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Abstract
Bailey, C. and R. Downey, Tabular degrees in a-recursion theory, Annals of Pure and
‘Applied Logic 55 (1992) 205-236. '

We introduce several generalizations of the truth-table and weak-truth-table reducibilities to
a-recursion theory. A number of examples are given of theorems that lift from w-recursion
theory, and of theorems that do not. In particular it is shown that the regular sets theorem fails
and that not all natural generalizations of wit are the same.

0. Introduction

The study of strong reducibilities in w-recursion theory began with the study of
w-recursion theory. However, a-recursion theory leapt straight into the study of
Turing reducibility, bypassing all study of strong reducibilities in the generalized
context. This paper is a first step to establish strong reducibilities in a-recursion
theory, in that we develop definitions of a-truth-table, and several versions of
a-weak-truth-table reducibilities.

These definitions do extend the relevant definitions on @, and some of them
behave in similar ways. But not always; for example, weak-truth-table generalizes
in several distinct ways, but the useful property of w-wtt—that permitting gives
rise to it—does not apply to all of the generalizations.

Several problems new to these reducibilities quickly become apparent—the
failure of a regular sets theorem; the fact that the power set function is rarely a
total recursive function; and that the blocking machinery does not interact readily
with the reducibilities (a search over a block is a-re, but not generally
@-recursive).

We illustrate the above problems with examples that also give indications of
how some theorems lift from o to a. However, some very basic theorems do not,
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=4 {or instance Nerode’s theorem that
A<, B iff thereis an e such that VX e” is total and e? = A

makes heavy use of compactness, and indications are that it is necessary to use it.
This means it must fail for many «.

'This paper is primarily to establish definitions and show how they work. In
later papers, we wiil show how the strong reducibilities may be used, as in
w-recursion theory, to give information about Turing degrees.

For the reader’s convenience, we recall some basic definitions and notation of
a-recursion theory.

Definition 0.1. « is admissible iff every total X,-function f, with domain an
element of L,, has rng(f) € L,..

Definition 0.2.
P& =the 2 -projectum

= the least é < & for which there is a total, injective, ,-function from « into &
= the greatest § < @, such that every A < y < é which is 3, is an element of L.

Definition 0.3. The X,-cardinality of a subclass of (L,, D) is

|x|~2 “the least 8 < & for which there is a total Z2-bijection from X into §.

Definition 0.4.
k2 = the ZP.cofinality
=the greatest 6 <@, such that VX e L, |[X|"° <, and f: X —>
is a total Z2-function, then rng(f) € L,,.

If D =4 then it may be omitted or replaced by a.
These definitions may differ slightly from those usually used, but they are easily
shown to be equivalent.

1. Definitions

‘Throughout the remainder of this paper we will assume « is any admissible
ordinal. .

In this section we will introduce a number of definitions, firstly for truth-table
reducibility, and then for a variety of weak-truth-table reducibilitics. Some results
will be shown relating these definitions, and some basic facts about these
definitions will be proven.
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%ﬁon 1.1. Let A, B be subsets of L,. Then A=<, B (4 is a-truth-table
reducible to B) iff e VK e L,

(1) KcA iff 3M, M, Mic BAM;NB=0 A {({My, My}, 0) € D00,
(2) KNA=@iff IM;, M, MicBAM,NB =0 A {{M,, Mp), 1) € D(yx),
(3 U{mDpyxnl | K'€e Ly AK' = K} =Ly XL,
4 YM, M, MiOM,=8 A ((M, M), 0) € D(oyx)

= ((My, My), 1) ¢ Doy

- This definition is meant to describe the situation in w where elements of A are
determined by Boolean polynomials with input information from B. In that case,
we would naturally take Dy, to be some set of possible inputs and results of a
recursively determined polynomial. Since, on @, n— $(n) is recursive, this gives
Dy xy recursively.

However, in the more general context where « may not be closed under
powerset (or if it is, then S+ p(B) is a 0’-function), we cannot do this, and so
need to limit our attention to recursively describable information. Another
property of w that fails in general is K6nig’s lemma, and hence the usual proof of
Nerode’s theorem that

A<, B iff 3eVX ({e}* is total A {e}® = x.)

fails. In fact, we cannot even prove the left-to-right implication without additional
assumptions.

Definition 1.2, « is 2,-y-admissible iff « <y and there is no A <« for which
there exists a function f : A— « cofinally in &, which is X7,

Hence “« is admissible” means the same as “a is 2-a-admissible”.

Proposition 1.3. If n=1 and « is 3, -y-admissible, and A <, B then there is
an e such that

() VX caif Xis XY then {e}” is total,

(ii) {e}” is total, and {e}® = y,. where A* = {{K, 1) | K<A}U{(K,0) | K1¥
A =@}

Proof. Let A<, B via e. Define ¢’ such that

0 iffAM,, My ((My, My), i} €Dy AMy= X A M, N X =0,
1 iff3M, M, Mc X AMyN X =

AY(A), Ay) € B[ Doy | (Mi N Ay =8 v MyN A #8),
T otherwise.

{e¥(z )=
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It is clear that {e'}? =A*, and {e'}® is total. Also, if X c & is =7, then we
consider the function which searches through 7:[ D .}x,] for a witness that either
Mé¢XorM;NXF@is A ..

Since « is X, ,-y-admissible, this function has bounded range.

Now « = p} is a y-cardinal, and hence the range of the function intersected
with X is in L,, and likewise the range of the function intersected with e\ X is in
L,.

This gives us witnesses to the case {e'}*(z,))=1. O

Corollary 1.4. Let « be an L-cardinal, and A <, B. Then there is an e such that
(1) VX {e}* is total,
(2) {e}?=A* O

The converse of this theorem appears to require some degree of a-
compactness, although how much is unclear.

There are several reducibilities which are weaker than a-tt. We first introduce
the ‘most’ natural one of these, which is very readily seen to be a weakening of
the tt-condition.

({My, M), i) e Dyeyixy-

Definition 1.5, Let A, B be subsets of L,. Then A =<__,,. B (A is a-weakly-truth-
table reducible to B) iff de VK e L,

(1) KcA. if 3M, M, M,cBAM,NB=§
AMy, My} =Dy A Ly B P (K, My, M),
2) KNA=8 iff 3IM, M, M,cBAM,NB=§
A{M,, My} Doy A Lo E P (K, My, M)

where e = {e,, €, €;) and P,, denotes the e;th Z{-formula.

Di.ix) is meant to represent not only the fact that computations have
recursive use, but also that we can collect together all the information that a
computation might possibly use quickly (i.e., recursively).

We can further weaken this definition by only requiring that the use function be
bounded, but the bounding function may be arbitrarily complex.

Definition 1.6. Let A, B be subsets of L,. Then A <, ,,,, B {4 is a-mildly-truth-
table reducible to B) iff 3e = {ey, €1, €,) VK € L,,

(1) KcA iff 3M, M, MicBAM,NB=§

AMy, My Ly A Lo F @ (K, My, M),
) KnA=¢ iff IM, M, M,\cBAM,NB=§

AMy, My € Liayao A Lo E (K, My, My).
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=== remark that for certain B it is possible to have {¢,} be a trivial function and
to have

A<,..B iff A<,B.

For instance if pf < & and B < pf just take {eo}(K) = p%.

However, if B is regular, then the function {e,}(K) ‘must’ be unbounded in o
(if A is non-recursive), and in fact we will only use this reduction in this context.
‘This also means that this reducibility does not extend to inadmissible ordinals,
whereas <, is suitable for such extension.

An intermediate reducibility <., is of some interest—the improvement is to
locally bound computations rather than globally as in the case of < ..

Definition 1.7. Let 4, B be subsets of L,. Then A<, B iff 3eVKeL,

(1) KcA iff 3z, M, M, MicBAM,NB=§

AMy, Mo Lo A Lo B P (2, K, My, M)

2) KNA=9 iff 3z, M\, M\, M\ cBAM,NB=§

AM, Myc Liyao A Lo E P, (2, K, My, M)

(3) FoVM,, MyeLiyx (MiNM,=8A3BLsk3z B,(z, K, My, M)

> M, MyeL, AL, F3z D.(z, K, My, M,)
where @,, is the ¢;th Aj-formula.

That this, and thé other reducibilities, are transitive, is an easy exercise for the
reader. There are several connections between reducibilities which are immedi-
ately apparent.

Proposition 1.8. Let A, B be subsets of L,,. Then

1) A=s,4B > As_ ..Band A<, ,B,

2 A<, wB > A<,.uB

(3 As_4 B => A<,_.B.

Proof. (1) Let A<, B via e. Define ¢’ = (e}, e{, e3) so that
Diyixy={M;| i €23M {{M;, M), i) € D( 0}
U{M,|3ie23M ({M, M,),i)e Dyao}
and
D..(K, M,, Mz) & ((M, M), 0)e Dioveirs
K, M, My) & ((My, Mo}, 1) € Diyxy.

Then A <, B viae’.
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=48 To show A <, B, take ¢’ = (e}, ¢}, e;) where e, e} are as above. &} is such
that {e'}HK)=L-rk(Dyx)) and then o=L-rk(Dyy«k))+1 is an appropriate
bound.
(2) Given A<,,B via e= (e, €1, €;) t0 get A<, ..« B take {ef}(K)=L-
tk(Diyxy) and e’ = (e, 1, €2).
(3) Omit ¢. O

Under certain additional conditions, there are other connections between these
reducibilities.

Proposition 1.9. Let L, F Power Set Axiom, and A<, . B. Then A<, B.

Proof. First suppose « > . It suffices to find a suitable bound ¢ for all
computations. Let A<, ..B via ¢, and KeL,, and let 8 be least such that
K,eeLg.

Let x > B be the next a-cardinal greater than S and let y be the least 3,-stable
ordinal strictly greater than x. Now, noting the ¢, Ke L, and L. <, L_, we have
{e0}(K) € L, hence p({es}(K)) € L., and is an element of L,,.

Thus if L,E3z (P, (z, K, M, My) v D, (2, K, My, M,)) and M, M, < Lo
then M;, MyelL,, KelL,, ecL, and so

L, F3z (®,(z, K, M;, Mp) v &.(z, K, M, M,)).
This means ¥y is ::1 suitable bound.
If « = w, then since w is closed under powerset, and p¥ = w,

SEUM, M) |3z (D.,(z, K, My, M) v ®.(z, K, My, Ms)) A (M; N M, =)}
is an a-finite subset of H({e}(X)?). _
By admissibility, the function f:S— « given by
F({My, My)) = the least witness z to {M;, M, e S

has bounded range, say n is a bound. Then » is the bound required by our
definition. O

Proposition 1.10. Let pf=a, and A<, o B. Then A<, B.

Proof. Suppose A <., B via e. Define e’ = (e}, e{, e}) such that {e}}(K)=L-
l'k(D{EB}(K)) and fori= 1, 2

Dz, K, My, M) © ({My, My) € Do) v (2 s a witness to @, (K, My, My)).
To obtain the required bound g, note that |D . ;x]"* < pf, and so the set
SE(My, My) |3z (Bi(z, K, My, M) v Dlz, K, My, My)) A (M, N M, = §)}
is a 2;-subset of a small set, and so is a-finite. Let f :S— & be defined by
f({M,, M,)) = least witness z to {M;, M,) €.
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&Emen, by admissibility, f has range bounded by L, say. ¢ is the required
bound. O

The converse of this theorem fails, as we will later show (see Section 4),

The relationship between =<, and =<_,; when p{< a is unclear, since if
D .yx is a large set, the ‘time’ taken to find the appropriate witness could well
be unbounded in a.

However, this proof does suggest a different restraint which we might impose
upon reducibilities, and that is bounding the size of the set Dy, i-e., if x is
either an a-cardinal or «, and r either tt or a-wtt, then we could define <, as
being the same as =, with the additional requirement that |D{e}(x)| *< K.

The following facts are now immediate.

1) x<xandA<, B > A<,.B
(2) A= B = As,B) > (A<, B > Asx_,B)
3 A<, B > As,34B by the same proof as the last proposition.

We will not continue to investigate these reducibilities here.
A further alternative is relativizing the reducibilities. This is perhaps most
interesting for <

Definition 1.11. Let A, B, D c L,. We say that A <_, 5, B iff
(1) A=_;:B,
(2) the function K+ o is total, and D-recursive.

This notion is closely related to the reducibilities so far introduced as the
following propositions show.

Proposition 1.12. Let D, <,D, and A<,4.p B. Then A <., B.
Proof. Immediate. O

As a consequence of this proposition we will write A <, 4.4B where d is an
a-T-degree.

Proposition 1.13. Let A<_;B. Then A<_ ;. B.

Proof. Let A=<, B via ¢, and let f:L,— & be the total function bounding
computations. It suffices to show that some such f'=<__,0'.
Notice that o is a bound on computations such that

Ke La, iff VMI, Mzg L{e)(K) =z (@e'(z, K, Ml’ Mz) A @eZ(z, K, M]_, Mz))
= Jze L, (P.(z, K, My, M) A B,(z, K, My, M,)).
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#-=4his is a Z,-relation R, given more explicitly by
(K,, o) eR iff Ax,y,m({e}(K)=xAy=L.am=L,
AVM;, My Vz (0D, (2, K, My, My) A= D,(z, K, M,, M)
vizem (P,(z, K, My, My) v B, (z, K, M), M>))).
By uniformization there is a total Z,-function f':L,— « such that for all K
(K, f'(K)) € R. Since f' is total, it is in fact A,, and so f'<,,0'. O
Prop.osiﬁon 114, A=, Biff A<,;.B.

Proof. Let A=<, B via e. Define

Dieyay={L|3M, i€2 ({L, M), i) € Dyyx or {{M, L}, i} € Dy},
f(K) = L—rk(D{,}(K)) and

¢e{(z: K: Ml) MZ) iff ((Mlx M2>; 0) € D{e}(K).-

@ez-(z, K, Ml: Mz) iff ((Ml, Mz), 1) ED{e}(K)'

Then f(K) is the desired bound, and f is A,, hence f=<,,, 0. This gives A <_;,.B.
Now let A=<,;B via ¢, and f:L,— a be the recursive bounding function.
Then define e’ by ‘

((M,, Mz)» 0)eDpyxy © My, MyeDy i
and Ly F 3z @, (2, K, M;, M),
({My, M), 1) €Dieyy & My, Mye Dy
and Ly b3z D,(z, K, M), M,).
This provides an a-tt reduction. [
For the readers’ information, we note that if we relax the requirement that the
bounding function be total, then

A<, .wB > A<,..B (C-r is the Z%-version)
and

A sc::'-rntt B $ A "'<“'B’-r B.

With all of these reducibilities, it is natural to ask a reducibility version of
Post’s Probilem, i.e. are there X,-sets M, N such that

(So-t-0)  Soi) # (Saie)
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B
and
(sl)-r) # ("'<"N-r) i ("<“0'-r)'

This problem will be left to the interested reader.
The next theorem is a technical result showing that we need only consider
subsets of « rather than the apparently more general case of subsets of L.

Theorem 1.15. Let Ac L,. Then there is a set B — & such that A and B are
many-one equivalent. Furthermore, if A =W, is a-re, then the function f such that
B =Wy, is total recursive.

Proof. There is a parameter free, total X ,-function 2:L, <> . Let B=h[A]. O
It remains to observe a connection between =, and =<,_,,.
Proposition 1.16. A<, B=>A=<_,B.
Proof. Let A=<, , B via h, a total recursive function, with index e. Then define ¢’
by
Dieryy = {((R[K], 9), 1), ({8, R[K]), 0}}.

This gives the required reduction. O

As a consequénce of the theorem, we may assume that all sets under
consideration are subsets of the ordinals. The next question to address is that of
complete sets.

Theorem 1.17. K% {{x, y) | x € W,} is an a-tt complete re set, i.e., if A is a-re,
then A=, K.

Proof. Let A=W, be a-re. Then, we have

McA if Mx{e}cK
and
MNA=§ iff Mx{e}NK=§.

So define e’ so that

Deyan = {{{M X {e}, 8), 1), {(8, M x {e}), 0)}.

This gives us an a-tt reduction procedure. O

Some notation: Let K denote the canonical subset of « which is a-m-
equivalent to K.

K gives us the top of the re degrees for any of our reducibilities. The next
result is that the A,-sets give us the bottom of the re degrees.
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==8®Theorem 1.18. Let A be A{, and B be any subset of a. Then A<, B.

Proof. Let A be any Af subset of L. Define e’ so that

{{(8,8),1)) IfKcA,
Deeymy = {<(ﬂ @),0)} ifKNA=,
otherwise.

Since A is Af, and « is admissible, A* is also Af, and so {e'} is a well-defined
total recursive function such that A<, B viae'. O

The last of the basic facts about the use of degrees is that the usual join
operation works.

Theorem 1.19. Ler B, C be subsets of L,. Then B<,,B®C=(Bx {0})U
(€ % {1)).

Proof. Thisis clear as B, B®C. 0O

Associated with any reduction procedure A=<,. B we have a pointwise
functional, which we will denote by &%, or just &, when r is given by the context.
By way of example, we show how ®* js defined:
(1 i 3IM,, M, M,cBAM,NB=§
’ A Ml: MZ € D{en}({x}) A @el({x}: Mls Mz);
&I (B;x)=4{ 0 iff IM;, M, MicBAMNB=p
AM,Me D{eo}({x}) A quz({x}: M;, M),
T otherwise.

Associated with this is its approximation at stage o, where we use {e,},({x})
and L k@, or L, F Q..
. Also associated with &, is its use function, defined in the usual way, and
usually denoted by ¢., e.g., for a-wtt the use function ¢, for &, is:

$e(x) = U Dy iy

In the special case that A <., B via e we will also use the notation BE, x EA to
mean ®Y(B;x)=1, and BF,x ¢ A to mean ®X(B;x)=0.

2. Regularity

A fundamental pi‘0perty of subsets of a that is technically important in most
arguments involving a-degrees (for <,) is regularity. We recall the definition.

Definition 2.1. Ac L, is regular iff foral Ke L, KNAeL,.
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#==@> For =<, the Sack’s regular sets theorem guarantees that every a-re degree
contains an a-re regular set. However, this theorem- fails for the stronger
reducibilities we are considering, as the following theorem shows.

Theorem 2.2, Let A<, B and let B be regular. Then A is also regular.

Proof. Let AcL,, and say Ke L,, and let A<, B via e. We wish to show
that ANKeL,. Let v=J {{e}(x) | x € K}.

Since {e} is a total X;-function, and K e L., we know that T exists as an
element of L,. Also, as B is regular, we get BN L. eL,.

Also, for each x € K let

o(x)=pup(AM, My, zeLg MycBNL. AM,NL, =@
A My, My e Ly
A(LgE @, ({x}, My, My) v @.,({x}, My, M,) with witness z)).

Notice that o is total on X, since every element in K is either in or out of A.
Also, ¢ is a X;-function, hence rng o is bounded in a, by ¥ say.
Now we obtain

xeKnNA iff LY':(BML’MZ Mlg(BﬂLr)AMzﬂ(BﬂLr)=ﬁ
AM,Mc Lieayapy A @oy(x, My, Mp)).

Hence KNAelg.,cL,, as required. [

We notice that this proof does not require that A or B be a-re, only that B be
regular, and furthermore it only requires a pointwise version of a-mtt re-
ducibility, rather than the full reducibility.

It is an immediate consequence of this theorem that every a-mtt degree is
completely regular or completely irregular, and hence the same is true for the
stronger reducibilities we have defined.

Corollary 2.3. Let p7'< . Then there are ‘natural’ intermediate o-mtt-degrees.

Proof. Let K={{(x,y) |xeW,}, and let T=, K be regular and a-re. We claim
T is the desired set.
(i) T<,.«K by Theorem 2.2,

(ii) (T=,..K) since T is regular, but if A, =W, is a Z,-mastercode, then
A; < pf is not regular and A, X {a} = K. Therefore K cannot be regular.

(iii) (@ =>,.. T) since if #=,,, T then we get #=,.,T=,K whence #=_K an
absurdity.

Hence 0 <, e T<,me K. 0O
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=8 In light of this corollary, it is natural to ask if there is a greatest @-mtt regular
a-re degree. This question is answered negatively by the following theorem.

Theorem 2.4. Let p§<a, and let D<,_. K, and suppose also that D is x-re and
regular. Then there is a C such that D<,,C, D<,,..C and C is a-re and
regular,

Proof. We construct C to satisfy the requirements
R, AC=<__ .Dviae)

by finding arbitrarily large elements of K to put into C to satisfy these
requireménts. By restraining C we ensure that it is regular. Then D @ C provides
the required set of higher degree.

Before continuing we need to verify that K is sufficiently non-regular.

Definition 2.5. Ac L, is strongly irregular iff Y6, vy 3y'=y+ 8 [y, Y]NA is
irregular.

We note that not every irregular set is strongly irregular, since, for instance,
any 2)-mastercode is irregular, but, since it is bounded, it cannot be strongly
irregular. We shall call such sets weakly irregular,

Lemma 2.6. K is strongly irregular.

Proof. Let A, =W, be a X;-mastercode, and y € @ be any ordinal. Let A' =
{y+ 6| 8eW,} =W, Then W,,,c[7, v+ p;] and is irregular.

Since W.(,, X {e(y)} =K, we obtain the desired result, since m-reductions
preserve the property of strong irregularity. [

Blocking Lemma 2.7. Let x3<p{ be the Z,-cofinality of «. Then there is a
family (B, | 8 < k%) such that

1) L'SJ Bys=1L,,
@ 8<6 > Bs, =By,
(3) [Bs|*<pf.

Proof. Let g:x,—p, be a total, X,, cofinal function, and f:a— p, be a 1-1,
2, total function. Note that g exists since the X%-cofinality of p, = k,. Then
define

B,={e|f(e)<q(y)}. O
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=4 Since (B, | y <k,) is X,, we require a recursive approximation to it, for which
purpose we shall use

B,.={e| L Ef(e) <q(y)}.

Note that
(1) 6,<6; = Bs,.=Bs,.

and
(2) Vy3rVo=tVé=<y Bs,= B;.
We now define the priority function as

v(e, 5) € least y such that ¢ e B,

Now define the length of agreement function by
Ke, o) =sup{x | $...(D.) 1 x=C, 1 x}.

The restraint function r(e, &) will be defined inside the construction, and the
block-restraint functions are given by

F(y, o) =sup{r(e, 0} |ee B, ;}
and

R(y, o) =sup{F(y', 0) | v’ <7¥}.

The construction at stage o + 1

For each e € L, proceed as follows:

If o is the first stage at which (e, o) has attained its current value and there is a
z <{(e, o) such that

() zekK,
(iiy) z>R(y(e, 0), 0),

then put the least such z into C,.,, and set
r(e, o +1) =max{r{e, ¢), z +1, e}.

Otherwise do nothing.
If o is a limit stage, let

Co=tU{C;|r<a} and r(e, 0)={U{r(e, 7)| T<0).
In order to see that the construction succeeds, we show by induction that
(i) C is regular;

(ii) Vel(e, o) converges to a value I(e) < &, and hence R, is satisfied for all e;

(iii) Yy R(y, 0) converges to a value R(y).
We illustrate the proof for ¢ € By, and indicate the changes for arbitrary B,.

We wish to show /(e, ¢) converges to a limit. Suppose not. Then I(e, o) is
unbounded in @. Let y be least such that KNy ¢ L,, and let o be a stage such
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==MMhat
(i) Vé=yg.(5)=¢.(5)

(i) ity =Ugdr+1]then DNy D,
(lll) Y= UBO = Bo.

Let 0,2 o be a stage such that I(e, go) > v, and l(e, oy) is taking this value for
the first time, and there is a z ¢ K, with z <y. Then at stage 0, we put some
z<yinto C. Now the computation cf)e oo(Day) [ 7 is permanent by (ii) above, and
so we have created a permanent disagreement below .

Furthermore by (ii), any later z to go into C below y for sake of R, has to be
smaller, since the length of agreement is smaller, and so only finitely many more
z go into' C below y for the sake of R,. Notice also that for 7= oy,
r(e, T) =r(e, oy).

Hence (e, o) and r(e, o) both go to a limit.

Now, let

-

SoE {e € By | 3 a stage o' = o with I(e, 0’) > v and I(e, o) takes
this value for the first time and 3z € K, with z < y}.

So is a 2-subset of By, and since |By|* < pf, S, is a-finite.

The function e “the least witness o' to e € Sy’ is total on S,, and hence is
bounded in L, by admissibility. Let 7 be an upper bound, then R(0) = R(0, = + 1)
and so R(0, —) goes to a limit.

Now CNR@0)eL,, as follows: Let B be such that B=7 and DN
(U ¢.[R(0)]) < Ds. Consider K N(C\Cz) N R(0). By the reasoning above, this
has X¥-cardinality bounded by the X{-cardinality of B, X w, since after stage
only permanent additions for sake of ¢ € By are made, and only finitely many of
these. But |B, X @{"* < pf, hence the set is a-finite, and we have the result.

For the general case, suppose eeB,, and we have R(6) bounded for
& <y < k,. Let o be a stage such that

(i) Vé<yVr=o0B;,=B,,
(i) Vé<yVr=0R(8)=R(S, 7).

We will assume that y =y’ + 1. Let A be such that K N [R(y"), A] is irregular,
and let ¢’ = o be a stage such that

(1) ¢e,c’r' r A’ = ¢e rly
(i) ifA=mg(¢.A)then DNA' cD,.

The remainder of the argument is exactly the same as the B, case, and so we
obtain Ve € B, R, is satisfied, and CNR(y) € L,.

Notice also that the definition of R is A,—since it is total and 25, hence if y is
a limit, then R(y) is bounded, since y < 2.

The argument that C N R(y) € L, is similar to the successor case.

This proves the theorem. 0O (Theorem 2.4)
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==t is an interesting question as to whether the above theorem holds below every
irregular a-mtt degree. I.e., is it the case that if A is irregular with D<_ _, A

then there is 2 C a-re and regular with D=<_ .. C<, . .A?

We remark that this theorem actually obtains a C such that D=<_,C, and
hence shows that for no given reducibility there is a maximum regular a-re
degree.

The problem caused by the failure of the regular sets theorem is quite severe
but will not be dealt with any further in this paper, and so we shall continue by
generalizing theorems from w-recursion theory to a-recursion theory only for
regular sets, and leave open, for now, the extensions to irregular sets.

The first, and possibly simplest such example is the following theorem, due to
Jockusch when o = @, which shows that even when we have a regular degree, we
need not have a simple set in that degree.

Theorem 2.8. There is a regular a-re non-recursive set A whose w«-tt degree
contains no simple set.

Proof, We wish to construct a set A which is a-re and non-recursive, and
auxiliary sets V, to satisfy the requirements

Q.. A+ W, to make A nonrecursive,
R, A=_,,.W, = V.is a-infinite and V, N W, is a-finite.

The form in which we will use R, is
R, ifA=<, W, viae and W, <,,A via e,
then V, is a-infinite and V, N W, is a-finite.

We assign priorities to the R, by <, _-order, and the priority of Q, immediately
follows that of R,.
Let h: <> o X & be Af, and define, for § < a

Zy={z |y h(2) = (B, ¥)}.
Then

x¢Zs © Ay h(y)=(r.y)Ar+p
and so Zg is _Ai”. Let

Zeg=\Uy<pZ, and Zog=U,npZ,.

Z-x(ey Will be used to provide witnesses for R,.

At any stage o, having built A, so far, and attacking requirement e we define
A=A, UZy,, and use A} instead of A,. This will ensure that lower priority
requirements do not interfere with our work for R,.

Q. will be met by a Friedberg—Muchnik style argument—we will find the least
element of Z...,, " W, and put it into A4.
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== Two strategies are followed in attempting to satisfy R.. The first is to try to
destroy W, =<, A via e, and the second is to try and destroy A=<, W, via e,.
The first strategy has us build the auxiliary set V,, such that

X € ‘/e,o & EIMl, Mz M1 QA: AMznA: =ﬂ FAN (Ml, Mz, 1) ED{,z}a({x}).

Ifx e V. ,N W, , because of a pair (M,, M,) then put M, N Z () into A, (and
say that R, received attention under the first strategy). Give no further attention
to R, unless some higher priority requirement later receives attention. If this
never occurs then A and Aj7 agree on M,, and M, (they agree on M, since M, is
put into A,.,, and they agree on M,, as no lower priority requirement puts
anything into M,, and no higher priority requirement ever acts again). Thus we
have g

HMI, Mz M1 cA AMZ NA =ﬂ A (Ml: Mz, 1) ED{ez}({x}) AXE mo

which gives us W, $,.. A via e,.

Now suppose that R, never receives attention under the first strategy after
some stage op, and no higher priority requirement receives attention either.

We now consider the second strategy. R, will receive attention at most twice
under this strategy, so there will be a stage o, > o, so that A NZ oy =AN
Zﬁrk(e)-

For 0= 0, no new elements of V, will be in W,,, and so V,NW,, will be
a-finite. Thus, if we ensure that V, is a-infinite, then R, will be satisfied.

So suppose V, is a-finite, and Weo <ot A Via e,, then the second strategy will
ensure that A £, W,, via e;.

Let

P ()E(z|3KIM, M, Mic AT AMyNAZ=BAzeK
_ A{M,, My, i) € D,y 9} fori=0orl.
We will say that x is an eligible witness for R, at stage o iff

(l) X € Zrk(e)\Ao:
(Il) aml) m; di mc Pe.o(o) A, N Pe,o(o) = ﬁ A (mi: ms, l) € D{el},({x})

A (my < F, 5(1) via information in L,).

At stage g, if x is an eligible witness for R,, we enumerate all elements of
Z:1x(e) Which are used positively in showing m, c P, ,(0) and m, c F. (1), into A.
Then do nothing for R, until we come to a stage 7> ¢ such that m, c W, - and

HKI, K2 Kl c Weg,'r: A Kz N Weo.tz ﬁ A (Kl, Kz, 1) [ D(Gl}a({x})'

At the first sach étage enumerate x into A, and give no further attention to R,
unless a higher priority requirement receives attention.

Lemma 2.9, lim,(minZ,) = a.
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>==4roof. The function f(y)=min(Z,) is A, as f(y)=ziff z€ Z, AVy<zy¢Z, is
clearly total and Z,. Hence, for any y < «, f[y] is bounded in a.

Claim. mg(f) is A,.

zemg(f) it Jyf(y)=z, -
z¢mg(f) iff Iy, xzeZ A(xeZ, Ax<z)

Now suppose rng(f) is bounded in . Then by the claim rng(f) is «-finite, and
so we have a 1-1, total, A,function from « to an a-finite set X. By
Z;-uniformization f~! is defined and X, on X, and is also onto (as fis 1-1). But,
since & is admissible, f~'[X] is bounded in @, and so we have a contradiction.
Hence rng(f) is unbounded in «.

Furthermore Vy 38 V&' = 8 f(8') > v. If not, say y; is a counterexample. Then
by:-the claim rng(f) A y, is «-finite,-and by the above a:gument I ng(F) 0 ve)
is bounded in @, providing a contradiction. T -

Lemma 2.10. A is regular.

Proof. Let B<a. Let y be such that Vy’'= y min(Z,.) > 8. Such a y exists by
Lemma 2.9. Each R, acts at most «-finitely often, and so.let o be. a. stage by
which all the R; with rk(i) < y’ have finished acting.

Then all higher priority requirements only put in elements from Z}, for y' >y,
and so only put in elements above 8. Hence ANB=A,NBel, O

Lemma 2,11, (i) {y|ANZ, @} is unbounded in «.

Proof. (i} Let W, =Z.,. Then requirement Q. will be met since it contains
arbitrarily large eclements, and higher priority requirements eventually stop
acting. This means that forally, ANZ. ,#@.

(ii) By the construction A N Z, is a-finite for all y. But Z, is not a-finite, and
so Z,\A is a-finite. O

Corollary 2.32, A and A are not a-finite. O
Lemma 2.13 Forall e, if {y [ W, N Z } is unbounded in w, then W, =#A

Proof. leen any stage, there is always a later one at which we will be able to
satlsfy Q, This will be done. l, ‘

Notxce that actmg on (0, has no effect on higher priority requirements.

We now need to show that R, is satisfied. Suppose that R, is not satisfied, and
so we have A<, W, via e; and W, <,1A viae; and V, is a-finite.: We want to
show that there is an abundance of eligible witnesses. :
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==4  We note that P, 5(1) = V.o, and that P, ,(0) is a o-stage approximation to W,,
(since W,,<,..A via e,).
Also A is non-recursive, and so neither is W,, and, in particular, W,, is not
a-finite. Because Z,,,,N A is a-finite, and Z,, is not a-finite and as A <., W,
via e;, we will have many x’s in Z,;,,\ A which bound V, such that

Bml, m, mc “Veo AMay N mo = ﬂ A (ml, ms,, 1) € D{el)((x})' (*)

For each such pair m;, m, we will eventually find o, M?, M3, M}, M. such
that, for i =0, 1:

MicANAIAMINA=MINA =0A (M, M, i)e Diyoomay  (F%)

Let o be a stage such that there is an x as above for which mcW, ,and
{es}o({x})| (and hence (*) occurs), and at which (++) occurs. Then, at this stage
my < P, ,(0) and m, < P, (1) (by (#*)). As P, (1) < V., which i§ a-finite, as x is a
bound for V,, then we have m,c P, ,(1) via information in L,. Thus x is an
eligible witness that remains eligible at all later stages and so R, will receive
attention at some stage under the second strategy.

Now, x¢A and so, as A<, W,, via e;, we must come to a stage T as
described above after which no elements conflicting with m, c W, via e, ever
enter A, since we eventually get true computations. At the second step of this
strategy, which must come, as we have ‘correct’ information, we put x into A. It
remains to verify that the m,, m, used by this x are true information about W,,.

By definition of 7, m, £ W, ~—since we put all information into A required by
e, to verify this fact. Since we also put enough information into A to verify that
my c P, (1) and x is well above this, we will obtain m, N W,, =0 (since A <,
via e; and A, is correct on the use of the computation showing m, N W, = @).

Hence, we get

mecW AamNW,= g A (mv msy, 1) € D{et)({x});,

and so W.,#,.« A via e, a contradiction. * [J (Theorem 2.8)

3. o-tt degrees

As an application of finite i m]ury techniques to a-tt degrecs, we mclude the
following theorem relating a-m degrees, and a-tt degrees. Our présentation
follows Downey [3]. We note that further work of Downey has shown that these
singular degrees are in fact dense, but we shall not tackle this quest:on for
a-recursion theory within this paper.
T‘héorem 3.1. Let o be X,-admissible. Then there is an a-re regular non-recursive
set A such that for all a-re sets B, if B=, A, then B=__A
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==-4p%emark. The regularity of 4 is forced upon us by the method by which we
construct A. It is therefore an interesting question as to whether such an A can be
irregular, and incomplete. ]

Proof. As usual we build A by stages, A, will denote the construction at the end
of stage 0. Also, we use the Blocking Lemma to give us an appropriate blocking
family (B, | 8 < x§) and a A,-approximating family (Bs,o| 6<kg, o<a).

The requirements we have to meet are:

F: A+W, .
N;: A<s,,V,viae;, and V, <, Aviae, > Ve = A

(where V,, is an a-re set, in some previously fixed listing of the a-re sets).

P, is met by finding x € W, greater than the current e-restraint, at a stage o
where W, ;N A, = . We then put x in 4, and P, is met once and for all.
Each block has a restraint associated with it:

(¥, 6) = restraint for B, .

Matters will be arranged as to ensure lim, r(y, ) = #(y) exists for all y.

We will build A ¢ @, and assume every W, and V, is a subset of &. Our strategy
for N, will be to try and falsify the antecedent of the implication if at all possible,
and if it’s not possible the reason for this will provide the desired m-reductions.
For more discussion of this, see Downey [3].

A will be built by ‘dumping’, i.e., at stage o we let {az,]|Bf<i, < o}
enumerate o\ A, monotonically. Then, if we put ag , into A, we will also put
4, o into A, for all y such that S <y <A4,.

Claim. If A is built by dumping, then A is regular.

Indeed, if B € & is any ordinal, we wish to show that there is a stage o with
ANBcA,, from which we get that ANB=A,NBeL,. Let o= P, and given
0;, define, if possible, o;,, to be the least stage 7 > ¢; such that (A N4, )N B4,
i.e., 0;,, is the next stage after o; at which an element below B enters A. Let x;,,
be the least element of (4,,,\A4,)NB. By the dumping property, we have
X:+1<%; and so, by well-foundedness, there is a greatest k for which o, is
defined. It is then apparent that AN § = A NP,

We now need to define our length of agreement functions. There will be
auxiliary use functions which we also need to define, associated with each.
reduction:

L(e, o) =sup{x |Vy <x ((y € Voo A Ak, y € Veoro)
V(Y ¢ Vo Ak, y ¢V, )
Ye(¥) = max(Ltk(Dy.)yy), L-rk(y) +1),
(e, o) =sup{x | Vy <x (V. oke, y €A Ay € A)
V(VepoFe, y ¢ A Ay ¢ A)) A Lle, 0) > 7.(y)}.
[ is the A-controllable length of the agreement function.
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== Definition 3.2. We say N, requires attention via § at stage o + 1 iff
() N, is currently unsatisfied, andee B, ,
(ii) B is the least ordinal such that ag ,>max{a,, ., |s<, r(8, o)} and one of
options I or II hold:

Option I: Ue, 0)>ag, and if we set AS=A,U{a;,|B=<06<A,} then the
following sentence fails:

3 sequence {((M%, M3), ¥),<i, o) € Lo+1 such that for all y e i(e, o)

() VzeM|ABE,zeV, and VzeM}ASEk, z¢V,,
(i) yeAS & ((MI, ML), 1) €D,y and

y¢AS © (M}, M%), 0) € Diyiionys
(iii) V;o.ag UMJ{‘
y

Notice that by making A,,, =A#, and setting the restraint to be ag o, then if
this is never injured, and A =,,V,, via e, and V, =,,A via e, then
ANo=A,,,, and we now have a contradiction. Indeed for y <I(e, ) we have
ve(y) < L(e, 0) < 0 and hence there must be M,, M, with

(i) MgV, AMNV, =4§
(i) (M, M)eL, and Dy, €L, )
() ({(My, My), i) € Diyiyyy © y €A’ (where A°=4 and A' = A).

Furthermore M, M, < v.(y) <I(e, 0) and so for all x e M; AF,, x € V,,, for all
xeM, Ak, x ¢ V., and this is known below o, so is comprehended by L,. Thus
in L, there is a sequence witnessing the truth of the sentence, which provides the
contradiction. This, then, provides one way to destroy A=, V,,.

Option II: We have an ajg.,, ,<I(e, o) such that if
Ap=A4,U{ayq|y<y'<i;} fory=p B+1,
9(e, 0) Emax{y.(y) |y <lle, o)},

J,_od=°f-{x | AS* e, x € V.,} N f(e, 0),

then there i$ a z such that
(z¢Afand J, .k, zeA) or (zeAfandlJ, F, z¢A)

So, if option II obtains, we first set A,,, = AB*!, and set the restraint to ag gr1-

If this is i)ermanent and V. =, 4 via e,, e, then we eventually get to a stage
7 where V, .M ¥(e, 0) =/, At this stage we will be able to change A by
adding ag . =ag , to A, and so obtain a permanent disagreement.

The construction at stage o+ 1

Step 1. Find the least e such that N, requires attention. If none exists go to Step
2, setting A,,, = A,. Otherwise, find the least 8 such that N, requires attention
via f. Then for all e’ > e cancel r(e’, ¢), and declare N, to be unsatisfied.
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s~=4ff option I holds, set A,,;=Af declare N, to be satisfied, and set

r(e, o +1)=ag,.
If option I fails, but option II holds, set .A,,+1 =AS* and set r(e, 0+ 1) =gy,
Step 2. Find the least & such that W, ,NA,,, =0 and

IxxeW:oAx>a,,,Ax>R(E o) & sup{r(e’, ) |e' <8, <o}

Choose the least such x, and let y be such that x =a,, ,. Let A,,, = AY. Cancel all
r(e’, o) for e’ > &, and declare N, to be unsatisfied.

If there is no such é, let A ., =A,.,.

By induction we will show that lim,r(e, o) exists for all e and lim, r(y, o)
exists for all y < k.

Suppose we know this for y’ <y <k,. Let g, be a stage such that for all y’ <y
and all ¢ = gy, r(y’, 0) =r(y’) is at its final value, and for y<y, B, ,=B,,, and
without loss of generality, for y' <y, e € B,,= P, is satisfied.

Now, let S = {e € B, | there exists a stage at which N, requires attention after
stage gp}. This is a ).','l—set contained in B, and |B,,[“< p:- Hence S is a-finite.

We can let 'S = 8, U S, where

8y = {e € § | N, receives attention because of option I},

S, = {e € S | N, receives attention because of option II}.
We now define a function f on S as follows:

least 7> g, at which N, s receives attention if minS e,
second t > ¢y at which N, s receives attention if minS$eS,,

Fmin$)={

least > f[{e' € S | ¢’ <e}] at which N, receives attention  ife eS;,
second > f[{e’ € S | ¢’ <e}] at which N, receives attention if e € S,.

for={

fis Z; and total on §, and so |_) rng f exists, call it o,.

By stage oy, every N, (e € B,) has received attention for the last time, and so
we have r(y, o;) =r(y) and in fact for all ecB, r(e a,) =r(e).

Now, let

. T ={eeB, | P, requires and receives attention after stage o,}.
Then T is a Z;-subset of B,, and so is a-finite, and the function g: T— « given by
g(e) = least stage o > o, at which P, receives attention

is 2 and total on T. Therefore |_Jrng(g) = o, exists below a. By stage o, all
requirements in B, are met forever.

The fact that the function y+~>r(y) is A, enables us to get past limit points in
Ky.

The remainder of the argument follows Downey [2] and will be
omitted. -0 (Theorem 3.1)
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== This proof is not especially difficult, and we expect that the result of Downey
[3] showing that the re T-degrees containing such tt-degrees are in fact dense will
also succeed with minimal fuss. However this is beyond the scope of the current

paper.

4. a-w degrees

In this section we will generalize some results on w-wtt degrees to «-W degrees.
It is unclear whether these generalizations extend to a-wtt degrees for arbitrary
«, since the results use permitting.

In Section 2 we showed that if pf <« then there are many a-W degrees.
However that theorem says nothing about the case when pf = & nor about the
‘spread’ of the a-W degrees, which this next theorem deals with, for the regular
degrees. - '

Theorem 4.1. Let o be admissible, and let D, C be regular a-re sets, such that
D <, C. Then there are regular a-re sets A,, A, such that

D<cr-ttA1: A2<cr-\‘ir C)
and
AIUA2= CAA10A2=ﬂ.

[Note. This proof actually needs D <, C in general, but in special cases D <, C
will suffice. This will be discussed after the proof.]

Proof. We construct A, A, to satisfy requirements
Re,i: —'(Ai @ D = C via 8).

A, and A, will be <, C from the construction. These requirements will be met
by a finite injury, preservation of length of agreement strategy.

We recall from Shore [9], the existence of a blocking family (B, | y <k2) and
an approximating family (B, , |y <x?, o <) with |B,|"? < p}.

Associated with e = (e, e, e;) we will have an index & such that for all y,
{e}(y) = {eo}({y}), and we will define subblocks B, < B, to be the set of all
e € B, such that {£} is increasing. This family also has an approximating family
B! , which is defined so that

ec By.a\B';'.a < ec€ BY,GA dr=<o ayls Y2 S}’z A {é}f(yl) > {é}r(yZ)'

Clearly, given an e = (e, e,, e,) there is an associated e’ = (e, e}, e;) where
ei=e,, es=e, and {e}(K) ={J {Dyry | L =<1, K} for which {&'} is increasing
and A<, B via e A =<,;B via ¢'. Hence, destroying all of these computa-
tions suffices for our argument.

We denote the eth a-w reduction procedure applied to a set B by ®(e, B).
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We now define the length of agreement and restraint functions:
l(e, o) =sup{x | d(e, A,, ®D,)  x=C, | x}
and
iy, o)=sup{l(e, 0) |e€B,,} fori=1,2.
Restraint is given by:

r,-(]r, O‘) = U {é}o[li(e: O’)]
and

Ry, ©)=U{rle, 0) |e e B. ,}
= {é}a[z}(y’ g)] fori=1,2.

Without loss of generality, we will assume that for all o, |C, 1 \C =< 1.

We are now ready to describe the construction at stage o + 1:

Let x€C,.1\C, and let ye k7 be least such that Jee B, , x <r(e, o) or
x<nrle, 0). If x<r(e, o) put x into A, and set ry(e, ¢ + 1) = max{x, r.(e, 0)}.
Otherwise put x into A, and set ry(e, o + 1) = max{x, ri(e, 0)}.

At stage A: Do nothing.

It is easy to see from this construction that A,UA,=C and A,NA,=0. We
now wish to show that

(i) lim R(y, o) exists for all y < k2,
o

(i) limI(y, o) exists for all y < xD.
To prove this we require the following lemma.
Lemma 4.2. Forall y<x% and all x, {{€}(y) |y <x and e € B]} is bounded in a.

Proof. We recall that there is a total 1-1 function f: a— p¥? which is A?, and a
22 cofinal function ¢ : k¥ — p? used in defining B,, and that f{B,] is bounded in
p?, by q(1)-

Since {&} is increasing, it suffices to show that X = {{&}(x) | e € B}} is bounded
in @ But if e € B, then {€}(x) is an element of the ZP-hull of g(y) U {{x, p)}
where p is the parameter for f. But this hull is already bounded in «, hence X is
bounded in . O

By this lemma, and as R(y, 0) =\J {{&}[i(7, 0)]| e € B.}, in order to prove
(i) and (ii), it suffices to prove (ii).

Suppose 1,(7, o) is unbounded in @, and y =8 + 1. Let R,(8) =lim, Ri(8, o),
which exists by induction. Let o be a stage such that for all = o

(a) Ri(b,7)=R(S) fori=1,2,

() C[R(d)]cC. fori=1,2,

(c) Vé=vy B;.=B; and B; .= B;.



228 ' C. Bailey, R. Downey

Notice that
5, %{eeB,|3v= 03 &, (e, A;. D D,)(x) =0 using
D-correct information and C,(x) =1}

is 2P, hence a-finite, and so the set of stages giving witness to e € S, is bounded,
by o' say. Notice also that, by the definition of ¢, disagreements witnessing e ¢ S,
are permanent.

We will now indicate how D is able to compute C. For S e, we wish to
compute C | .

Let 7= ¢ be a stage such that

Vr'zt3eeB, (e, t')>B.

Now let 7' = 1, e € B,\S, be such that /,(e, ') > B using D-correct information.
Then we have d(e, A, DD B+1=C, | B+1 with D-correct information.

Now suppose C changes below . Then we claim that the left-hand side cannot
change—so contradicting the fact that e ¢ S,,.

If any y goes into C below R,(y, —) then it cannot be below any R,(8, -) for
any & <y (since C through R(4) is at its final value), hence that y goes into A,.
Therefore A, .., through the use in the computation, is at its final value. Hence D
computes C | .

Note that this is not a Ww-reduction, since the choice of e is D-recursive, and not
recursive.

This shows that lim sup, f;(y, ¢) < &, and we will suppose it has value 4. Let

By ={e|{é)} is totalon A Ae e B,).
This is 2; (since « is admissible), and hence a-finite, and so we can find
sup{{é;}[Al|ee B} =pu<a.

Let 7 be a stage, T=0’, such that D, ' u=D | u. Then after stage 7 the
argument proceeds as a standard finite injury argument with D p as a
parameter, which shows that lim, /,(y, o) exists.

It remains only to verify that A,, A, <,.,«C. Let A; =W, and A,=W,. Then

KcA, iff doVxeKL,ExeA, (note this is X,)
and

KNA;=0 iff 3My, My My, Myc Loy AM, < CAM;NC =

AMUM, =K AMcA,.

Furthermore A B A, =, Cas K cCis already =, and

KNC=0 iff IMeD yu={KX{0,1}} AMNA,®PA,=0

AK x{0,1} =M.

Theorem 4.1 is proved. O
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Now, having proven this when D <, C, the question arises about what happens
if D<,.,C. In one case we can readily answer this: if p5= k3. If this happens,
then block with |B,|* < p3 with k3" many blocks—use the approximations given
by Shore [9].

Now, to get the contradiction that shows length of agreement is bounded,
consider B} = {e € B, | {&,} is total}.

This is a Z;-subset of B, and as |B,|* < p3 we have B} is a-finite. For e € B \B>
there is 2 Z,-function f, such that {&,}(f(e)) is undefined, and as p, < k,, mg(f)
is bounded, and we can work above this bound. So if /;(y, o) is unbounded, it is
caused by e € B}, but now we can choose any ¢ € B} and demand that D | {&,}[B]
be correct—hence getting an a-W-computation of C in exactly the same way we
previously got an a-computation.

The question of what happens if x5 < p5 remains, but some observations about
A =R, may be relevant. Firstly the set C={g8 | B <A and B is not a cardinal} is
hypersimple, and by usual arguments, can be shown to be not a-%-complete, i.e.,
C <.+ K. Secondly, the arguments of Friedman {6] obtaining a negative solution
to Post’s Problem above (' actually only use the set C. This suggests that a
refinement of that analysis might give a failure of density in the A-W-re degrees.

The last theorem used a permitting argument. The next theorem shows that
permitting does not always produce a-wtt reductions, although it does produce
a-W reductions, by constructing an example of sets A, B, with B<,,A by
permitting, and (B =<,.,.,A) by diagonalization. Essential use is made of the fact
that the power set function-on « is not recursive, and in our eéxample, is not even
total. It is possible to vary the argument to the case where the power set function
is total, and this will be discussed followmg the proof

Theorem 4.3. Let & = w,. Then there extst Az-sets A, B such that
(a) B=< =, WA
(0) (B <asnd).

Proof. To obtain B=<, ;A we use a permitting argument, i.e., we construct a
recursive sequence {x, | o <a) with lim, x, = &, and

A, Tx,=Alx, > B [ %, =B I x,.
This ensures B =, oA,
To obtain B £, .. A, we use requirements
R.: (B=<,uuA) via the eth reduction procedure.

Each of these is satisfied by finding witnesses x such that usmg e, A believes x 1s‘
both in and out of B, or we create a disagreement.

The only problem is ensuring that we create a d1sagreement usmg a
configuration of A [ x never yet seen, and so we are able to make changes to B.
This is possible because for any o < &, $(0) is unbounded.in a.
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For technical convenience we work, at stage o, in Ly, where a(c) = the least
admissible strictly larger than o and (o) = the least 8 which is p.r. closed such
that b > a(o) and Lg k“w is the greatest cardinal”.

We define a restraint function r(e, o) for R..

At stage o, for e < o we will define sets 4, ., B, ,, and elements Xg e

Ago=8=B,o, andlet x,o= .
Substage v+ 1: We are given A, ., B, . and r(z’, o) for 7’ < 1. Let

Xo,r = the least primitive recursively closed ordinal greater than or equal to
max{r; + 1, U {x, | (o', 7') < {0, T)}}

(where {0, ') < (0, 7) iff o' <o or 0’ = and v/ <7, and n, =, (7, 0)).
Notice that (¢’, 7') < {0, 7) 3 x,,»<x,, and that the only way x,, can
change is because a higher priority requirement starts to act in a different (and
hence earlier) case, causing the restraint function to increase. -
Let x =x, ., and 7= (e, e,, €5).

Definition 4.4. We say (M,, M,) is appropriate if (M, M) € L, and
Lb(o) F (Ml, Mz) € D{eo}(x) A M1 n Mz = ﬂ
A Ml N n EAG"-/\ M2 M (51 ﬂA‘,’,= ﬁ.

We act according to the earliest of the cases below to occur;

Case 1: There exist (L,, L,), (M;, M,) which are appropirate with L, N M, =
B, L,NM,=§ and Ly, k. (x, Ly, Ly) A D, (x, M}, M;). Then take the least
such pair ((L,, L,), (M;, M;)) and let A, ,,;=A,,.UL, UM,, and set

r(7, 0) =max{x + 1, L-tk(Deyx))}-

We now look for lengths of agreement previously established with A, .1,
before defining B, ...

Definition 4.5. (a) Let w <x, . be agreeable by o' iff ' <o and A, N(w +1)=
Acr.f-l-l n (W + 1)'
(b) w is agreeable iff it is agreeable by o' for some ¢’ < g.

Let

Y =Yoo= {w|w is agreeable}.

Ifyis agreeable let o' <o be least such that y is agreeable by o', and let-
B, c+1=B,N(y +1). Otherwise, let (0;|i€ w) be the L-least sequence for
which there exists a sequence (w; i € w) cofinal in y with w; agreeable by o,
Then let

ByeriN(w;+1)=B, N(w;+1) foreachi<w.
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Case 2: Case 1 fails, and for some appropriate (M,, M,) we have Ly F
@, (x, My, M,). Then pick the L-least such pair (M;, M,) and let A, .4, = A, .U
M,, and treat r and B as in Case 1 except that we work strictly below x,, ., instead
of just below. ,

Case 3a: Case 1 and 2 both fail, and for some appropriate (M, M,),
Lyoy E D.,(x, My, M) and this is the first time we have addressed this case for this
value of X, ., i.€., for o' < 0: x4 # X, OF if X5 . = X . then we were in Case 4.

In this case, pick S cx\n to be L,,)-generic (S € Lys+0) and let

Au =Ao,r+1 =Aa.-: us,
Bo = Ba.'z-l-l = Ba,t U {x}:
r(z, 0)=x+1 _
and go to stage b(0), i.e., for 6<7<b(0): A,=A, and B, = B,.

Case 3b: Case 1, 2 and 3a all fail, and for some appropriate {M;, M,),
Loy k @c,(x, My, M;). Then for some least o' < o we have x,, .= x,-, and at stage
(o', ) we were in Case 3.

Let §=A, .U (x\r(o’, 7)) and

Aa.t+1 = Aa,-r us,

Bo,'r+1 = BO’,‘I.' U {X},

r(z, o)=x+1.
Notice that r(o’, ¥)=r(o, T) since if not, we had to have t=46+1 and
Xo,6F Xg,5, a8 1y is defined using only x,. 5. This means that x; 5 > x, . which is
impossible.

Case 4: All of the above cases fail in which case we do nothing, i.e., et
Acr,'r-l-l =Ao.r’ r(r, 0) =x+1and Ba.'rvl-l = Ba.r-

At limit 7, take unions.

Let A,=A,, and B, =B, ,. Then

xeA & HdoVriz=oxeA,,
xeB & HdoVr=oxeB,.
Since both are built so that initial segments settle down (see Lemma 4.7),
x¢A & doVizox¢A,,
x¢B & 3JoVr=oxé¢B,
and so both A and B are A,.

Lemma 4.6. Let {0, T) be a stage at which Case 3 was addressed, and a generic S
was used. Then for all 8<o and p<8, S#A;,N (x\r) and for all {M,, M),
(L1, L) € Dioynyy SF(Ag UL UM)N(x\7) and S#(A,.UM)N(x\r),
where x =x, ., r=r(0g, T).

Proof, By generality of §. O
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Lemma 4.7, For all e,
(a) lim, r(e, o) =r(e) exists,
(b) lim, A, .= A, =ANr(e) exists,
() lim, x, . = x, exists,
(d) lim, B, .= B, = B N x, exists.

Proof. By induction on e. The regularity of , will be used implicitly throughout
this argument. Suppose that the result is true for e’ <e and let r =), .. r(e’).

Let o>e be a stage such that for all e’ <e all of the above limits have been
attained by stage o. Then for all o' = o, x, ., = x. = x, and the corresponding r, is .

Now, either for some 0’0, Ly,nE3z {€o}(x) =2z or not. If not, nothing
changes for e after stage ¢. So assume o, o is the least stage for which
LyeyFAz {eo}(x) =2, and let o,= o, be the least stage such that for all
(M, M;) which are appropriate at stage o,, if L, F®,(x, M;, M;) then
Ly(oy F e (x, My, M;).

Then at stage o,, A,,., B,,. (e, 02) and x,, . reach their final values. By
construction A, =ANr(e) and B,=BNx,. O

Lemma4.8. Let o' <ocand Ay.1 [ X05+1=A, [ X0,5+1 for any t< 0. Then
Bo,'r+1 rxcr'.é' +1= Ba' fxa.a +1.

Proof. Let o be the least stage for which the lemma fails, for some <, o', and let
7 be least for which it fails for some o', so that

Aa,t+1 fxa,é + 1 =Aa' f Xo's + 1 but _I(Ba,r+1 r xa,& +1= Ba' rxa’,& + 1)‘

Then at stage 0, x, s <y(0, T) =y, and x,, ; is agreeable—if (o, 1) is in Case 1 or
2. We first suppose (g, 7} is in Case 1 or 2.

If we need to use a cofinal sequence to reach y, i.e., (w; |ie w) by {0;|i € w),
then for some i, we have w;>x, s and 50 A, [ Xo 5+ 1=Ag [ X455+ 1 and as
Byrii [ X056+ 1=Bylxp5+1 we also have B, Px, ;+1#B, | x4 5+ 1.
This contradicts our choice of o, T and ¢'. Likewise, we cannot have any
agreeable w with w>x, ;, and w agreeable by ¢"+# ¢’ without achieving a
similar contradiction to minimality. Hence, we may assume y is agreeable by o’.
But, in this case, we set B, .1 = B, N (y + 1) (notice, it is equal to B,-N{y + 1),
since, if not, we would get another contradiction to minimality). But y + 1=
X5+ 1 contradicting our choice of (g, 7, 0'). Thus we cannot be in Case 1 or 2
at stage {0, 7).

Suppose we were in Case 3 at stage {0, 7). If 8 <7, then r{0, T)>x,. 5 and as
nothing happens to either A or B below r;, o cannot be the least stage of the
contradiction. Hence 6 = .

If X, 5% X,,., then we have to have x, . > x, s—by choice of x, , and, in fact
Xg:-1=Xg, 5 and thus r(o, T) =x, 5, as it is =x, ;.

This means that x,. s=x, ., and this, necessarily, implies = 7, and so

A 1 Xgr6+1=Ap sl Xg o+ 1.
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Now, since we are in Case 3 at (o, ), we cannot be in Case 3a, since
otherwise we create a difference in . A. Hence we are in Case 3b, and so we make
A, and therefore B, look like earlier values of A, B. This will contradict the
minimal choice of ¢,7 and ¢".

. If we are in Case 4 at {0, 7}, the above analysis gives again that x,, s =x, . and
6 =1, and so we had to have been in Case 4 at {¢’, 7}, and since both glve no
cha.nge in A and B, we get a contradiction to the choice of 7. [

Lemma 4.9. Let A; [ x,.=A | X, for any o and v. Then B, | x,,=B FXo, e
Proof. This folloWs immediately from Lemmas 4.7 and 4.8. O
Corollary 4.10. B<, , A.

Proof. We show how to determine K < B. The case K N B =4 is similar.

Let K=x, ., and let 0= o’ be any stage such that A_ Mo r=A X4 Then
KcB<:>KcB by Lemma 4.9.

0 is a bound suitable for all subsets of x,,. ., and indeed for subsets of Xg ¢ This
gives us an a-w-reduction. [

Lemma 4.11 For all e, (B <, ., A via ¢).

Proof. Suppose not, and e is least such that B=<_ A via e.

Let o be a stage such that for ¢’ <e and all 7= 0, ANr(e')=A,Nr(e’) and
BNr(e')=B.Nr(e') and all relevant information for ¢ has been established
correctly in Ly ,y— as in the proof of Lemma 4.6. As in that proof, we create a
permanent computation and A and B take their limiting values through r(e) at
stage 0. We claim, that at this stage, we created a disagreement.

If (o, e) is a Case 1 stage, this is clear, as A says that x, . is both in and out of
B. Likewise in Cases 3a, and 4.

In Case 2, A says that x,,, is in B, but our construction of B omits x, .—as we
do all our work strictly below x, ,, and restrain above it. :

In Case 3b, A can only say, if it does, that x,, is out of B, but we put xa e mto
B, so creatmg a dlsagreement

Since this a permanent computation, and all cases give disagreement, we are
unable to choose ¢ as in the hypothesis. [

'This completes the proof of Theorem 4.3, O

To adapt this to the case when the power set function is total (and o> w), it
suffices to notice that limits are reached by the next stable ordinal after e is first
seen. Thus the same argument using b(0) can be used, except we need to have
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b(o) =least p.r. closed B > a(o) such that
LgE(la(o)| <|o] and there is a greatest cardinal).

Now two cases occur, either $(x) is unbounded in b{o) or it is bounded.
However, any lub is a limit of stables, and so the construction before the eth
requirement takes place well below the bound. Thus the desired new sets can still
be seen. The only problem is at o itself, and in this case, the choice of b(0)
ensures that $*#(0) is unbounded in L, .

The construction can be adapted in fact, to any nonprojectible ordinal, using
blocking. Nonprojectibility appears to be required in order to see that
{{M;, M;) € Diojyxy | (My, Mp) is  appropriate at some stage and
(D.,(x, My, My) v D.,(x, My, M,))} is a-finite.

We do not know if the result can be improved to make A and B to be a-re.
This particular argument makes strong use of the ability to go back and make
‘corrections’ at some x which we have chosen to be our witness for R,, i.e., in the
second part of Case 2.

However, our next theorem points out further difficulties.

Theorem 4.12. Let B=<,4.A and B, A be a-re. Then there exists A* =, A with
B=<,.A* A* depends on the reduction procedure.

Proof. Let B <, ,A via e = (e, e;)—the function {e;} bounds the use of the
T-reduction given by e,. Let A™ =A x {0} U (L, X L, \{0}).

We now define A* as a subset of A™. We devote the Kth column up to {e,}(K)
of A (for K #) to testing KcBor KNB=4.

Let ok be the least stage o at which we see A, correctly giving us information
about X as a ‘subset’ of B,.

Then for each x that later goes into A below {e;}(K) we put a new element
({x, K} into L, x {K} N A*—in order of first appearance, and if this is simul-
taneous, then in order of L-rank.

Now define

Dy = {{My, My) | My UM, = {e,}(K) X {K} A M, N\ M; =},
We now show that there is an a-wtt reduction computing B from A*.
K EB =] 30’1 < g, 3<M1, Mz) € LUz H(ml, m2) S D(eé}(K)
o, is least such that
(A, correctly gives information about X relative to B,,)
AmcA*Am,NAY=§
AdSel; . Sco,

Adfel,  YreS A, \A, =0
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A f is an order preserving bijection of m, into S
AMI EAcr; A MznAc;z:ﬂ
A D (K, M, M).

0, is a stage by which everything in A below the use of a computation
determining K < B is in A, and so A* on the Kth column is finished, and so we
can use it to get true answers about X < B.

K N B =4 is similar, except we change &, to &,

This gives us e, and ej to get e’ = e/, e{, e}) and so B=<, . A* via e’, as
required. Notice, in this proof, if we use L% and form A** by using column
(e, K) instead of just K, we can make the set independent of the reduction

procedure.
It remains to check that A¥=__A.
Clearly
KcA & Kx{0}cA*
and
KNnA=9 © Kx{0}nA*=4
Thus A=<, A*.
Conversely
KcA* & mlK]cAandforren,[K] A, \A,#0and 7> 0,
and

KnA*=p o m[K]NA =0 and for 7€ 7, [K] (< 0, or A, \A4, =§).

This can easily be modified to an a-#% reduction—by obtaining the following
bound on the use: Let K= {M | {M} x L, NK##} and o= {n,[K]| L e K}.
o is a recursive function of X, and bounds all searches for the ordinals required
above. Thus A*<s_ A, O

In a similar way we can see that A**=__, A—but note that in the construction
of A** we cannot use oy, so we just use 0 instead. Since A** is a-re in A, the
problem of obtaining A and B re with B<, A and B %, .. A is ‘reduced’ to
finding an A with A**<£_ ., A.
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