a generating set. One
obvious approach to constructing automorphisms of L(Q) would be
to induce such an automorphism as a permutation on {pi | i ∈ ω},
or some variation of this. The next two results demonstrate that if
there are non-computable automorphisms of L(Q) then they cannot be
constructed along these lines. The ideas in the proofs to follow go back
to Shore, first appearing in Kalantari’s Thesis.
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Theorem 6.3. Every automorphism induced by a permutation of lit-
erals is a computable automorphism.

Proof. Let Φ : L(Q) 7→ L(Q) be an automorphism of L(Q) induced
by the automorphism φ : Q 7→ Q where φ is a permutation of literals
p0, p1, . . .

We need the following 4 sets.

P1 = {p2i | i ∈ ω}.
P2 = {p2i+1 | i ∈ ω}

P3 = {p2i ∨ p2i+1 | i ∈ ω}
P4 = {p2i+1 ∨ p2i+2 | i ∈ ω}

Now since pj 7→ pij for some ij, it follows that each Pi has an im-

age set P̂i. (This uses the fact that if ph 7→ pih and pk 7→ pik then
ph ∨ pk 7→ pih ∨ pik .

Suppose we also know φ(p0) = pi0 . We first show that φ is a com-
putable permutation of literals. To find φ(p1) find the unique member

of P̂2, pi1 say, such that pi0∨pi1 ∈ P̂3. Then φ(p1) = pi1 . (The point here
is that there is a unique pj (namely p1) in with p0 ∨ p1 ∈ P3 and hence
by the properties of automorphisms, and since the map is induced by
a permutation of literals, the same must be true of the images.) Now

repeat for p2 looking for the unique pi2 ∈ P̂1 such that pi1 ∨ pi2 ∈ P̂4.
Clearly φ is a computable permutation of the literals, and hence is a
computable automorphism of L. Since φ induces Φ, we must have that
Φ is a computable automorphism of L(Q). �

We remark that Theorem 6.3 only relies on certain indepence prop-
erties of the pi and boolean combinations of the pi, and has suitable
generalizations, which say that every automorphism induced by a bi-
jection between two sets of c.e. suitably independent generators of Q
is a computable automorphism of L(Q).

One of our goals is to eventually prove that any two perfect thin
classes are automorphic. The following result tells us that any such
automorphism must be complicated. Recall that a function f presents
an automorphism Φ if for all e we have Wf(e) = Φ(We) where here We

denotes the eth c.e. theory.
It is an immediate corollary of the proof of Theorem 6.1 that the

complexity of the presentation of an automorphisms aligns itself with
the complexity of the underlying automorphism of Q.

Corollary 6.4. Suppose that Φ is an automorphism of L(Q) pre-
sentable computably in a. Then Φ is presentable by an automorphism of
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Q computable from a, and conversely. In particular, every computable
automorphism of L(Q) is induced by a computable automorphism of Q.

Proof. We note that if Φ is an automorphism of L(Q) then we can,
in the presentation of Φ, determine its image on a set of generators
{pi | i ∈ ω} and hence determine φ(pi) for the induced map φ, and
hence φ(θ) for all θ ∈ Q. From this one can always compute an index
for the image of the set W under Φ as {φ(θ) : θ ∈ W}. �

Most of the early constructions of automorphisms of the lattice of c.e.
sets were effective in the sense that we could take f to be computable.
Soare [28] revealed that this is not always the case by showing that
all maximal sets were automorphic, yet there were maximal sets that
were not automorphic by any ∆2 automorphism. (That is, f could be
chosen to be computable from the halting problem.) Despite the fact
that our methods are very different, we can establish analogous results
here for maximal theories, and, indeed, for Martin Pour-El theories.

Theorem 6.5. There are two Martin–Pour-El theories that are not ∆0
2

automorphic.

Proof. We first recall how to construct a Martin–Pour-El theory
T = 〈{pi : i ∈ A} ∪ {¬pj : j ∈ B}〉 by sketching the proof from
Downey [9]. For this proof, we let We denote the e-th c.e. theory, which
is thought of as the e-th collection of formulas of the form ∨i∈F εipi,
where, as usual, εipi is one of pi or ¬pi. We aim to meet the following
set of requirements for all e ∈ N :

Re : ∃θ(〈T, θ〉 = 〈T,We〉).
Let d0[s] < d1[s] < d2[s] < . . . be a list of the literals {pi : i 6∈ A∪B[s]}.

ordered by least index.
To ensure our theory is perfect we meet the additional requirements:

Ne : lims de[s] exists.

To meet Re we construct a finite set of formulas Qe = limsQe[s] such
that x =

∧
Qe is the witness for Re. The argument is finite injury. The

basic action is simple:
If we see some least y ∈ We[s] such that y 6∈ 〈T [s] ∪ Qe[s]〉 then we

say Re requires attention via y at stage s+ 1. For the least e for which
Re requires attention we say Re receives attention and we define the
set

L(e, y)[s+ 1] = {¬εidi[s] | εidi[s] occurs in y and i ≥ e}.
We then set T [s+1] = 〈T [s]∪L(e, y)[s+1]〉 and letQe[s+1] = Qe[s]∪{y}.
The result of this action is that if R requires attention via y at stage
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s + 1 then A[s + 1] ` y ↔ z, where z is a Boolean combination of
{d0[s], d1[s], . . . de−1[s]} (see Lemma 6.6 below). Since lims di[s] = di
can be shown to exist for all i by induction, once Re has priority and
the limits have been reached for i < e, Re can only require attention
22e times because each time it requires attention a new Boolean com-
bination of {d0, d1, . . . de−1} is logically equivalent to y.

Lemma 6.6. If Re receives attention at stage s + 1 via y then there
exists a Boolean combination z of

{d0[s], d1[s], . . . , de−1[s]} = {d0[s+ 1], d1[s+ 1], . . . , de−1[s+ 1]}
such that T [s+ 1] ` y ↔ z.

Proof. Write y as a disjunction in the following way:∨
i<e

εidi[s] ∨
∨
i≥e

εidi[s] ∨
∨

εipi∈T [s]

εipi ∨
∨

¬εipi∈T [s]

εipi.

Thus y has the form z ∨ x∨m∨ n. Since ` z → y it suffices to show
that T [s+ 1] ` y → z. Now if m 6= 0 then y ∈ T [s] since ` m→ y and
m ∈ T [s]. But then Re does not require attention via y and therefore
we must have m = 0. Now ¬n ∈ T [s + 1] by definition of n and
¬x ∈ T [s + 1] by construction and so we must have T [s + 1] ` y → z
as desired. �

The goal is to construct two Martin-Pour-El theories T and T̂ which
are not ∆0

2 automorphic. For a c.e. theory H, consider set

H∗ = {e : We ⊆ H}.

If T and T̂ are ∆0
2 automorphic, then T ∗ ≤T T̂ ∗ ⊕ ∅′. Thus it suffices

to construct T and T̂ so that T̂ ∗ ≤ ∅′ yet T ∗ 6≤ ∅′. Let T̂ be any low

Martin–Pour-El theory (Downey [9]). Then T̂ ∗ ≤T T̂ ′ ≤T ∅′. Thus it
suffices to construct T , Martin–Pour-El and meet the requirements Se
below.

Se : ¬∀i[T ∗(i) = lim
s
ϕe(i, s)],

where ϕe denotes the e-th partial computable binary function. (In
fact we can suppose that ϕe(i, s) is primitive computable.) For the
requirement e the witness Hi is chosen by the recursion theorem, and
we need to ensure that if the limit ϕe(i) = lims ϕe(i, s) exists, then it is
different from T ∗(i). Hence we say that Se requires attention at stage
s, if

T ∗(i)[s] = ϕe(i, s).

If Se requires attention and ϕe(i, s) = 0, let Ts+1 = 〈Ts ∪ Hi[s]〉. If
ϕe(i, s) = 0, choose a fresh dj[s] with j ≥ s, and put dj[s] into Hi[s+1]
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keeping it out of Ts′ for s′ ≥ s with priority e, while ϕe(i, s
′) = 1.

Note that once Si receives attention j times, then we will never choose
dj[s] as a witness to be put into Hi. Hence, in the same way, this will
only injure the Ni finitely often, and is completely compatible with the
Martin–Pour-El construction above. �

The proof above was suggested by the referee, and it replaced the
original direct argument. Jockusch has asked whether a Martin–Pour-
El theory of high degree can be ∆0

2-automorphic to one of low degree.

7. An invariant class for Aut(L(Q))

In this section we will give an analogue in L(Q) to Soare’s and Mar-
tin’s theorems for the lattice of c.e. sets E , namely an invariant class
defined by an orbit of “maximal objects” in the automorphism group
of L(Q). We first remind the reader of some definitions.

Definition 7.1. A strong array is a sequence of disjoint finite sets
{Fn}n∈N such that there is a computable function f with Fn = Df(n),
where Dy denotes the finite set with canonical index y.

Further a strong array is a very strong array if the following addi-
tional properties also hold:

(1)
⋃
n∈N Fn = N,

(2) 0 < |Fn| < |Fn+1| for all n ∈ N.

Definition 7.2. A c.e. set A is array noncomputable (anc) relative to
a very strong array F = {Fn}n∈N iff

(∀e)(∃n)(We ∩ Fn = A ∩ Fn).

Then a c.e. degree a is array noncomputable (relative to F) if there
is a c.e. set A ∈ a such that A is array noncomputable (relative to F).

Downey, Jockusch and Stob, [12] showed that if F is a very strong
array and a contains a c.e. set which is anc relative to some very strong
array, then a also contains one which is anc relative to F . That is, the
array does not matter. In [12], those authors demonstrated that the anc
degrees formed a class containing all non-low2 c.e. degrees, containing
some, but not all low degrees and are closed upwards. The interest in
anc degrees come from the fact that a number of constructions from
the literature result in objects of exactly anc degrees. For instance, 4-
tuples of c.e. sets A1, A2, B1, B2 with the property that every separating
set of A1 and A2 is Turing incomparable with every separating set of
B1 and B2 have the property that A1 ⊕A2 ⊕B1 ⊕B2 is of anc degree.
Furthermore, if a is anc then a contains a 4-tuple of this form. A
number of further results on anc degrees can be found in [12] and [13].
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Of relevance to us here are the following results from Downey, Jockusch
and Stob, [12].

Theorem 7.3 (Downey, Jockusch and Stob). If M is a Martin–Pour-
El theory, then M has anc degree.

Theorem 7.4 (Downey, Jockusch and Stob). Each anc degree contains
a Martin–Pour-El theory.

Corollary 7.5. Every anc degree contains a perfect maximal theory.

Proof. Martin Pour-El theories are maximal and perfect. �

As an analog with E , an invariant class of c.e. degrees C is one where

there is a set of c.e. theories Ĉ closed under automorphisms of L(Q)
such that

C = {deg(C) | C ∈ Ĉ}.
In the lattice of computably enumerable sets, Martin [21] established

that the high c.e. degrees were invariant since the were precisely the
degrees of the maximal (and hyperhypersimple) sets, which are de-
finable in E . We would like to demonstrate that the anc degrees are
an invariant class for L(Q). The theorems above are quite suggestive
of this via maximal theories. We have seen that being Martin–Pour-
El is not invariant under automorphisms, but maximality is. Being
a Martin–Pour-El theory depends upon being well-generated, but in
the topological setting of perfect thin Π0

1-classes we can dispense with
the property of being well-generated and prove the following theorem,
which improves Theorem 7.3 and shows that the anc degrees are the
analog of the high degrees for L(Q).

Theorem 7.6. Every perfect thin Π0
1 class has anc degree.

Proof. The proof is kind of topological analogue of Theorem 4.9 of
Downey, Jockusch and Stob [12]. The presentation of our proof runs
parallel to their proof.

Let P be a perfect thin Π0
1 class. Then P = [T ] for some computable

tree T. In this and the next theorem, we find that splitting nodes play
an important role.

Definition 7.7. Define split(P ) to be the set of nodes in 2<ω,

{σ : Both σ ∗ 0 and σ ∗ 1 have extensions in P}.
Since P is perfect, there is an unique isomorphism φP taking (2<ω,≺)
to (split(P ),≺) with

σ1 ≤L σ2 iff φS(σ1) ≤L φS(σ2).



26 CHOLAK, COLES, DOWNEY, AND HERRMANN

We order the nodes of 2<ω by first length then by lexicographic order,
and then this ordering induces a corresponding ordering of (split(P ),≺).

Since split(P ) is a co-c.e. set of strings, we can only approximate the
canonical map φP by a computable approximation lims φP,s which we
will denote by φs to save on notation.

(We want to be carefully with our approximation of T such that
if φs(ν) exists then φt(ν) exists for all t ≥ s. Choose a computable

function h sufficiently large, that at stage s, if we define T̂ [0] = 2<ω

and

T̂ [s] = {σ ∈ T : ∃γ ∈ T ∧ |γ| = h(s) ∧ σ � γ},
then T̂ [s] contains φs(ν) for all ν ∈ 2<ω with |ν| ≤ 2s+1. T̂ [s] is the
approximation, at stage s, to the initial segments of members of P .)

Since the anc degrees are closed upwards, it is enough to construct
a set A of anc degree with A ≤T P. Let {Fn}n∈N be a given very
strong array. We suppose that |Fn| = n + 1. We have the following
requirements for all e ∈ ω :

Re : ∃n (We ∩ Fn = A ∩ Fn).

Here We denotes the e-the c.e. set. We reserve F〈e,0〉, F〈e,1〉, . . . for meet-
ing requirement Re and define the following computable function:

g(e, 0) = 21+|F〈e,1〉|

g(e, i) = 2g(e,i−1)+1+|F〈e,i+1〉|

To ensure that A ≤T P we insist that x ∈ A[s+1]−A[s] and x ∈ F〈e,i〉
implies that φs(ν) 6= φs+1(ν) for some ν ∈ 2<ω with |ν| ≤ g(e, i). Notice
that this ensures that A ≤T P since we can generate the φs(ν) from the
extendible nodes of T . For the construction below, and its verification,
the reader should note that g(e, i) is far in excess of |We ∩ F〈e,i〉|.
The Construction.

At stage 0, A[0] = ∅.
At stage s + 1 for every e and i, if We[s] ∩ F〈e,i〉 6= A[s] ∩ F〈e,i〉

and φs(ν) 6= φs+1(ν) for some ν with |ν| ≤ g(e, i), enumerate all of
We[s+ 1] ∩ F〈e,i〉 into A[s+ 1].
The Verification.

We now demonstrate that every requirement Re is satisfied. Suppose
that Re is the requirement with least e that is not satisfied. That
means that We ∩ Fn 6= A ∩ Fn for all n. We show how to construct
a Π0

1 class Q ⊆ P which contradicts the thinness property of P. In
fact we do this in the setting of L(2<ω)-c.e. filters and construct a
nonprincipal extension V of M the 2<ω-filter consisting of strings with
no c.e. extension in P .
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The splitting nodes play big part. Let s0 be a stage where φs(σ) = φ(σ)
for all strings σ with |σ| = g(e, 0). We define V from the parameter s0.
V is defined slowly, predicated on the failure of us meeting Re.

Initially, we wait for a stage s1 > s0 where We∩F〈e,0〉 6= A∩F〈e,0〉[s1].
At this stage put σ(0, s1) = φs1(0

g(e,0)) ∗ 1 into V [s1 + 1], and define
a parameter τ(0, s1) = 0g(e,0). The reader should note that by the

properties of s0, σ0,s1 is not a member of T̂ .
We do nothing until a stage s2 occurs whereWe∩F〈e,1〉 6= A∩F〈e,1〉[s2].

At such a stage s2 we put σ(1, s2) = φs2(0
g(e,1)) ∗ 1 into V , setting

τ(1, s2) = 0g(e,1)−g(e,0).
Now at stage t > s2, while We ∩F〈e,1〉 6= A∩F〈e,1〉[s2], we treat s2 as

the same as s0 and continue similarly for g(e, 2), etc. Note that if no
changes occur to φs(ν) for |ν| ≤ g(e, 1) after stage s2, then additionally
σ(1, s2) 6∈ 〈M ∪{σ0,s1}〉. And we are well on the way to defining a non-
finite extension of M .

The only problem is that perhaps we really do get a permission from

T̂ below max|ν|≤g(e,1) φs(ν). At the stage t where such a permission oc-
curs, our action is to move right. That is, as given in the construction,
we would correct We∩F〈e,1〉 = A∩F〈e,1〉[t], and put τ(0, t) = 0g(e,0)−1∗1.
At the next stage t2 where We ∩ F〈e,1〉 = A ∩ F〈e,1〉[t2], we would

use the string σ(1, t2) = φt2(τ(0, t) ∗ 0g(e,1)−g(e,0)) ∗ 1 (which equals
φt2(τ(0, t) ∗ τ(1, t)) ∗ 1, ) in place of σ(1, s2).

More generally, we will have a set of strings τ(i, s) whose initial value
is 0g(e,i)−g(e,i−1). Each time permitting allows us to correct A ∩ F〈e,i+1〉,
we will move τ(e, i) one string to the right, amongst the string ν of
length g(e, i), and additionally initialize τ(e, j) for j > i. At the next
stage u that we have inequality We ∩ F〈e,i〉 6= A ∩ F〈e,i〉[u], we put
σ(i, u) = φu(τ(0, u) ∗ τ(1, u) ∗ · · · τ(i, u) ∗ 1) into V .

The key point is that for each i, lims τ(i, s) and lims σ(i, s) both exist.
This is because we only define σ(i, s) in response to We on F〈e,i〉 and

only change this in response to T̂ permission. Since the assumption
is that we fail to meet Re, we cannot get 〈e, i〉 permission, and hence
will only need to redefine the τ and σ at most 〈e, i〉 − 1 times. By
construction, we see that the sequence σ(i) = lims σ(i, s) is a sequence
independent over M and hence V is not a principal extension of M . �

So from part 2 of Theorems 4.2 and 5.4 (the definability of the prop-
erties of thinness and perfection), Theorem 7.6 and Corollary 7.5 above
we have the following.

Theorem 7.8. The anc degrees form an invariant class for the auto-
morphism group of L(Q).
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This is the analogue of Martin’s theorem for E . We are now in a
position to establish an analogue of Soare’s theorem for E .

Theorem 7.9. Any two perfect thin Π0
1 classes are automorphic.

Proof. Let S and T be two perfect thin filters in L(2<ω). Let PS = {x ∈ 2ω : ∀n(x � n 6∈ S}
denote S’s associated Π0

1 class, and similarly PT . Let {σi : i ∈ ω} and
{τi : i ∈ ω} be two 1-1 computable enumerations of computably enu-
merable bases of S and T respectively, given via Lemma 3.7.

Any computable permutation p of ω induces an isomorphism from
L(S, ↓) to L(T, ↓) described below:

Let F ∈ L(S, ↓). Let B be a basis of F . Then B = B1 ∪B2 with B1

and B2 the disjoint sets described via

B1 = {θ ∈ B : (∃s)[θ ≺ σs]},

B2 = {θ ∈ B : (∃s)[σs � θ]}.
(Note that disjointness follows by transitivity of ≺ and the fact that B
is a basis.)

Note that F is also generated by the basis B′ = B′1 ∪B′2 where,

B′1 = {σs : (∃θ ∈ B1)[θ ≺ σs]}, and,

B′2 = {σsν : (∃θ ∈ B2)[σs � θ ∧ θ = σsν]}.
Now we will map B to B̂ where

B̂ = B̂1 ∪ B̂2, with

B̂1 = {τp(s) : σs ∈ B′1}, and,

B̂2 = {τp(s)ν : σsν ∈ B′2}.

The image of F is then the filter F̂ generated by B̂. Because p
is a permutation, in a similar fashion, one can see that this map Γ is
additionally onto, and hence is an isomorphism from L(S, ↓) to L(T, ↓).
Since F̂ is found effectively from F this is an computable isomorphism.

Note that the computable isomorphism above is induced by a com-
putable map from the basis {σi : i ∈ ω} to {τi : i ∈ ω} given by
σi 7→ τp(i). In the remainder of the proof, we will show how to define
the computable permutation p(i) so that the the isomorphism can be
extended to an an automorphism of L(2<ω).

From the previous theorem, we will have the splitting nodes of PS
being represented by φS(ν) and similarly ΦT (ν) (Definition 7.7.) That
is split(PS) = {φS(ν) : ν ∈ 2<ω}. For f ∈ 2ω, let

φS(f) = ∪{φS(ν) : ν ≺ f}.
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Thus φS and, similarly, φT defines a natural homomorphism from 2ω

to S (resp. T ).
The automorphism Φ of L(2ω) taking Ps to PT is induced by a bi-

jection ∆ : 2ω 7→ 2ω. The map ∆ is determined by the conditions that
∆(φS(f)) = φT (f) and ∆(σif) = τp(i)f , where p is is a computable
permutation of ω. These conditions are not in conflict since for all f
and i, σi 6≺ φS(f) and τi 6≺ φT (f).

It is easy to see that ∆ induces an automorphism of 2ω taking PS to
PT provided that

• for each Π0
1 class P , ∆(P ) and ∆−1(P ) are Π0

1 classes.

We must define the permutation p to make this so.
The principal condition needed is that p is a computable permutation

of ω with

(∀α ∈ 2<ω)(∃s0)(∀s ≥ s0)[φS(α) � σs iff φT (α) � τ(p(s))].

Assume that p has the above property.

Lemma 7.10. If Q is clopen, then ∆(Q) is clopen.

Proof. It suffices to prove this when Q = I(σ) for some string σ. We
may assume, without loss of generality, that σ = σî σ

′ for some i and
σ′, or σ = φS(ν) for some ν. If σ = σî σ then ∆(I(σ)) = I(τp(i)̂ σ).
The second case is that σ = φS(ν).

By the above property of p, for almost all s

φS(ν) � σs ↔ φT (ν) � τp(s).

There is a finite collection H of indices such that for all i ∈ H,
φS(ν) 6� σp−1(i), yet φT (ν) � τi, and similarly a finite collection J
such that for all j ∈ J , φS(ν) � σj yet φT (ν) 6� τp(j). This allows us to
define

∆(I(φS(ν)) = (I(φT (ν)) ∪ (∪j∈JI(τp(j)))) ∩ (∩i∈HI(τi)).

�

Lemma 7.11. If P is a Π0
1 class then so are ∆(P ), and ∆−1(P ).

Proof. Suppose that P is a Π0
1 class. We need to prove that ∆(P ) is a

Π0
1 class. As S is thin, P ∩ S = S ∩Q for some clopen Q. We note

(P ∩ S) ∪ (P ∩ S) = P = (P ∩Q) ∪ (P ∩Q) = (S ∩Q) ∪ (P ∩Q).

But S∩Q = P∩S, and hence P∩S = P∩Q (since (P∩E)∩(P∩E) = ∅,
for any E). Therefore P ∩ S is a Π0

1 class, as it equals P ∩Q and Q is
clopen. To see that ∆(P ) is a Π0

1 class, note that ∆(P ) = ∆(P∩S)∪∆(P∩S).
This equals ∆(S ∩Q)∪∆(P ∩Q). ∆(S ∩Q) = T ∩∆(Q) which is a Π0

1
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class as Q is clopen, and the image of a clopen set is clopen. Finally,
∆(P ∩Q), is a Π0

1 class since P ∩Q is a Π0
1 class where every element

is of the form σif for some i, and is hence mapped to τp(i)f , and this
set will form a Π0

1 class. The proof for ∆−1 is symmetric. �

That almost concludes the proof of the Theorem. It remains to
prove that there is a permutation p which is computable and satisfies
the hypothesis above.

We have already noted that split(G) is a Π0
1 set for G ∈ {S, T}. Let

splits(G) be strings which appear to be splits on G at stage s. Define
φs,S(ν) be the unique computable isomorphism taking taking (2<ω,≺)
to (splits(S),≺) with

σ1 ≤L σ2 iff φs,S(σ1) ≤L φs,S(σ2),

(and similarly there is an unique φs,T ). Then lims φs,S(α) = φS(α) (and
similarly for T ).

Now we will define p stagewise using φs,S and φs,T . At an even stage
e, find the least i ≤ e such that σi is not in the domain of pe−1 (if no such
i exists do nothing). Since lims φs,S(α) = φS(α), lims φs,T (α) = φT (α)
and {s : φT (α) ≺ τs} is infinite (otherwise T is not thin), there is a t
and j such that τj is not in the range of pe−1 and for all α, φt,S(α) � σi
iff φt,T (α) � τj. Let p(i) = j. At odd stages we will take similar action
ensuring p is onto. It is easy to see this meets the hypothesis of p. �

Corollary 7.12. Any two perfect thin Π0
1 classes are ∆3-automorphic.

Proof. It is enough to show that the complexity of the automorphism
we constructed in the above proof is ∆3. In particular, our goal is to
find a ∆3 function f such that if We is a c.e. filter then Φ(We) = Wf(e).
The value of Φ(We) depends on whether We ⊆ S or not. Determining
which of these cases hold is ∆3. (Inclusion for c.e. sets is a complete
Π2 relation. So inclusion for c.e. filters is a complete Π2 relation.) If
We ⊆ S then, as we noted above, Φ(We) can be found effectively from
the map p. Otherwise, by carefully examining the last two lemmas, we
can see that Φ(We) can be found effectively in 0′′. �

8. Remarks

One can look more generally at automorphisms of the classes. As we
saw in Theorem 4.4, for any ∆0

2 Boolean algebra, B, there is a theory
F such that Q/F ∼= B, where F corresponds to a thin Π1

0-class. We
have see that if B is an atomless Boolean algebra then this is enough
to guarantee an orbit. Are there any other such B ?
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The strongest theorem would be: if B1 ∼= B2 then F1 is automorphic
to F2, (where Bi corresponds to Fi as above). This would require sig-
nificant technology since there are computable Boolean algebras that
are not even arithmetically isomorphic. This is even true of rank 1
boolean algebras (Downey-Jockusch [11]). A good test case is to con-
sider whether when B1 and B2 are computable copies of the Boolean
algebra of finite and cofinite sets, are B1 and B2 automorphic3.

The proof technique from Theorem 7.6 is enough to establish the
following:

Theorem 8.1. Suppose that S and T are thin 2<ω c.e. filters with
L(S, ↑) isomorphic to L(T, ↑). Let R be a computable tree representing
the ∆0

2 boolean algebra isomorphic to L(S, ↑). Let φS be any isomor-
phism from split(PR) to split(PS). And similarly we can define φT .
Again let σi and τi denote bases for S and T , respectively. Suppose
that p is any permutation such that the map σi 7→ τp(i) induces an
isomorphism from L(S, ↓) to L(T, ↓).

If p also satisfies

(∀α ∈ 2<ω)(∃s0)(∀s ≥ s0)[φS(α) � σs iff φT (α) � τ(p(s))]

then S and T are automorphic.

Another area of interest is the lattice of subfilters of a fixed ultrafilter.
Here, =∗ is a congruence. We already know this is a rich object since
we can effectively embed E∗ here. (Downey [8, 9])
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