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Abstract. We indicate how to fix an error in the proof of the
main theorem of our original paper, pointed out to us by Maxim
Zubkov. In correcting this error, we are now able to give a uniform
proof for coding into the adjacency relation for a computable η-like
linear ordering with infinitely many adjacencies. The proof is quite
unusual in the construction of the isomorphism on the priority tree
and uses some other unusual combinatorics as well.

1. Introduction

The main result of our paper [2] read as follows:

Main Theorem. Let A be an infinite computable linear ordering with
infinitely many successivities. Suppose that C is any c.e. set with
Succ(A) ≤T C. Then there is a computable linear ordering B iso-
morphic to A whose successivity relation has Turing degree degT (C).

Zubkov (personal communication) pointed out some errors in our
original paper, which we attempted to fix in a corrigendum [3]. Un-
fortunately, as again pointed out to us by Zubkov, our corrigendum
doesn’t quite fix these errors. In the current paper, we not only ad-
dress all the issues raised by Zubkov but also, in fact, develop a new
strategy, which allows a uniform proof of our Main Theorem in the
case that A is a computable linear ordering without infinite blocks but
with infinitely many adjacencies. Orderings without infinite blocks are
called η-like, and if there is a uniform bound on the size of blocks,
then A is called strongly η-like.
First, recall that Chubb, Frolov and Harizanov [1] had already han-

dled the case of successivities occurring arbitrarily far to the right
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in a linear order A without right endpoint; and their proof can eas-
ily be adapted to the case of any point in A (including the “vir-
tual limit points” +∞ and −∞) being a limit point of successivities;
more precisely, their proof can handle the case when, given a fixed
a ∈ A∪ {+∞}, for any b <A a, there are infinitely many successivities
in the interval (b, a), and, symmetrically, the case when, given a fixed
a ∈ A∪ {−∞}, for any b >A a, there are infinitely many successivities
in the interval (a, b).

Moreover, Frolov [4] had already handled the case of non-η-like and
of strongly η-like linear orderings, so our paper [2] concentrated on the
case of η-like linear orderings without infinite strongly η-like intervals.

However, as Zubkov pointed out to us, we only handled the case of
an η-like linear order where there is an infinite interval without infinite
dense subinterval; that part of our proof in [2] is correct. The remaining
case, where each infinite interval contains an infinite dense subinterval,
splits into two subcases: Either

(1) there is an infinite interval containing infinitely many successiv-
ities, but for each partition of this interval into two subintervals,
one of the subintervals contains only finitely many successivi-
ties; or

(2) every infinite interval containing infinitely many successivities
can be partitioned into two subintervals such that each contains
infinitely many successivities.

It is now not hard to see that in the above two cases, our linear order
must contain an interval of one of the following two forms, respectively
(if we also exclude the case handled three paragraphs above, namely,
that there is a limit point of successivities in A ∪ {+∞,−∞}),∑

i∈ω

(η +mi) +
∑
i∈ω∗

(ni + η)(1.1) ∑
i∈ω

(η +mi) +
∑
j∈η

∑
i∈ζ

(qj,i + η) +
∑
i∈ω∗

(ni + η)(1.2)

where each mi, ni and qj,i is an integer ≥ 2.
In this paper we prove the result for the cases above. However, the

proof does not explicitly use the hypothesis that the adjacencies of A
are of types (1.1) or (1.2) above. In fact, we will be giving a uniform
proof for a case properly encompassing our original paper [2], namely,
that A is η-like with infinitely many adjacencies.

We will thus fix an infinite computable linear ordering A = (A,<A)
with no infinite blocks. We need to build a computable linear order-
ing B = (B,<B) isomorphic to A and a non-computable (in fact a
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∆0
3-)map ι : A → B, meeting, in increasing order of difficulty, the

following

Overall Requirements:

O: ι is order-preserving, i.e., for all a, a′ ∈ A, a <A a′ implies
ι(a) <B ι(a′) (and so in particular ι is injective);

W : ι is well-defined (and in particular total);
S: ι is surjective; and
R: there is a Turing reduction Γ such that ΓSucc(B) = C, where

Succ(B) is the successivity relation on B and C is a 1-complete
c.e. set.

Note that as in [2], we may assume here without loss of generality
that C is a given 1-complete c.e. set since the modifications for the
general case can easily be handled as outlined in the last paragraph
of [2].

So assume that we are given an effective enumeration of the linear
order A as {As}s∈ω. At each stage s, new elements enter A, and as
usual, this will guide our beliefs about the cardinality of intervals in
the ordering. Thus, we will believe at stage s+1 that an interval [a, b]
is infinite if sufficiently many (to be defined precisely in section 3.2)
elements enter this interval.

The overall requirement O is clearly easy to satisfy by simply en-
forcing that a <A a′ implies ι(a) <B ι(a′) at any given stage. The
remaining overall requirements can be split up into the following

Requirements:

Wa: ι(a) is (well-)defined, for each a ∈ A;
Sb: ι−1(b) is defined, for each b ∈ B; and

Rm: ΓSucc(B)(m) = C(m), for each m ∈ ω.

(We will actually meet theRm-requirements only for cofinitely manym,
which is good enough for our theorem and makes the description of the
tree of strategies easier.)

2. The Intuition for the Construction

2.1. Intervals: Guessing, Outcomes, and Anchors. Our con-
struction will take place on a tree T of strategies, where each path
through T codes a guess as to which intervals of A are finite or infi-
nite. Each node (“strategy”) σ on T will work with a finite number of
elements a0 <A a1 <A · · · <A an of A (where a0 = −∞ and an = ∞)
handed down from all strategies τ ⊂ σ. (If σ is the root of T , then σ
works with the single interval [−∞,∞].) The strategy σ will be given
a guess as to whether each interval [ai, ai+1] is infinite or finite; in the
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latter case, σ will be given a guess about the precise cardinality of the
interval (ai, ai+1). The main task of any strategy σ will be to define
the ι-image of the element a possibly newly introduced by σ if σ is a
W-strategy (and similarly for an S-strategy), but only under its current
outcome o; i.e., σ will define ισ̂⟨o⟩(a). Thus the map ισ̂⟨o⟩ will consist
of all the ι-images already defined at σ (namely, ισ) and the ι-image
of possibly one new element a introduced by σ as defined under its
outcome o. The true isomorphism ι is then defined by the strategies
along the true path TP through T as the union of the finite maps ισ
for σ ⊂ TP .

The key idea of the construction is that if σ believes an interval
[ai, ai+1] to be infinite, then it will, at stage s, keep the size of the
image interval [ισ(ai), ισ(ai+1)] in B “much” smaller. This will not
cause problems if [ai, ai+1] is truly infinite since the image interval
[ισ(ai), ισ(ai+1)] will grow to be infinite as well. On the other hand,
this will be critical in satisfying the requirements since the real tension
is between strategies σ′ <L σ on the tree T where σ′ may conceivably
want to preserve an adjacency in B, whereas σ may want that adjacency
to be destroyed. We have to be concerned about σ′ only as long as σ′

has not been proved “wrong” yet (where σ′ has been proved wrong if σ′

guesses an interval of A to be finite of a size smaller than the current
size of that interval).

The key property that we will need to maintain is the following: Each
element a ∈ A, introduced by σ, say, is associated with an “anchor”
a†σ̂⟨o⟩ (with respect to σ and its outcome o). The idea is that σ̂⟨o⟩
believes that a and a†σ̂⟨o⟩ are only finitely far apart, and that a†σ̂⟨o⟩ is,
among all elements introduced along σ̂⟨o⟩, the first one introduced

along σ̂⟨o⟩ with this property; so the ι-image of a†σ̂⟨o⟩ is “stable” (as

explained in more detail below). (The anchors of −∞ and ∞ are −∞
and∞ themselves, respectively. Note that a, introduced by σ, is its own
anchor (with respect to σ and its outcome o) iff σ̂⟨o⟩ believes that a
is infinitely far from any point in A handed down to σ.) So, for the
version of ι defined along the true path, we have that for any anchor a
along the true path, ι(a) is the first b ∈ B chosen as the ι-image of a,
and for any non-anchor a′ along the true path, say, with anchor a, we
have that dist(a, a′) = dist(ι(a), ι(a′)) (where dist is the finite distance
between two elements) and, of course, a <A a′ iff ι(a) <B ι(a′). So
the point about an anchor is that the ι-image of an anchor a′ is the
same for all σ̂⟨o⟩ which believe that a′ is an anchor, and that this
ι-image will never change (as long as σ̂⟨o⟩ has not been proved wrong).
Intuitively, when σ defines ισ̂⟨o⟩(a) for the element a introduced by σ,
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there are two possibilities: Either a is an anchor with respect to σ
and its outcome o, and then ισ̂⟨o⟩(a) never changes and agrees with
ισ′̂⟨o′⟩(a) for all σ′̂⟨o′⟩ with σ′̂⟨o′⟩ ≤ σ̂⟨o⟩ such that ισ′̂⟨o′⟩(a) is
defined and σ′̂⟨o′⟩ has not yet been proved wrong (since a is an anchor
with respect to σ′ and its outcome o′ as well, as we will show). Or else
there is an anchor a′ for a (with respect to σ and its outcome o), and so
(eventually) ισ̂⟨o⟩(a) is defined to be at the same finite distance from
ισ(a

′) as a is from a′. Since our linear order A is η-like, each finite block
in A will contain a unique anchor, which is the first element of that
block enumerated into A, and there are only finitely many elements for
which that element is an anchor.
One important consequence of this setup, which will be crucial in

the verification, is the following feature: Consider two incomparable
strategies σ <L σ′ of the same length such that σ has been eligible to act
before σ′, and neither has been proved wrong or initialized since. Then
we will actually be able to achieve that both use the same partition
of A. Here is the sketch of an argument: Let τ be the longest common
substring of σ and σ′ and proceed by induction on the length of σ
and σ′. If σ and σ′ are both Wa-strategies, then they clearly both
introduce a; if they are both R-strategies, then they don’t introduce
any new points; so consider the case when both are Sb-strategies, and
suppose that b was initially created as the image of an element a ∈ A
by a strategy ρ, which must necessarily be a Wâ-strategy (although â
may differ from a as we will see) or an R-strategy. Now there are two
cases: If both σ and σ′ can map a to b, then they will use the same
partition, of course. Otherwise, the reason why one or both of σ and σ′

cannot map a to b is that they don’t currently guess a to be an anchor,
and that currently the distance between a and the anchor a† of a is less
than the distance between the ι-image of a† and b, forcing us to shift
the ι-image of a finitely far over from b. However, note that both σ
and σ′ can still “pretend” to use a as a new partitioning point since it
is at most finitely far away from the ι-preimage of b, under the current
guess.

Let us now make somewhat more precise how a strategy σ ∈ T deals
with intervals and guesses their size: First of all, each σ is handed a
sequence a0 <A a1 <A · · · <A an of A (where a0 = −∞ and an = ∞)
by σ−, along with a guess for each interval [ai, ai+1] whether it is infinite
or finite (and in the latter case also its size). Now, by our hypothesis
on A and by possibly speeding up the enumeration of A, at least one
of the intervals [ai, ai+1] will be guessed to be infinite.

Now, when satisfying its requirement, σ may introduce a new point a
in one of the intervals (ai, ai+1). The outcome of σ will now encode, for
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each new interval not yet measured by σ− (i.e., for the intervals [ai, a]
and [a, ai+1]), whether it is infinite or finite (and in the latter case also
the size of the open interval). For each such interval [a′, a′′], say, σ will
determine its guess as follows:

First, σ needs to guess whether [a′, a′′] is infinite. For this, σ will use a
computable threshold function gσ,s(a

′, a′′) subject to the following rule:
The function gσ,s(a

′, a′′) is nondecreasing in s and can only increase at
a stage when σ guesses [a′, a′′] to be infinite. (The intuition is that
gσ,s(a

′, a′′) is set very large each time σ guesses [a′, a′′] to be infinite.
In addition, if [a′, a′′] is a proper subinterval of [â′, â′′] and σ− has a
guess about [â′, â′′], then gσ−,s(â

′, â′′) will be far larger than gσ,s(a
′, a′′).

Thus, we may assume that whenever σ guesses [a′, a′′] to be infinite,
then σ− also guesses [â′, â′′] to be infinite.)

In the case that σ guesses [a′, a′′] to be finite at a stage s, say (even
if the size of [a′, a′′] has increased since the last time σ was active but
its size has not reached the current threshold gσ,s(a

′, a′′)), then σ will
simply guess the current size of the open interval (a′, a′′) to be the true
size of it; of course, if [a′, a′′] is truly finite, then σ will cofinitely often
guess this size correctly.

There is one fine point worth noting here: When introducing the
new element a (in an interval (ai, ai+1), say), the strategy σ needs to
measure the size of both [ai, a] and [a, ai+1] correctly, and so it needs to
do so sequentially: σ will first measure the size of [ai, a], and only then
the size of [a, ai+1]. (This is to make sure that σ does not alternately
measure one of these to be infinite but never realizes that they are both
infinite.) This is easily arranged by first performing the measurements
for [ai, a], and only then for [a, ai+1].
As for the ordering between the outcomes, the strategy σ will either

introduce no new element in A (and then have only a single outcome,
copying the guesses of σ−), or it will introduce one new element a,
resulting in two new intervals, one on either side of a, and the outcome
of σ will code our new guesses about these two intervals. (The outcomes
of the R-strategies are finitary and can thus be collapsed into one
outcome, with initialization, so the current discussion only concernsW-
and S-strategies.) We will always arrange the outcomes of σ, roughly
speaking, so that if o1 < o2 are two outcomes of σ and outcome o1 is
visited after outcome o2 is visited, then there must be a new interval
[a′, a′′] introduced by σ such that

(1) outcome o1 guesses [a
′, a′′] to be infinite, and outcome o2 guesses

it to be finite; or
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(2) outcome o1 guesses (a′, a′′) to be finite of larger size than out-
come o2.

This will ensure that if we move from outcome o2 to outcome o1 (i.e.,
from one outcome to an outcome to its left), then some adjacency
guessed by σ to exist under outcome o2 will have been destroyed when σ
takes outcome o1. More specifically, if the outcome o2 guesses [a′, a′′]
to be finite, then outcome o2 would suggest that every adjacency in
[a′, a′′] is stable, whereas outcome o1 requires that at least one of these
adjacencies is destroyed. — Any ordering of the outcomes respecting
these constraints will do; for concreteness, let’s say that for outcomes
o1, o2 ∈ ({∞} ∪ ω∗)2 (coding the size of (ai, a) and (a, ai+1), respec-
tively), we use the lex ordering with ∞ < · · · < 2 < 1 < 0 in each
coordinate, with a default outcome fin rightmost.

One more important definition we need to make precise is that of
a strategy being proved wrong: We say that σ has been proved wrong
at stage s if σ guesses an interval (ai, ai+1) to be finite of a certain
size k but by stage s, the interval (ai, ai+1) in A has already grown
to a size > k. (Note that in that case, σ will never again be along
the true path.) When this happens, no other strategy, including lower-
priority strategies σ′ >L σ, has to respect any restraint that σ may
have imposed in the past.

After the bird’s eye view of the setup for the construction, let’s take
a closer look at how we will satisfy the individual requirements. Recall
that we have to deal with three types of requirements.

2.2. Wa-strategy. A Wa-strategy σ will work to find an ι-image for a.
Now it may be that ισ(a) is already defined, namely, if a is one of the ai.
Or amay be in an interval (ai, ai+1) guessed to be finite by σ; then ισ(a)
is essentially determined already and we can rely on strategies σ′ ⊂ σ
to have defined it. In either case, σ will end the substage immediately
and have only the default outcome.

Otherwise, suppose that a is in one of the intervals (ai, ai+1) handed
down to, and guessed to be infinite by, σ. Suppose first that σ guesses
both of the intervals [ai, a] and [a, ai+1] to be infinite (call this out-
come o); then we distinguish two cases: If there is a highest-priority τ
with τ− ≤ σ such that ιτ (a) was defined before and τ has not been
initialized or proved wrong since, then σ will define ισ̂⟨o⟩(a) = ιτ (a)
for this τ . (Note that in this case, a is its own anchor (with respect
to σ and its outcome o), and we will prove later that a is also its own
anchor with respect to τ− and its outcome τ(|τ−|). Note that we al-
low τ− = σ.) On the other hand, if there is no such τ , then let b be
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the first element that was enumerated into (ισ(ai), ισ(ai+1)), and define
ισ̂⟨o⟩(a) = b. (If there is no such b, then enumerate a new element b
into (ισ(ai), ισ(ai+1)).) We will prove later that if b already exists, then
currently |[ai, a]| ≥ |[ισ(ai), b]| and |[a, ai+1]| ≥ |[b, ισ(ai+1)]|.

On the other hand, if σ currently guesses one of [ai, a] or [a, ai+1] to be
finite (by symmetry, say, the former), then under its current outcome o,
say, σ must define ισ̂⟨o⟩(a) so as to ensure |[ai, a]| = |[ισ(ai), ισ̂⟨o⟩(a)]|.
Since [ai, ai+1] has just achieved its threshold but [ai, a] has not, it must
be that [a, ai+1] has also achieved its threshold, and so many new points
must have entered [a, ai+1]. Thus we can map the interval [ai, a] onto a
proper initial segment of [ισ(ai), ισ(ai+1)] unless there are currently not
enough points in [ισ(ai), ισ(ai+1)]. In that latter case, σ must deter-
mine where in the interval [ισ(ai), ισ(ai+1)] to insert additional points.
This step is rather involved and will be described precisely in the full
construction, and in the verification in Lemma 4.5; the gist of it is that
we try not to insert any new points into subintervals for which some τ
with τ < σ̂⟨o⟩ or τ ⊇ σ̂⟨o⟩ guesses that it is the ι-image of a finite
interval.

2.3. Sb-strategy. An Sb-strategy σ will work to find an ι-preimage
for b. Now it may be that ι−1

σ (b) is already defined, namely, if b is of
the form ισ(ai). Or b lies between ισ(ai) and ισ(ai+1) for an interval
[ai, ai+1] guessed to be finite by σ, and we can rely on strategies σ′ ⊂ σ
to have defined ι−1

σ (b) already. In either case, σ will end the substage
immediately and have only the default outcome. (We note that by the
way we order the requirements, b will always have entered B by the
time this strategy acts.)

Otherwise, fix the strategy τ (necessarily a Wa-strategy for some
a ∈ A or an R-strategy) which created the element b in B. If τ is
Wa-strategy, it will have defined ιτ̂⟨o⟩(a′) = b for some a′ ∈ A (and note
that in that case, possibly a′ ̸= a). Note first that we may assume that
|τ | < |σ| since |τ | = |σ| is impossible by the way we assign requirements
to strategies, and if |τ | > |σ| then τ ↾ |σ| is an Sb-strategy and so ι−1

τ (b)
will already be defined. On the other hand, i.e., if τ is a Wa-strategy,
then τ already defines ι−1

τ (b) by the time we reach σ; and if |τ | < |σ|
and τ is an R-strategy, then τ and thus also σ ↾ |σ| guesses b to be
contained in the ι-preimage of a finite interval as we will show in the
verification, in Lemmas 4.7 and 4.3. So in either case, we are fine.

2.4. Rm-strategy. An Rm-strategy σ will, jointly with all other Rm-
strategies on the tree T , try to define ΓSucc(B)(m) and keep it correct.
So σ has to accomplish two tasks: It must ensure that, if it is along the
true path, it defines ΓSucc(B)(m) with a correct use (unless some other
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Rm-strategy already does so). And, if m enters C while ΓSucc(B)(m) =
0, it must ensure that this computation is destroyed so that it can be
corrected.

So, if ΓSucc(B)(m) is currently undefined and m ∈ C, then the Rm-
strategy σ defines ΓSucc(B)(m) = 1 with the empty use. If ΓSucc(B)(m)
is currently undefined and m /∈ C, then the Rm-strategy σ defines
ΓSucc(B)(m) = 0 based on all the adjacencies in all the intervals [ai, ai+1]
handed to, and guessed to be finite by, σ. (If there is no interval
[ai, ai+1] guessed to be finite by σ, then σ will not define ΓSucc(B)(m);
this can happen for at most finitely many m along the true path. Note
that if an Rm-strategy is currently along the true path, then any def-
inition of ΓSucc(B)(m) made earlier by an Rm-strategy τ >L σ will no
longer apply.)

Now assume that an Rm-strategy σ sees ΓSucc(B)(m) = 0 but m
has entered C since the last time that ΓSucc(B)(m) was defined by an
Rm-strategy τ ≤ σ. Then τ needs to destroy an adjacency in B which
is part of the use of ΓSucc(B)(m). So τ selects an adjacency in the
use of ΓSucc(B)(m) in the interval [ιτ (a), ιτ (a

′)] handed to the longest
τ ′ ⊂ τ guessed infinite by τ . (Note that this may cause extra finite
injury along the true path, but it will settle down once the next true
adjacency is seen by all ρ ⊃ τ .) Since the outcome of an Rm-strategy
is finitary, we will simply collapse the outcome on the tree into a single
one.

3. The Full Construction

We now flesh out the remaining details from the above intuition into
a full-blown construction. Whenever a point b is added to B, we assume
that the least number in ω not used before is chosen.

3.1. Tree of Strategies. The outcomes of the W- and S-strategies
are somewhat involved: Besides the default outcome fin (denoting that
the strategy does not add a new endpoint of an interval), each out-
come codes a finite sequence of guesses about the cardinality of a finite
sequence of intervals (ai, ai+1) (for some n > 0, where a0 = −∞ and
an = ∞). We use a sequence of the form ⟨a0, o0, a1, o1, . . . , on−1, an⟩,
where oi denotes a guess about the cardinality of the interval (ai, ai+1),
denoted oi ∈ {∞ < · · · < 3 < 2 < 1 < 0} (where ∞ denotes “infinite”,
and n ∈ ω denotes finite cardinality n of the open interval (ai, ai+1));
the ordering of the outcomes for each new subinterval is arranged so
that the leftmost outcome visited infinitely often is the true outcome
for that subinterval, as explained before. If σ introduces no new el-
ements and thus no new intervals, then σ will have only the default
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outcome fin, copying the previous guesses about the intervals; other-
wise, σ introduces one new element and thus two new subintervals of
an old interval, so σ’s outcome will measure the size for each inter-
val one after the other, in the end giving guesses about the two new
intervals handed down to an immediate successor of σ, of the form
(o, o′) ∈ ({∞ < · · · < 3 < 2 < 1 < 0})2. (Even though σ introduces
guesses for two new intervals, we count the outcome of σ as a single
outcome, adding only 1 to the length of its immediate successor nodes.)

Under this naming, we will ensure that the ordering of outcomes of σ
observes the following general rule, which can be realized by an effective
total ordering of all outcomes: For any outcomes (o1, o2) and (o′1, o

′
2) for

the two new subintervals, we have that (o1, o2) < (o′1, o
′
2) implies that

some newly introduced interval [a, a′] (i.e., one not measured by σ−) is
guessed to be infinite by (o1, o2) and finite by (o′1, o

′
2); or guessed to be

finite by both (o1, o2) and (o′1, o
′
2) but of a larger size by (o1, o2) than

by (o′1, o
′
2).

More specifically, given that the outcomes of σ only differ on two
subintervals of an interval (ai, ai+1), say (ai, a) and (a, ai+1), the out-
comes of σ are fully determined by the status o and o′ of the subintervals
(ai, a) and (a, ai+1), respectively, and so we only have to fully specify
the order type among such (o, o′); we stipulate that

(∞,∞) < · · · < (∞, 2) < (∞, 1) < (∞, 0) <

· · · < (2,∞) < (1,∞) < (0,∞) < fin.

List all W-, S- and R-requirements in the order

(3.1) W0 < S0 < R0 < W1 < S1 < R1 < . . .

Then assign the kth requirement in this list to all strategies σ ∈ T of
length k. Each σ ∈ T is handed a guess about intervals from above.
(The root node is handed just the guess ⟨∞⟩, reflecting the fact that A
(i.e., the interval (−∞,∞), where we assume −∞ and ∞ to be virtual
endpoints of A) is assumed to be infinite; we will also speed up the
enumeration of A so that at each stage, the root node sees A to be
of size exceeding its next threshold.) During its action, a strategy σ
may refine the intervals handed to it by inserting a point in any of the
intervals guessed to be infinite, as specified in detail for each kind of
strategy below, and its outcome will then include a guess about the new
intervals created. (Of course, for any interval [a, a′] into which no new
point is inserted, σ will have the identical guess about cardinality and
potential density as handed from above. For an interval [a, a′] guessed
to be finite, this is clearly possible. If the interval [a, a′] is guessed to
be infinite, then σ’s threshold function for it will be smaller than that
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of σ−, so σ and σ− will agree on guessing it to be infinite. Thus the
outcome of σ will automatically reflect the correct guesses about the
other intervals and only needs to note the guesses about the two new
intervals if there are such.)

3.2. Construction. Our construction proceeds in stages s ∈ ω such
that at substage t ≤ s of stage s, some strategy of length t is eligible
to act and decides its current outcome and thus also which strategy
should be eligible to act at substage t + 1, or whether to end stage s.
The description of the action of each strategy σ is now determined by
the requirement assigned to σ; at the same time, σ will also define the
ι-image of the element in A which σ may introduce as a new endpoint
of intervals being considered (this ι-image will depend on the current
outcome of σ), and σ will define the threshold function gσ,s(a, a

′) for
each interval [a, a′] newly measured by σ. Finally, at the end of stage s:

• We redefine, by reverse recursion on |σ| (i.e., in decreasing order
of length), the value of gσ,s+1(a, a

′) for all σ that were eligible
to act at stage s and all intervals [a, a′] that σ guesses to be
infinite and for which σ− has no guess; in particular, gσ,s+1(a, a

′)
exceeds 2c where c exceeds the sum of all g-values used by any
τ <L σ and any τ ⊃ σ; and

• we initialize all strategies to the right of the last strategy that
was eligible to act at stage s.

Note that this definition allows us to assume that if a strategy is handed
an interval [ai, ai+1] that it guesses to be infinite and its action is to split
that interval into proper subintervals, then σ will necessarily measure
at least one of these subintervals to be infinite. In particular, note
that for any interval [ισ(a), ισ(a

′)] for which σ− introduces at least one
endpoint and which σ guesses to be infinite, we will have at any stage s
that

(3.2) |[ισ(a), ισ(a′)]s| < gσ,s(a, a
′).

We now describe the action of each type of strategy at stage s in
full detail. Recall that each strategy σ will be handed down from σ−

a finite sequence a0 <A a1 <A · · · <A an of A (where a0 = −∞ and
an = ∞).

3.3. Wa-strategy. A Wa-strategy σ proceeds as follows: If ισ(a) is
already defined, then σ will end the substage immediately and simply
hand down the outcome of σ− (augmented by the exact finite guesses
for |(ai, a)| and |(a, ai+1)| if a is not one of the ai but in an interval
(ai, ai+1)).
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Otherwise, let a be in one of the intervals (ai, ai+1) handed down to,
and guessed to be infinite by, σ. If σ currently guesses one of [ai, a]
or [a, ai+1] to be finite (by symmetry, say, the former), then under its
current outcome o, say, σ will define ισ̂⟨o⟩(a) so as to ensure |[ai, a]| =
|[ισ(ai), ισ̂⟨o⟩(a)]|. (Since [ai, ai+1] has just achieved its threshold but
[ai, a] has not, it must be that [a, ai+1] has also achieved its threshold,
and so many new points must have entered [a, ai+1].)

In this case, σ may need to insert additional points into the in-
terval (ισ(ai), ισ(ai+1)) so that ισ̂⟨o⟩(a) can be defined while ensur-
ing |[ai, a]| = |[ισ(ai), ισ̂⟨o⟩(a)]| without potentially injuring a higher-
priority τ trying to keep a subinterval of [ισ(ai), ισ(ai+1)] finite. For
this, we determine if there are

(1) a strategy τ ′ < σ̂⟨o⟩ such that
• ιτ ′(a

′) was defined for some a′ ∈ [ai, ai+1], and
• τ ′ guessed [ai, a

′] to be finite at that stage and has not been
initialized or proved wrong since then;

and
(2) a strategy τ ′′ < σ̂⟨o⟩ such that

• ιτ ′′(a
′′) was defined for some a′′ ∈ [ai, ai+1], and

• τ ′′ guessed [a′′, ai+1] to be finite at that stage and has not
been initialized or proved wrong since then.

(The intervals [ai, a
′] and [a′′, ai+1] above may be unions of in-

tervals in the partitioning handed to τ ′ and τ ′′. Since neither τ ′

nor τ ′′ was proved wrong, we must have a′ <B a′′.)

We now distinguish five cases:
Case 1: There are no such τ ′ and τ ′′: Then insert sufficiently many
points (if any) just left of ισ(ai+1)) to allow the above definition of
ισ̂⟨o⟩(a).
Case 2: There is no such τ ′ but there is such τ ′′: Then choose τ ′′ with
ιτ ′′(a

′′) leftmost in B, and insert sufficiently many points (if any) just
left of ιτ ′′(a

′′) to allow the above definition of ισ̂⟨o⟩(a) while ensuring
that ισ̂⟨o⟩(a) <B ιτ ′′(a

′′).
Case 3: There is such τ ′ but no such τ ′′: Then choose τ ′ with ιτ ′(a

′)
rightmost in B, and insert sufficiently many points (if any) just right
of ιτ ′(a

′) to allow the above definition of ισ̂⟨o⟩(a).
Case 4: There are such τ ′ and τ ′′, and ιτ ′(a

′) <B ιτ ′′(a
′′) for all cor-

responding a′ and a′′: Then choose τ ′ with ιτ ′(a
′) rightmost in B and

insert sufficiently many points (if any) just right of ιτ ′(a
′) to allow the

above definition of ισ̂⟨o⟩(a) while ensuring that ισ̂⟨o⟩(a) <B ιτ ′′(a
′′).

Case 5: In Lemma 4.5, we will show that Cases 1 to 4 exhaust all
possibilities.
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This allows us to define ισ̂⟨o⟩(a), and indeed the ισ̂⟨o⟩-images for
all the points in [ai, a], at this stage while ensuring that the interval
(ισ(ai), ισ(ai+1)) is not covered by ιτ -images of intervals guessed to be
finite by strategies τ which have defined ι and not been initialized nor
proved wrong since then. (Note that if the cardinality of [ai, a] has
stopped changing, this map would work along the true path. If later
on, this cardinality is proved wrong, then the map is discarded forever.
As we will see below, if there is some other guess for both [ai, a] and
[a, ai+1] being infinite, then this strategy allows us to return to the
image of a under that other guess, assuming that the predecessor guess
for the size of [ai, ai+1] is on the true path.)

On the other hand, if σ guesses both of the intervals [ai, a] and
[a, ai+1] to be infinite (under its current outcome o, thus assuming
that a is an anchor), then σ can define ισ̂⟨o⟩(a) = ιτ (a) for the highest-
priority τ with τ− ≤ σ such that ιτ (a) was defined before, τ guesses
both [ai, a] and [a, ai+1] to be infinite, and τ has neither been initialized
nor proved wrong since then (if such τ exists). If there is no such τ ,
then σ simply defines ισ̂⟨o⟩(a) so as to ensure that

(i) there is no τ last guessing [ai, a] or [a, ai+1] to be finite unless τ
has been initialized or proved wrong since then,

(ii) |[ισ(ai), ισ̂⟨o⟩(a)]| ≤ |[ai, a]|, and
(iii) |[ισ̂⟨o⟩(a), ισ(ai+1)]| ≤ |[a, ai+1]|.

In addition, σ inserts a new element b into (ισ(ai), ισ(ai+1)) to define
ισ̂⟨o⟩(a) = b if for all current b′ ∈ (ισ(ai), ισ(ai+1)), σ would not be able
to ensure that both [ai, ι

−1
σ̂⟨o⟩(b′)] and [ι−1

σ̂⟨o⟩(b′), ai+1] are guessed to be

infinite.
In either case, at the end of the substage, σ will have the outcome

measuring the size of the intervals (ai, a) and (a, ai+1).

3.4. Sb-strategy. An Sb-strategy σ will work to find an ι-preimage
for b as follows. (Note that by (3.1), b will already be in B since at
least b + 1 many points will have been introduced by higher-priority
W-strategies.) If ι−1

σ (b) is already defined, say, ι−1
σ (b) = a, then σ

will end the substage immediately and simply hand down the outcome
of σ− (augmented by the exact finite guesses for |(ai, a)| and |(a, ai+1)|
if a is not one of the ai but in an interval (ai, ai+1)).

Otherwise, fix the interval [ai, ai+1] handed down to σ such that b lies
in the interval (ισ(ai), ισ(ai+1)), and so σ guesses the interval [ai, ai+1]
to be infinite. (As we will show in Lemma 4.7, if there is some τ with
τ− ≤ σ such that ιτ (a) = b and τ has neither been initialized nor
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proved wrong since ιτ (a) was last defined by τ−, then a ∈ (ai, ai+1)
and so σ can define ισ̂⟨o⟩(a) = b.)

Otherwise, σ defines ισ̂⟨o⟩(a) by choosing the element a ∈ (ai, ai+1)
to be the ι-preimage of b satisfying

(i) |[ισ(ai), b]| = |[ai, a]| if σ guesses [ai, a] to be finite, and
(ii) |[b, ισ(ai+1)]| = |[a, ai+1]| otherwise.

(Since [ai, ai+1] is guessed to be infinite, it will certainly be non-empty,
and one of [ai, a] or [a, ai+1] must be guessed infinite by σ.)

In any case, σ will measure the size of the intervals (ai, a) and
(a, ai+1) to determine its current outcome o. If σ guesses under this
outcome that [ai, a] or [a, ai+1] is finite, then it will also define ισ̂⟨o⟩(a′)
for all a′ in (ai, a) or (a, ai+1), respectively.

3.5. Rm-strategy. An Rm-strategy σ will, jointly with all the other
Rm-strategies on the tree T , try to define the single computation
ΓSucc(B)(m) and keep it correct. (Since σ does not introduce a new
element of A and has only a single finitary outcome fin, we have
ισ̂⟨fin⟩ = ισ.)

If ΓSucc(B)(m) = C(m) then σ ends the substage. If ΓSucc(B)(m) is
currently undefined and m ∈ C, then σ defines ΓSucc(B)(m) = 1 with
use 0.

Otherwise, suppose first that ΓSucc(B)(m) is currently undefined and
m /∈ C. Then σ will define ΓSucc(B)(m) = 0 using all the adjacencies
currently in [ισ(ai), ισ(ai+1)] for any interval [ai, ai+1] guessed to be
finite by σ. (If σ guesses no interval [ai, ai+1] to be finite, then σ does
not define ΓSucc(B)(m).)
Finally, suppose that m ∈ C and ΓSucc(B)(m) is currently defined to

be 0. By induction, as discussed before and proved in Lemma 4.11
later, we may assume that the current definition was made either by σ
itself or by an Rm-strategy τ <L σ. So let τ ≤ σ be the Rm-strategy
that defined the current computation ΓSucc(B)(m). We now let τ destroy
this computation by inserting an element into an adjacency in the use
of ΓSucc(B)(m) as follows:

Consider the interval [ai, ai+1] newly guessed along τ to be finite
by the longest τ ′ ⊆ τ , say. In that interval, let [a, a′] be the adja-
cency with the largest Gödel number. Then τ inserts a new element
into [ισ(a), ισ(a

′)], thus making ΓSucc(B)(m) undefined. Then τ defines
ΓSucc(B)(m) = 1 with use 0, initializes all ρ ≥ τ ′ and ends the stage.
(Note that this feature causes extra injury along the true path.)

In any case in which σ does not explicitly end the stage, it simply
ends the substage and takes outcome fin.



THE COMPLEXITY OF THE SUCCESSIVITY RELATION REVISITED 15

4. The Verification

In this section, we make formal the intuitive verification provided
in the earlier sections. The first lemma is essentially forced by the
construction.

Lemma 4.1. Let τ <L σ be two strategies of the same length on T such
that at a stage s, neither has been initialized nor proved wrong between
the last stage < s at which it acted and stage s. Then the endpoints of
the intervals of A handed to τ and σ coincide.

Proof. By induction on the length of τ and σ: If both are a Wa-strat-
egy, then they introduce the same new endpoint a (if any); if both
R-strategies, then neither introduces a new endpoint; and if both are
Sb-strategies, then σ introduces the same endpoint as τ (since σ must
act after τ , and neither has been initialized nor proved wrong). □

The next lemma is almost routine for priority arguments, with a
small wrinkle in that there is additional finite injury along the true
path (namely, when an R-strategy corrects Γ, it may injure higher-
priority strategies).

Lemma 4.2. There is an infinite true path TP ∈ [T ] such that

• each σ ⊂ TP is eligible to act infinitely often;
• for each σ ⊂ TP , there is a stage sσ after which no τ <L σ is
along the current true path; and

• each σ ⊂ TP is initialized only finitely often.

Proof. We argue by induction on the length of σ = TP ↾ k. The lemma
clearly holds for σ = ⟨⟩, i.e., for k = 0. (The third clause holds since ⟨⟩
guesses no interval to be finite and thus cannot be initialized by the
Γ-correction of an R-strategy.)

Suppose it holds for σ = TP ↾ k. We will first show that σ does not
end the stage at infinitely many stages at which it is eligible to act. For
this, note that σ will end the stage after stage k early only if σ is an
Rm-strategy and either σ itself, or some Rm-strategy τ < σ, destroys
a computation ΓSucc(B)(m) = 0; this can happen at most once.

Now observe that σ will measure the size of at most two intervals
not already guessed by σ−, and by our definition of outcomes, there
will be a leftmost outcome taken by σ infinitely often.

This establishes that σ has a leftmost successor σ̂⟨o⟩ = σ+, say,
which is along the current true path infinitely often. By induction,
after stage sσ, no τ <L σ can be along the current true path. So
there can only be finitely many stages after stage sσ at which an R-
strategy τ <L σ+ can act to correct Γ since eventually, after a stage
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sσ+ ≥ sσ, say, no such τ can be along the current true path, and
after that stage sσ+ , only Rm-strategies correcting ΓSucc(B)(m) = 0 can
cause initialization, which can happen at most finitely often since any
such strategy must have defined ΓSucc(B)(m) by stage sσ+ . Finally, it is
possible that σ+ itself is initialized due to the Γ-correction by some R-
strategy τ ≤ σ+. However, sinceA contains infinitely many adjacencies
and thus not all have been found by strategy σ+, there will eventually
be a stable adjacency not found by σ+ but seen by all τ > σ+, and so
Γ-correction will eventually not use the ι-image of an adjacency found
by σ+, so σ+ will eventually also not be initialized.

This establishes the lemma. □

Lemma 4.3. If a strategy σ guesses an interval [ai, ai+1] to be infinite
at a stage s, then no τ can have guessed it to be finite before unless τ
was initialized or proved wrong since then.

Proof. Immediate by the fact that, by initialization, we have τ <L σ;
now σ guesses [ai, ai+1] to be infinite since its size has increased since
it was last initialized, which happened after τ last guessed, so τ would
have been proved wrong if it had guessed [ai, ai+1] to be finite then. □

Lemma 4.4. Suppose a strategy σ is handed an interval [ai, ai+1] and
guesses it to be infinite at a stage s. Then for any τ , τ ′ and τ ′′ which
satisfy τ <L σ or τ ⊃ σ, and similarly for τ ′ and τ ′′:

(1) Let a be rightmost in the interval [ai, ai+1] such that some such τ
guessed [ai, a] to be finite when it last acted (up to the end of
stage s) and has not been initialized or proved wrong since then
until the end of stage s. (Assume here that if stage s ends
before substage s, then the guessing of interval sizes continues
to a strategy of length s for accounting purposes. Also, here
and below, we allow [ai, a] to be the union of several intervals
measured by τ but all to be guessed finite.) Then any such τ ′′

cannot guess any interval to be finite which contains a unless a
is a right endpoint of that interval.

(2) Symmetrically, let a′ be leftmost in the interval [ai, ai+1] such
that some such τ ′ guessed [a′, ai+1] to be finite when it last acted
(up to the end of stage s) and has not been initialized or proved
wrong since then until the end of stage s. Then any such τ ′′

cannot guess any interval to be finite which contains a′ unless a′

is a left endpoint of that interval.
(3) For τ , τ ′, a and a′ as above, we have a <A a′.

Proof. (1) Clearly, we may assume that ai <A a. So the only way
that (1) can fail would mean the existence of some τ ′′ with τ ′′ <L σ or
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τ ′′ ⊃ σ which last guessed [â, a′′] to be finite for ai <A â ≤A a <A a′′.
By Lemma 4.1, we know that |τ ′′| > |σ|, and so by Lemma 4.3, τ ′′

must also guess whether [ai, â] is infinite; in fact, by the maximality
of a, τ ′′ must guess it to be infinite. Similarly, by Lemma 4.1, we know
that |τ ′| > |σ|, and so again by Lemma 4.3, τ ′′ must also guess whether
[a, a′′] is infinite; in fact, again by the maximality of a, τ ′′ must guess
it to be infinite. But then at least of τ or τ ′′ must have been proved
wrong by stage s, namely, whichever last acted before the other, a
contradiction.

(2) The proof is symmetric to the previous case.
(3) This follows immediately from (1) and (2). □

The following lemma is critical:

Lemma 4.5. Let [ai, ai+1] be an interval guessed to be infinite by a
strategy σ at a stage s. Then [ισ(ai), ισ(ai+1)] is not contained in the
union of intervals of the form [ιτ (a), ιτ (a

′)] for various τ with τ < σ
or τ ⊃ σ such that τ last guessed [a, a′] to be finite and has not been
initialized or proved wrong since then.

Proof. Suppose the lemma first fails at a stage s; so at that stage,
some σ determines an interval [ισ(ai), ισ̂⟨o⟩(a)] to be the image of a
finite interval [ai, a] (in the notation of intervals for σ; and assuming
without loss of generality that σ determines the left half of the interval
[ai, ai+1] to be finite).
Then σ is either a Wa- or an Sb-strategy. Now in the case of a Wa-

strategy, we explicitly ensured in the construction that ισ̂⟨o⟩(a) is not
defined to be in an interval guessed to be the ι-image of a finite interval
by some τ with τ < σ or τ ⊃ σ that has not been initialized or proved
wrong.

So suppose σ is an Sb-strategy, and so σ must define ι−1
σ̂⟨o⟩(b). There

were two cases how σ defines ι−1
σ̂⟨o⟩(b): In the first case, it defined it as

ι−1
τ (b), and so the claim holds by induction. In the second case, since b
is currently not an ιτ -image, there can be no τ covering the ι-image of
an interval containing b except as a right endpoint. □

Here is the most critical property of the construction that we need
to enforce at every stage:

Lemma 4.6. At any stage s at which ιτ (a) and ιτ (a
′) are defined for

a <A a′ and such that τ (actually, τ− under its outcome τ(|τ | − 1))
guesses [a, a′] to be finite and such that at that stage, τ has neither been
initialized nor proved wrong since these definitions were made, we have
that |[a, a′]| ≥ |[ιτ (a), ιτ (a′)]|.
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Proof. Assume that ιτ (a) was last defined by τ ′ ⊂ τ at a stage s′, and
that ιτ (a

′) was last defined by τ ′′ ⊂ τ at a stage s′′; by symmetry
assume that τ ′ ⊆ τ ′′. Then s′ ≤ s′′, and τ ′′ will ensure |[a, a′]| ≥
|[ιτ (a), ιτ (a′)]| at stage s′′. So we need to show that this cannot fail
after stage s′′, due to some strategy σ inserting a new element into the
interval [ιτ (a), ιτ (a

′)] of B.
Now no strategy σ <L τ can act between stages s′′ and s (or else τ

would be initialized); and no S-strategy inserts any number into B. Any
R-strategy σ ⊂ τ inserting a number into B would also initialize τ . Any
R-strategy σ > τ can insert a new number only into an interval of B
which σ, and thus also τ , guesses to be the ι-image of an infinite interval
of A unless σ is initialized at the same time. Any W-strategy σ ⊂ τ
inserts a number into the interval (ιτ (ai), ιτ (ai+1)) (under the endpoint
notation according to σ) only when σ takes its current outcome the first
time. Any W-strategy σ > τ inserts a number into a subinterval of the
interval (ιτ (ai), ιτ (ai+1)) of B (under the endpoint notation according
to σ) only if there is no ρ with ρ− ≤ σ that last guessed an interval
containing a in its interior as finite and has not been initialized or
proved wrong since then. □

Lemma 4.7. If a strategy τ− defines ιτ (a) = b and later a strategy σ
finds b ∈ [ισ(ai), ισ(ai+1)] for an interval [ai, ai+1] handed to σ while τ
has not yet been initialized nor proved wrong, then a ∈ [ai, ai+1].

Proof. Suppose the lemma fails; by symmetry assume a <A ai. But
then ισ(ai) ≤B ιτ (a) = b <A ισ(ai) and so in particular, ισ(ai) <B
ιτ (ai). But then some ρ ⊂ σ must have defined ισ(ai) in the belief that
an interval containing [ai, ai+1] is finite, contradicting our assumption
on σ. □

Lemma 4.8. Suppose at a stage s, a strategy σ defines ισ̂⟨o⟩(a) for
some a in an interval (ai, ai+1) handed to σ for some outcome o. Then:

(1) If σ guesses both [ai, a] and [a, ai+1] to be infinite at stage s (i.e.,
guesses a to be an anchor), then for any τ for which ιτ (a) is
defined, we have ιτ (a) = ισ̂⟨o⟩(a) unless τ has been initialized
or proved wrong since it defined ιτ (a). (In this case, a is an
anchor with respect to σ and its outcome o.)

(2) If σ guesses one of [ai, a] or [a, ai+1] to be finite at stage s (by
symmetry, say, the former), then there is j ≤ i such that σ
guesses [aj, ai] to be finite, and for any τ for which ιτ (aj) is
defined, we have ιτ (aj) = ισ(aj) unless τ has been initialized
or proved wrong since it defined ιτ (aj). (In this case, aj is an
anchor of a with respect to σ and its outcome o.)
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Proof. (1) Here, σ is either a Wa- or an Sb-strategy. In either case, the
claim is obvious from the definition of ισ̂⟨o⟩(a).

(2) The proof is the same as for (1). □

We now define the true map ι = ιTP as the union of all ισ for σ ⊂ TP .
We can then verify that each strategy σ ⊂ TP satisfies its requirement.
For convenience, we define σ+ = TP ↾ (|σ|+1), the immediate successor
of σ along the true path.

Lemma 4.9. Each Wa-requirement is satisfied by the Wa-strategy σ ⊂
TP .

Proof. This is trivial if ισ(a) is already defined. Otherwise, fix an inter-
val [ai, ai+1] handed down to σ containing a in its interior. If σ guesses
at least one of [ai, a] and [a, ai+1] to be finite, say, the former, then σ
ensures that |[ai, a]| = |[ισ(ai), ι(a)]| once the former size stabilizes.
Otherwise, σ guesses both [ai, a] and [a, ai+1] to be infinite, and so, by

construction, σ can find some b ∈ (ισ(ai), ι(ai+1)) and define ισ+(a) =
b. □

Lemma 4.10. Each Sb-requirement is satisfied by the Sb-strategy σ ⊂
TP .

Proof. This is trivial if ι−1
σ (b) is already defined. Otherwise, fix an

interval [ai, ai+1] handed down to σ such that b is in (ισ(ai), ι(ai+1)).
If σ guesses at least one of [ai, a] or [ai+1] to be finite, say, the former,
then σ ensures that |[ai, a]| = |[ισ(ai), ι(a)]|, which easily defines ι−1

σ+(b).
Otherwise, σ guesses both [ai, a] and [a, ai+1] to be infinite, and so, by

construction, σ can find some a ∈ (ai, ai+1) and define ι−1
σ+(b) = a. □

Lemmas 4.9 and 4.10 combined now show that ι is a bijection from A
onto B, defined by

ι =
⋃

σ⊂TP

ισ

Clearly, since ι preserves the ordering, it is in fact an isomorphism, and
it is also computable from 0′′ (but not necessarily from TP alone since
there is some finite injury along the true path due to ΓSucc(B)-correc-
tion).

Lemma 4.11. Each Rm-requirement is satisfied by the Rm-strategy
σ ⊂ TP (at least for cofinitely many arguments m, which suffices for
our proof).

Proof. We need to ensure two things: Firstly, that ΓSucc(B)(m) is even-
tually defined with a permanent use; and secondly, that if ΓSucc(B)(m)
is defined when m enters C, then ΓSucc(B)(m) is corrected.



20 DOWNEY, LEMPP, AND WU

First of all, recall that we already indicated above that no definition
of ΓSucc(B)(m) made by any Rm-strategy τ >L σ can be permanent,
so here is the formal proof: Let ρ ⊂ σ, τ be the longest common sub-
strategy. Then there is an interval [a, a′] created by ρ such that σ
and τ disagree either about its cardinality: If τ guesses that [a, a′] is
finite then σ guesses that it is either finite of larger size or infinite;
in either case, when σ is next eligible to act at a stage s after τ has
defined ΓSucc(B)(m), then τ used every adjacency in [a, a′] in the use of
ΓSucc(B)(m), and one of these must have been destroyed by stage s.
Now assume that no Rm-strategy τ <L σ defines ΓSucc(B)(m) per-

manently. Then we claim that σ must eventually do so since σ has
the correct guesses about all the intervals handed to it, as long as at
least one interval handed to σ is guessed to be finite by σ: The inter-
vals that σ guesses to be finite are truly finite of the right size; so σ
eventually enumerate a Γ-axiom with correct use in Succ(B).

Finally, suppose that some Rm-strategy τ has defined ΓSucc(B)(m) =
0 and then m enters C. (By the argument two paragraphs above, we
may assume that τ ≤ σ since otherwise the definition of ΓSucc(B)(m) = 0
will have been destroyed by the next time σ is eligible to act.) Then τ
will make ΓSucc(B)(m) undefined by inserting an element into an ad-
jacency in the use of ΓSucc(B)(m) in an interval which τ guesses to be
finite, thus destroying the computation ΓSucc(B)(m) as desired. □

Note that in the proof above, and in the construction, we could have
ensured that ΓSucc(B) is indeed total by rearranging the Rm-strategies
so that none is below an outcome guessing all intervals handed to the
strategy being infinite.

This completes the proof of our Main Theorem.

References

[1] Chubb, Jennifer C.; Frolov, Andrey N.; and Harizanov, Valentina S., Degree
spectra of the successor relation of computable linear orderings, Arch. Math.
Logic 48 (2009), 7–13.

[2] Downey, Rodney G.; Lempp, Steffen; and Wu, Guohua, On the complexity of the
successivity relation in computable linear orderings, J. Math. Logic 10 (2011),
1–17.

[3] Downey, Rodney G.; Lempp, Steffen; and Wu, Guohua, Corrigendum: On the
complexity of the successivity relation in computable linear orderings, J. Math.
Logic 17 (2017), paper 1792002, 4 pages.

[4] Frolov, Andrey N., Presentations of the successor relation of computable linear
orderings, Izv. Vyssh. Uchebn. Zaved. Mat. 54, no. 7 (2010), 73–85; translated
in: Russian Math. (Iz. VUZ) 54, no. 7 (2010), 64–74.



THE COMPLEXITY OF THE SUCCESSIVITY RELATION REVISITED 21

School of Mathematics, Statistics and Operations Research, Victo-
ria University of Wellington, Wellington, New Zealand

Email address: Rod.Downey@vuw.ac.nz
URL: http://www.mcs.vuw.ac.nz/Main/RodDowney

Department of Mathematics, University of Wisconsin, Madison, Wis-
consin 53706-1325, USA

Email address: lempp@math.wisc.edu
URL: http://www.math.wisc.edu/~lempp

School of Physical and Mathematical Sciences, Nanyang Techno-
logical University, Singapore 637371, Republic of Singapore

Email address: guohua@ntu.edu.sg
URL: http://www3.ntu.edu.sg/home/guohua/

mailto:Rod.Downey@vuw.ac.nz
http://www.mcs.vuw.ac.nz/Main/RodDowney
mailto:lempp@math.wisc.edu
http://www.math.wisc.edu/~lempp
mailto:guohua@ntu.edu.sg
http://www3.ntu.edu.sg/home/guohua/

	1. Introduction
	2. The Intuition for the Construction
	2.1. Intervals: Guessing, Outcomes, and Anchors
	2.2. W_a-strategy
	2.3. S_b-strategy
	2.4. R_m-strategy

	3. The Full Construction
	3.1. Tree of Strategies
	3.2. Construction
	3.3. W_a-strategy
	3.4. S_b-strategy
	3.5. R_m-strategy

	4. The Verification
	References

