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Abstract

Downey, R. and M. Stob, Splitting theorems in recursion theory, Annals of Pure and Applied
Logic 65 (1993) 1-106.

A splitting of an r.e. set 4 is a pair 4, 4> of disjoint r.e. scts such that 4; U 4y = 4.
Theorems about splittings have played an important role in recursion theory. One of the
main reasons for this is that a splitting of 4 is a decomposition of 4 in both the lattice,
£, of recursively enumerable sets and in the uppersemilattice, R, of recursively enumerable
degrees (since A] €T 4, Ay <1 4 and 4 <y 4| & 4,). Thus splitting theorems have been
used to obtain results about the structure of £, the structure of R, and the relationship
between the two structures. Furthermore it is fair to say that questions about splittings have
often generated important new technical developments in recursion theory. In this article
we survey most of the results and techniques associated with splitting properties of r.e. sets
in ordinary recursion theory.
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0. Introduction

A splitting of an r.e. set 4 is a pair 4;, A, of disjoint r.e. sets such that
Ay U Ay = A. Theorems about splittings have played an important role in
recursion theory. The main reason for this is that a splitting of 4 is a de-
composition of 4 in both the lattice, £, of recursively enumerable sets and
in the uppersemilattice, R, of recursively enumerable degrees (since A €1 4,
Ay, <7 A and 4 <1 4; & 42). Thus splitting theorems have been used to
obtain results about the structure of £, the structure of R, and the relation-
ship between the two structures. Furthermore it is fair to say that questions
about splittings have often generated important new technical developments
in recursion theory. Examples include the development of the 0" -priority
method, Lachlan’s “diamond” theorem [64], and Shore’s blocking technique
in a-recursion theory.

In this article we survey many of the results and techniques associated with
splitting properties of r.e. sets in ordinary recursion theory. We have attempted
to include all important results and techniques related to ordinary recursion
theory but have chosen to leave out other areas such as effective algebra and
generalized recursion theory. For effective algebra, in which there are many
important results concerning splittings, the surveys of Nerode and Remmel
[81], Downey, Remmel and Welch [31], and Downey and Remmel [30]
are adequate. With respect to generalized recursion theory, we would need to
develop too much machinery and notation to fit in the current paper.

We have several reasons for writing this paper. The main reason is that
many of the important results concerning splittings are scattered throughout
the literature or are unpublished. Furthermore, the standard sources- (Rogers
{871, Soare [97], and Odifreddi [83]) do not contain many of the important
results. It also seems timely to give such a survey since there have been many
recent applications of splittings to major questions about R and £ and many of
these applications remain unpublished. Another reason for writing this paper is
that many of the older results concerning the structure of R can be simplified
and extended using splitting theorems.

This paper contains, as far as possible, all that we know about splitting
theorems in ordinary recursion theory. We have also included enough proofs
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to illustrate most major proof techniques used in this area. The only exceptions
to this rule are in cases where the proofs are too long.

The paper consists of 10 sections of results. Section 1 is devoted to Fried-
berg splittings, their applications, and some classical generalizations. Section 2
consists of extensions of Friedberg splittings due to Downey and Stob. These
extensions were introduced particularly to study the group, Aut(£), of auto-
morphisms of £. In Section 3 we consider other splitting properties related
to automorphisms of £ including the splitting property of Maass, Shore and
Stob [74] and Maass’s outer splitting property. In Section 4 we consider the
hemimaximal sets of Downey and Stob. Again, this splitting property was
introduced to study automorphisms of £, In Section 5 we examine the uni-
versal splitting property of Lerman and Remmel [69] and various extensions
of it. Section 6 is devoted to other applications of splitting theorems to the
study of the structure of R. Section 7 concerns sets without the universal
splitting property and strengthenings of this. Section 8 concerns mitotic sets
and degrees. Section 9 is devoted to generalizations of the notion of mitoticity.
Also included in Section 9 is a study of array recursive splittings. Finally,
Section 10 concerns splittings of d.r.e. sets culminating in Cooper’s proof of
the definability of the jump in the structure of the degrees.

There are quite a few new results, unpublished results, and new proofs of
old results here. All results not otherwise credited are due to the authors. Some
of the presentation in Section 9 (and a couple of other places) is reproduced
with permission of North-Holland. Notation is standard and follows Soare
[97]. In particular, use functions are monotone in stage and arguments and
all computations and uses are bounded by s at any stage 5. We use £(A4) to
denote the lattice of r.e. supersets of 4 and £*(4) to denote £(A4) modulo
the ideal of finite sets. If 4 and B are r.e. sets, A\, B denotes {x | (3s,¢)[s <
tAX € Aus AX € Ba(]}. Also A\B = {x | (3s){x € A; — B;]}. Note that
AN B = (A\B) n B. We will refer to the e-state of x (at stage s) measured
with respect to the standard enumeration of the r.e. sets as the standard e-
state. That is, the standard e-state of x (at stage s) is {j | j < e Ax € W}}
({j | ] < eAx € Wjs}). These e-states are denoted o{e,x) and o(e,X,s)
respectively. We will also often have occasion to mention length of agreement
Junctions. Given a functional @ and r.e. sets 4 and B, the length of agreement of
@ (A) = B is the function / defined by /(s) = max{x | (Vy < x}[Ds(4s;¥) =
B;(¥)]} and the maximum length of agreement is the function m defined by
m(s) = max{t<s|I{(t)}.

1. Friedberg splittings

The earliest splitting theorem is due to Friedberg.
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Theorem 1.1 (Friedberg’s Splitting Theorem [43]). If A is a nonrecursive r.e.
set, then there exist disjoint nonrecursive sets A, and A, such that A A1UA,.

Furthermore, these sets satisfy the property

for all r.e sets W, if W — A is not r.e, (L.1)
then W — A; is not re. fori = 1,2. ’

Proof. We have the following requirements for every e € w and i = 1, 2.

R.:: |W;\,A|:oo=>WenA,-;é®.

3

First, to see that the requirements suffice to prove (1.1), suppose that W is
an r.e. set and i is such that W — 4; is r.e. Let U = W — A;. Supposing that
R.; is met for U = W,, we therefore have that U\, A4 is finite. This implies
that U -4 = W — A isre. (since U -4 =* U\A and the latter set is r.e.).
Notice also that (1.1) implies that each set A; is not recursive.

To meet the requirements R, ;, at stage s we search for the least (e, 7}, if any,
such that W, ;N4;s; = @ and for which there is z such that z € W, ;N (4s,.1—4s).
If such exists, we enumerate z in A; at stage s + 1, enumerating all other
elements of 4;,.; — 4; into A4,, say. To see that this strategy suffices to meet
the requirements, notice that each requirement acts only finitely often but
if W, \, 4 is infinite, requirement R,; has infinitely many opportunities to

act. O

We record the following useful definitions.

Definition 1.2, Suppose that 4 is a nonrecursive r.e. set.

(1) A splitting of A is a pair A,, A, of disjoint r.e. sets such that 4, UA; = A.
We sometimes will write 4 = 4, U A4y if A;, A, is a splitting of A4,

(2) A nontrivial splitting of A is a splitting of 4 such that, in addition, the
sets A;, A, are nonrecursive.

(3) A Friedberg splitting of A is a nontrivial splitting of 4 such that, in
addition, the sets A;, A, satisfy (1.1).

Although Friedberg’s splitting theorem is a very easy wait-and-see argument,
it has a number of important consequences and extensions. For example, it
plays a crucial role in Lachlan’s decision procedure for the V3-theory of £*. As
another example, we give an alternate proof of a result of Shore on nowhere

simple sets.

Definition 1.3 (Shore [91]). An r.e. set A is nowhere simple if for every r.e.
set W such that W — A4 is infinite, there is an infinite r.e. set C C W such
that Cn A = @, If an index for C can be found uniformly in an index for W,
then A is effectively nowhere simple. (The terminology comes from the fact
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that this property asserts that 4 is not simple in the lattice £(}# U 4) of r.e.
sets restricted to W U A.)

Shore [91] showed that every r.e. set has a nontrivial splitting by a pair
of nowhere simple sets. This fact follows from Theorem 1.5 which below. We
first remark that there is an alternate characterization of effective nowhere
simplicity which shows that the property is lattice-theoretic.

Theorem 1.4 (Miller and Remmel). A is effectively nowhere simple if and only I
if there is an r.e. set B disjoint from A such that for all r.e. sets W, W — 4 : H
infinite implies that W N B is infinite. il

Proof. (=) Suppose that f witnesses that A is effectively nowhere simple. That
is, suppose that if W, — A is infinite then Wy, is infinite and Wy C W, — 4.
Then B = |j, W) is the desired set B.

(«=) Conversely, suppose that B satisfies the mentioned condition. Then f
defined by W) = BN W, witnesses that 4 is effectively nowhere simple. O

Theorem 1.5, Suppose that A1, Ay is a Friedberg splitting of A. i
(1) Then A, and A, are nowhere simple. il
(2) If A is simple, then A; and A, are effectively nowhere simple. )
(3) (with R. Shore) If By, B, is any other Friedberg splitting of A, then By is ;

effectively nowhere simple iff A, is effectively nowhere simple. he

Proof, (of 1) Suppose that W is an r.e. set such that W — A4; is infinite. To
produce the desired C, we consider two cases. In the case that W N 4; is
infinite, we have that C = W N 4, has the necessary properties. On the other B
hand, suppose that W n A4, is finite. Then W — A4, is r.e., hence W — 4 is r.e. ;
(because A;, A, is a Friedberg splitting of A4). However W -4 =* W — 4, in
this case so that C = W — A, works.

(of 2) In the case that A is simple, the latter case above cannot happen so
that we have C = W N A4, always works. Thus it is clear that, if 4 is simple, \
the index for C can be produced effectively from that of W. \

(of 3) Suppose that A4, is effectively nowhere simple. Then by Theorem 1.4 |
there is an r.e. set C such that CnA4; = @ and if W — A4, is infinite, CNW
is infinite. Since C is disjoint from A4; and A4; is half of a Friedberg splitting
of A, C— A is r.e. Now let D = (C — A) U B,. We claim that D witnesses the
effective nowhere simplicity of B, (using the Miller~Remmel characterization
of effective nowhere simplicity). For suppose that ¥ is an r.e. set with W -- B,
infinite. We must show that ¥ N D is infinite. There are two cases. If W N B,
is infinite, then W N D is obviously infinite. Otherwise, if W N B, is finite, this
implies that W — A4 is an infinite r.e. set. Let ¥V = W — 4. Then, we must have
that ¥ N C is infinite and this implies that ¥ N D is infinite. O
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Shore used his splitting theorem to establish the following interesting fact
about automorphism bases of £*.

Theorem 1.6 (Shore [91]). Suppose that ¢ : £* — £* is an elementary lattice
Injection and that ¢ is the identity on a nontrivial class C* of r.e. sets closed
under recursive permutations of @w. Then ¢ is the identity on £*.

Proof. Suppose that ¢ is not the identity on £*. Then by Theorem 1.5 there is a
nowhere simple set 4 such that ¢ (4) £#* 4. We may assume that [A—-¢(4)] =
00. As ¢ is elementary, ¢ (4) is nowhere simple. Hence, there exists a recursive
set R C A— ¢(A). Now choose C € C* with C C R C 4 — p(A4). (This is
possible as C* is closed and nontrivial.) Now AUC = w but ¢ (A4) C C. This is
a contradiction since ¢ (C) = C implies that C = ¢ (4A)UC = ¢p{A)Up(C) =
p(AUC) =*w. O

As we observed in Theorem 1.5, if 4;, A> 1s a Friedberg splitting of a simple
set 4, 4, is effectively nowhere simple with 4; playing the role of B in the
Miller-Remmel characterization. This result suggested to us a converse of the
second part of Theorem 1.5; perhaps it is the case that effective nowhere
simplicity is equivalent to being half of a Friedberg splitting of a simple set.
This suggestion fails.

Theorem 1.7. There is an effectively nowhere simple nonrecursive set A such
that A is not half of a Friedberg splitting of a simple set.

Proof. We build disjoint sets 4 and B and auxiliary sets (., € € @, in stages.
Let aps < ajs < -+ list the elements of A4, in increasing order. We meet the
following requirements.

P;: A# W,

Re: \Wo—Adl=co=W,NB#H,

Neit WeNA#£ BV (|Qe—We| 2 inQenAd =0),
N,: limga.; = a. exists.

The requirements R, guarantee that B witnesses the effective nowhere sim-
plicity of 4. The requirements N,; for i € w ensure that ¥, and 4 do not
form a Friedberg splitting of a simple set. We also define for each ¢ € @
the sequence g.0s; < ge,1,s < --- to list in increasing order the elements of

AsUB;UQps U+ UQey;. We will also use e = —1. The argument is a finite
injury one so we will describe the strategies for each requirement independently
and leave the details of the coherence to the reader.
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Requirement P, requires attention at a stage s if W,s N 4; = @ and there
18 x € W, such that x = g, for some k > e. In this case we meet P, by
enumerating x into 4. We shall also initialize and restart all requirements N, ;
for e’ > e. We meet requirement R, by waiting until we see some x € W, — 4
while W, ;N B; = @ such that x > g, . and then enumerating one such x into
B. This meets R, forever. Notice that this action does not directly interfere
with N, ; for & < e since it does not require enumeration of elements of Q.
into 4. However it may indirectly injure such a requirement as we shall see
below.

Requirement N,; can receive attention in two ways. First, if there is a
stage s and x € W, such that x = ¢, for some j > e, we can satisfy all
requirements N,; for i € w forever (by satisfying the first disjunct of the
requirement) by enumerating x into 4. Otherwise while W, ;N4 = @, we must
have that x € W, implies that x € BUJ;., @;. In this case we will satisfy
N,,; by meeting the second disjunct. To do this we shall say that N, ; requires
attention also if WesNA; = @, Wes C BUU,, Q)» and [Qes— Wes| < i. We then
chose a large fresh number y (say, gss,s) currently in no set Q; and enumerate
yin Q, ;.. It is now not difficult to see that all the strategies combine properly
by a standard application of the finite injury priority method. [

There are several interesting open questions related to Friedberg splittings
and nowhere simple sets. To state the first, we need the following definition.

Definition 1.8. A set X (not necessarily r.e.) is semilow if {e : W, N X is finite}
<10 and semilow, s if {e: W, NX is finite} <, 0".

It is easy to see that if A is effectively nowhere simple, then A4 is semilow, s.
Maass used the automorphism machinery of Soare to show (generalizing Soare
[96]) the following,

Theorem 1.9. A is r.e. coinfinite with semilow, s complement if and only if
L*(A) is effectively isomorphic to £*.

We discuss some aspects of the proof of Theorem 1.9 in Section 3. Here
we note that it is an obvious consequence of Theorem 1.9 that for effectively
nowhere simple A, £*(A4) is effectively isomorphic to £*. This leads to the
following open question, first posed by Shore.

Open Question 1.10. If 4 is coinfinite and nowhere simple, is £* (4) = £*?
Semilowness is related to the Blum-Marques machine-independent theory of

computational complexity. Blum and Marques [12] define an r.e. set 4 to be
speedable if 4 has no “fastest program modulo a recursive cost function”. The
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exact definition of this concept is not important here for Soare [95] showed
that A is speedable if and only if 4 is not semilow. Blum and Marques [12]
observed that any r.e. set 4 can be split into a pair of nonspeedable sets. Soare
later observed that this result follows from a theorem of Sacks [88]. In fact, the
Blum-Marques result follows from our proof of Friedberg’s Splitting Theorem.
To demonstrate this, we first notice that our proof produces a splitting with a
stronger property than the defining property of a Friedberg splitting.

Definition 1.11. A4;, A4, is a true Friedberg splitting of A if for every ¢ € w,
W NAl =co= WonNd; #8, i=1,2 (1.2} :
Our proof of the Friedberg splitting theorem actually showed that every

nonrecursive r.e. set 4 has a true Friedberg splitting. We now obtain the
Blum~Marques result on non-speedable splittings in the following way.

Theorem 1.12. Suppose that A;, A is a true Friedberg splitting of A. Then both
Ay and A, are nonspeedable (i.e., A; is semilow for | = 1,2).

3
Proof. Define a recursive function f by i
5
1 fW,,n4d 3
f(e,s) _ 1 e,5 oAl,s # Q)a
0 otherwise.

We claim that lim; f (e,s) = f (e) exists and f(e) = 1 only if W, N4, # 6.
Hence A, is semilow by the Shoenfield Limit Lemma. Suppose that there are
infinitely many s such that W,s N4y, # 0. We must show that W, N4, # §
and thus that there are cofinitely many such s. If otherwise, it must be the
case that W, \, 4, is infinite. However then it must be the case that W, \ 4
is infinite and so that W N A, # @. But any element of W, N 4, is in W, N A -
and so W, N A; # O contrary to our assumption. [] 1

This result leads to the following dual question, first posed by Remmel.

Open Question 1.13. If 4 is speedable, does there exist a splitting 4, 4 of 4
such that 4; and A, are each speedable? ‘

The best result along these lines that we have is the next theorem. Recall L
that an r.e. set 4 is called hyperhypersimple (hhsimple) if for every weak ]
array {¥;};ew, there is a j such that V; C 4. (A weak array is an r.e. sequence ;
of finite sets given by r.e. indices.) Blum and Marques [12] showed that all
hhsimple sets are speedable. We have the following.
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Theorem 1.14 (Downey, Jockusch, Lerman and Stob). If 4 is hhsimple, there
is a splitting A, Ay of A such that each of A, and A, is speedable.

Proof. Suppose that hyperhypersimple A is given. We show how to enumerate
the splitting A;, 4,. At sach stage 5, each number x € A; will be targeted for
at most one of the sets 4; or A,. At stage s + 1, if x € A, — A, we will
enumerate x in 4, unless x is targeted for A,, in which case we will enumerate
x in A,. This will ensure that 4; , 4 is a splitting of 4. If x € 4; is targeted
for a set at stage s then at a stage ¢ > s it might be retargeted for the other set
or it may cease to be targeted for either set.

In order to state the requirements, the following notation will be useful. For
a set X, define

i ifX
||X||-—-{ XD

0 otherwise.
The requirements to make each set 4; speedable as follows.
Re: (30) [@e(K;h) # |[Wh 0 Al

The basic strategy for meeting one requirement R, ; is the following. We
enumerate a weak array {V.,;}jeo Of 1.€. sets. By the recursion theorem, we
will assume that we know an index A(e,i,j) for the set V;;;. The intention
is to guarantee that there is j such that if 2 = h(e, i, j), Re; is satisfied with
witness . We show that if R,; is not satisfied, {1, }jco 1s a weak array
witnessing that A4 is not hhsimple.

The construction is on a tree.

Define the priority tree as PT = (w U {f})<“. If @ € PT we refer to « as
a guess. We order the guesses lexicographically which we denote by <. If
la| = (e, i) we associate o with R, ;. Instead of the sets V,,;; described above,
we will have sets V,, ;. The extra index k represents the fact that we will have
to sometimes “restart” ¥, ; with a new version. For each « and j, at each stage
s, there will be an active k denoted by k(a, j,s). That is, at stage s, we will
be using the set ¥, k(a5 BY the recursion theorem, we assume the existence
of a recursive function % such that Wi jk(ajs)) = Vajk(ajs). Lne life cycle
of a set ¥, is as follows. Initially it is empty. If it is never activated, then
it remains empty forever. At some stage s, V, ;x may be activated and can
potentially get elements to target for A; where || = {e, ). This activation will
indicate that for each k' < k, ¥, j» has been deactivated. (Deactivation occurs
when o has been initialized. Initialization occurs in the construction, and if
a node o~ is initialized at stage s, we set k (e, j,s + 1) = k (e, j,5) + 1 thereby
activating the next set on the list.) It will be the case that V, ;i remains active
until o”j is again initialized. Though we are using the Recursion Theorem,
we will act as if when we enumerate an element x into some Vg jk(a,s) at
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stage s, it immediately enters Wy (a,jk(e,js) 2t Stage s. This convention makes
the description of the construction easier and is easily justified (say by the
Slowdown Lemma of Soare [97, p. 284]).

Define

Ha,s) = max{x: (VY < x)[Des (Ks; h(a,p, k{a,¥,5)))
= ” I/Vh(cn:,y,k(.:vz,y,s)),s A Zi,.':"”'

and
m(a,s) = max!(a,t).
t<s
Construction
Stage s + 1

Step 1. Let z € A; . — 4. If z is not targeted for either 4, nor 4, put z
into Ay. Otherwise put z into its target set.

Step 2. In substages # + 1 0 < ¢ < 5, we define a string a(s + 1,7 + 1) of
length ¢ + 1 and take action for R, ; such that {e,i) = t. Weseta(s+1,0) = 0.
Suppose that we have defined a(s + 1,7) = a. We describe substage ¢ + 1. Let
e, [ be such that {e, i) = |al.

Case 1. l(a,5) > m(a,s). (In this case, we say that s is an c-expansionary
stage.) First determine if there exists some j with 4 (e, j, k(a, j,5)) < I{a,s+1)
and Wy,jk(ajs © Ais If such a j exists, choose the least such. Let x be
the least element of 4; not already targeted by some § <y, a {j + 1}, and not
in Uj,k Va,j,k,s- T.arget x for A;, and put x into ch,j,k(a,j,s)-

To define a(s + 1,¢ + 1), see if there exists j < /(a,s) such that the use
of @5 (Ks, ke, j, k(e, j,5))) has increased since the previous a—expansionary
stage. (Here we assume that if a computation changes its value then its use
increases.) In this case, let j be the least such, let a(s + 1, + 1) = o™,
and initialize all y with @ j < v and «~j € y. If no such j exists, let
a(s + 1,1 + 1) = o f and initialize all y with o™f <1 7.

Case 2. 5 18 not a-expansionary. Do nothing save to set a(s+ 1,t+ 1) = o”¥.

R iSSR0 e T e T AT e e e

Let TP denote the true path of the construction. That is, let TP be leftmost
path of the priority tree which is visited infinitely often during the construction.
Let « C TP. Then o = f7a for some a € wU{f} and g C TP. Let (e,i) = |B)|.
We prove by induction on |a| the following:

(1) The sets Uj = Uy Vp,jk,s form a weak array.

(2) a is initialized only finitely often.

(3) For every j < a, Uy, Vp,jk,s is finite. (Here we say j < f for every j €
because of the priority ordering.)

(4) If « = B7j for some j € w, then k = lim;k (B, j,s) exists and the use of
D, (Ks, h(B,j,k)) is unbounded in s.
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(5) If & = B71, then there are at most finitely many S-expansionary stages.

Notice that (4) and (5) together imply that requirement R, ; is met. It is
gasy to see that (1) is true by construction. It is also clear that (2) is true by
induction and by the fact that o is on the true path. Again by induction and
the fact that o is on the true path, we see that if j < g, 7 is initialized only
finitely often and so lim; k{8, j,s) exists. Thus (4) holds since the fact that
outcome f7j is on the true path implies that the use of @, (K, h(f,j, k))
changes infinitely often. It remains to see that (3) and (5) are true.

We next argue that (3) holds. Let k¥ = limy; k(f, j.s). We need to argue
that ¥V ;x is finite. If there are finitely many f-expansionary stages, Vj;«
is obviously finite. Suppose then that there are infinitely many such stages.
Since j < a, it must be the case that lim; @, (K;; 7(f, j, k)) exists. If the
value of this limit is 1, it is clear that (3) holds since we will only finitely
often wish to enumerate x into ¥ ;,. Thus we may assume that the value of
the limit is 0 and, by induction on j, that at each f-expansionary stage we
wish to enumerate an element into Vj ;x. By induction and the construction,
almost all elements of 4 are available to be so enumerated. (There are only
finitely many sets V, ;. »+ of higher priority to lay claim to such elements and
at most one element of 4 can be prevented from entering Vg, by such a
set. This argument relies on (5).) Thus, at some stage we will enumerate
x € A into Vg ;x. But then ||V ;. N 4;| = 1 contradicting the assumption that
limg @, (K3 (B, 7, k%)) = 0 and that there are infinitely many S-expansionary
stages. Thus (3) holds.

To see that (5) holds, assume that there are infinitely many f-expansionary
stages and that o« = f°f. By the same reasoning as that for (3), we see
that if k(j) = lmsk(B,j,s), Vs NAill = 1 for all j. Furthermore,
by initialization, every element of V3 ;x(jy N 4; is actually an element of 4.
But this implies that the weak array U; defined in (1) witnesses that A4 is
not hyperhypersimple. This contradiction completes the proof of (5§} and the
theorem. [

The following is a corollary to this theorem and work of Downey and Stob
reported on in Section 4.

Corollary 1.15. The properties of being a true Friedberg splitting and of being
speedable are not lattice-theoretic (in the lattice £*).

Proof. Let A/ be a maximal (and thus hhsimple} set. Let M, M> be a true
Friedberg splitting of M. By Theorem 1.12, M, and M, are nonspeedable.
However by Theorem 1.14, there is a splitting &;, N, of M such that N; and
N, are speedable and hence such that N;, N; is not a true Friedberg splitting
of M. However by a theorem of Downey and Stob (see Theorem 4.2), there
is an automorphism & of £* such that @ (M;) = N;fori = 1,2. J
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Several natural extensions of the notion of Friedberg splittings have appeared
in the literature. One important one, an extension to d.r.e. sets, is due to
Owings.

Theorem 1.16 (Owings [84]). Suppose that A C B are r.e. sets such that B— A
is not co-r.e. Then there is a splitting By, B, of B such that B; — A is not co-r.e.
Jor i = 1,2. In fact, it is possible to guarantee that for every r.e. set W, if
AU (W — B) is not re., then AU (W — B;) is not re. for i = 1,2. Such a
splitting is called an Owing’s splitting of B over A.

The proof of Theorem 1.16 is quite similar to the proof of the Friedberg
Splitting Theorem. A reference is Soare [97, Chapter X, 2.5]. Owing’s splitting
theorem plays an important role in Lachlan’s decision procedure for the V3-
theory of £* and in Lachlan’s remarkable characterization of hhsimplicity given
in the next theorem.

Theorem 1.17. Let A be a coinfinite r.e. set. Then A is hhsimple if and only if
L*(A) is a Boolean algebra.

Proof. (=) Suppose that B D A is noncomplemented in £*(A4). By repeatedly
applying Owings splitting theorem (the indices for an Owing’s splitting can
be found uniformly from those of 4 and B), we obtain an r.e. array {Bi}ico
witnessing the non-hhsimplicity of 4 (it is well known that the array need not
consist only of finite r.e. sets).

(<) Suppose that 4 is not hhsimple. Let {V;,},e Witness this. Define
B =A4U Unew (WaNV2). We claim that B is not complemented in £*(4). For
if BnA4d = W.nA, let x be an element of ¥, — A. Then by the definition of
B,xeBifandonlyifxe W,. O

Morley and Soare later extended Lachlan’s Theorem to 4 2 sets by showing
that a Ag set S’ is hhimmune if and only if £*(S) is a Boolean algebra. Lachlan
went on to characterize the Boolean algebras that may arise as £*(4) for r.e.
A; they are precisely those with a X's presentation. Lachan’s result relativizes
so that, using some work of Feiner and the automorphism machinery of Soare,
Todd Hammond [44] showed that £ is effectively isomorphic to £2 if and
only if A’ = B'. (£* here denotes the lattice of sets r.e. in A.) This leaves the
following question.

Open Question 1.18. Is there a set 4 such that £ and £4 are not elementarily
equivalent? '

Harrington and Herrman independently proved that the elementary theory
of the lattice of r.e. sets is undecidable using, in part, ideas along the lines of

o
i
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Lachlan’s result on Boolean algebras. They represented the theory of Boolean
pairs, known to be undecidable, in the theory of £*.

2. Orbits

A major program in the study of £* is the study of Aut(£*), the group of
automorphisms of £*. The most powerful technique here is the automorphism
machinery of Soare [94,96], and its modifications by various authors including
Maass [72,73], Maass and Stob [75], Stob [99], and Downey and Stob
[39,40]. The main tool in this machinery is the Extension Lemma of Soare
which allows dynamic constructions of automorphisms via partial matching
of e-states, We give the statement of the Extension Lemma and some basic
intuition here; the full proof and more intuition is in Soare [97].

Suppose that 4 and B are r.e. sets and we wish to build an automorphism
of £ taking 4 to B. The technique allowed by the Extension Lemma of
Soare consists of a certain back-and-forth type argument. Soare constructs four
recursive arrays, {U.tecw, {Ve}tecw, {Ue}gew, {f/e}eew, such that the map @
defined by @ (U;)} = U,, and @-1(V;) = ¥, induces an automorphism of
Aut(£*). (It is enough to construct an automorphism of Aut(£*) since Soare
has also shown that if 4 and B are r.e. sets which are infinite and coinfinite,
and there is @ € Aut(£*) such that @ maps the equivalence class of 4 to B,
then there is an automorphism of £ which maps 4 to B.) To insure that @
defined in this way is defined on all of Aut(£*) and is onto Aut(£*), Soare
guarantees that

(Ve)(3n) [V, =* Up] and (Ve)(@n)[W. =" 5] (2.1)

To guarantee that @ preserves inclusions, the only other requirement on &,
Soare divides the problem into two subproblems, the so-called A to B part
and the 4 to B part. To state exactly what each part requires, we need the
following definition.

Definition 2.1. Let {X.}.c, and {Y.}ecw be recursive arrays of r.e. sets. The
full e-state, v of x with respect 10 {Xe}ecw, {Ye}ecw 18 the triple (e, o, T) where
o is the e-state of x with respect to {X,}ee and 7 is the e-state of x with
respect 10 {Ye}ecw. (Given x and s, v.5(x) is the approximation to the full
g-state of x at stage s in some fixed simultaneous enumeration of all the sets
in the arrays {Xc}eew, {Yelecw-)
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Now the 4 to B part of the requirement amounts to

for each full e-state v,
infinitely many elements of 4 have e-state v w.r.t. {Us}ecw, { Vs }ecw

iff (2.2)
infinitely many elements of B have e-state v w.r.t. {Us}ecw, {¥: }eco-
Similarly, the 4 to B requirement is
for each full e-state v,
infinitely many elements of 4 have e-state v w.r.t. {Us}ecw, {¥: teco (2.3)

iff

infinitely many elements of B have e-state v w.r.t. {{.}ecw, {Vs }eco-

It is clear that (2.1), (2.2}, and (2.3) guarantee that @ as defined above is an
automorphism such that @ (4) =* B. The most difficult of the three conditions
(2.1}, (2.2), and (2.3) is (2.3). The primary reason for this difficulty is the
conflict between (2.2) and (2.3). To see why this is so, suppose that U is
given, (Suppose for instance, because of (2.1), that Uy is enumerated to satisfy
Up = W,.) Then, as we observe elements in UpNA, we must enumerate certain
elements in U, while they remain in B. However, these elements may later
enter B thereby threatening (2.3} with respect to Up. For if {5 N B is infinite,
we must have that Uy N A is infinite but we have no control over U,. Thus
a necessary condition for meeting (2.3) seems to be that if infinitely many
elements enter B while in U, infinitely many elements of 4 must be in .
Soare extends this analysis to all e-states to get a sufficient condition on the
enumeration on all the sets in the four arrays above for (2.3) to be met. Two
preliminary definitions are needed.

Definition 2.2. Given full e-states v = (¢,0,7) and v’ = {e,a’,7"), v < V' if
o C ¢’ and 7 2 7'. (The relation < is pronounced “is covered by”.)

Definition 2.3. Suppose that a simultaneous enumeration of the r.e. sets 4 and
{Ue}ecw is given. For an e-state v measured with respect to {U, }ecw, we define
the sets ¥ N\ex 4 = {x | (3s)}[x € dus Avie,x,8) = v]. If X € v \yex 4, We 52y
that v is the entry e-state of x at s. The notation v \,¢x A is defined similarly
for full e-states.

Lemma 2.4 (Soare’s Extension Lemma). Assume that A and B are infinite r.e
sets and {Untncer {Pntnews {Untnew, {Valnew are recursive arrays of r.e. sets.
Suppose that there is a simultaneous enumeration of a recursive array including
all the above such that AN, V, = @ = B\, U,, for all n. Furthermore suppose
that

(Vv) [V \ex B infinite = (') [V € v/ AV \ex 4 infinite] ]
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and
(Vv) [v \ex 4 infinite = (3 [V < v Av' N\ B infinite]].

Then there are r.e. sets U, extending U, and V,, extending V,, such that (2.3)
above is satisfied.

Downey and Stob, in [39], were interested in the question of whether an
automorphism taking a set A to a set B could be extended to a splittings of
A and B. It is clear that the condition corresponding to (2.3) in this case
becomes

for each { and for each full e-state v,
infinitely many elements of A; have e-state ¥ W.r.t. {U.}ecw, { ¥ tecw
iff
infinitely many elements of B; have e-state v w.r.t. {ffe}eew, {Ve}lecw-

(2.4)

We have the following version of the Extension Lemma for this case.

Lemma 2.5. Let A and B be infinite r.e. sets and A,, 4y, and B\, B, form
splittings of A and B respectively. Suppose that {Uy}new, {Vilnew {Un}news
{Vn}new are recursive arrays of r.e. sets and that there is a simultaneous
enumeration of a recursive array including all the above such that A; \, V, =
@ = B; \, Uy, for all n and i. Furthermore suppose that for each i, i = 1,2,

(Vv) [v \ex B; infinite = (') [v < v/ AV \ex Ai infinite]] (2.5)
and
(Vv ) [v \ex 4; infinite = (') [V < v Av'\eex B infinite]].  (2.6)

Then there are r.e. sets U, extending U, and Vy extending V,, such that (2.4)
above is satisfied.

Proof. Apply Soare’s Extension Lemma 2.4 to the pair A;, B;, in place of A,
B. The extension guaranteed there meets (2.4) with respect to 4; and B;.
Further, the proof of Soare’s Extension Lemma guarantees that U, — U, C B;
and ¥V, — ¥, C A4, for all n. Now, renaming the sets U, and ¥, which result
from this application of Lemma 2.4 to U, and ¥,, we see that the hypotheses
of the Lemma 2.4 are now satisfied with 4, and B, in place of 4 and B.
Thus, applying the Extension Lemma again, we get that (2.4) is satisfied with
respect 10 Az, Bo. O

The application for which Lemma 2.5 was introduced in [39] is to splittings
of maximal sets; this result is discussed in Section 4. The conditions of Lemma
2.5 look very similar to those of the requirements that we satisfied in the
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Friedberg Splitting Theorem. In particular, the conditions ask us to do for
states what was done in that proof for single r.e. sets. This fact led Downey
and Stob to ask the following guestion.

Open Question 2.6. Suppose that 4,, 4, and B), B, are both Friedberg split-
tings of A. Under what further conditions is 4; automorphic to B;?

Suppose that Friedberg splittings, 4,, 4, and By, B, of 4 are given and we
are attempting to construct an automorphism @ such that @ (4;) = B;. We
might try to construct @ so that in addition, @ (4) = 4. To do this, it is
natural to take U, = W, V, = W, for all ¢ and to attempt to enumerate, say,
U. as follows. Whenever an element x appears in U, s — A;, we enumerate x
into U,. Playing this strategy guarantees that (2.2) above is met. However this
strategy fails to meet (2.4) if the following happens. It could be the case that
U\, 4 is infinite but that almost every element of U, \, 4 enters 4, and B;.
Then we would fail to meet (2.4) with respect to U,. The minimal dynamic
condition that insures that this strategy works is summarized in the following
definition of e-Friedberg splittings.

Definition 2.7. A splitting 4;, 4, of A is an e-Friedberg splitting if for every
e-state v and each i = 1,2, if v \ex 4 is infinite then v\ A; is infinite. (Here
we assume that e-states are measured with respect to the standard enumeration
of all the r.e. sets and that some fixed enumeration of 4, 4;, and A4, is given.
Further we assume that if x € Agy; — 4;, then either x € 4;,; — 4; or
X € Ay sy — 4s.)

Clearly, using the same argument as that in the proof of the Friedberg
Splitting Theorem, we can show that every nonrecursive r.e. set has an e-
Friedberg splitting. Also, by the above remarks, it is not hard to show the
following.

Theorem 2.8. Suppose that Ay, Ay and B,, B, are e-Friedberg splittings of A.
Then there is an effective automorphism @ of € such that ®(4;) = B; for
I=1,2

We can actually do slightly better than Theorem 2.8. Recall that a recursive
array of r.e. sets {X,}.¢q is called a skeleton for the r.e. sets is (Ve ) (An) [W, =*
Xn]. The obvious generalization to skeletons of e-Friedberg splitting can be
made; we call such a splitting an e*-Friedberg splitting.

Theorem 2.9 (Downey and Stob [40]). Suppose that A, A> and By, B, are
e*-Friedberg splittings of A. Then there is an effective automorphism @ of £
such that ®(A;) = B; fori = 1,2.
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Downey and Stob had originally hoped to extend the result of Theorem 2.8
to Friedberg splittings or, at least, true Friedberg splittings. The problem with
this extension is easy to describe. For a single r.e. set W, we know that for
true Friedberg splittings, W \ A4 infinite implies that W\ 4; infinite for each
i. The corresponding result for states is not true. It may be the case that v\ 4
is infinite while v\, A4; is empty. This problem turns out to be enough of an
obstacle to produce an elementary difference between Friedberg splittings of
a given r.e. set. We have the following definition which is a generalization of
the notion of d-simplicity due to Lerman and Soare [67].

Definition 2.10 (Downey and Stob [40]). A splitting 4;, 4, of 4 is a d-

Friedberg splitting if for every r.e. set X there is an r.e. set ¥ C X such

that

(1) X-A=Y -4 and

(2) for all r.e. sets W, if W — (X U A) is not r.e., then (W —Y)N4; # 0,
i=1,2.

Note that a d-Friedberg splitting is a Friedberg splitting by setting X = 0.
We have the following theorem.

Theorem 2.11 (Downey and Stob [40]). There is a simple r.e. set A with true
Friedberg splittings Ay, A> and By, By such that A, A, is a d-Friedberg splitting
and By, B, is not. Consequently, Friedberg splittings (even true Friedberg
splittings) of a single r.e. set can realize different elementary types.

Proof. We will construct the splittings 4, 43, and By, B; together with auxiliary
sets O, Y, and M, (e € w) to meet the following requirements for every e,i € @
and j = 1,2. Let {X.}ecw be an enumeration of all the r.e. sets.

D,: W, infinite = W, N4 # 0,
P.j: |We\Al=o00=W,NB;# b,
Reit (YeCX)A(Xe—d=7Y.—4),
Reij: Wi— (X, UA4) not r.e. = (W; —Ye)NA; # 6,
P Q-4 >e,
Ne: (WeZQ)V ((We—A)Y# (Q—A4))
V [(M, — W,) N By is finite A (Vi)N,;]

where

Nes |M,—(QUAY > i.
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The requirements P ; guarantee that the splitting By, B, is a true Friedberg
splitting; R, ; and R, ; ; for i, j € w ensure that 4;, 4, is a d-Friedberg splitting
of A. Together, requirements P, and N, guarantee that By, B, is not a d-
Friedberg splitting of A. Q here is supposedly the witness for a set X for which
the witness ¥ in the definition of d-Friedberg splitting cannot be found.

We briefly describe the strategies for the basic requirements and the conflicts
between them. The strategy for R, ; is the following. While (W ;—Yes)N4;, =
0, we wait till we see z € Wis — (X, sUA,). We can then put z in 4; and meet
R.,;; forever. Note that if no such z exists, then |, — (X, U 4;)} < co.

For the requirements P, ;, we do the following. If we see z € W, — A4,
such that z > (e, j) (this reflects the priority restraint we impose on z) and
Wes N Bjs = @, then we enumerate z into B;.

For the requirement P,, we enumerate ¢ numbers into Q and restrain them
from enumeration into 4 with the priority of P,.

For the requirement N, we actually attempt to meet each N,;. We do
this enumerating an element into M, and restraining it from both Q and A4.
We will argue that if one of the requirements N,; fails, then W, € Q or
(W — A) # (Q — 4) and so that requirement N, is met.

The conflicts among the strategies are as follows. First, there are no conflicts
between P, ; and either N, or any R, ; since all these requirements only wish
to enumerate numbers into 4;. Requirements N, and P, ; conflict however for
P, wishes to enumerate z into B; while some N, ; may have enumerated z
in M, and therefore restrained z from 4 (and hence restrained z from B;).
Assume that P,; has higher priority than this N, ; but lower “global” priority
than N, (this is the only ordering of priorities that gives us serious difficulty),
we overcome this conflict by “squeezing” N, in the following way. Note first
that we can put z in B provided that z € W,. Thus we try to force z into
We. Now if W, — A # Q — A, we get a global win on requirement N,. Thus,
the idea is to put z into Q first and wait until z enters W, before we put z
into A. If z enters W,, we are free to put z into B; and we win P, without
injuring N,. If z does not enter W, we win N, and then can win P,;, with a
new witness without interference from N..

All other conflicts are essentially finite injury and are adjudicated in the
standard fashion. With the above-described conflict, this argument is a 0”-
argument. [

Downey and Stob go on to show in [40], that even being a d-Friedberg split-
ting is not enough to guarantee that splittings are automorphic. The property
that they use€ to distinguish d-Friedberg splittings is called the inner splitting
property. It is analogous to the splitting property of Maass, Shore, and Stob
[74] (which distinguishes among d-simple sets).

Definition 2.12. A splitting A4, 4, of 4 is an inner splitting of A if for every
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r.e. B, if B — A is not r.e. then there are Friedberg splittings C;, C; and Dy,
Dy of B such that C; C 4, and D, C A4,.

It is shown in [40] that
Theorem 2.13. Any inner splitting of A is a d-Friedberg splitting of A.
and

Theorem 2.14. There is an r.e. set A (of low promptly simple degree) and d-
Friedberg splittings A\, Ay and By, B, of A such that Ay, A, is an inner splitting
but By, B, is not.

The above results suggest that it might be very hard to find a property of a
set 4 which guarantees that all splittings with that property are automorphic.
One of the reasons for studying automorphisms of splittings in [40] was
that it gave a new approach to a number of interesting open questions about
automorphisms. One important and interesting such question is the “fat orbit”
problem. Downey and Stob hoped to show that there is an r.e. set A whose
orbit contains sets of every r.e. Turing degree. The plan was to show that some
class of splittings both formed and orbit and contained sets of every degree.
The fat orbit problem was recently settled negatively by Harrington.

Theorem 2.15 (Harrington).. There is no r.e. set A such that the orbit of A
contains sets of every r.e. Turing degree.

Proof (sketch). We say set A has property S if
(3C)(VX CC)[(CC(AUX))=> (ABCX)[XC (4UB)
= VY wCAUY = (XNnY)-B#*011].

Harrington shows that

Lemma 2.16. There is a r.e. Turing degree a such that all r.e. sets A of degree
a have property S.

and

Lemma 2.17. There is a nonrecursive r.e. set B such that no set A <71 B has
property §.

The theorem follows immediately from the two lemmas. O
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Though the Downey-Stob approach to the fat orbit problem did not solve
it, it still yields some interesting and instructive results. For example we show
in Section 4 that the hemimaximal sets form an orbit that realizes all possible
jumps (see Corollary 4.9). The first approach to the problem in [40] was to
construct an r.e, set A such that 4 has e-Friedberg splittings of every non-zero
r.e. degree. The next theorem shows that this program fails.

Theorem 2.18. Suppose that A is a nonrecursive r.e. set. Then there is an r.e.
degree b < deg(A) such that b # 0 and for all e-Friedberg splittings A;, A> of
A, deg(A4,} A1 h.

Proof (sketch). We construct B in stages to meet the following requirements
for every ¢ € w. Let (D,, Ue, Vo)ecw be an enumeration of all triples consisting
of a functional and a pair of disjoint r.e. sets.

Ne: (P (B) # U) V(U UV, #£ A) v (BV)[|V\exA| =00 AU N\ Up =* 0],
P.: B # W..

To meet N,, we will also enumerate sets X., Y.,. We will assume that we
know indices for X, and Y, by the Recursion Theorem; X, = Wy, and
Y, = Wy for every e. We will also assume that #{e) > k(e). The state v,
which will witness that N, is satisfied will be a state such that v, (A{e)) = 1
and v, (k(e)) = 0.

Let

[(e,s) = max{x| vy <x)[q§e,s(B.s'sy) = Ue,s(y)
/\Ue,sU Vé,s(y) = As(y)]}

and define
m(e,s) = max{l(e,t) |t < s}.

The basic strategy for N, is as follows. We enumerate any x such that
x < I(e,s) into X,. If we preserve B; through the use of the computations
establishing / (e, s), we will have that if x later enters 4, x must enter ¥, rather
than U,. Thus infinitely many such x will witness the existence of the desired
state v,.

The easiest way to meet N, subject to the conflicts with the requirements
P is to have infinitely many subrequirements N, ; each of which attempts to
insure that one element of the appropriate state is enumerated into A4 but not
U,. Then the only difficulty in meeting the requirements is the conflict of a
positive requirement P, of lower priority than N, but of higher priority than
Ne,i.

In this case, we might have some follower of P, which we desire to enumerate
into B (because it is permitted by 4). Obviously, this would cause us to lose
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the control over N, ; that the B restraint affords. The solution is to then raise
the state of the potentially injurious elements by enumerating them into ¥,
thus raising their 4 (e)-state to one other than v,. _

Combining these strategies is now finite injury, [J I

For Friedberg splittings, the answer is different. We have the following.

Theorem 2.19 (Downey and Stob [40]). There is an r.e. set A such that |

(1) for all nonrecursive sets B, there is a true Friedberg splitting A;, A of 4 ‘L
such that A, =¢ B and |

(2) for all promptly simple r.e. sets B, there is an e-Friedberg splitting A;, A 1
of A such that A, =t B.

Proof. To meet (1), we construct A and sets C,, D, for ¢ € @ to meet the
following requirements.

R;: Wo=r®V (CeUD, = ANCe =y We A (Vi)[N,; AN, 1),
Nei: [WiNA| = 00 = Wi\ Ce| # 0,
N, (WA = 00 = [ \De| # 0.

The strategy we use for coding W, into C, is this. If x € W,, we enumerate }
{e +1,x,z)into C, (and hence 4) for some z < 2(e+x+1). Thus W, <7 C,. |
We will ensure that C, <t W, by permitting. That is, we only allow y to enter
C. at stage 5 + 1 in case some element x € W, ;1 — Wes.

To meet Ne;, (N;) we will choose infinitely many followers y; € W,
targetted for C, (D.) in such a way that these requirements together leave
some elements untargetted to be coding markers. In particular, let B;; = {y |
y = {+ Lk,z),z < 2(j + k 4+ 1}}. Then N,; and N; may choose no
followers from the sets B;j such that j,k < {e,7) and at most one element
from each of the other sets B;;. Any such follower can be enumerated into C,
(D) at any stage such that W, permits. It is easy to see that this is a finite
injury argument, gl

We omit the details of modifying the above construction to meet (2). [ i

We end this section with some results on Friedberg splittings of creative sets.
We still do not know if any two splittings of a creative set are automorphic;
the following results might be taken as evidence for this.

Definition 2.20. An r.e. set 4 is fcreative if there is a creative set X and an
r.e. set B such that 4, B is a Friedberg splitting of K.

We first remark that no creative set is f-creative. In fact, we have the stronger
theorem.
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Theorem 2.21. Suppose that A is creative. Then A is not half of a Friedberg
splitting of any r.e. set.

Proof. By Theorem 1.5, we know that any half of a Friedberg splitting is a
nowhere simple set. But Shore has observed that no creative set is nowhere
simple. [J

We will show below that the Turing degrees of f-creative sets are constrained
to be promptly simple degrees. This result follows from the next two theorems.

Theorem 2.22. There is an r.e. set C such that if A, B is a Friedberg splitting
of C then A has promptly simple degree.

Proof. Let (4., B.), e € w, be an effective listing of pairs of disjoint r.e. sets.
(We will need to know recursive functions f and g such that 4, = Wy, and
B, = W, but that is easy to arrange.) We construct C to meet the following
requirements.

R.: A., B, is not a Friedberg splitting of C,
or A, has promptly simple degree.

To meet the requirements R,, we will construct sets V,; to meet the following
requirements.

R.;;: W; infinite = W; # V; — C.

Our construction will meet all the requirements R, ; ;. The construction will
guarantee that if we meet all requirements R.;; and if 4., B, is a splitting
of C, then either for some i such that W} is infinite, V,; witnesses that A,,
B. is not a Friedberg splitting of C or 4, has promptly simple degree. The
construction is very simple. We let ¥, ; = {{e,,z) | z € w}.

Construction

Stage s .

We say that requirement R, ;; needs attention if it has not previously re-
ceived attention and there is an x such that x € Wias, x = (e,i,j}, and
{e,1,j} € W5 — C,. If some requirement needs attention, find the highest pri-
ority such requirement R, ;; and enumerate (e, , j) in C.

It is easy to see that each requirement R, ;; receives attention at most once
and is satisfied. We now show that this implies that R, is satisfied. Suppose
that A., B, is a splitting of C. If no requirement of form R, j for any i,J
receives attention at stage s, define p. (s) = p.(s—1). Otherwise, some number
y = {e,1,j) is enumerated in C at stage s. Let ¢ be the least stage such that
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Y € Aey U Be;. Define p(s) = t. (We may assume that ¢ > s by enumerating
Ae, B, so that 4,,B, C C,.)

Now we show that either A4, is of promptly simple degree with witness p, or
that 4., B, is not a Friedberg splitting of C. The former means that

W; infinite = (35) (3x) [x € W s and A, permits x by stage p.(s)]. (2.7)

Now the requirements R, ;; are all met. We thus consider two cases. First,
suppose there is 7 such that W} is infinite and V;; N4, = @ Then ¥, - C
is not r.e. by the requirements Re;; but V,; — 4, = V., is r.e. and so V;;
witnesses that 4. and B, is not a Friedberg splitting of C. Thus we may
suppose that for every i such that W is infinite, V;; N 4, # @. Consider any
y = {e,i,J) € VoiN Ae. At the stage s such that y was enumerated in C, we
have that there is x > y such that x € W ,. Since y must appear in 4, by
stage p.(s) (see the above definition of p.), we have that Definition 2.7 is
satisfied for every i. [

The next theorem is very easy; we omit the proof.

Theorem 2.23. Suppose that D = A® B and that D\, D, is a Friedberg splitting
of C. Then Dy = A, @ B, and D, = A, ® By such that A,, Ay form a Friedberg
splitting of A.

Theorem 2.24. If A is f-creative, A has promptly simple degree.

Proof. Since all creative sets are recursively isomorphic, we may choose the
one we wish to work with. Let C be the set constructed in Theorem 2.22.
Then C @ K is creative. Let 4, B be a Friedberg splitting of C @ K. Then by
Theorem 2.23, 4 = C; @ K, such that C) is half of a Friedberg splitting of
C. Therefore C; has promptly simple degree and so 4 has promptly simple
degree. [

We have sort of a converse to Theorem 2.24. We omit the proof.
Theorem 2.25. Suppose that a is a promptly simple degree. Then there is a set
A of degree a which is f-creative. (In fact, we can make A half of an e-Friedberg

splitting of a creative set.)

Corollary 2.26. There is an orbit in £*consisting of sets of precisely the promptly
simple degrees. '

Proof. Let O be the orbit generated by the e-Friedberg splittings of creative
sets. Then O contains sets of every promptly simple degree by the theorem.
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However all sets in ¢ are f-creative (since f-creativity is elementarily definable)
and so promptly simple by Theorem 2.24. []

We do not know (but we doubt) whether the property of being an e-Friedberg
splitting of a creative set is elementarily definable. Related to the above result
then is the following question.

Open Question 2,27, Does the orbit of every f-creative set A4 contain sets of all
promptly simple degrees?

Related to this question of course is still our original one — do the f-creative
sets form an orbit? We do know that we cannot distinguish among f-creative
sets by using d-Friedberg splittings. The next three results show this. We omit
the proofs.

Theorem 2.28. There is an r.e. set C such that no splitting of C is a d-Friedberg
splitting.

Theorem 2.29. Suppose that D = Ao B and that Dy, D, is a d-Friedberg
splitting of C. Then Dy = A, & By and Dy = Ay @ B, such that Ay, A form a
d-Friedberg splitting of A.

Theorem 2.30. No creative set has a d-Friedberg splitting.

3. Orbits, the splitting property, etc.

Already we have seen many examples of lattice-theoretic properties of r.e.
sets which are closely related to the possible degrees of those sets. A natural
notion to study is invariant degree classes, that is, degree classes generated by
orbits in Aut{&*). The archetypical example is that the high r.e. degrees form
an invariant class. This follows from Soare’s result that the maximal sets form
an orbit and Martin’s result [77] that the high degrees are precisely the degrees
of the maximal sets. In the next section, we look at another invariant class,
the degrees of hemimaximal sets, but in this section we begin by summarizing
the results of Maass, Shore and Stob [74] who showed that there are invariant
classes that split all jump classes. The promptly simple sets played a crucial
role in these results.

Definition 3.1. An r.e. set 4 is promptly simple if there is a recursive function p
such that for every e, if W, is infinite then there is x such that x € W, a1sNAp(s)-

o g iR AR R
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Thus for a promptly set 4, the witnesses to the simplicity of A enter 4
promptly. The degrees of promptly simple sets form an important degree class
as witnessed by the following theorems.

Theorem 3.2 (Maass [72]). If A and B are promptly simple and A and B are
semilow, there is an automorphism @ of € such that ®(A) = B.

Theorem 3.3 (Maass, Shore and Stob [74]). The promptly simple sets together
with the cofinite sets form a filter in £*.

Theorem 3.4 (Ambos-Spies, Jockusch, Shore and Soare [8]). Let P denote the
class of degrees of promptly simple sets and let C denote the class of cappable
degrees (i.e., those degrees which are halves of minimal pairs). Then P and C
form a decomposition of R into a strong filter and an ideal respectively.

A result in the direction of establishing the existence of a large invariant
class is the following,.

Theorem 3.5 (Cholak, Downey and Stob [14]). If A is a promptly simple r.e.
set, then A is effectively automorphic to a complete set.

Theorem 3.5 has recently been extended, quite considerably, by Harrington
and Soare to the following.

Theorem 3.6 (Harrington and Soare [48]). If A is an r.e. set of promptly sim-
ple r.e. degree, then A is effectively automorphic to a complete set.

The property of being promptly simple is not invariant under automorphisms
however. This follows from the fact that there maximal sets which are promptly
simple and maximal sets which aren’t. Maass, Shore and Siob were therefore
led to the following property which is closely related to prompt simplicity but
which is invariant under automorphisms.

Definition 3.7 (Maass, Shore and Stob [74]). An r.e. set A has the splitting
property if for every nonrecursive r.e. set B there is a Friedberg splitting B,
B, of B such that B; C A.

One relationship between prompt simplicity and the splitting property is the
following,

Theorem 3.8 (Maass, Shore and Stob [74]). Every promptly simple set has the
splitting property.
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Proof. Suppose that 4 is promptly simple (with witness p). Given B we need
to construct a Friedberg splitting By, B, of B such that in a_ddition B, CA As
in the proof of Friedberg’s Theorem, we must meet requiréments such as

R(e’g): [WeNNB|=c0=W,.NB; £ 0.

Of course it is the requirements of form Ry, that are difficult since if x
occurs in W\, B; we may not freely be able to enumerate such an x into B;.
The solution is to use prompt simplicity in the following way. The set of all
such X is an infinite r.e. set in the case that we are interested in. Using p, we
know that some element of this infinite r.e. set must enter 4 promptly. That
is our desired witness. [J

Theorem 3.9 (Maass, Shore, and Stob [74]). The collection of sets with the
splitting property forms a filter in £*.

Proof. It is immediate from the definition that this collection is upwards closed.
Suppose that C and D have the splitting property. To verify that 4 = CnD
has the splitting property, suppose that B is a nonrecursive set. Let B, B, be
a Friedberg splitting of B with the property that B, C C. Now let Bi1, Bys be
a Friedberg splitting of B; such that By; C D. Then By; C 4 and it is easy to
verify that By, By, U B, is a Friedberg splitting of B. [

The splitting property is related to the property of d-simplicity introduced
by Lerman and Soare [67].

Definition 3.10. An r.e. set 4 is d-simple if for every r.e. set X there is an r.e.
set ¥ C X such that

(1) Xn4d = YnB,

(2) for all r.e. sets W, if W — X is infinite then (W — Y ) N 4 is infinite.

The connection is the following.

Theorem 3.11 (Maass, Shore, and Stob [741). If 4 is a coinfinite r.e. set with
the splitting property, then A is d-simple.

Lerman and Soare introduced the d-simple sets as the first example of a
definable class of r.e. sets the degrees of which split some jump class, In
particular there dre low, nonrecursive r.e. sets which have the property, and
low, nonrecursive r.e. sets which don’t. The property of d- -simple sets arose
from studying various blockages in extending the automorphism machinery to
other cases. Since it is not the case that any two d-simple sets are automorphic
(see [74]), the following question remains open.
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Open Question 3.12. Find a property that characterizes the orbit of some low,
simple r.e. set.

Theorem 3.13. Every hyperhypersimple set has the splitting property.

Proof. Suppose that A4 fails to have the splitting property and that B is a
witness to that. Let B, B, be a Friedberg splitting of B. Then we have that
BiNA+# Band B,n4 # @. Now produce By, By,, a Friedberg splitting of B;.
Again B;;NA # @ and B,N4 # 0. We continue in this manner (splitting now
By)) to produce a weak array that witnesses that A4 is not hhsimple. [J

The key result concerning the relationship of the splitting property to prompt
simplicity is the following.

Theorem 3.14 (Maass, Shore, and Stob [74]). If A is an r.e. set which is coin-
finite, nonhyperhypersimple, and has the splitting property, then A has promptly
simple degree.

The proof of Theorem 3.14 uses the following lemma of Lachlan.

Lemma 3.15 (Lachlan [61]). If A is not hhsimple and C is any r.e. set, there
is an r.e. set B such that

(1) AN B <1 4,

(2) B <1 C, .

(3) if B is recursive, then C <t A.

Proof. Let {U,}ccy be a weak array witnessing that 4 is not hhsimple and such
that U, N {0,1,...,e} = . Suppose an enumeration of all the sets 4, C, and
U., e € w is given. Define B by :

B ={x|(3€)(3s)[x € Ups—As e € Cyyy — Cs1}.
It is easy to see that B has the desired properties. [

Proof of Theorem 3.14. Suppose that 4 is not hhsimple, and has the splitting
property. We need to show that if C is a nonrecursive r.e. set, then 4 and C
do not form a minimal pair. We may suppose that C &t 4 since otherwise the
result is obvious. Let B be as in Lemma 3.15. Since B is nonrecursive, there is
a Friedberg splitting B;, B, of B such that B; C A. We claim that B, witnesses
that 4 and C do not form a minimal pair. First, B; <t C since B; <t B.
Second, By <t Asince B StBnNAdand BnAd <t A4 (by 3.15(3)). 0O

Maass, Shore, and Stob observed that thé proof of Theorem 3.14 only
required a weaker property which they called the weak splitting property.
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Definition 3.16. An r.e. set A has the weak splitting property if for every r.e.
set B there is a splitting By, B, of B such that B; C B and B nonrecursive
implies that B, is nonrecursive.

Maass, Shore and Stob left open the question of whether the weak splitting
property was actually weaker than the splitting property.

Theorem 3.17. There is an r.e. set with the weak splitting property that does not
have the splitting property.

Proof (sketch). We construct such a set 4 and sets B, {Velecw, {Xe}eco
{Ye}ecw, to meet the requirements R, and Q. below. Let (C,,De)ece be an
enumeration of al} pairs of disjoint r.e. sets.

R.: W, not recursive = We =X UY. AX, C AN (Vi)Re,,

Re;: Xe # Wi,

Q.. (B=CoUD,AC,CA)= (Ve — Ce is 1.e. A (Vi)Qe,;) where
Q.: Vo — B+ Wi

Obviously the requirements R, guarantee that A has the weak splitting
property and the requirements Q. guarantee that B witnesses that 4 does
not have the splitting property (with V. witnessing that C,, D, is not the
appropriate splitting of B). The requirements above have actions which conflict
so severely as to require the 0" priority method. To meet R,, we must insure
that X, Y. split W, and also try to meet each requirement Re ;. For R, ;, let
I(e,i,s) = max{x | (V¥ < x)[Xes(y) = Wis(y)1}. We wish to enumerate
some z in W; into X.. The idea is to wait until some z < /(e,i,s) occurs in
W, s and enumerate this z into X. If no such z occurs, then W, is recursive,

To meet the requirements Q., we enumerate B and ¥,. The most difficult
thing to achieve is making ¥, — C, r.e. The action is as follows. We wish to
make V, — B # W;. To do this we first enumerate some x into ¥, — B. If x
later occurs in W;, we could succeed by enumerating x into B. However, to
ensure that ¥, — C, is r.e., we keep x out of 4 until x enters C, or D,. In case
that x enters C,, we succeed by keeping x out of 4 (this is a global win for
the requirement Q. ). If x enters D,, we can release x to allow x to enter A
(if we wish) since x can no longer enter Ce.

The important conflict between these two basic strategies is as follows. There
might be an x which we add to B for the sake of Qy that we must keep out
of A4 for the reasons described above. While we are waiting for x to enter Dy,
x enters W,. Now we need to enumerate x into either X, or Y, for the sake of
requirement R,. If we enumerate x in X,, we must also enumerate it into 4.
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It is at this point that we assume some familiarity with the 0" method.
Suppose first the Qf has higher global priority that R, (f < e). Then we can
delay the decision (X, or Y;) until x enters D,. Of course in the ensuing
time, we begin a new version of R, predicated on the guess that B # C, U Dy,
(via x). This is finite injury (along the true path) and can be handled by
standard techniques.

The other case, ¢ < f, is more difficult. We focus on the subrequirements
Qy,; and R, ;. If the local priority of Qy,; is higher than that of R, ;, we allow
Qy,; to injure R, ; by enumerating x into Y,. Otherwise, the idea is to use a
different version of ¥, to meet the requirements. If R, acts infinitely often,
we know then that Y, is infinite. Therefore we allow Qy; to pick followers
only from those integers already in ¥, (—A4). In this way, R, cannot injure this
version of V7.

Actually, although this argument uses a 0" strategy, it can be done as a 0”
argument as an analysis of the outcomes of the strategies will reveal. [

We close this section with a discussion of one more splitting property closed
related to automorphisms of £*, the outer splitting property of Maass. In [73],
Maass proved the following.

Theorem 3.18 (Maass [73]). Let A be an r.e. set. Then L*(A) is effectively
isomorphic to £* if and only if A is semilow, s.

This result improved Soare’s earlier result that if A is semilow, £*(A4) is
effectively isomorphic to £*. The reverse direction used a modification of the
Soare machinery via a splitting property as we shall see. That proof runs as
follows. As in the automorphism machinery described in Section 2, we suppose
that we are given arrays {U, }ecw, {Ve}ecw Of all the r.e. sets and we wish to
construct array {U,}ecw, {¥s }ecw, 50 that the map @ defined by @ (U,) = U,
@~! (V2) = ¥, induces an isomorphism of £*(A4) onto £*. To insure that the
isomorphism is effective, we take U, = V, = W, for every e. The full e-state
requirement that we need to meet is the following.

for each full e-state v,
infinitely many elements of 4 have e-state v w.r.t. {U.}ecw, {¥2}ecw
iff
infinitely many elements of @ have e-state v w.r.t. {U,}ecw, { ¥z }ecow-

(3.1)

As in the description of the Extension Lemma (Lemma 2.4) we need only
achieve covering and the technique of the proof of the Extension Lemma will
do the rest. So we concern ourselves with not “going out of covering”.

What is the difficulty? Consider one set U,. We need to make sure that if
U, — A is infinite, then U, is infinite. The problem is that we may see infinitely
‘many X such that there is a stage s for which x € U, s — 4; but yet such that
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U, — 4 = §. We don’t want to respond to such x by enumerating elements in
U,. Similarly, if V; is infinite, we need to find elements of 4 to enumerate into
¥.. And of course these conflicts get more severe when full e-states are taken
into account. It is here that we use the fact that A is semilow; 5 for this gives a
procedure to test whether certain r.e. sets intersect A nontrivially. Specifically,
there is a recursive function % such that for all j, W;n 4 is infinite if and
only if W) is infinite. Therefore we use h (and the Recursion Theorem)
to test whether certain events happen infinitely often. This allows us to raise
the states of elements safely and not get out of covering in this way. However
there is another problem. Consider again the problem of one set V.. Should
it be the case that ¥, is infinite, we will enumerate infinitely many elements
of 4 into V,. However we must be careful so as to not enumerate all of the
elements of A into ¥, (unless ¥, = w). Thus we must be able to seek out
“true” elements of A to protect them from enumeration into states v. Crucial
in Maass® solution to this problem was the following property.

Definition 3.19 (Maass [73]). An r.e. set A has the outer splitting property
(0.s.p.) if there are recursive functions f and g such that

(1) Wriey» Wee) is a splitting of W,

(2) Wy NA is finite,

(3) If W, n4 is infinite then Wy ) N4 # 0.

Maass showed the following.

Theorem 3.20 (Maass [73]). Every r.e. set which is semilow, s has the outer
splitting property.

Maass used the outer splitiing property as follows. For each condition for
which we want to impose such restraint as described above, we enumerate an
r.e. set, say W,. Then we actually restrain only those elements in Wp(. If we
attack such a requirement infinitely often we are assured of finding an element
to restrain ((3) above) but of imposing only finitely much restrain to find
that element ((2) above). We give now the (easy) proof to Theorem 3.20.

Proof of Theorem 3.20. Let A be semilow, s with /2 witnessing that; W, N4 is .
infinite if and only if W) is infinite. We will simultaneously enumerate the
sets Wy .y and W) using the recursion theorem. Since A4 is r.e. we can also
fix a recursive function k such that W, N4 = @ if and only if Wy, is infinite.
The construction is this. At stage s + 1 for any x and e such that x € Wes+1s
we enumerate x into Wy if |Wa(rensl 2 1Whis(en,s] and enumerate X into
W) otherwise. It is easy to see that Wy (), We(e) is a splitting of W, for
any e; i.e., that the recursion theorem was used appropriately. Suppose that
W;(ey N4 is infinite. Then Wy (s () is infinite and We(s(ey) is finite. By the
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construction, this implies Wy .y N4 is actually finite. Similarly, one can show
that Wy N4 = @ implies that W, N 4 is finite. [

Maass observed that there are sets with the outer splitting property that are
not semilow; s and Cholak [13] observed that such sets could be semilow,.
This is relevant to the following recent result of Cholak.

Theorem 3.21 (Cholak [131]). if 4 is r.e. with the outer splitting property and
A is semilow,, then L* (A) is isomorphic to E*.

Of course the isomorphism that Cholak produces in Theorem 3.21 cannot
be effective by Maass’s Theorem. Cholak’s result is proved by “putting the
Extension Lemma on a tree”. This method, first used by Harrington, was
also used by Harrington, Lachlan, Maass, and Soare to prove the following
extension of Maass’s result.

Theorem 3.22 (Harrington, Lachlan, Maass and Soare [47]). If A is low,, then
L*(A) is isomorphic to £*.

Theorem 3.22 is the best result possible in the sense of jump classes since
Shoenfield showed [89] that every nonlow, degree contains a set with no
maximal superset; this is a property of £*(4) not enjoyed by £*.

4. Hemiproperties

In [39], Downey and Stob proposed a program for finding orbits of Aut(£*)
through splittings. The usefulness of this program was suggested by Theorem
4.2 below,

Definition 4.1. Suppose that P is a property of r.e. sets. An r.e. set A4 is hemi-P
if there are r.e. sets B and C such that 4, B is a nontrivial splitting of C and
C has property P.

Thus, in particular, a set 4 is hemimaximal if A4 is half of a nontrivial
splitting of a maximal set. Soare’s result, that the maximal sets form an orbit

in £*, suggested the following result.

Theorem 4.2. The collection of hemimaximal sets form an orbit under Aut(£*).

The proof of Theorem 4.2 in [39] had two components. The first consisted
of the version of the Extension Lemma for splittings stated as Theorem 2.5.
The second component of the proof was to show that the hypotheses of
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this Lemma could be satisfied. For this purpose, we extended Soare’s “Order
Preserving Enumeration Theorem” to this context. (See [39, Lemma 4]).
Independently, Herrmann found the following proof of Theorem 4.2 which
uses more information from Soare’s original argument for maximal sets.

Proof of Theorem 4.2 (Herrmann). For every r.e. set 4, let
C(A) = {W |ACW or WC" 4}.

Note that if 4 is maximal, C{4) contains representatives of every equivalence
class in £*. Thus to prove that the maximal sets form an orbit in £*, Soare
actually showed the following. For every pair 4, B of r.e. sets, there is an
isomorphism @ of the lattice C{A4) onto the lattice ¢(B). Now suppose that
Ay, A3 and B,, B, are nontrivial splittings of a maximal set M. Let @, and @,
be isomorphisms of C(4;) to C{B,)} and C(4,) to C(B,), respectively. Now
we construct an automorphism @ of £* such that §(4;) = B; for i = 1,2
by piecing together these two isomorphisms. We have two cases. If W C M,
we define @ (W) = ¢ (A NWI)UD (A, nW). If M C* W, we define
QW) =@ (A, UW)INDy(A4; U W), The maximality of M guarantees that
this works, [

The class of degrees of hemimaximal sets, H, is a very interesting class.
By modifying Lachlan’s version of Martin’s result that every high r.e. degree
contains a maximal set, we showed the following.

Theorem 4.3 (Downey and Stob [39]). All high r.e. degrees contain hemimax-
imal sets.

It is also true that H is downward dense.

Theorem 4.4 (Downey and Stob [39]). If ¢ # 0 is an r.e. degree, there is a
degree a < ¢ such that a € H.

Proof. The proof is a fairly easy modification of the maximal set construction.
Given nonrecursive r.e. set C, we wish to construct disjoint nonrecursive r.e.
sets A and B so that M = AU B is maximal and 4 <7 C. We construct these
sets to meet the following requirements,

Ne: M| = e,
P W, # 4,

Q.: M has almost constant e-state.
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Of course the requirements N, and Q. are the standard maximal set con-
struction requirements. Requirements P, guarantee that 4 is nonrecursive. We
shall also assume that C has low r.e. degree. This implies that A4 is of low r.e.
degree and so B must be nonrecursive since M = AU B is of high r.e. degree.
At each stage s, we let M; = my, < m;; <.... The construction at stage s + 1
consists of two steps. First, to meet P,, we let e be least such that W, ;NAs; = @
and such that for some x € W5, X > m,; (priority), and C permits x at s.
If such an x exists, we enumerate x into A. Second, to meet requirements Q,,
find the least pair i < j such that 05 (m]) < gi,s(m3) and such that m;; < x
for any x enumerated into A in the first step. If 7, j exist, we enumerate m;;
into B.

We have that 4 <t C by simple permitting (in the first step). Since each -

requirement P, requires attention in a first step at most once, it is easy to argue
as in the maximal set construction that all the requirements N, and Q. are
met. Finally to see that P, is satisfied, suppose to the contrary that W, = 4.
Let ¢ be the well-resided e-state guaranteed by the satisfaction of requirement
Q.. Let ip be such that j > iy implies that m; = lim; m] has e-state ¢. let o
be such that for all & < iy, my = my . Let x, i > iy, and s > 5o be such that
X = mys and g, = ¢. We claim that for all ' > s thereisy > xand j > {
such that 0, = ¢ and y = m;. This fact, together with the fact that 4 = W,
implies that C never permits x after stage s. Since infinitely many such x and
s can be recursively generated, this implies that C is recursive contradicting
our hypothesis. [

Not all r.e. degrees are degrees of hemimaximal sets however.

Theorem 4.5. There is an r.e. set C such that if A =1 C, then A is not
hemimaximal.

Proof. Let (D.,I:, Uy, Ve)ecw be an effective listing of all quadruples where
@, I, are recursive functionals and U,,V. are disjoint r.e. sets. Then the
requirements on C amount to the following

Re: @ (C) = U AT (Ue) = C = U, UV, is not maximal.

We will attempt to insure that U, UV, is not maximal by enumerating an array
{Te,i}icw of disjoint, finite r.e. sets such that T,; € U, U V.. This guarantees
that not only is U, U ¥, not maximal, it is not even hyperhypersimple. Thus
the requirements- R, will be divided into the following

Re,a': D (C) = U AL (U)=C= Te,inUeUV; #~ @.

We will assume that the requirements are ordered in some w-sequence,
thereby inducing a priority ordering on them. We first give the strategy for
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meeting a single requirement; it will be convenient in describing it to drop all
subscripts. The requirement thus becomes

R:P(C)=UATU)=C=TnUUV £ 0.

Let ¢(x,s) and y(x,s) be the use functions associated with the compu-
tations @, (C;x) and I;(U; x) respectively and let Iy (s) and I (s) be the
corresponding lengths of agreements of these functions. To attack R we pro-
ceed as follows.

Step 1. Wait for a stage s such that there is an x satisfying

Ir(s) > x, (4.1)
Gy <y, ye U, UV U T, (4.2)
lo(s) > y(x,s). (4.3)

(Such x and s must exist if the hypotheses of R are satisfied and UUV is not
cofinite.) Given x and s, our action is to enumerate into Ty, all ¥ < y(x,5)
such that y € U; U ¥, and to restrain from C all z < ¢(y(x,s),s).

Notice that after step 1, R is satisfied temporarily since 7,1 N U; U ¥; # O
R will be satisfied forever (with the finite restraint imposed by step 1) unless
there is a stage ¢ > s such that (U;U V) D T; = T;,,. Now if any element, say
z, of Tg 1 — (Us U V;) is enumerated into U; — U, we have, by the restraints
imposed on C at step 1, that

®,(Cyz) = By (Cy; 2) = Us(2) # Uy(z)

and this disagreement is preserved forever with finite restraint. Thus we may
assume that each element enumerated in 7T at stage s + 1 is later enumerated
into ¥ by stage t. Now at stage f + 1 we perform

Step 2. Remove the restraint on C imposed by step 1. Enumerate x (the x
of step 1) into Cyy.

Step 2 wins requirement R forever since we have that

D (U;x) = O (Ussx) = Cs(x) £ Cry{x).

The first equality is the crucial one and is true since U [y (x,5)] = U[y(x,s)]
because U and V are disjoint sets, Uy U¥; 2 {x [ x < y(x,5)}, and U, = U,.
To see that the strategies for the various R,; cohere, notice that each R,
imposes only finitely much restraint on C and thus R.; may be restarted for
the sake of Ry of higher priority as in standard arguments of Friedberg—
Muchnik type. The only restraints on the sets T,,; are to make T,; disjoint
from T, ; if i # j and it is clear that this can be done. We will omit the details
of combining the strategies for meeting the requirements R, ; since this is a
straightforward application of the finite injury priority method. [J
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Theorem 4.5 refutes many conjectures that had previously been made con- P
cerning the structure of degree classes of sets forming an orbit. For instance, it
refutes conjectures that (1) an orbit containing sets of all high degrees contains - ]
only sets of high degree, and (2) the degrees of sets in an orbit are closed o
upwards in R, We remark also that Theorem 4.5 also shows that the lattice- ;
theoretic properties of an r.e. set may have consequences for the degrees of its 1.
subsets. Previous investigations had focused only on the degrees of supersets -
of a set. Another example of this phenomenon is Downey’s result [21] that |
no hypersimple set can have the universal splitting property; we examine that
result in Section 5. This result is that if 4 is hypersimple, there is a degree
b such that b < deg(4) such that if 4;, 4, is a splitting of A4, then 4; does i
not have degree b. This result is an analogue for splittings of Stob’s [98] Vi
result that an r.e. set is simple if and only if it does not have supersets of ¥
every r.e. degree. Downey and Stob extended Theorem 4.5 to show that H is
nowhere dense in the low degrees. We will not prove that result here as the
essential new ingredient is the “Robinson trick” for exploiting lowness which
we discuss in Section 6. Actually, using techniques of Shore and Slaman [93]
for working below a low, degree, it may be possible to extend this result to
answer positively the following question.

Open Question 4.6. Is H nowhere dense in the low, degrees?

There are nonhemimaximal degrees which are low; but not low. nlE

Theorem 4.7 (Downey and Stob [38]). There is a degree a which is low, but J 1
not low such that a ¢ H. :

We omit the proof of Theorem 4.7 as it is quite tricky. We do know the range
of the jump operator on H; it is all possible degrees.

Theorem 4.8 (Downey and Stob [38]). If S is a set r.e. in 0' and above 0,
then there is a hemimaximal set A such that A’ = §.

In particular, we have the following corollary which should be contrasted with
the result of Harrington that there is no “fat orbit” (Theorem 2.15).

Corollary 4.9. There is an elementarily definable (in £) orbit realizing all
possible jumps.

The proof of Theorem 4.8 involves a combination of the Sacks jump inver-
sion theorem and the maximal set construction in a [/ argument., We do not
give this here but refer the reader to [38, Theorem 1.1].
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A complete characterization of the degree class H is still not known. Recently,
Downey, Lempp, and Shore [29] have shown that there is a high, degree A
not in H.

One of the reasons the authors were interested in the class H was its possible
connection to Post’s Program. In his investigation of degrees of unsolvable
problems, Post [85] noticed that all of the r.e. problems that he considered
were either recursive (decidable) or were of the same degree as the halting
problem. This lead him to pose his famous question of whether all r.e. problems
were of these two types or whether there were r.e. degrees intermediate between
0 and 0'. As is well known, the solution of Post’s problem twelve years later
by Friedberg and Muchnik independently lead to the invention of the priority
method. This powerful tool has been one of the main weapons of modern
recursion theory ever since and has found direct applications in other areas
such as complexity theory and descriptive set theory as well as reflections in
such areas as combinatorics and game theory. :

The solution of Friedberg and Muchnik was not along the lines suggested
by Post in what has come to be called Post’s Program. Post suggested finding
a “thinness™ property of the complement of an r.e, set which would guarantee
its incompleteness. The strongest notion along the lines suggested by Post is
certainly that of maximality. If Post’s Program in its original form was to
succeed, 1t would imply that maximal sets are incomplete. In this form, Post’s
Program was refuted by Yates [100] who demonstrated the existence of a
complete maximal set and then completely destroyed by Soare who showed
that all maximal sets are automorphic so that there is not even a Ly, , property
that can distinguish among them. Thus no “extra” definable property together
with maximality guarantees completeness.

Post’s Program does have a partial realization in the work of Marchenkov
[76] who showed that in the lattice of r.e. sets modulo a certain r.e. equivalence
relation, there is a maximal element which is not complete. The r.e. equivalence
relation used by Marchenkov is however not elementarily definable in the
lattice £. An interesting but completely unexplored line of investigation is the
study of the automorphism groups of £/R for r.e. equivalence relations R.

A more general version of the question implied by Post’s Program is whether
there is a definable property of r.e. sets which guarantees incompleteness. A
very strong negative answer has been given by Harrington and Soare who
showed the following.

Theorem 4.10 (Ha'rrington and Soare [50]). There is an elementary property
P such that if A is an r.e. set with property P, then A is nonrecursive and
incomplete.

Proof. We will only state the property P here and omit the proof. We need
one definition.
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Definition 4.11, Anr.e. set AC C 1__s_ a major subset of the r.e. set C (written
ACy C) if for every re. set W,if CC W then 4 C* W.

Major subsets were first defined by Lachlan and play a crucial role in his
decision procedure for the V3 theory of £*. We will write A — B for A is half
of a splitting of B. The property P(A4) can now be defined as follows:

(3C)ac,c (VB C C)(3D C C)(¥S)scc
[BA(S—A) = DN (S —A)
=>(HT)EcT[Aﬂ(SﬂT)=Bﬂ(SﬂT)]]. O

It is very interesting therefore to determine exactly which sets are automor-
phic with complete sets. As we have already seen in Section 3, all sets of
promptly simple degree are automorphic to complete sets. Downey and Stob
exploited their results about hemimaximal sets to find more classes of r.e. sets
all of which are automorphic to complete sets.

Definition 4.12. Suppose that Q is a property of r.e. sets. We say A4 is half-Q
if there is a splitting 4,, 4> of 4 such that 4, has property Q.

Suppose that r.e. sets 4,, 4, form a splitting of an r.e. set 4 and that @ is an
automorphism such that @ (4,) is complete. Then it is easy to see that @ (A4)
is complete. Thus every half-hemimaximal set is automorphic to a complete
set. Thus we have the following theorem.

Theorem 4.13 (Downey and Stob [39]). The following classes of r.e. sets are
(23-) automorphic with complete sets:

(1) low, simple sets,

(2) simple sets with semilow, 5 complements,

(3) d-simple sets with maximal supersets.

Each of the parts of the preceding theorem follow from the fact that the
corresponding sets are half-hemimaximal. We note that (1) of the theorem

implies that Marchenkov’s incomplete set is nevertheless automorphic to a _

complete set. This follows since Miller [79] showed that all sets which are
maximal modulo some r.e. equivalence relation are low, and Marchenkov’s
incomplete set is simple (Odifreddi [83]).

We do not have a classification of the halfhemimaximal sets. We know that
there is no nontrivial degree-theoretic classification. For instance, by Theorem
4.13 all nonzero r.e. degrees contain halfhemimaximal sets. It is easy to see [39,
Theorem 10] that if A is halfhemimaximal then 4 has a maximal superset and
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therefore that all nonlow, degrees contain nonhalfhemimaximal sets. However
we have shown the following.

Theorem 4.14 (Downey and Stob [39]). If a # 0, then A contains a non-
halfhemimaximal sel.

Proof. Suppose that B is nonrecursive. We construct 4 nonhalfhemimaximal
so that 4 =1 B. Let g be a 1-1 recursive function such that g(w) = B.

Let {F.}ecw be a recursive sequence of disjoint finite sets such that U Fr =
@ and |F,| = n + 2 for every n. We will ensure that 4 =t B in the following
way. At stage s we will enumerate exactly one element into A chosen from the
set Fy(s). Thus |ANFy| < 1 and [ANF,| = 1 iff n € B. It is easy to see from
this that 4 =1 B. Let (Us, Vs )ecw be a recursive listing of all pairs of disjoint
r.e. sets. The requirements to make 4 nonhalfhemimaximal are the following.

N, (U.CAANU. UV, D A) = (U, U7, is not maximal Vv U, is recursive).

We may assume in the light of the first hypothesis of N, that no element of
U, is enumerated in U, before it is enumerated in 4.

Construction

Stage s

Let n = g(s). We must enumerate one element of F, into 4. Choose the
least element z of F, such that foralle < n, |[FynVesl 2 n+1 implies that
z € V5. This is possible since |Fy| = n + 2 and the condition on z requires it
only to be in the intersection of at most » + 1 subsets of F;, each of cardinality
at least n + 1. This intersection is nonempty.

To complete the verification, we need only show that N, is satisfied for
each e. So suppose that the hypotheses of N, are satisfied and that U, U V. is
maximal. We will show that U, is recursive. Since U, UV, is maximal, there
is an integer ng such that for all n > no, |[Fa N (Ue UVe)| 2 n + 1 (see [86,
Chapter 12, Theorem XIII]). Let z be fixed such that z € F,, n = ny. we
show how to decide if z € U,. Let s be a stage such that [F, NV, 2 n+ 1
or |F, N 4s| = 1. One or the other must happen since if F, N4 = @, then
|F, N V.| = n + 1. In the former case, z € U, since if z is later enumerated
in A, z € V,. In the latter case, if z € A we can enumerate U, and V, until z
appears in one or the other (this must happen since 4 C U U Ve) andif z¢ A4
then z ¢ U,. (O

The notion and analysis of hemimaximal set can obviously be extended to
other properties. As an example, we have the following.

Theorem 4.15 (Downey and Stob [391). For every k, the class of Friedberg
splittings of k-quasimaximal sets form an orbit.
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It is also possible to classify the automorphism types of hemi-k-quasimaximal
sets. For instance, if £k = 2, the four types of hemi-k-quasimaximal sets are
the following: sets which are Friedberg splittings of a 2-quasimaximal set,
sets which are maximal in some infinite-coinfinite recursive set, hemimaximal
sets, and sets which are not hemimaximal but which are halfs of nontrivial
splittings of a 2-quasimaximal set for which the other half of the splitting is
hemimaximal. It is also possible to extend Maass’ proof that any two hh-simple
sets with lattices of supersets that are isomorphic by a X3-isomorphism are
automorphic to show

Theorem 4.16 (Downey and Stob [39]). If C is any class of hh-simple sets for
which the lattices of supersets are pairwise Xy isomorphic, then any two hemi-C
sets are automorphic.

All of the above still leaves open the question of Section 3:

Open Question 4.17. Under what conditions are all of the Friedberg splittings
of a set 4 automorphic?

Here we are looking for an elementary lattice-theoretic property of such a
set 4. Perhaps it is the case that only k-quasimaximal sets have this property.

Independent of the automorphism question, we also think that there might
be some interest in studying the classes of hemi-P and half-P sets for various
P. Along these lines we have the following.

Theorem 4.18 (Downey and Stob [40]).

(1) There is a complete r.e. set A that is not halfhemisimple.

(2) If fact every high degree contains a set that is not halfhemisimple.
(3) However there is a completely halfhemisimple degree.

Proof. We discuss only the proof to (1). We first sketch the proof of the
existence of a nonrecursive r.e. set 4 which is not halfhemisimple (without
the requirement that 4 be complete). Let {X,, Y., Z.), e € w list triples X, ¥,
Z of re. sets such that XNY = @ and X NZ = §. We have the following
requirements for every e € .

Pe: Z# I’Ve,
R;: X, UY, = A= (X, UZ; is not simple vV X, is recursive).

The basic strategy for P, (which we will need to modify to make 4 complete)
is the Friedberg strategy. Namely we have a follower x such that if x occurs
in W,, we enumerate x in A.
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The strategy for R, is as follows. Consider Ry. We will enumerate a certain
anxiliary set Qo which is intended to witness that X,UZ, is not simple. To begin
our attack on Ry, we will enumerate Qo = w! (the first column of w). We will
begin choosing all of our witnesses for the positive requirements from wP so
that AN Qp = 0. Now we wait for a stage so such that some number zg OCCUrs
in Zp N Q. We then restrain A so that if y < zp and y € As, then y ¢ 4. We
now have that for all y < 2o, if the hypothesis that XoU Yo = A is correct, we
can recursively compute a stage f (s0) such that no element y < zp may enter
X, after stage f (So)- Supposing now that we have defined z;, si, and f(s;) to
have the property that after stage f(s;), no y < z; may enter Xy after stage
£ (s;). We then define z;41 > Z;, Sip1 and f (si41) as we did for zo. Now either
the above module acts infinitely often (and so Xj is recursive by the definition
of f) or it acts finitely often (so that Qp N (ZgU 4) =" @ and so Xo U Zp
is not simple). Note that in the former case, the set Tp = {zo < z1 < e} 18
an infinite recursive set such that T C 4. Thus other requirements of lower
priority than Rg must work inside of Tp. This makes the full construction and
e-state construction. To be specific consider the interactions of R; and Py with
Rp. There are two versions of each. A version of Py guessing that Rg acts
finitely often chooses its followers from °. However one guessing that Rg acts
infinitely often chooses its followers from Tp. A version of Ry guessing that
R, acts finitely often uses 0, = w? in place of Qo = w! as above. Of course
R, cannot restrain followers of Pg but this is only finite restraint. A version
of R, guessing that Rg acts infinitely often uses Tp as iis universe. Namely, it
uses for Q, the set g(w?) where g is a recursive bijection of g : @ — To. An
e-state construction clearly suffices to put the requirements together.

Turning now to the proof of (1), we replace the positive requirements by
the requirement that we must code an arbitrary r.e. set C into A. To do this,
‘we have coding markers A.. At stage 5 + 1, if x € Cy41— G5, WE enumerate
the current position Ay of the coding marker A into A. The markers will
move only finitely often and their final positions will be computable from 4.
To begin with, the coding markers are in w’. We need to move the coding
markers to elements of 4 which are in higher states (more of the sets T;,
essentially). We describe how this strategy interacts with our sirategy above
for Ry. The idea is to move a coding marker Ay to To if there is an available
element of Ty for it. Now to move A, to Ty at stage s + 1 requires us to
enumerate A, into A. We will do that at a stage s; such that Ry receives
attention and then we wait in defining f (s;) until that marker position is
enumerated in Xp or ¥p. O

~ Perhaps such notions as halfhemisimple may be related to invariant degree
classes. Recently, Kummer [58] has .pointed out a new direction in such
studies. He defines two interesting classes of r.e. sets as follows.
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Definition 4.19. An r.e, set 4 is semihyperhypersimple if there is no recursive
function f such that {#/(,)}ncw is @ weak array of disjoint sets such that
Winy — A is not r.e.

An r.e. set A is semimaximal if for any pair of disjoint r.e. sets C, D, either
AnCorAnDisr.e.

summarized in the next theorem.

!
Some interesting facts about these sets and connections with our notions are B
N

Theorem 4.20 (Kummer [58]).

(1) A simple set B is shhs iff it is hhsimple and it is sm iff it is maximal.

(2) Every half of a splitting of a shhs (sm) set is shhs (sm).

(3) All hemi-hhs (hemimaximal) sets are shhs (sm). o

(4) The class of shhs sets is closed under intersection. A

(5) The index sets Ssm = {n | W, is sm} and Syns = {n | Wy is shhs} are 11, L
complete.

Kummer introduced these notions in connection with his study of non- Gl
standard numberings of the partial recursive functions. The class of partial '
recursive functions is said to be numbered by a recursive function » if for
every e there is i such that ¢, = Axn(i,x). Kummer extended notions about
the standard numbering of the recursive functions to such nonstandard num-
berings. For example, define K, = {¢ | n(e,e)]}. Kummer showed that an r.e.
set A is K, for some n if and only if A is not semihyperhypersimple.

In a surprising and interesting result, Herrmann and Kummer [51] showed
that semihyperhypersimplicity is lattice-theoretic. They show this by consider-
ing certain quotient lattices in £*,

Definition 4.21. For 4 re, let L(A) = {B|AC B}, D(4) ={B|BeL({4)A
B-Are},andlet C(4) = L(A)/D(A). Then A4 is called D-hyperhypersimple
if C(A4) is a Boolean algebra.

Theorem 4.22 (Herrmann and Kummer [51]). An r.e. set A is semihyperhy-
persimple iff A is recursive or D-hyperhypersimple.

Kummer generalized our theorem that H is nowhere dense in the low degrees
by showing the following.

Theorem 4.23 (Kummer [58]). The degrees of shhs sets are nowhere dense in
the low degrees. '

It is not clear whether this is a true generalization of our theorem since
Kummer leaves open the following question.
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Open Question 4.24 (Kummer). Is it the case that a is the degree of a shhs
set if and only if it is the degree of a hemimaximal set?

Kummer has shown however that there are nonrecursive shhs sets that are
not hemisimple.

5. Degrees of splittings

We can naturally associate to an r.e. set 4, the class of degrees of splittings
of A:

8(A4) = {e¢: (34;)[4; is half of a splitting of 4 and deg(A4;) = cl}.

We also use A (A) to denote R — §(A4). We are interested in determining the
structure of S(A4) for various 4. The first result along these lines was the
splitting theorem of Sacks.

Theorem 5.1 (Sacks Splitting Theorem [88]). Suppose that A is a nonrecursive
r.e. set and let ¢ be any nonrecursive degree (not necessarily r.e.). Then there
‘exists a splitting Ay, Ay of A such that deg(4;) % cfori=1,2.

Proof (sketch). Let C be an r.e. set of degree c. We will construct a splitting
Ay, A, of A to meet the following requirements foreveryecwand i = 1,2.

R, @ # C.

Fix enumerations of 4 and C such that |4;11—4s] < 1. Let [{{e, i), ) be the
length of agreement function for &t = C and let r{{e,i),s) be the restraint
imposed on A; to preserve I({e,i},5).

Construction

Stage s + 1

Let x be the unique element of 4, — A4, if any. Let (e, ) be least such that
x < r({e,i),s). If {e, i) exists, enumerate x in A,_;. Otherwise enumerate x
in 4. - .

Obviously 4;, 4, is a splitting of 4. To prove that Re; is satisfied for every
i and e, one shows by induction on (e, [} that

Qi # C, (5.1)
ﬁpruaﬂﬁimﬁME. 0 (5.2)

The above theorem was the first result for which Sacks’ preservation strategy
was used, and this strategy is a key ingredient of most of the early infinite
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injury priority arguments. Indeed Mytilinaios and Slaman [80] have given an
analysis of priority arguments which shows that the proof of Sacks’ Splitting
Theorem is an infinite injury argument in a certain precise sense although it
is not usually viewed as such.

A consequence of Theorem 5.1 is that for nonrecursive 4, S(A4) always
contains infinitely many incomparable r.e. degrees. During his investigations
into effective algebra, Remmel asked if S(4) = {b | b < deg(4)}. Later,
Lerman and Remmel addressed this question with the following definition and
results.

Definition 5.2. An r.e. set A has universal splitting property (USP) if S(4) =
{b|b < deg(A4)}. A is non-USP otherwise. Furthermore, if b < deg(4) and
b & §(A), then b is a nonsplitting witness for A.

It is easy to see that K has the USP. Lerman and Remmel showed the
following.

Theorem 5.3 {Lerman and Remmel [70]). There is an r.e. set A without the
USP. In fact, the degrees of the nonUSP sels are dense in the r.e. degrees and
include 0.

Theorem 5.4 (Lerman and Remmel [70]). If A is r.e. and nonrecursive, there
is a nonrecursive B <t A such that B has the USP,

Actually Lerman and Remmel proved a stronger result than Theorem 5.3 in
[70]. Recall that an r.e. set B is weak-truth-table reducible to 4 (B <y 4)
if B <1 A via a Turing reduction @ for which there is a recursive function
@ such that u(®(4;x)) < ¢(x). Lerman and Remmel studied this stronger
notion of reducibility with respect to universality of splittings.

Definition 5.5. An r.c. set 4 has the universal weak-truth-table reduction prop-
erty (UWP) if for every B <1 A4 there is C =t B such that C <y A.

That a relationship exists between UWP and USP follows from the fact that
if 4y, Az is a splitting of 4 then 4; <wy A. Thus if a set has the USP then it
has the UWP. Lerman and Remmel proved Theorem 5.3 with UWP in place
of USP. We sketch their proof of the existence of a nonUWP set.

Theorem 5.6 (Lerman and Remmel [69]). There is an r.e. set A such that A
does not have the UWP.

Proof. We construct two sets 4 and B to meet the requirements that B <t 4
and
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Reit Pe(B) = Ue A (Ue) = B = 4i(A) # U

Here, (®,, I, U.) lists triples consisting of two functionals and an r.e. set
and 4; denotes the ith wtt-functional with partial recursive use function ;.
(That is, 4; denotes a Turing reduction such that d;;(4y;x) is considered to
converge only if its use is bounded by d;5(x).) The argument is a finite injury
one. Define

I{e,s) = max{x | (Vy € x)[Ues(Ues;¥) = Bs(p)
AVz € u(I::,s(Ue,s;JJ)))[‘De,s(Bs;Z) = Ue,s(z)]]}

and
I(e,i,s) = max{x | (V¥ € x)[dis(4s;y) = Ues(¥}1}.

Note thatif / (e, s) > z, we can restrain U, s[u] such that u = u(Ios (Ues; 2))
by restraining B.

The action is as follows.

{1) Choose follower z targeted for B.

(2) Wait until /{e,s) = z. Then restrain U, [u#] such that u = u(Les(Ues; 2))
by restraining B.

(3) Wait for ¢ > s such that / (e, i,£) > u. Then enumerate z into 4 and define
a trace for z, T(z), so that T(z) > &; (u).

(4) If a stage r > t occurs for which (e, i,7) > u, then enumerate 7(z) into
A and z into B and restrain 4 so that 4;(4; z) does not change after r
for z < u. _

Note that by the restraints in (2), Ups[#] = U.,[u]. By the subsequent
enumeration into B in (4), U..[u] # U.[u]. Since T(z) > &;(u}, and the
restraint imposed on A4 at (4), 4;(A4,;y) = U.,(y) for all y < u. This causes
the desired disagreement; 4;(4)[u] # U.[u]. Also, B <t 4 by the traces. The
construction puts together the basic strategies described above in the standard
finite injury manner. [

The proof of Theorem 5.3 involves the general technique of delayed per-
mitting and coding (which can be extracted from the proof of Sacks Splitting
Theorem). This general technique can be found in many results. Lerman and
Remmel also extended the proof of Theorem 5.6 to show the following.

Theorem 5.7 (Lerman and Remmel [69]). There is a degree a which is com-
pletely nonUWP. That is, if A is of degree a, A is nonUWP.

Ambos-Spies and Fejer extended this result using the Robinson Trick.

Theorem 5.8 (Ambos-Spies and Fejer [71). The low degrees containing sets
with the UWP are nowhere dense in R.
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It is not clear if there is an analogue of Theorem 5.3 for the completely USP
degrees.

Open Question 5.9, Are the completely nonUSP (or nonUWP) degrees dense?

This question is nontrivial since not all incomplete r.e. degrees contain
nonUWP sets. This follows from a very important result of Ladner and Sasso.

Definition 5.10. An r.e. Turing degree a is contiguous if for every pair A, B of
r.e. sets in a, A =y B. An r.e. Turing degree a is strongly contiguous if for
every pair C, D of sets (not necessarily r.e.) of degree a, C =y D.

Theorem 5.11 (Ladner and Sasso [671). For every nonzero r.e. degree b, there
Is a nonzero degree a < b such that a is contiguous.

Downey has strengthened the theorem of Ladner and Sasso to show that a
can be made strongly contiguous. It is not know however whether there are
contiguous degrees which are not strongly contiguous.

Theorem 5.12 (Downey [20]). There is a strongly contiguous r.e. Turing de-
gree,

Proof. Our proof is a modification of Ambos-Spies [2]. We construct 4 to
satisfy the following requirements. Let (®,,[;) enumerate all pairs (@,I") of
Turing reductions.

P.: Z-‘t’é We,
Ne: ©@.(A4) total AIL{(D,(A)) = A= A <yt P(A),
Qc: D.(4) total AL (D (A)) = A= P (4) < 4.

We shall describe the construction to meet a single requirement N.. The
strategy is very similar to that of Ladner and Sasso. The only difficulty is to
see that it works for @, (A4) not necessarily r.e.

Each requirement P, will have followers. Let / be the length of agreement
function for I, (®.(4)) = A4; i.e.,

I(e,s) = max{x | (Vy < x}[Ios(Pes(ds;¥);y) = A;(¥)1}.

Let m be the maximum length of agreement function for /. Each follower of P;

for j > e is equipped with a guess as to whether /(e,s) — oo. If a follower is

guessing that /(e,s) 4 oo, then we shall cancel x at stage s is /(e,s) > m(e,s).

The other key follower rules are the following.

(1) If x is appointed at stage s then x = 5. If /(e,s) > m(e,s) we assign the
guess /(e,s) — oo to x, otherwise we assign x the guess that /(e,s) /4 co.




46 R. Downey, M. Stob
D, (4)

1 1 A

X §

Fig. 1. At the stage that x is e-confirmed.

(2) If x < y are followers and x enters 4 at stage s then y is cancelled at
stage s.

(3) If x and y are followers and y > x and x is uncancelled at stage y (the
stage y is appointed as a follower by (1)), then y has lower priority
than x.

The basic idea for N, is this. For each follower x following some requirement
P;, j > e, and guessing /(e,s) — oo, we wait for the first stage such that
[(e,s) > x. At this stage, we declare x e-confirmed and cancel all followers
y > x. This gives us the situation of Fig. 1.

The crucial point is that if this situation occurs, x is guessing that /{e,5) — oo
and there are no followers left uncancelled in the interval (x,s]. we claim that
this insures that A <wy D, (4). For let u = max{u(D.;(45;¥)) | ¥ < x}. To
determine whether x € A4, compute the least stage ¢ > s such that /{e,?) >
mie,t) and D, (A4;)[u] = DP.(4)[u]. (Note that we do not necessarily have
that (V&' > ) [Py (Ap ) [u] = D, (A4;){u]] as in the r.e. case.) We claim that
x € A if and only if x € A;. There are two cases.

Case 1. @,5(A4;)[u] = Der(A;)[u]. In this case, the situation of Fig. 1 is
unchanged at ¢ and so, because ¥ measures a use function, it must be the case
that A[x] = 4A;[x] = A4:[x].

Case 2. Otherwise. Since there were no uncancelled numbers z such that
Xx < z € s after stage s, the only way this case could occur is if some follower
y < x enters A after stage s. This follower either cancels x or is x. In either
case x € A if and only if x € A4,.

The cancellation/confirmation procedure also serves to meet the require-
ments Q.. To show this, we must show that the cancellation of numbers
between x and s in Fig. 1 also allows 4 to compute @, (A4) via a w-reduction.

Let z be given. To compute whether z € @,(A4) using 4, let s be least such that

l(e,s) > m(e,s) and I(e,s) > z. Let t > s be least such that /(e,t) > m(e,t)
and A4;[s] = A[s]. We claim that @,,(A4;)[z] = DP.(A4)[z]. To show this, we
will argue that if follower x < ¢ is uncancelled at stage ¢, then x < s (and
hence never enters A). Thus 4,[¢t] = A[¢] and the claim follows.

Suppose then for a contradiction that x is a follower which is uncancelled at
stage ¢ and s < x < . Then by definition of ¢, x must have guess /(e,s) — oo.
Now x must be appointed at stage x such that /{e,x) > m(e,x). Since x < ¢,
it must be the case that 4,[s] # A[s] so that there must be y < s such
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that y enters 4 after stage x but before stage ¢. However, at the stage that y
enters A, x is cancelled contrary to the assumption on x. This is the desired
contradiction.

The strategies described above can be organized on a If; tree. [J

As we shall see in subsequent sections, Theorem 5.12 and properties of the
weak truth table degrees are useful in analyzing splittings of r.e. sets and the
structure of R. One example of this is the proof of Ambos-Spies and Fejer of
an extension of Theorem 5.3.

Definition 5.13. An r.e. set 4 has the strong universal splitting property (SUSP)
if for every pair of r.e. degrees ¢,d such that cud = deg(4), there is a splitting
C, D of 4 such that deg(C) = ¢ and deg(D) = d.

An r.e, set A has the w-strong universal splitting property if for every pair

C,D <4y A, with C & D =, A, there is a splitting 4,, A, of 4 such that
Al Ewit C and Az =wit D.

Theorem 5.14 (Ambos-Spies and Fejer [7]). Suppose that A is an r.e. cylinder
(i.e, A= C x N for some r.e. set C). Then A has the w-SUSP.

The proof of Theorem 5.14 uses some intermediate results. The first is a
very important lemma due to Lachlan about the structure of the wtt-degrees.

Lemma 5.15 (Lachlan’s Lemma). Suppose that A <w B, ® By. Then there
exists a splitting Ay, A; of A such that A; <wu Bi for i = 1,2.

Proof. Let A = I'(B; & B,) and y be the recursive use function of I". Without
loss of generality, 4 is infinite. Let /(s) = max{x | (Vy < x)[L;(B; &
Bys;y) = As;(y)]. We suppose that the reduction and sets are enumerated
sufficiently quickly so that

I(s+1)>1(s) and (v <I(s))[yvedep1 — Al

Let z; = (uz}[z € (Bis41 — Bis)} U (Bass1 — Bas)] Note that z; exists by
the hypothesis on the enumeration above. If z; € (B 5,1 — Bys), let 41541 =
Al,s U (4541 — As) and let AZ,S+1 = A2,s- If z; € (B2,s+l — Bg,s), then let
Aysyr = Az U (Asyq ~ A4;) and let 45, = A, Obviously 4, 4, form a
splitting of A. It is also not difficult to see that 4; <y B; fori = 1,2. O

The import of Lemma 5.15 is that W is a distributive upper semilattice.

Lemma 5.16 (Ambos-Spies and Fejer [71). If A is an r.e. cylinder, then A has
the w-USP if and only if A has the w-SUSP.




43 R. Downey, M. Stob

Proof. If 4 is an r.e. cylinder, A =, A ® A so it suffices to prove that if A® A4
has the w-USP then 4 & A has the w-SUSP. Suppose that A =y B1 © B>.
Since 4 has the w-USP, we have splittings 4, 412 and Az, 422 of 4
such that 4, =wu B and 43 =wu B2, By Lachlan’s Lemma (5.15), since
AI,Z Swit B1 @ By (Az’z <wy By © By) there is a splitting Cl,i: CI,Z of AI,Z
(Cy1, Cyp of Az3) such that C;; <wy B; for j = 1,2. Now we have that
A®A = A1 UA; where A; = (4 UC 1)@ Gy and 4y = C128 (A2, UCon).
Note that 4; =wy B and 4> Swn B2, 0

Proof of Theorem 5.14, By Lemma 5.16, it suffices to show that if 4 is a
cylinder and B <y A, then A has a splitting A4;, A, such that 4, =y B. Let
A = wx C. Let f be an enumeration of 4 such that

(Vx,y,2,8)[f sy ={x,z) Ax <y = (3t>s)[f(t) = {,2)]]. (5.3)

Suppose that I"'(4) = B with recursive use function y; we suppose also that y
is strictly increasing. We enumerate 4, and A4; in stages as follows.

Stage s + 1

Step 1. Do nothing unless there is x such that B;(x) = I;(A4;;x) = 0 but
it is not the case that By, ;(x) = I5(4;.1;x) = 0. Find ¢ > 5 minimal with
Bi(x) = I;{A;x). If B;(x) = 0 do nothing, otherwise let {w,y) be the least
element of A, — A; and enumerate {y(x),y)} into 4;. (Note that w < y(x).)

Step 2. If f(s) € Ay5+1, enumerate f (s) into Az .

Condition 5.3 and step 2 guarantee that A;, 4, is a splitting of A since
A CA; = {x| (3t <s)}[f(t) = x]}. To see that B <y A, let

s(x) = (ps > x)[Bs(x) = I (455 x)
Ay [y (x), y(x)] = A [{(p(x), 7 (x))]1.

We claim that B(x) = By (x). If not, let £ > s(x) be least with B;(x) = 1.
It is not difficult to see that no number of the form (y(x), z) for z < y(x)
has entered 4, (as y is strictly increasing). The construction ensures that
Ay [{p(x), 7 (x))] # A1 [{y(x),y(x)}], a contradiction. Therefore B <y
Ay. Finally, as x < (y(x), z) for all z, if follows that 4; <u B by simple
permitting. [J

Corollary 5.17 (Ambos-Spies and Fejer [7]). Ifa is contiguous, then a contains
a set with the SUSP.

Proof. Let C be any r.e. set of degree a. Let 4 = C x w. Note that C =41 A.
Since a is contiguous, B <t A4 implies that B <y 4. The result follows from
this fact and Lemma 5.14. O
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Fig. 2. Ns

Not all sets with the USP have the SUSP. That is a consequence of the next
theorem.

Theorem 5.18 (Ambos-Spies and Fejer [71). No set of degree 0’ has the SUSP.
Theorem 5.18 follows from the next two lemmas.

Lemma 5.19. Suppose that A has the SUSP. Then a = deg(A) is locally dis-
tributive. That is,

Vaj,as,b[(apUa; =aAb < a)
= (3b;,by)[b=bUbyAb; < a;,i = 1,2]].

Proof. Suppose that 4 has the SUSP. Fix degrees a; and a; such that a;Ua; =
a = deg(A). Suppose that b < a. Since A has the SUSP, there are sets 4; and
A, of degrees a; and a, respectively and B of degree b such that B < 419 A42.
By Lemma 5.15, there are sets B; and B, such that B; <wu 4; and such that
By and B, is a splitting of B. The degrees of these sets are the desired degrees
bo and bl. (|

Lemma 5.20 (Ambos-Spies [1]). O/ is not locally distributive.

Ambos-Spies proved Lemma 5.20 by showing that the lattice N5 depicted in
Fig. 2 embeds into R with top ¢'. This implies that 0 is not locally distributive.
The proof is a natural extension of techniques due to Shoenfield and Soare [90]
but is too long to include here. Recently, Ambos-Spies, Lempp and Lerman
have shown that the other five element non-distributive lattice, M5, can be
embedded into R with top ¢'.

Index set arguments due to Jockusch [55] show that if 4 has the UWP
or the SUSP, then deg(A4) is low, or complete. Since no USP cylinder is
complete, this implies that any cylinder with the USP is low,. The only other
constructions of sets with the USP are due to Downey [21], Downey and
Jockusch [27], and Lerman and Remmel [70]. Downey’s construction makes
a low set with the USP, the Downey and Jockusch set is low,, and it seems
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that the original Lerman and Remmel set is also low,. Thus a natural question
is the following.

Open Question 5.21, Are all incomplete sets with the USP low,?

There are low, sets with the USP that are not low (Ladner [65] and Ambos-
Spies and Fejer [7]). The main question left by the results above is the
possibility of the existence of a completely USP degree. This was solved
negatively by Downey.

Theorem 5.22 (Downey [19]). Ifa # 0 then a contains a non-USP sel.
Later, Downey improved Theorem 5.22 to the following.

Theorem 5.23 (Downey [21]). (1) No hypersimple set has the USP.

(2) Indeed, if A is hypersimple and B is a nonrecursive r.e. set, then there is
an r.e. set Q <t B such that for any splitting A,, A, of A, Ay #1 Q.

(3) If Ay, 4, is a splitting of A and A is hypersimple, then A, does not have
the USP.

Proof. We sketch the proof of (2). Let A hypersimple and B nonrecursive be
given. We construct the r.e. set Q. Let (U, V2, Iz, @) list tuples consisting of
a pair of disjoint r.e. sets U,, ¥, and a pair of functionals. The requirements
are as follows.

Re: U UVe # AV Pe(Ue) # QV I (Q) # U

The construction to meet R, will be finite injury so we will assume in our
description of the strategy that all higher priority requirements have ceased
acting. To meet R,, we will have followers x. Our intention is to enumerate x
into Q to arrange that @, (U,) # Q. Associated with R, will be a marker 4..
The position of A4, at stage s, 4, will denote the upper bound of the segment
of Q devoted to meeting R,. The strategy is as follows. We wait for a number
x to occur so that

x> Ay, (5.4)
(Vy < x”@e,s(Ue,s;y) =00 (¥)A(Vz £ u(@e,s(Ue,s;y))

[I:z,s(Qs; z) = Ue,s(z) AUz U Ve,s(z) = A4:(z)], (5.5)
(Vz < des)[x > u(If'z,s(Qs;Z))]- (5.6)

At this stage we appoint x as a follower of R,, we reset Ax;y = 5 + 1
for k = e, and we define T, to be the finite set consisting of the interval
(Aes, Aesq1]. We also cancel all lower priority followers than x. We would
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now like to enumerate x into Q and cause @, (U,;x) # Q(x). To do this,
we need a way of preserving the computation @,;(U,s; x). Now if we never
enumerate any y < x into Q, we have (by (5.6)) that Ups[Aes] = Ue{4e5].
Thus we need only restrain the interval (A,,,s] of Us. Note that this interval
is what we called 7. Of course since x is in this interval, we cannot restrain
it by holding T; out of Q. Rather, we wait for a stage 1 > 5 Ty C 4, and
(Ueg UV )N Ty = A, N Ty, After stage ¢, U, may no longer change on the
interval (A.,5] or else the hypothesis that U,, V. is a splitting of A4 is false.

If such a stage ¢ occurs, then we declare that x is confirmed. Once x is
contfirmed, we may later enumerate x into Q (if permitted by B) and create
the necessary disagreement. We use the hypersimplicity of 4 to guarantee that
we can get a infinite sequence of confirmed followers (the sets T, as x ranges
over all followers form a strong array) and then it is easy to see that one of
the confirmed followers will be permitted by B, else B is recursive. []

The last theorem shows another close connection between the lattice £ of
r.e. sets and the structure R. It says that if 4 has a “thin” complement, then it
cannot have splittings of all r.e. degrees. One might conjecture that Theorem
5.23 could be extended to simple sets. However we have the following.

Theorem 5.24 (Downey [21]). There is a promptly simple set of low r.e. degree
with the SUSP. Consequently, SUSP is not invariant under automorphisms of €.

Proof. We omit the proof of the existence of a set, 4, with the SUSP which
is promptly simple. The noninvariance of the SUSP can be seen as follows.
Let B be a promptly simple, hypersimple set of low r.e. degree. (By [8],
the deficiency set of 4 is such a set B.) By Theorem 5.23, B does not have
the SUSP. But by Maass [72], there is an automorphism @ of £ such that
@(A)=B. O

In the next theorem, we give results on an even stronger notion than SUSP.

Definition 5.25. If r and s are reducibilities such that r is stronger than s, an
s degree a is called r-topped if there is a set 4 of s-degree a such that for all
r.e. sets B such that B =; 4, B <, A. (Similarly for r-bottomed.)

Note that if 4 witnesses that a is r-topped, then for all B <; 4, B <, A. Note
also that contiguous r.e. Turing degrees are both w-topped and w-bottomed.
Note that by an index set argument, it is easy to see that if a is 1-topped,
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then it is low,. Recently, Downey and Shore have used this fact to obtain the
following definability result.

Theorem 5.26 (Downey and Shore [33]). An r.e. set A is lowy if and only if it
is bounded in degree by an incomplete 1-topped degree. Hence, the property low,
is definable in the structure of sets with the two orderings <t and <. Also, an
r.e. set is low, if and only if it has a minimal cover in the r.e. tt-degrees. Hence
the property low, is definable in the r.e. ti-degrees.

Downey and Jockusch [27] have shown that there is a I-topped Turing
degree a such that 0 < a < 0’. A consequence of this is the following.

Theorem 5.27 (Downey and Jockusch [27]). There is a nonrecursive, incom-
Dlete r.e. set A such that for any coinfinite, nonsimple r.e. set B <1 A, there
is a splitting Ay, Ay of A such that A, =, B, Hence, for any coinfinite r.e. set
C <1 A, there is a splitting As, A4 of A such that A3 = C.

Proof. Let a be a 1-topped Turing degree which is incomplete and nonrecursive
and let 4 € a be the witness to this. Let B <1 A4 be nonsimple. Then B €, 4
and B@ A =, A. Let y be a recursive permutation of w such that y(B@ A) = A.
Let Ay = y(Bo0) and 4, = y(@ e A4). Obviously, 4;, 4, is a splitting of 4
and, as B is nonsimple, B=, B@d=4,. [

Theorem 5.27 can be used together with the next theorem to give an easy
proof of the existence of low, sets with the USP which are not low.

Theorem 5.28 (Downey and Jockusch [27]). Suppose that A is r.e. and semi-
low and that B is nonrecursive. Then there is an r.e. set C <y B such that
C £&mA ?

Corollary 5.29. No low nonzero r.e. degree is 1-topped.

The conclusion of Theorem 5.28 can be improved to C £y A4 so that no low i
nonzero r.e. degree is even tt-topped.

‘Theorem 5.30 (Downey [19]). There are r.e. degrees 0 < b < a such that if
A € a, there is a splitting Ay, Ay of A such that deg(A4,) = b. E

We will prove Theorem 5.30 in the next section.

We know that all nonzero r.e. degrees contain sets without the USP. We
could ask the dual question about the degrees of the splitting witnesses. Along
these lines we have the following.
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Theorem 5.31 (Downey [24]). There is an incomplete r.e. set A such that for
any r.e. set B with A <1 B, there is a splitting By, By of B such that B, =t A.

Proof (sketch). We construct sets 4, C,, and D,, to meet the following re-
quirements.

P.: A#£ W,
N,: @,(4) £ K,
Q. (V) =A= (C,UD, = V. ACe =1 4).

Here ([, V.) enumerates pairs (I, ¥} consisting of a functional I and
a set V. We meet the requirements P, and N, by the standard Friedberg
procedures. There are two basic strategies for meeting the requirements Q..
In [24], Downey uses a construction with an @ + 2 branching tree. Another
strategy is the more standard 0"/ method with the requirements Q. spread out
over the tree. We describe this latter strategy. To meet requirement Q., we must
define Turing reductions 4, and A, such that 4.(C) = 4 and A.(4) = C.
Let 8, and A, be the associated use functions which we must also define. We
will divide requirement Q, into infinitely many subrequirements, Q,;, each of
which has an associated follower x{e, i,s) at stage s. Q,; is devoted to insuring
that x = lim; x (e, i,s) exists and that limg A, (d¢ (x,s)) exists. Qe; can have a
I1, outcome or a X5 outcome; the [T, outcome is that limg4,(d.(x,s)) fails to
exist and this outcome will ensure that Q. is won absolutely via [, (V.) # A.
The basic strategy for Q.; is this; let x = x(e,i,5). Let [, be the length of
agreement function for I;(V,) = 4. We wait for the first stage such that
L (s) > x. We then define 8, (x,s) = y.(x,s) (where y. is the use function of
I) and define A.(J.(x,5)) = {e + 1,x,s). Whenever stage ¢ occurs such that
t > s is e-expansionary and ¥, ;[7e(x,5)] # Ve:[ve(x,5)1, we enumerate this
change into C, ;.1 — Ce, and 7. (d (x,5)) into 4,1 — A;. At stage ¢+ 1, we also
redefine 6, (x,f + 1) = 7.(x,t + 1) and y. (S (x,t + 1)) = (e + 1,x,1). Note
that if I, (V,) = A, then lim, &, (x, s) exists and hence so does lim; y. (J. (X,5)).
Unfortunately this procedure, though it makes 4 =t C,, quite possibly makes
both of these sets complete. The basic difficulty results from the requirements
N, because these requirements place restraint on A. In particular, we might
not be able to enumerate Y. (S, (x,s)) into 4 when we wish to for the sake
of Q.. Since ¥, is not under our control, ¥, may change when 7. {(d.(x,s))
is restrained by a higher priority N;. In this case, our only option is to
enumerate the relevant change into D, rather than C,. However now Q,; may
not enumerate an element into A since C, can no longer comprehend this fact.
(Since V{8, (x,s)] has changed and hence &, (x,t) may have changed.) We
now describe in more detail the interaction of the various requirements and
how this basic difficulty in meeting Q. is met.
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Suppose then that we are concerned with a version of N,, say N;, and a
version of Q, with primary node Q,. The first case we consider is that e < k
and 7 C 7. In this case, N; will have absolute control over Q,. Thus, using the
standard Sacks strategy we preserve a 7 correct length of agreement between
@ (A4) and K. The versions of Q, will work in 7 stages and also believe that
the effect of T on them is finite; thus each time a 7 correct length of agreement
arises, these requirements are initialized. Requirements P, of lower priority
than N, can also be met in this way.

Now suppose that the situation is the other way; that k < ¢ and 5 C .
We consider the cases of the priority of the subrequirements Q, of the global
requirement Q. Suppose first that Q, is of higher local priority than the
requirement N.. That is, we have n C y C 7. Requirement Q, is attempting to
get x(n,{,s) defined. In this case, Q, functions exactly as in the basic module.
Namely, once Q, defines x (», i,s) it is committed to the appropriate values of
Ay and &y. So each time ¥} changes we reset A, and enumerate the appropriate
change in C,. There are two cases according as to whether N; is guessing that
Q, has the 2, or the I7, outcome. In the former case of course, it simply gets
initialized each time Q, acts. In the case of the II; outcome, as in the thickness
lemma, it waits for a stage such that i,(d, (x(#n,,5))) exceeds the use of the
computation to declare a 1-correct computation.

The hard case is the case where the global priority of N, exceeds the local
priority of Q,. That is we have that # C 7 C y. (This is the case that usually
makes 0" arguments difficult.) The obstacles are as follows. At some 7 stage,
Q, gets to assign a number x; = x(#,i,s). Now we will not let 7 act until the
next y-expansionary stage when we define axioms for x;. (We can do this using
the technique of links.) It may happen that 7 later cancels x;, but we only need
to argue that A[A,(J,(x;))] can figure out C;[d, (x,)] and G, [d; (x;)] can
figure out if x, enters 4. Now if 7 does exert control over x; and so cancels it,
then each time we get a change in Vi ,[d (x1,¢)], we must put the change into
D, and not C; at the next # stage. We will consider the effect of this. First,
at the next n stage u we can get to redefine x (7,7, #) to exceed all previously
seen numbers. Note that a fixed N, can cancel x(7,7,5) only a finite number
of times. Either the true outcome of N; is finitary or this version of N, is
incorrect and some infinitary node causes us to move left of N,. But in the
latter case we will get to define some x(#,i,u) at some node y such that
w <y T which N, must respect.

The only problem with all of the above is the following. Consider a later
incarnation of x = x(»,{,s) at y. We will not have complete control to
enumerate numbers < A, (J, (x(y,,5))) into 4 nor numbers < &, (x(n,7,5))
into C,. This is because of earlier injury. As a representative illustration, at
stage 5o we have promises for numbers < z,d,(z),y,(J, (2)). Now at stage
51 we define x; = x(n,i,51) and A,(d,(x;)). At stage 53 > 51, nothing has
changed but N, asserts control. At s3 > s, V; changes and the change is
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enumerated into D, not C,. Now at s4 > §3, we define a new x; = x(n,i,54).
The diagram shows the situation with dotted lines for reductions that have
vanished. (We have omitted some subscripts and stages on use functions.)

s M s o y
z Aly(z)) x; Aly(x1 ) X2

Now in G, U Gi3, we promise that if we get a change then we put it into C,
and A(y(x;)) into 4. Now remember that the Gy change has gone into D,.
Suppose now that we get a V; change below d (x;) yet N, still has control over
G. So again we cannot put this change into C, so that it must go into D,.
This in general we cannot enumerate y{(J (x,)) into 4. The key to remember is
that this process can happen only finitely often as G, is finite and so can reset
X2’s use only finitely often. This means that we can still ensure that C, <t 4.
That ¥, <t A requires more work. Basically, when we reset, we nced a new
x(n,i,-) = x3, say that exceeds all the rest. Suppose V' [G3] has reached its
final state. Now we will not put either of x;, X, into A so ¥ cannot be wrong
about them. We only need to check that d(x3;) can be moved for any change
above G| but this is clearly possible since 1(J (x>)) can legally be added to A.
Thus it follows that we get a version of x(#,{,-) that becomes stable and for
which C, can comprehend its entry. Note that C, can comprehend A(y(x;))’s
entry as we need a V. (and thus C,,) change below d (x;). Thus 4 <t ¥} too.
The remaining details go together in the usual 0 way. O

6. Embeddings into R and the stracture of R

In this section we examine the ways that splitting properties can be used to
obtain results about the structure of R and that of W. The earliest example of
such a result is Sacks Splitting Theorem, Theorem 5.1; this theorem implies
that if a is a nonzero r.e. degree, there are incomparable r.e. degrees a;, a,
such that a; Ua; = a. In particular there are no minimal r.e. degrees. Sacks
Splitting Theorem was extended by Robinson who showed the following.

Theorem 6.1. Suppose that a > b and that b is low. There there are degrees a,,
ay such that a,Uay; = a, b <aj,a; and a;,a; < a.

In fact, Theorem 6.1 was proven by a splitting theorem. The corresponding
splitting theorem, in which Robinson introduced what is now referred to as
the “Robinson Trick”, is the following.
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Theorem 6.2, Suppose that A and B are r.e. sets with B <t A and B low. Then
there is a splitting A\, Ay of A such that A;i® B <1 4 fori = 1,2.

Proof. 1t is easy to see that the following requirements suffice.

Re,i: Pe(B & A;) # Ar-..

As in the Sacks Splitting Theorem, we let /({e, i},s) be the length of agree-
ment function for @, (B & 4;) = A_; and let r({e,i),s) be the restraint
imposed on A4; to preserve [({e,i},s). Of course the difficulty here is that
we do not have complete control over r({e,i),s) since we do not control the
enumeration of B. Instrumental in the proof is the following lemma.

Lemma 6.3. Suppose that B is a low r.e. set and {Dp}new is the canonical
indexing of finite sets. Then there is a recursive function f such that for all j

Win{n:D, CB} = Wy N{n:D, CB} and (6.1)

Win{n:D, C B} = 0= Wy is finite. (6.2)

The lemma is used to modify the basic construction of the Sacks Theorem
in the following way. Suppose that we are attempting to define r({e, i),s). We
will pay attention to a computation used in establishing /({e, i}, s) only if we
can “B-certify” the computation in the following way. When we wish to certify
a computation, say QP (B; @ A;s) (x), we let u be the use in establishing this
computation, We then let # be such that D, = B;[#] and enumerate # into a
set Vie,ix) which we construct. By the recursion theorem, we assume that we
know an index, j, for Vi ;. We then simultaneously enumerate W ;, and
B until either » occurs in Wy (;, or some number z < u appears in B. Such
must happen by Lemma 6.3. In the former case, we say that the computation
is certified and we can use it in establishing the length of agreement. In the
latter case, the computation is not correct so we ignore it. Equation (6.1) says
that we will certify any B-correct computation; equation (6.2) says that we
will not certify infinitely many incorrect computations at a single argument
x. Thus we will not have the lim;r{{e,i),s) = oo if @, (B & A4;) # A;_;. Of
course when a B-certified computation becomes invalid because of injury (i.e.,
our enumeration into A4; rather than enumeration into B), we must restart the
certification process with a new version of Vi ;. O

A natural question arising from Theorem 6.1 is whether the hypothesis that
the degree b is low be removed. The next result, the celebrated “monster”
result of Lachlan, answered this question negatively.
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Theorem 6.4 {Lachlan [62]). There exist degrees b < a such that ifa;Ua; = a
and b < ay,a; then the degrees a, and a, are comparable.

The proof of Theorem 6.4 is very difficult and we omit it. This proof was
particularly important since Lachlan introduced the 0’ priority method with
it. This was the key technique that led to the eventual proof that Th(R) is
undecidable by Harrington and Shelah [48] (see also [49]).

Harrington [46] showed that one may take a = ¢/ in Theorem 6.4 and
Jockusch and Shore [56] showed how these results are related using pseudo-
jumps. Finally Slaman (unpublished) has claimed that one may make b low,
and a lows.

For the structure of the weak-truth-table degrees, W, the situation is different.
Ladner and Sasso showed that splitting and density could be combined.

Theorem 6.5 (Ladner and Sasso [67]). Suppose that A and B are r.e. sets with
B <un A. Then there is a splitting A, A> of A such that B & A; <wu A for
i=1,2

Proof (sketch). The requirements are
R.: @ (B & A4;) # Ay

Here @, is the eth wtt-reduction. As usual, we let /{e,,-) be the length of
agreement function for @,(B & 4;) = A;_; and let r(e,i,s) be the restraint
necessary to preserve the computations through / (e, i,s) (as in Sacks Splitting
Theorem). One now performs exactly the Sacks construction. The reason that
limg r (e, i,8) < co is that we are using wtt-reductions so that if @, (B @ 4;) #
Az_;, then lim;/(e,i,5) < oo and the use function of @, is bounded by a
recursive function. [J :

Theorem 6.5 and the distributivity of W implies more regularity in the
structure of W than is present in R. As a consequence, the Harrington-
Shelah techniques alone do not suffice to prove that Th(W) is undecidable.
The undecidability of the theory of W was recently established using the
distributivity of W in an essential way by Ambos-Spies, Nies, and Shore [11].
The degree of this theory is still unknown.

Another interesting nonsplitting result for R is also due to Lachlan.

Theorem 6.6 (Non-Diamond Theorem, Lachlan [59]). There are no r.e. de-
grees aj, ap such thata,Uay = 0 anda;Na; = 0.

The proof of Theorem 6.6 is well-known and we omit it. A pair a;, a,
of nonzero r.e. degrees is called a minimal pair if a; Na; = 0. In contrast to
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Theorem 6.6, minimal pairs of r.e. degrees exist. Lachlan [59] and Yates [100]
were the first to construct such pairs. A slight variation of their construction
can be used to show:

Theorem 6.7 (Downey and Welch [41], Ambos-Spies [5]). There is a nonre-
cursive r.e. set A such that if Ay, A, is a splitting of A then deg(A4;)Ndeg(4,) =
0.

Proof (sketch). Let (U,, V., @.) enumerate triples consisting of a disjoint pair
U,, Ve of r.e. sets and functional. It suffices to meet the following requirements.

P.: Zié We,
Ne: U UV, = AND(U,) = . (V,) = f A f total = f recursive,

We employ the following variation of the standard minimal pair construction.
First, we establish length of agreement in the computations @, s (Up5), Des (Ves)
by only admitting computations @D, s(Ues;x), Pes(Ves;x) such that if z <
U(DPos(Ue,5;x)) and z < u(Dos(Ue,53x)) then U, U Ves[x] = As[x]. This
implies that we can preserve such computations by restraining 4. Then we
use the usual minimal pair strategy. Namely, for the sake of N,, at an e-
expansionary stage we allow the restraint to drop and then allow at most one
number to enter A for the sake of a lower priority P; and then reimpose the
restraint. [J

Sets with the property of Theorem 6.7 are called strongly atomic sets.

Definition 6.8. A nonrecursive set A is strongly atomic if for every splitting
Ay, A; of A, deg(Ay) Nndeg(A4;) = 0. (Such sets were called antimitotic by
Ambos-Spies. ) :

Corollary 6.9 (Lachlan [59] and Yates [100]). There are minimal pairs.

Proof. Let A be a strongly atomic set and A4, 4; a Sacks spliiting of A. Then
deg(A,), deg(A4,) form a minimal pair. [J

The existence of strongly atomic sets gives much information about the
structure of R. We first prove the following lemma.

Lemma 6.10 (Downy and Welch [41]). Suppose that A is strongly atomic and

that Ay, A> and By, B, are two different splittings of A. Then

(1) 4iNB; <1 Ai, B, i,j = 1,2. (This doesn’t depend on the strong atomicity
-of A.)

(2) If A| <71 By then A, N By is recursive.
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(3) If Ay <71 By then By <t A.
(4) If the splittings consist of nonempty sets and A; =t By, then A, =, B,.
(5) A is strongly atomic.

Proof. (1) To show that 4; N B; <t By, for example, suppose x is given. If
x € By then x € 4 N B,. If x € By, enumerate 4; and A, until x enters either
A) or A4; and answer accordingly.

(2) Suppose that 4 <t B;. By (1), 41N B, <1 A1,B,. Thus 4, N B, <7
By, By and hence is recursive since A is strongly atomic and B), B; is a splitting
of 4.

(3) If 4; <t B; then 4, N B, is recursive by (2). Hence B, = (4, N B,) U
(A2 N By) =1 (A2 N By) <7 A,.

(4) Suppose that 4; =7 B;. Then by (2), 4; N B, and 4,N B, are recursive.
Let &y, by be fixed elements of B; and B, respectively. Define a function f by

by ifned nB,,
f(n)=<¢b ifneAd,nkB,
n otherwise.

It is easy to see that f witnesses that 4, <p B;. Similarly, one can show that
Bl €m Al-

(5) Suppose that C), C; is a splitting of A;. Suppose that D <1 C;, Cy; we
must show that D is recursive. Note that C;, C, U 4, is a splitting of 4. Also,
D <1 Gy U A4, since C; and A, are disjoint. Thus D is recursive since 4 is
strongly atomic. [

Downey and Welch extended Lemma 6.10 to the following.

Theorem 6.11 (Downey and Welch [41]). Let A be strongly atomic. Let H(A)
={4, | 41 is half of a splitting of A}. Let f : H(A) — §(A) be the map defined
by f(A) = deg(A). Then f is a surjective homomorphism of Boolean algebras.

Proof. That f is surjective follows trivially from the definition of $(4) (recall
that S(A) consists of the degrees of halves of splittings of 4). That f preserves
inclusions follows directly from Lemma 6.10(1). We need only show that f
preserves the join and meet operators of the Boolean algebra.

Note first of all that H(A4) is a Boolean Algebra, That is, if 4; and B, are
halves of splittings of 4, then so are 4; UB; and 4, N B,. Now to show that f
preserves supremums, it suffices to show that deg(A4,UB;) = deg(4; & B;) for
this shows that S(A) inherits the join operator from R. Obviously, 4, UB; <7
A, © B,. The other direction, that A4;,B; <t 4, U B, follows by an argument
similar to that for Lemma 6.10(1). To show that f preserves infimums, we
need to show that if C;, C is another splitting of 4 and C; <t A4y, By, then
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C; <1 A; N By. Since C; <t A4i1,B;, we have that 4;, B, <t C; by Lernma
6.10(3). Thus A, UBy <1 Cy. But 4, N8By, A U B, is a splitting of 4 and thus,
again by Lemma 6.10(3), we have that C;, <y A, NB;. [

For strongly atomic sets of contiguous degree, we get an even stronger
embedding theorem.

Theorem 6.12 (Downey and Welch [41] and Ambos-Spies [5]). Suppose that
A is a strongly atomic set and that deg(A4) is contiguous. Then the function
f as defined in Theorem 6.11 above defines an embedding of the countable
atomless Boolean algebra into R preserving supremums and infimums.

The proof relies on the following lemma.

Lemma 6.13 (Ambos-Spies [51). Suppose that a is contiguous, bNe¢ = 0 and
bUc = a. Then b is contiguous.

Proof. Let B and C be r.e. sets of degrees b and ¢ respectively and let D
be another set of degree b. It suffices to show that D <y B. We have that
D €y B@® C =7 A so that D has a splitting D;, D, such that D; <. B and
D, <y C. However, D, <1 B, C implies that D, is recursive and hence that
D=y D < B. O3

Proof of Theorem 6.12. In view of Lemma 6.10, it suffices to show that if 4,
and B, are halves of splittings of 4, then deg(A; N B;) = deg(4;) Ndeg(B,).
Obviously, deg(4;NB;) < deg{4;)Ndeg(B;). So suppose that C <t 4,, By;
we must show that C <t 4;NB;. By Lemma 6.13, C <y 41, B;. Now 4, N5
and AN B, is a splitting of 4,. Thus C <we (4;NB1)® (431N B3). Thus, C has
a splitting Cj, Ca, such that C; <wn AN B}, C2 <wu A1NBy <y By But then
C, must be recursive since C; <wu By, Ba. Thus C =wit C; €Swn A1 N B, O

To make Theorem 6.12 useful, we need to construct a contiguous strongly
atomic set. A direct construction is possible (see [41]) but there is a simpler
argument due to Ambos-Spies based on the following lemma.

Lemma 6.14 (Ambos-Spies [5]). Suppose that B <wu A. Then there is an r.e.
set C =gy B such that for every splitting Cy, Cy of C, there is a splitting Ay, 4
of A such thqt Ci€wu 4y I = 1,2

Proof. Let I'(A4) = B be the reduction which witnesses that B <y 4 and let
¥ be the recursive use function. Let / be the associated length of agreement
function. We will suppose that the sets and I” are enumerated so that /(s+1) >
I(s) for every s. Define C by Cs,1 = Cs U {(uz)[z € Bsy1 — Bsl}.
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Suppose then that C), C; is a splitting of C; suppose also that these sets are
enumerated so that C; ;UC;; = C; for every s. We define 4; and A4, as follows.
If G541 —Cs € Ci 541, then define Arset = AU (A4g 1 —4s) and Azsp1 = Az
Otherwise, define 4,1 = 4, and Ay, = Ay U (Agpq — As). Tt is easy to
see that if ¢ is such that A;,[y(x)] = 4;[y(x)], then Ciilx)=CIx]. O

Corollary 6.15. Suppose that A is strongly atomic and that B <wy A. Then
there is C =y B such that C is strongly atomic.

We now have

Theorem 6.16 (Ambos-Spies [5] and Downey and Welch [41]). There is a
contiguous strongly atomic degree. Indeed, every strongly atomic degree bounds
a contiguous strongly atomic degree.

Strongly atomic sets have several other applications. For example, Lachlan
[63] showed that there is a nonzero degree a such that every nonzero b < a
bounds a minimal pair. This result can be extended to the following.

Theorem 6.17 (Ambos-Spies [5] and Downey and Welch [41]). There is a
nonzero r.e. degree a such that for all b with 0 < b < a, b is the supremum of
a minimal pair.

Proof. Let A be strongly atomic and of contiguous degree. The theorem follows
immediately from Corollary 6.15. [J

Another easy application of strongly atomic sets of contiguous degree is the
following. We say a degree a bounds a 1-3-1 lattice with least element b < a
if there are incomparable degrees aj, a5, a3 < a such that b is the infimum of
any pair of them and each pair of the three has the same supremum. Lachlan
has shown that 0 bounds a 1-3-1 lattice with least element 0. He has also
show that there are degrees which bound no minimal pairs.

Theorem 6.18 (Downey [19]). There is a degree a # 0 such that every nonzero
degree b < a is the supremum of a minimal pair but such that a bounds no
1-3-1 lattice with least element 0.

Proof. Again, let A be strongly atomic and of contiguous degree. Suppose that
By, B, By are sets of the degrees witnessing that deg(4) bounds a 1-3-1
lattice with least element 0. By Lachlan’s Lemma, A = 4; U 4; U 4; where
A; <yn B; for i = 1,2,3. We claim that, in fact, 4; = B;. This would be a
contradiction for it would imply that A; =y B; <1 B2 ® B3 = A2 ® 4;. This
cannot happen since 4, 4; U 4; is a splitting of a strongly atomic set.
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To see that B; <wu Aj, say, note first that B| <uu A; @ 4, ® 4. Thus
By has a splitting D,,D;, D, with D; <y A; <wn B;. This implies that
Dy and D; are recursive since D; <wy Bi1,B; and D; <y By, B;. Thus
Bi=w D) <y 41 O

The preceding theorem can be extended using a 0"’ argument to the following.

Theorem 6.19 (Downey [25]). If a # O then there is a degree b such that
0 < b < a and such for every ¢ < b, b bounds no 1-3-1 lattice with least
element c.

However, it is not known whether Theorem 6.19 holds for every strongly
atomic contiguous degree. Downey and Shore [34] have shown that if a is
low;, then a bounds a 1-3-1 lattice (not necessarily preserving 0).

Open Question 6.20. Are there degrees a and c¢ such that a is strongly atomic
and contiguous and such that a bounds a 1-3-1 lattice with least element c?

As a final result using contiguous strongly atomic degrees, we supply the
promised proof of Theorem 5.30.

Theorem 5.30 (Downey [191). There are degrees 0 < b < a such that if A is
any set of degree a, then b € S(4).

Proof. Let C be a strongly atomic set of contiguous degree. Let a = deg(C).
Let b be any degree in S(C). Suppose that 4 is of degree a. Then A =y C
by contiguity of a. Let C;, C, be any splitting of C such that C; € b. Then
A has a splitting A4, 4, such that 4; <y C; and 43 <y Cy. We show that
- Ay =i C) 50 that A; witnesses that b € S(4).

To see this, note that since C; <y A =yt 41 ® A3, C; has a splitting D;, D,
such that D} <y Ay, D2 <ot 4;. Since Dy <y C) and D3 <o Ay Swn G
and Cy, C; form a minimal pair, D, is recursive. Thus C| Swy D) Swi 4; and
thus Cy =we 41. O

One of the limitations in using contiguous degrees to gain information on
embeddings into R is that all contiguous degrees are low,. Thus these degrees
are only useful in analyzing certain initial segments of R. A possible line of
inquiry then is the extension of the definition of contiguity to one useful
for larger ‘portions of R. One way to do this is to replace <y by another
reducibility notion. We suggest two such possibilities here.

Definition 6.21. Define A s{ B if there is a recursive function g such that
A4 <t B by a reduction I" such that the use function, u, of I' satisfies




Splitting theorems in recursion theory 63
[{s | #(Is(Bs; x)) # u(Tiy1 (Ber;x))} < g(x).

It is easy to see that s{ is a reduction and many of the properties of wit-
degrees carry over to this setting. The reason for this is that disagreements give
finite restraints rather than just restraints with finite lim inf,

Open Question 6.22. What is the structure of the degrees under s{ and what
is the relationship of this structure to that of R?

Another such notion is this.

Definition 6.23. Let C-be an r.e. set. We say that 4 <cuu B if 4 <7 B via
a reduction I' such that the use function of I' is bounded by a C-recursive
function.

Given a Turing reduction ¢, a C-recursive function ¢, and an enumeration
of C, we denote by P¢ the wit-C-reduction with use function ¢ defined as
follows. Given x, let u = ¢& (x). Then define P\ (Bsp1;x) to be equal to
Pc,s (Bs; x) unless B,y1[u] # B;[u] In this way, we can obviously generate a
simultaneous enumeration of all such reductions {@, ¢ | ¢ € w}. The key fact
that we need in carrying results for wtt-reducibility over to this new reducibility
is the following easy analogue of Lachlan’s Lemma.

Theorem 6.24. Let B, C, Ay, and Ay be r.e. sets with B < c.uwn A1 ® A5, Then
there is a splitting By, B, of B such that B, < ¢y 416 C and By <oy A2®C.

Proof. The proof is very similar to that of Lachlan’s Lemma. Suppose that
Dc(4,©42) = B with use function bounded by ¢C. Let I denote the associated
length of agreement function and #(x, s) the use of the approximation to this
functional at 5. We will assume that # is monotone in both variables and that
the enumerations of the sets involved guarantee that

(3X) [(X € A1 gy1 © Agsi1) A (x € A1 ® Az )] 1(s + 1) > 1(s).

Construction

Stage s + 1

Let x be the least element of (4. ® Az541) — (Ays ® Azs). If x is even
(corresponding to enumeration in 4, ) let Bis+1 =By U(B;y; — By) and
B2,s+1 = By;. Otherwise let Bsi1 = By U (Bsy ~ Bs) and Bisi1 = Bl,.s'-

Obviously, By, B, is a splitting of B. To see that B, ¢ 4A; & C, let x
be given. To compute B, (x), use C to find a stage ¢ such that u = ¢ (x) is
correctly computed. Now find s > ¢ such that 4,,[¢] = A[¢] and I(s) > x.
We claim that x € B, if and only if x € B;. For if x enters B at a stage
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later than s, it must cause a change in A; & 4, below u(x,s) < u and this
change must be in 4, rather than in 4; by choice of 5. Consequently, x is not
enumerated in 8;. O

We can now extend the notion of contiguity to this case.

Definition 6.25. An r.c. set A is C-contiguous if for every r.e. set B such that
B =1 A, B=cn A

Given an r.e. degree ¢, A is c-contiguous if A is C-contiguous for some
(every) r.e. set C of degree c.

A is strongly C-contiguous if for every set X (not necessarily r.e.) such that
X =7 A, X =(C-wit A.

We now have the following analogue of distributivity.

Definition 6.26. A degree a is locally distributive over b if a is distributive
relative to the interval [b,a]. That is, b < a and

(Vaj,az,¢c)[(ajUa; =aAb <c<a)
= (Jep, ) [ciUe; = ecAcp € bUajAey < buaz]l.

a is weakly distributive if a is distributive over b for some degree b < a.
The next lemma follows easily from Theorem 6.24.

Lemma 6.27. Suppose that a is C-contiguous and that deg(C) < a. Then a is
locally distributive over deg(C').

The following lemma is also easy.

Lemma 6.28. a is contiguous if and only if a is c-contiguous for all ¢ < a.
Ifd < a then a is d-contiguous if and only if a is c-contiguous for all ¢ such
thatd € c< a.

It is also fairly easy to comstruct degrees a which are ¢ contiguous for some
¢ < a but which are not contiguous. It is well known that 0/ is not contiguous’
(see [27]). But we have

Theorem 6.29. There is an r.e. degree c < O such that 0 is strongly c contiguous.

Proof. Downey’s construction of a strongly contiguous r.e. degree (Theorem
5.12) gives the following relativized version.

(3e) (YX) [X <1 W A (VC)[C =2 W = C =g el

T T T T T T I I T T T
i’_{*_.:.._:ff;;; M[,_‘.:_v.i.‘.__,/,y Rl e e RN
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Now by the Jockusch-Shore pseudo-jump theorem (see [56]), there is an
r.e. set X such that Wf =7 @. 1t is clear that 0’ is then X-contiguous. [J

There is some restriction on the degree of X. We have the following theorem
by straightforward relativization of the corresponding result for contiguous
degrees.

Theorem 6.30. Suppose that a is c-contiguous. Then a" = ¢".

All of the previous results suggest that the notion of wtt-C reducibility might
be quite useful just as wit-reducibility proved useful. However we have not
investigated much further than this. Using a rather difficult delayed permitting
argument, the first author has shown the following.

Theorem 6.31 (Downey, unpublished). Suppose that B <t A. Then there is an
r.e. set C such that B@ C <t A and such that B & C is strongly B-contiguous.

We think that the most interesting question here is

Open Question 6.32. Suppose that a # 0. Is a weakly distributive? Indeed, is a
c-contiguous for some degree ¢ < a?

We turn now to a splitting theorem of Lachlan which has consequences
for embedding lattices into R preserving the greatest element (rather than the
least).

Theorem 6.33 (Lachlan (64]). Suppose that A is nonrecursive. Then there is
a splitting Ay, Ay of A and an r.e. set C such that deg(C) = deg(4;, & C) N
deg(d; @ C)and A\ C, A, & C <1 A.

Corollary 6.34 (Lachlan [64] and Shoenfield and Soare [90]). Every nonzero
degree a is the top of a diamond in R.

Proof (sketch). We have the Sacks requirements
Ne,i: P (A4; @ C) # Ay
and the infimum requirements
Ry @,(4,6C)=D,(A,8C) = fAftotal = f <y C.

The main new idea of Lachlan’s proof is to meet the requirements R, by
enumeration rather than by restraint. That is, if both 4; and A4, change on a
computation between e-expansionary stages, then we allow C to recognize this
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fact by enumerating a number into C. This strategy conflicts with the require-
ments N, ; since these requirements restrain 4; © C' to preserve computations
according to the Sacks strategy. The conflicts are resolved by a I, tree. Rather
than prove this result, we give the reader an idea of the proof by proving a
weaker result for wtt-reducibility. That is, we will suppose that the reductions
mentioned in the requirement are wit-reductions. We use / (e, s) to denote the
length of agreement function for the requirement R, and L(e,7,s) to denote
the length of agreement function for requirement N, ;. We will use r((e, i}, s)
to denote the restraint function necessary to preserve /(e,i,s), except that we
will also constrain r(f,s) to be nondecreasing in s and f.

Construction

Stage s

Rule 1. For each x, at the first stage s such that /(e,s) > x, define
{{le, x,s),{e,x,s + 1),...,{e,x,s + s)} to be the set of traces for x and let
{e, x,s) be the active one.

Rule 2. If at stage s, {(e,5) > m(e,s) > x (here m is the maximum length
of agreement function for /), and there is no active trace for x, declare the
least trace {e, x, i) & Cs to be active.

Rule 3. Suppose ¢ < s is the greatest stage such that /(e,#) > x. Suppose that
the trace active for x is {e,x,u). If (4,, 9 C)[p.(x)] # (A1s© Cs)[p.(x)]
and (A2, @ C) [0, (x)] # (42,9 Cs)[p.{x)] and u > r(e, s}, then enumerate
(e, x,u) into C;. ;.

Rule 4. Enumerate elements of A; — 4, into A4; or A; so as to preserve the
Sacks requirements of highest priority.

Lemma 6.35. For all e, limr(e,s) exists and is finite and so the requirements
N,,; are satisfied.

Proof. Fix ¢ = {f, ). First note that for any x, all of the traces u# appointed
for x satisfy u > ¢,{(x). Furthermore, there are more than ¢,(x) such traces.
To see this note that at the stage s that these traces are appointed, ¢,(x) <
s < {e,x,s),{e,x,s + 1},...,{e,x,5 + 5). This implies that not all traces for
x are enumerated into C since both sides must change before a trace can
be so enumerated (Rule 3). This also implies that such traces can injure a
computation @ (4;; ® C53y) if @, (x) <@ (y). O

Now by induction let 54 be a stage such that for all i < e, limg r(i,5) = r{i, s)
and such that x € 4 — A4, implies that x > r{(i,50). Now let 5; > 5o be a stage
such that if j < e and lim;/(f,s) = oo, then /{j,51) > ¢;(x).

Lemma 6.36. The requirements R, are satisfied.
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Proof. Fix e. By the previdus Lemma and Rule 3, almost all traces for R,
which wish to enter C do. Suppose then we are given x such that all the
traces for x exceed the restraint imposed on R,. We show how to compute
D, (416C;x) = D, (A,6C; x). Let s be the stage such that the traces for x are
appointed at stage 5. These traces are {¢, x,5), (e, x,5 + 1),...,{e,x,s + s). Let
¢ be the least e-expansionary stage such that C;[{e, x,s+5}] = C[{e, x,5+5)].
Then it is not difficult to see (using the argument that after stage ¢, at most
one side of the computation changes between e-expansionary stages) that
Do (A1, Ci3x) = (A1 C;x). O

Shore and Slaman have asked whether Theorem 6.33 can be extended to
show that the diamond in question can be embedded above any fixed low
degree b < a. This question was recently answered positively by Downey and
Shore.

Theorem 6.37 (Downey and Shore [32]). Suppose that a|b. Then there is a
degree ¢ such that aUc,bUc<aUb and (aUe)N (bUc¢) = ¢

The proof of Theorem 6.37 is a very difficult 0’ argument and is omitted.
Theorem 6.37 has the following consequences.

Corollary 6.38 (Slaman Density Theorem). If b < a, then there are degrees ¢,
d such that b<c< a, b<d < a and such that cNd exists.

Proof. First, let e, f be incomparéble degrees such thatb<e<aandb<f < a.
Such exist by a routine variation of the Sacks Density Theorem. Now let e and
f play the roles of a and b of Theorem 6.37. [J

Corollary 6.39. If a splits over b then a splits over b by a pair with an infimum,

Theorem 6.37 was proved for wit-degrees in place of T-degrees much earlier
by Downey [23]. Corollary 6.39 cannot be extended to splittings of sets as the
corollary to the next theorem shows.

Theorem 6.40 (Ambos-Spies [5]). There is a complete r.e. set A such that for
every splitting A,, A, of A, either A, or A, is low. :

Proof. Suppose that f is a 1-1 recursive enumeration of X. We enumerate 4 in
stages; let ap; < @15 < - -~ enumerate the complement of A, in increasing order.
We shall define certain markers 4, to rest on some (but not all) members of
As. Let (U, V,) list all pairs of disjoint r.e. sets. Given n = {e,i,]}, define the
following:

u(n,s) = min{u(P;; (Ues; 1)), u(Dis (Vo3 1)1, (6.3)
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min,s) = max{u(¢i,s (Uessi)), u (djj,s (Vess J) )} (6.4)

1 if @y (Ues; i)y Pjs Ves3 )1
g(n,s) = and (UpsU Vo) [m(n,s)] = Ag[m(n,s)],  (6.5)
0 otherwise.

The requirements on A are
Ry (3%s)[g(n,s) = 1] = (D; (U i) VO (Ve; j) )

To see that these requirements suffice, suppose that U, ¥, is a splitting of A4.
If U, is not low, then there is a fixed i such that @;(U,;#) T but for which there
are infinitely many s such that @;;(Ue;;i)]. But then, since we meet R,(;)
for all j where n(j) = (e, i, j), we have that for all j, (3%°s)[D;s(Ves;7)l] =
(@;(Ve;j)1). This in turn implies that ¥, is low.

Construction

Stage 0

Define A(i,0) = a;p = i for all i.

Stage s + 1

Find the least » if any, such that g(n,s) = 1 and 4,5 < u(n,s). Let
m = min{n, f (s)}. Define 4;,, = A;U {4} and define

4 Ay fy<m,
S+ = .
it Ayis+1,s otherwise.

Note that if each requirement R, receives attention only finitely often, then
lim; Ay s = Ay exists and thus 4 is coinfinite and by the construction K <t 4.
Thus it suffices to show that each requirement R, receives attention only
finitely often and is satisfied. Suppose that this is true for all requirements
R,, p < n. By the construction, A(n,s + 1) # A(n,s) only if requirement R,
P < n receives attention or a number x < »n is enumerated into K. Thus,
by induction, let sy be a stage such that no requirement R,, p < n receives
attention and such that K, {n] = K[n]. Suppose that s > 5y is a stage at
which R, receives attention. Then g(n,s) = 1, A(n,5) < u{n,s) < m(n,s).
Now A(n,s) is enumerated into A;,; and we have A, >s5+ 1 > m(n,s).
Ans can’ enter only one of U, or V,, thus the other of the two computations
mentioned in the definition of g(#,s) is preserved forever. This implies that
R, is met and never again receives attention. [J

Corollary 6.41. There is a complete r.e. set A such that if A\, A, is any splitting
of A with Ay |t Aj, then deg{A,) Ndeg(A4;) does not exist.
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Proof. Choose 4 as in the Theorem. Lachlan [59] (or Ambos-Spies [3]) have
shown that there are no incomparable low degrees, a;, a, with a; U a; = (¥ and
such that a, Na, exists. O

We also remark that Ambos-Spies [4] has shown in a dual result that for
every nonrecursive a, there are degrees a,, a such that a; Na, does not exist.
This fails for splittings of sets since if 4 is strongly atomic, any set splitting of
A has an infimum in the degrees. Theorem 6.40 suggests the following question
of Remmel: Is there a set 4 such that for every nontrivial splitting A;, 4> of
A, 4, 45 <t A’? This was recently resolved by Ingrassia and Lempp.

Theorem 6.42 (Ingrassia and Lempp [54]). There is an r.e. set A such that for
all nontrivial splittings A, Ay of A, 4,4, <1 4'.

We omit the proof of Theorem 6.42. Theorem 6.42 leads to a general
question about the jumps of splittings.

Open Question 6.43. If 4 is a nonrecursive r.e. set, what are the possibilities
for the degrees of jumps of splittings of 4?

As concrete special cases we propose

Open Question 6.44. Is there an r.e. set of high degree which has no nontrivial
splitting A4;, 4, such that A, is high?

and

Open Question 6.45, Is there a nonlow set 4 such that for every nontrivial
splitting 4,, 4, of A4, both of 4, and A, are low?

Other reasonable questions and conjectures could be made by extending the
Ingrassia~Lempp idea or these questions above to nth jumps.

7. Antisplitting and other strong nonsplitting properties

In this section, we examine further the structure of &(A4). The first result
shows that if S(4) is not all of [0,a], then in fact S(A4) misses a whole interval
[b,¢] of degrees in the interval [0,a].

Theorem 7.1 (Downey and Welch [41]).
(1) Suppose that A does not have the USP. Then there exist sets B, C, such that
@ <1 B <t C <t A and such that if B <1 D <1 C, then deg(D) ¢ S(A).




70 R. Downey, M. Stob

(2) Suppose that A does not have the UWP. Then there exist:sets B, C, such
that @ <1 B <1 C <1 A and such that if B <7D <t C, then D £y A.

Proof. We prove (2) as (1) is similar. Let C <t 4 be such that if D =¢ C,
then D L A. Let Cy, C; be a Sacks’ Splitting of C. Then we claim that
either C; or C; is the desired set B. For suppose that there are sets D; and
D, such that C; <1 D; <7 C and D; €4 4 for i = 1,2, Then we have that
Dy ® Dy €y A but Dy & Dy =7 C contradicting the choice of C. [

The best extension of Theorem 7.1 from one point of view is the following,

Theorem 7.2 (Downey and Welch [41}). Suppose that A is strongly atomic
and of contiguous degree a. Then N (A) is dense in [0,a] and hence in R.

Theorem 7.2 is a corollary of Theorem 6.11 and the following result of Fejer.
Theorem 7.3 (Fejer [42]). The nonbranching degrees are dense in R.

Proof of Theorem 7.2. Let A be strongly atomic and of contiguous degree a.
Suppose that [b,c¢] is an interval of [0,a]. We may suppose by Theorem 7.3
that b is not branching. Let d be such that b < d < ¢. If all of b,c,d are in
S(4), then there is a degree e € S(4) which is a complement in the Boolean
algebra S(4) for d on the interval [b,c]. But then dne = b which contradicts
that b is nonbranching. [ |

Theorem 7.4 (Downey and Welch [41]). There is a nonrecursive r.e. set A
such that S(A) is nowhere dense in R.

Proof. Let 4 be strongly atomic and of contiguous degree. We may assume
that 4 is low. Let [b,¢] be an interval of [0,a]. By Theorem 7.1, letd € A/ (4)
be such that d € [b,c]. Then d can be split over b since b is low; let d;, d, be
such a splitting. Then using similar reasoning as in Theorem 7.1, either [d;,d]
or [dj,d] is an interval entirely contained in N (4). [

By Theorem 6.42 and the Jump Interpolation Theorem, there are r.e. sets
B <1 A such that for any splitting 4;, A of A, if B <7 A4; then 4, =r 4. In
fact we get a somewhat stronger result as follows.

Theorem 7.5. Suppose A is strongly atomic. Then there is a degree b such that
0 <b < deg(A) and such that for any splitting A;, Ay of A, if b < deg(A4;)
then A; =7 A.
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Proof. Downey and Stob have shown [36] that
(va£ 0)(Fb<a)(Ve<a)[cNnb=0=¢c=0]. (7.1)

Now let 4 be strongly atomic; a = deg(4). Let b be given by the existential
quantifier in (7.1). Let 4, 4, be any splitting of 4 with b < deg(4;). We
must have b deg(4,) = 0 since 4; and 4, form a minimal pair. Thus, by
(7.1), we have that deg(4,) =0. [J

We turn now to consider how splitting combines with permitting.

Definition 7.6. A set A has the antisplitting property if there is a degree b <
deg(A4) such that for any splitting 4;, 4, of A such that deg(4;) < b, A; is
recursive. That is, there is an interval (0,b] in [0,a] which does not intersect
S(A4).

Theorem 7.7 (Downey and Welch [41]). Suppose that A is strongly atomic.
Then

(1) if A has high degree, then A has the antisplitting property,

(2) if A is of contiguous degree then A has the antisplitting property.

Proof. If a is high or a is contiguous, then there is b (0 < b < a) such that
cUb = a implies that ¢ = a. For high degrees this is a result of Harrington
([45], see Miller [78]) and for contiguous degrees a result of Ladner and
Sasso [67]. If A is strongly atomic of degree a, then for this degree b, it must
be the case that (0,b] is an interval missing S{4). O

Not all sets with the antisplitting property are atomic.

Theorem 7.8 (Downey and Stob [371). There is a complete set A such that A

has the antisplitting property.

Proof. Let / be a 1-1 enumeration of K. Let ag; < a;5 < ay; < -+ enumerate
the complement of 4; in increasing order. We guarantee that 4 is complete by
enumerating ay),s into 4 at stage s + 1. If 4 is also constructed to be coinfinite,
this guarantees that 4 is complete. We also enumerate the antisplitting witness,
B, for A. The requirements are

Pe: F;é I/I/E:
Ne: (U UV,) = AND,(B) = U, = U, is recursive.

Here, as usual, (U, V. ) lists pairs of disjoint r.e. sets. In light of requirements
N., we may also assume that U, and V; are enumerated so that U, Vo5 C A4s.
The construction of B is arranged on a pinball machine as in Fig. 3.
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Fig. 3. The standard pinball machine,

Balls leaving hole H, are followers of P,. Gate G, corresponds to the negative
requirements N,. The negative requirements together will at any stage apply a
restraint 7 (j, s} to requirement P; as follows.

Define a length of agreement function, /, by

I{e,s) = max{x: (Uss U Vps) [x] = As[x] A Pes(Bs) [x] = Ueslx]}).

Define m{e,s) to be the maximum length of agreement for /(e,s). Now
define

, max{u(Des (Bs ;) |y < a5} if Le,s) = ajg,
rie, j,s) = ) )
rie,j,s—1) otherwise
and
r(j,s) = max{r(e, j,s) | e < j}.
Construction
Stage s + 1

Step 1. If x is a ball on the surface of the machine associated with requirement
P., then cancel x if either f(s) < e or x < r(j,s) for some j < e.

Step 2. Find the highest priority requirement P, such that W, ;N B; = @ and
which requires attention according to one of the cases below, choose the first
case which pertains to that requirement, and perform the indicated action.
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Case 1. There is a follower of x of P, at gate G; and [(j,s) > m(j,s).
Cancel any lower priority followers than x (either a follower of P; for i > e or
of P, and appointed later than x.)

Allow x to drop from gate G; to the next unoccupied gate. If no such gate
exists, enumerate x € B and ay ;) in A. If such a gate exists, let By, = B,
and enumerate ¢ 7(s),s into 4 and also enumerate Qoqls: Tet2,sr---, 055 D10 A.
(Note that as x is not cancelled in step 1, we have that f(s)>e)

Case 2. There is a follower x of P, above hole H, and x € W, s. Perform
the same action as in Case 1.

Case 3. There is no follower of P, above hole H,. Cancel any follower of
requirement P;, i > ¢. Appoint s as a follower of P, and place it above hole
H,. Let By, = B; and enumerate a;;),; into 4.

Lemma 7.9. For every e, limsa,; = a, exists (implying that A is complete),
lims r(e,s) exists, and P, receives attention only finitely often.

Proof. The proof is by simultaneous induction on e. Suppose that the lemma
is true for 7 < e and let 5o be a stage such that for all s > sp and i < e,
r(i,s) = r(i,s), ais = @5, Py doesn’t require attention at s, and f(s) > e.
Now a,; can be enumerated in 4 only for coding (if f{s) = e) or by
requirement P; for some / < e receiving attention. Therefore we have that
for all stages s > Sp, des = Gy, Also after s no follower can injure the
computations mentioned in establishing r(j,s) for j < e, so we can see that
lim, r(e,s) exists. Once this limit is attained, followers for P, can no longer
be cancelled. Thus after at most ¢ + 1 followers for P, are appointed, one
follower must succeed in being enumerated in B so that P, no longer receives
attention. [J

Lemma 7.10. For every e, requirement N, is met.

Proof. Suppose that U, UV, = 4 and @, (B) = U,. We must argue that U, is
recursive. Suppose that x is given. To determine if x € U,, let 5o be a stage such
that /(e,sp) > x; for all gates G; if j < e and G ;7 has a resident at stage s, then
that resident is a permanent one; no requirement P; receives attention after S0
for i < e; and f(s) > e for all 5 > 55. We claim that x € U, if and only if
x € Ue5. By the choice of sy, the only possible counterexample x is an element
of form a5, for some j > e. Suppose that x = a;, is such a counterexample.
It must be the case that there is a follower y < u(De s, (Bs,;x)) that enters B
at some stage later than sp (since /(e, Sp) = x and limg /(e,sp) = o0). Let y be
the first such follower. Then there is a stage s > 5o such at stage 5, y stopped
at gate G, or passed gate G, because it was occupied.

Suppose first that gate G, was occupied at stage s. Then some element z
occupies gate G. at stage s. At the stage that z arrived at gate G, say t,
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Sp < ¢ < s, it must be the case that follower y is not yet in existence since
otherwise z would cancel it. Thus y > ¢ and so could not possibly injure the
computation established at sq.

On the other hand suppose that y stopped at gate G, at stage s and later left
gate G, at stage ¢ > 5. Then I(e,?) > /(e,s;). Furthermore, the computation
@, 1, (B:; x) and the computation D, 5, (Bs,: X ) are the same since ¥ has not yet
entered B. But then by the restraints and Step 1, if must be the case that y
exceeds the use of this computation contrary to assumption. [J

Theorem 7.8 can be extended to show that every high r.e. degree contains
an r.e. set with the antisplitting property. To do this, we combine the pinball
machine technique above with the standard method of high permitting in the
same way that Cooper showed that every high degree bounds a minimal pair,

Not all r.e. degrees can be antisplitting witnesses. This follows easily from
‘Theorem 5.28 and was proven earlier by Downey using a much easier argument.
From this argument, we get a stronger antisplitting result.

Definition 7.11 (Downey). An r.e. degree a is persistent if for every r.e. set B
such that a <t deg(B), there is a splitting B;, B, of B such that 0 < deg(B;) <
a. :

Theorem 7.12 (Downey [19]). There is a low persistent r.e. degree.

Proof. Let K be a creative set. Let K, K, be a Sacks splitting of K with K
low. Let a = deg(K;). Then a is persistent. For let C be any r.e. set such
that K; <1 C. Then C < K so that C has a splitting C;, C, such that
C) <wu K, by Lachlan’s Lemma. Since K; <t C, €, must be nonrecursive,
else K1 <t C =1 C; <7 K, which contradicts that K;, K> is a Sacks Splitting
of K. O

We leave the following interesting question open.
Open Question 7.13. Are all cappable degrees antisplitting witnesses?

The following theorem shows that there is a degree without a set with the
antisplitting property.

Theorem 7.14. There is an r.e. degree a # 0 such that for every set A of degree
a, A does not have the antisplitting property.

Proof. We construct a set 4 so that a = deg(4) has the desired property. The
requirements to make 4 nonrecursive are, of course,
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Ug w
I D,
A zZ u(esx,s)
/
Ve
x =l(e,s)

Fig. 4. Length of agreement.

P, A+ W,.

To insure that all sets of degree a do not have the antisplitting property we
will meet the requirements R, below. here (D, I, 40, Up, V2 ) is an enumeration
of all 5-tuples of three reductions and two r.e. sets. The sets B, and C, are sets
that we enumerate.

Re: (D.(A) = U ATL(U,) = ANd(4) = Ve) = (V. is recursive
V (B, C, is a splitting of U, A B, <t ¥, A B, is not recursive)).

To meet the last clause of R, if necessary we have the following requirements

Re,tf -—B-e # W.

We describe the construction for one requirement R.. It is a tree of strategies
construction. To meet R, we will have two types of nodes. Some nodes will be
devoted to meeting the requirements R.,;. Such a node seeks to enumerate an
element x of U, into B, if x € W; and ¥, permits (we must have B, <t V).
We will also have nodes devoted to the requirement R, itself. Such a node is
devoted to insuring that B,, C, is a splitting of U, if the hypotheses of R, are
satisfied.

Let ¢,(x,5) (resp. y.(x,s), d.(x,s)) denote the use of the computation
D5 (As; x) (resp. I (Uewss X), des(As;x)). To measure a length of agreement
in the hypothesis of R, we use

l(e,s) = max{x | (Vy < x)[des(As;¥) = Viy A (V2 < 80 (,5))
[Fe,s(Ue,s;z) = As(z) A (VY < J’e(Z,S))[@e,s(As;w) = I/Vé,s]]]- (7.2)

Define aiso u(e,x,s) as the use of 4; in establishing /(e,s). Fig. 4 might be
helpful in understanding the length of agreement / (e,s) = x.

For the sake of R,, we will construct a sequence of followers, a “stream”,
Xp, X1, ..., as folows. We start with x,. We then wait for a stage s¢ such that
X < I(e,s0) and appoint follower x; > u({e, X, 80). At sp we cancel all (lower
priority) numbers in the interval (xp,x1). Each succeeding x;., is appointed
at s; such that /(e,s;) and is appointed so that Xiy1 > u(e,x;,s;). The only
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numbers that R, will use are tied to these Xx;. In particular, the requirements

R.,; choose followers to enter B, numbers associated with the x; as followers.

At the stage s; that Xx;,, is appointed, y,(de{x:,5:),58;) is defined and we

declare that numbers y < 7. (d. (x;,5:),8;) cannot enter B, at § + 1 > s; unless

Ves+1[x:1# Ves{x:i]. (To see what this means, refer to Fig. 4. Read x; for x.

Then B, is not allowed to change through w unless ¥, changes through x. For

later ease of notation, define w; = y. (8. (x;,s;)}, s;).) This implies that B <t V..

Note also that, because of the cancellation involved in the appointment of the

X;, we have that ¥;[x;] cannot change unless A[x;] changes. Note that a node

for R,; may have infinitely many followers assigned to it as perhaps V; is

recursive. Then we need have no other nodes associated with R, later on the
tree, but of course other nodes must live with this outcome,

We discuss the strategies for meeting the requirements subject to the conflicts
among them. The simplest configuration of nodes is 7 C ¢ C y with p working
on P, o working on R, ;, and 7 assigned to R, such that = = 7(¢). For o at
any stage, we will have one largest follower x; which is waiting for realization,
that is waiting for W;;[w] = B.s[w] (here again w is as in Fig. 4 where x;
is x). When this happens, R, ; requests that the next member x; of the stream
that 7 is building be defined. (This is done using the method of “links”; see
Soare [97].) Then ¢ cancels all members of this stream between x; and x;.
That is o refines the stream of R,. In this way we also have that for each x;
in the stream for R,, we also have W; [w;] = B.s[w;]. Now what we would
like to do is to put some x; into A causing U, to change on w;. We would
then enumerate any change between w;_; and w; into B, causing the desired
disagreement, W;[w;] # B.[w;]. The difficulty with this strategy is that we
also need a change in V.. The idea is to allow P, (at y) to enumerate X;
into A4 thereby hoping to cause a ¥, change. Roughly speaking, ¥ chooses its
followers of P, from the stream generated at ¢. When we see x; devoted to
P, at o occur in Wy we would like to put x; into 4 and at the next 7 stage
argue that if we see a ¥, change we could win R, ;. This won’t quite work. For
though we get a V, change, it might be a change in ¥, on some large number
(say x,, n >> j) but the corresponding U, change is only on w;. Then we
can’t use this V, change to comprehend the relevant U, change. For this, we
need ¥, to change on x;. The key idea is to force U, to change big and then
later enumerate x; into A so that no matter where the ¥, change occurs, we.
can use such a change. The basic module then is as follows,

(1) We see x; following P, at y such that x; occurs in W ;. We wish to put
X into A. This happens at a y stage so that the only live numbers at this
stage have guess D 0.

(2) At stage s, the stream at ¢ looks like X0sevos XkseorsXpy Xpy1 With X,
unrealized. Put x, into 4. Note that Ws[w,] = Be;[w,].

(3) .Wait until the least 7 stage ¢ > 5. Note that U, [w,] # U [w,]. This
is the big change that we desire. Now we do not yet decide whether




Splitting theorems in recursion theory 77

to enumerate Up;[wy] — Us[w,] into B, or C, but we immediately
enumerate the interval [x;,¢] into 4. (This meets P IS,

(4) Wait until the least 7 stage u > ¢. Then either
(a) (Success) Veyulxp] # Ves[xp]. In this case put Uet[wp] — Ues[wy]

into B, (meeting R,; at o) and Ueulwp] — Uey[wy] into Co.
(b) (Failure) otherwise. Enumerate all of Uelwpl = Ups{w,] into C,.

(5) Don’t allow xy, X, ..., Xx_; to enter 4 until the stream reaches its former
length. (The point of this is not to allow ¥, [w,] to change until we are
in a position to take advantage of it.)

The above argument works for many P, and one R,. Now we must argue
that the various R, cohere. Suppose now that we have two nodes Ty, T2 devoted
to R,, and R,, respectively with 7; C 7. The first thing to notice is that only
part of the 7; stream is in the 7, stream. This is because 7, must “process”
the 7; numbers. Now the problem with the basic module is that we get to step
3 for 7; but not for 7,. But now 7, demands that we fulfill its commitment to
build B,, U C,, = U,,. The basic module delays this decision one expansionary
stage. Nevertheless, 7, is expecting us to wait for a 7, stage so that it can see
a large V,, change. There are fundamentally two cases to deal with.

Case . 1y CogC13Cn g Cy where t(c) = 71 and 7(y) = 7,

This is handled as follows. The # stream will appear as y,,..., Yus X150005Xg
with each y; processed by both # and o. and each Xx;j processed by ¢ but not
7. We see y, € Wi,),. We wait to put y, into 4. We do the following.

(1} We drop links from y to 7, and 7;. We enumerate x, into A.

(2) We wait until the next t; stage. We have now seen a Ue, change at w,.

(3) At the next stage we immediately enumerate y, into 4. (Using the basic
module inductively, in essence.)

(4) At the next 7; stage, we attend to the pending 7, commitments. (If there
is no helpful ¥, change, we put all of the changes in Ce,, €tc.)

(5) Now we really should wait for a 7, stage. We cannot know one happens,
but if it does, it will be a 6™ g stage. Thus we won’t access 7, until ¢ has
produced a new realized x; beyond all the things that we’ve seen that can
cause yet another U, change if we need it.

(6) Should another 7, stage occur, we delay decisions on Ce, but immediately
enumerate x; into 4. But now we have seen a U, change.

(7) At the next t; stage, we can immediately enumerate y, into A as we have
pending U, and U,, changes and so can use any Ve, or Ve, changes.

Case 2. 7, C 7, C# g C o g C y with the nodes as in Case 1.

Now the situation is different and easier. The stream at y looks like
Xisenes X, V15---,Vm With the followers x; both ¢”g and #”g realized but
the followers y; only #~g realized. Now we begin by putting y,, into 4. We
don’t really now need to act unless there is another v, stage (not just a 7,
stage). At the next 7, stage we can safely put x, into 4 and then finish at the
next 7, stage. [
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There are also antisplitting theorems for the wtt-degrees. An easy, but strong,
result along these lines is the following.

Theorem 7.15 (Downey and Stob [37]). There are sets A and B such that
A =7 B but such that the wit-degrees of A and B form a minimal pair in W,

Proof. It is easy to embed the 1-4-1 lattice into R with infimum 0. Let
representatives of the four degrees be A;, Az, A3, As. Then 4, @ A; and
A; @ A, are Turing equivalent sets but form a minimal pair in the wit-degrees.
The former fact is obvious; for the latter suppose that B < 41 © 4> and
B <y A3 ® 44. Then there is a splitting By, By of B such that B; < 4; for
i = 1,2, Now B <u 43 ® A4 so that B, has a splitting B3 By4 such that
Bi; Swu Aj for i = 3,4. But then B35 <t 41,43 and so is recursive. Similarly
B, 4 is recursive. Hence B is recursive. Finally, the same argument shows B,
is recursive. This implies that B is recursive. [

In [37], Downey and Stob proved Theorem 7.15 by a direct construction.
Downey noticed the simple proof later. The result hints that the semilattice
structure of degrees below a in R has implications for the structure of wtt-
degrees in a. It might be an interesting program to carry this observation
further. For instance,

Open Question-7.16. Suppose that 4 and B are nonrecursive sets such that
A =7 B and A and B form a minimal pair in the wtt-degrees. Then is deg(A4)
the top of a 1-4-1 lattice with least element 0 in R?

A related question is whether contiguity can be defined by a failure of
antisplitting. Namely

Open Question 7.17. Is a contiguous if and only if

(Va;,a,b)[(a;VUa; =aAb < a) = (Ib, b)) [b; < a; AbjUb; = b]i?
Related questions suggested by Theorem 7.15 include the following two.

Open Question 7.18. Is there a degree a # 0 such that for all 4 of degree a
there is a set B such that A =r B and 4 and B form a minimal pair in the
wti-degrees?

- Open Question 7.19. Are there r.e. sets B <t 4 such that for all C, if B <t
C <t A, then C and 4 form a minimal pair in the wtt-degrees?
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We have a partial answer to Question 7.18.

Theorem 7.20 (Downey and Stob [37]). There is an re. degree a £ 0 such
that for all r.e.sets A € a, there is B <1 A such that B and A Jorm a minimal
pair in the wit-degrees.

Proof. The proof is a pinball machine argument similar to those used to prove
that certain nondistributive lattices can be embedded in R. This technique was
invented by Lerman [68] and appears with essentially all that is known about
which lattices can be so embedded in [9]. The pinball machine of Fig. 3 is
the model. Let (D,, U;) enumerate pairs of Turing reductions and sets. We
enumerate sets 4 and B,, ¢ € o such that if &,(4) = U,, then B, <1 4 and
satisfies the requirements

Pe,z': Eg ?é H/;}
Ne,i: (I:(U) = 4;(B.) = g A g is total ) = g is recursive.

Here (I¢, 4.) lists pairs of wit-reductions. We use /((e, i },5) to measure the
length of agreement of the reductions in requirement Ne,i. We also use L(e,s)
to measure the length of agreement of @,(4) = U,. We will assume that U,
is restrained by A4 in the sense that if D, s(As;x) = Ugs(x) then we do not
allow x to be enumerated into U, unless some element is enumerated into
A at s + 1 below the use of the computation D, s (As; x). Requirement P, ; is
associated with hole H,; and requirement N,; is associated with gate Gie,p-
To insure that B, <1 A4 in case that @,(4) = U,, we not only have follower
balls associated with the positive requirements that are attempting to reach
the bottom of the machine to be enumerated into B., we also have trace balls
that are to be enumerated into 4. We will identify a ball with the number it
is attempting to enumerate. A follower ball may move on the surface of the
machine only in company of a corresponding trace ball. However, a trace ball
may be separated from its associated follower ball and move down the surface
of the machine alone. Follower balls can be either active, frozen, or waiting.
Trace balls are always active. If y is a trace ball, we write f () for the follower
ball of which y is a trace, Follower ball x has higher priority than follower ball
z if the positive requirement associated with x has higher priority than that
associated with z or if the positive requirements have the same priority but
X < z. Trace balls have the same priority as their associated follower ball,

Construction
Stage s + 1
Requirement P,; requires attention at stage s + 1 if one of the following

cases obtains.

B R e A e R S o e s
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Case 1. There is a gate G, an active ball z associated with requirement P, ;
at gate G, and /{(n,s) > m(n,s).

Case 2. There is an active follower z of requirement P,,; such that z is above
hole Hy,; such that z € Wi.

Case 3. There is a follower z of requirement P.; which is waiting and
L(e,s) > M(e,s).

Case 4. There is no follower above hole Hie iy, WisN Bes = @, and L(e,s) >
Me,s).

Let P.; be the requirement of highest priority which requires attention

according to one of the Cases above. Cancel (remove from the machine) all
balls associated with requirements of lower priority. If Case 1, 2, or 3 obtains,
let z be the highest priority such ball. Cancel all balls associated with P, ; of
priority lower than that of z. Perform the appropriate action below.
Case 1 action. Let p < n be maximal such that there is no active ball at gate
G,. '
Let z (and if z is a follower, the trace ball currently associated with z) fall
down to gate G,. If z is a follower, z becomes frozen. (In effect, this separates
z from its trace ball y at this stage since y may later move but frozen balls
may not.) If p does not exist, enumerate z (and the trace, if it exists) in the
appropriate set and, if z is a trace, change f(z) from frozen to waiting.

Case 2 action. Let p < (e, i) be maximal such that there is no active ball at
gate G,. Now perform the same action as in the second paragraph of Case 1
action.

Case 3 action. Appoint s + 1 as a trace ball for z and change z from waiting
to active.

Case 4 action. Appoint s + 1 as a follower ball, declare it active, and appoint
s + 1 as a trace ball for P,; and place then above hole He;.

We omit the proofs of the first two lemmas as they are easy.

Leml'l‘la 7-21- I]r@e(A) = Ug, then Be "'{T A.

Lemma 7.22. For every e, i, P receives attention only finitely often. Further-
more, if D,(A) = U,, then P, is satisfied.

Lemma 7.23. For every e and i, if @ (U;) = A, then Ne; is satisfied.

Proof. Let ¢ and i be given; let n = (e, i). Suppose that L(U,) =4i(Be) = &
and g is total. We show how to compute g. Fix p; we describe how to compute
g(p). For convenience, let y, § be recursive functions bounding the use of I;
and 4;. (Recall that these are wtt-reductions. ) Also let ¢ (x,s) denote the use
of Pes(As; X ).
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Let sy be a stage such that

I{n,s)>p, (7.3)
for all (f,j) < n Py ; does not receive attention after sq, (7.4)
Lie,s) > ¢(5(p),s), (7.5)
for all m < n, any active ball at G, is permanently at G,,. (7.6)

That such a stage exists can be seen as follows. Clauses (7.3), (7.4) and
(7.5} occur at cofinitely many stages. To see that clause (7.6) occurs infinitely
often, let s be any stage. Let x be the ball of highest priority which receives
attention after stage s and let ¢ be the last stage at which it receives attention.
Then it is easy to see that ¢ satisfies (7.6).

Now let ¢ = I} (Ues;p) = digy(Bes,;p) We claim that g(p) = g. We
prove this by showing that for all s > s,

dis (Be,s§p) =gV (E’,s(Ue,s;P) =4
Acpe,s(As){y(p)] = Ue,S [y(p)]). (7.7)

To see this, suppose otherwise and let s; + 1 be the least counterexample.
Then it must be the case that at stage s; + 1, either a follower x < §(p) is
enumerated into B, or a trace y < ¢ (¥(p), s) is enumerated into A.

Suppose first that a follower x < §(p) is enumerated into B, at stage s, + 1.
Since x < §(p) < sg, it must be the case that x was on the surface of the
machine at stage 5o (necessarily above gate Gy). Since x is not cancelled by
stage 51 + 1 no higher priority ball receives attention between stages s, and
sy + 1. Let s, be the stage that x arrives at gate G, and stops there. (x does
not pass G, without stopping since no follower of higher priority can already
be there). At 52, x becomes frozen. Let 53 + 1 be the stage at which the trace of
x, say y leaves gate G,. Then we have that (7.7) holds for s = s3. Let 54 + 1
be the stage at which y enters 4 so that x changes from frozen to waiting at
stage 54 4+ 1. We claim also that (7.7) also holds for s = s4 since no ball of
higher priority or the same priority as y can move between stages 53 and s, or
else y is cancelled. Balls of lower priority than y are numbered with numbers
greater than s3 and so can not interfere with the computations mentioned by
(7.7) at s3. Let 55 + 1 be the stage such that x changes from waiting to active
at 55 + 1. Then z = 55 + 1 is appointed as a trace for x. Note that ¢.(y(p),ss)
converges by the action at stage 55 + 1 so that 55 + 1 > @.(y{(p),ss5). Now let
s¢ + 1 be the stage such that x and z together leave gate G,. Again, no higher
priority ball than x (or z) moves between stages ss and s so that (7.7) holds
for stage 55 and @.(y(p),56) = ¢.(?(p),ss). Now between stages 5¢ + 1 and
51 + 1 (the stage.at which x enters B.) the only balls which can injure the
computations on (7.7) for s = s¢ are balls of higher priority than x or of the
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same priority. But no ball of higher priority than x may move during such
stages. Any ball of the same priority is either the trace z = §5 + 1 of x or a ball
appointed subsequently as a trace for x. Since all such balls w satisfy w > s5
it must be the case that the computations of (7.7) for s = s exist at stage sy.
But then x entering B, can only destroy the B, side of (7.7) for s = 55 so that
the A side remains true at s = s, 4+ 1 which is a contradiction.

The argument in the case that it is a trace y < ¢ (y(p),s;) that enters 4 at
s1 is similar and we omit it. We should mention that there are two subcases
here corresponding to whether y actually passes gate G, or is appointed as a
follower at some gate below gate G,. [

Corollary 7.24. There is an r.e. degree a such that for all r.e. sets A€ a, A has
the antisplitting property.

The theorems above are just a small sampling of what is known about the
structure of the wit-degrees within a single Turing degree. Other results of this
nature can be found in Downey and Jockusch [27], Ambos-Spies, Cooper and
Jockusch [6], and Downey and Stob [37]. A similar direction that might be
pursued is to determine what effect of the structure of tt-degrees (or m-degrees)
within a single a has on the semilattice properties of a.

Another direction from which to study the antisplitting property is through
the lattice of r.e. sets. We have already seen that hypersimplicity implies the
failure of the USP. Perhaps sufficient thinness of complement might imply the
antisplitting property. It is quite easy to make a strongly atomic maximal set.
Therefore some maximal sets do have the antisplitting property. However it is
also possible to construct a maximal set without the antisplitting property.

Theorem 7.25. There is a maximal set without the antisplitting property.

Proof. We build such a set M in stages. As in the standard maximal set
construction, we let mp; < my; < --- enumerate the complement of M; in
increasing order and we have the maximal set requirements

Ne: limg m, 5 exists,
P.: M has almost constant e-state.

To insure that M has the antisplitting property, we enumerate pairs (U, ;)
of disjoint r.e. sets such that the following requirements are satisfied.

The final clause of R, is met by meeting

R, ;: Ue # Wi
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The idea is simple. To meet R, ;, we wait until a stage s such that we see
z € A; with U, [z] = Wis[z] and such that W, permits z at stage 5. We
then enumerate z in 4 (and U, at stage s). This meets R.; forever and clearly
coheres with the other requirements in the usual way. [

8. Mitotic r.e. sets

Almost the opposite of an atomic set is a mitotic set.

Definition 8.1. An r.e. set 4 is mitotic if there is a splitting 4;, 4, of 4 such
that Al =T A2 =T A.

Lachlan [60] was the first to show that not all r.e. sets are mitotic but the
first systematic investigation of mitotic sets was by Ladner [66,65]. The first
basic result results mitoticity to autoreducibility.

Definition 8.2. An r.e. set A is autoreducible if there is a functional @ such
that for every x, @ (4U {x};x) = 4(x).

Theorem 8.3. 4n r.e. set A is mitotic if and only if A is autoreducible.

Proof. (=) Suppose that 4, 4, is a splitting of 4 such that 4y =1 4, =1 4.
Suppose that I'(4;) = 4(A4;) = A. To decide if x € 4 given an oracle for
AU {x} we do the following. Using an oracle for AU {x} and the fact that 4,
A is a splitting of 4, we can enumerate I'(4; — {x};x) and 4(4; - {x};x).
Enumerate until a stage such that either x € A; or both I3(4; — {x};x) and
d5(Az — {x};x) converge. In the former case of course we answer that x € A.
In the latter case, if both computations give the same value, then we output
this value since one of the computations must give 4 (x) (either 4, — {x} =4,
or Ay —{x} = A43). If the computations give different values, then x € 4 since
both values would be correct if x ¢ A.

(«) Suppose that @ (4U {x};x) = A(x) for all x. Let / be the associated
length of agreement function and ¢ the associated use function. We assume
that 4 and @ are enumerated so that /(s + 1) > I(s) for all s. To enumerate
Ay, Ay we proceed as follows. For each s, let x; = (ux)[x € 4gpq — 4s).
Enumerate x; into A; at stage s + 1 and the remainder of Asy1 — Ag into
Ay. Tt is obvious that 4,, 4, is a splitting of 4. Furthermore 4, <1 4; by
simple permitting. To see that 4; <t 4, note the following. If x < I(s), and
X € Asy 1 — 45 then some y < ¢(x,s), y # x must enter 4 at stage s + 1. Thus
Ays(x) = 4, (x) if and only if 4y, [@(x,5)] = A2[p(x,8)]. O
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Downey noted that the above proof gives the following,
Corollary 8.4. An r.e. set A is wit-mitotic if and only if A is wit-qutoreducible.
Of course all strongly atomic sets are far from being autoreducible so we
have already given many constructions of non-mitotic sets. But not all degrees

contain non-mitotic sets.

Definition 8.5 (Ladner). An r.e. degree a is completely mitotic if every r.e. set
of degree a is mitotic.

Ladner showed

Theorem 8.6 (Ladner [65]). There is a completely mitotic r.e. degree. (This
set is low, but not low by an observation of Ambos-Spies and Fejer [7].)

Using similar ideas, Downey and Slaman showed

Theorem 8.7 (Downey and Slaman [37]). There is a promptly simple com-
Dletely mitotic degree.

We omit the proofs of Theorems 8.6 and 8.7. The fact that the completely
mitotic degree of Downey and Slaman is promptly simple is related to the
following result.

Theorem 8.8 (Downey and Slaman [37]). No low promptly simple degree is
completely mitotic.

The main idea in the proof of Theorem 8.8 is to combine the Robinson
trick, prompt permitting, and the technique of Ladner from the next theorem.

Theorem 8.9 (Ladner [66]). There is a complete nonmitotic set.

Proof. This follows from Theorem 6.40 but we describe Ladner’s original
strategy. We construct a set A to be complgte and to meet the following
requirements for nonautoreducibility.

R.: @, (AU{x};x) # A(x) for some x.

We let /(e,-) be the length of agreement function for R,. Let f be a 1-1
recursive enumeration of K. To make A complete, we have markers I;. The
positions of marker I, at stage s, I'(e,s), will be on an element of 4,. Of
course I (e,s) is increasing in ¢ and nondecreasing in s.
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Construction

Stage s + 1

Requirement R, requires attention at stage s + 1 if I{e,s) > I'(e,s) and
e < f(s). Let e be least such that R, requires attention at stage s. Enumerate
I'(e,s) in A, and define

I'is+1i,s) ize,

'i,s+1) = .
( ) {F (i,8) otherwise.

If no such f requires attention, enumerate I' (f {s),s) in 4 and define

I'(s+1i,5) iz f(s),
I'(i,s) otherwise.

F(i,s+1)={

It is easy to see that each requirement R, receives attention finitely often
and so that lim,; I"(e,s) exists and that 4 is complete.

In fact there are large initial segments of R containing no completely mitotic
degrees as evidenced by the following results.

Theorem 8.10 (Downey and Slaman [35]). There is a (lowy-low) degree a
such that for every degree b such that 0 < b < a, b contains a nonmitotic
r.e. set.

Proof. Downey and Jockusch constructed a strongly atomic 1-topped degree a.
All such sets are low,-low and all degrees b such that b < a are strongly atomic
(see Section 6). [

Theorem 8.11 (Downey and Slaman [35]). Ifa is nonrecursive, there is an r.e.
degree b < a such that for every degree ¢ < b, if ¢ is completely mitotic, then
c=0.

In view of the above results, it seemed reasonable to conjecture that no low
degree is completely mitotic. Indeed, this was conjectured by Cooper, Ladner,
and others. However Downey and Slaman also showed

Theorem 8.12 (Downey and Slaman [35]). There is a low nonzero completely
mitotic r.e. degree.

The proof of Theorem 8.12 is very difficult and bears similarities to Lachlan’s
proof that the 1-3-1 lattice is embeddable in R. However the technique is
sufficiently flexible to show
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Theorem 8.13 (Downey and Slaman [35]). There is a high completely mitotic
r.e. degree.

The constructions for the preceding two theorems yield cappable degrees.
Now jump inversion fails for cappable degrees (Shore [92] and Cooper [16]).
This the following question is interesting.

Open Question 8.14. Is jump inversion always possible for completely mitotic
degrees?

If Question 8.14 has a positive answer, then it is possible that a new
construction is needed. Or perhaps, a nonuniform proof involving both the
techniques of Theorems 8.11 and 8.8. We do know that there is no interval in
R consisting entirely of completely mitotic degrees.

Theorem 8.15 (Ingrassia [53]). The degrees containing nonmitotic r.e. sets are
dense in R.

A proof to Theorem 8.15 may also be found in Downey and Slaman [35].
However Downey and Slaman used quite a different technique. Ingrassia
derived Theorem 8.15 as a corollary to his work on p-generic sets. Adding the
Robinson trick to the Downey and Slaman proof of Theorem 8.15 gives

Theorem 8.16 (Downey and Slaman [35]). The low completely mitotic degrees
are nowhere dense in R.

Probably, the techniques of Shore and Slaman should be able to extend Theo-
rem 8.16 to the low, degrees.
The open question remaining from these theorems is the following.

Open Question 8.17. Are the completely mitotic degrees nowhere dense in R?
It is natural to extend the notion of mitotic r.e. sets to consider jump classes.’

Definition 8.18. An r.e. set A is jump mitotic if there is a splitting 4;, A of 4
such that 4} = A' for i = 1,2.

Theorem 6.40 implies that there is a complete set which is not jump mitotic.
It would be interesting to know which degrees are completely jump mitotic.
(Of course all low degrees are and by the above mentioned result, ¢ is not.)
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9. Miscellaneous splitting results

One variation on the results of the last section is to extend the notions there
to the wtt-degrees. In particular, we know of no work concerning completely
mitotic wit-degrees. Note that since there are contiguous strongly atomic sets,
not all r.e. Turing degrees contain completely mitotic wit-degrees.

Open Question 9.1. Are the Turing degrees which contain completely mitotic
wtt-degrees dense in R?

We think that the answer is no, Ladner’s construction [65] gives a Turing
degree such that every wtt-degree in it is completely mitotic. We do however
know a large class of degrees that are not completely wtt-mitotic. This follows
from the work of Downey on array nonrecursive sets.

Definition 9.2 (Downey, Jockusch and Stob [28]). A strong array {E}eew is
a very strong array (v.s.a.) if

U F =n, (9.1)
nEW

FoNFn=0 ifn#m, and (9.2)
0 <|Fuf < |Fpyy] forall n e w. (9.3)

Definition 9.3 (Downey, Jockusch and Stob [28]). An re. set 4 is {F}ecw-
nonrecursive (F-an.r.) if

(Ve)(3n)[W, N F, = AN Fy,]. (9.4)
In [28], it is shown that if 4 is {Fe}ecw-nonrecursive and {Gelecw s a very

strong array, then there is a set B =wn A such that B is {G.}.c,-nonrecursive.
With this in mind, we have the following definition.

Definition 9.4. An r.e. degree a is array nonrecursive if for every (some) strong
array {Fe}ecy, there is set 4 of degree a such that 4 is {F, }ecw-nonrecursive.

The array nonrecursive (anr) degrees form a natural subclass of R cor-
responding to the degrees below which certain sorts of multiple permitting
arguments can be performed. In [28] it is shown this class is closed upwards,
contains a low degree, and includes all non-low, degrees. However below each
nonzero r.e. degree a, there is a nonzero degree b which is not array nonrecur-
sive. The following results give some relationships between these degrees and
notions of mitoticity.




88 R. Downey, M. Stob

Theorem 9.5 (Downey [26]). (1) No contiguous r.e. degree is anr.
(2} If a is anr, then a contains an r.e. set A such that the wit-degree of A is
completely mitotic.

Proof. We do (1); (2) is similar. Let {F, }¢er be a very strong array such that
for all n,

|Fy| > 211l
m(n) = min{x | x € F,} > max{x | x € F,_{}.

Suppose that C is F-nonrecursive. We will construct 4 =7 C and a set
B <wi C such that we meet the following requirements for all e.

R.: ©.(4) # B.

Here @, is a wtt-reduction (with ¢, denoting the corresponding use func-
tion). We first construct 4 (independently of B). Let f be a recursive function
enumerating C. We will have a set of markers, 4, for e € w, such that the
position of marker A4, at stage s, 4., is nondecreasing in s, increasing in e,
and marks a member of 4.

The construction of 4 is as follows.

Construction

Stage 0

Set Ay = P and let A, = e.

Stage s + 1

Let At = AU {4y} Move the markers A, for ¢ = f(s) to positions
beyond s (preserving their order and the properties mentioned above).

It is evident that 4 so constructed satisfies 4 =7 C. The set 4 so constructed
is sometimes called the (really, a) kick set of C. :

We now construct B to meet the requirements R, and to satisfy B <t C.
We will meet the latter condition by guaranteeing that x may be permitted
to enter B at stage s + 1 only if B[m(x)] changes at stage s + 1. We will
devote w®*! to R,. Let /(e,-) denote the length of agreement function for
D.(A4) = B. We will also enumerate certain auxiliary sets D, for R,. We
describe the sequence of events for one possible witness x to R.. Suppose that
X 2z e,

(1) Wait until C permits x at s + 1 and /{e,?) > (¢ + 1, {x,x)) for some

<.
(2) Wait for ¢ > s such that /(e,?) = {e¢ + 1, {(x,x)). Enumerate into D, at
stage ¢ (if necessary) to make FyNCy# F,ND,,  forally, e <y < x.

(3) Wait for a stage # > ¢ such that C permits m(x) but such that C,[x] =
. Culx]. Enumerate (¢ + 1,{0,x)) into B at stage u + 1. This temporarily
satisfies R,, because since C permitted x at stage s + 1 (Step 1), we
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have that for all y > x, 4,, > 5 > ¢.(4;{e + 1,(x,x))) because we are
dealing with wtt-reductions. Therefore, we have that Ayp1ls] = A,[s]
but By, 1{{e + 1,{0,x))] # B:[{e + 1,(0,x))] causing a disagreement at
(e + 1,(0,x)}. (On the next time through this cycle, we use (e + 1, (1, x))
instead of {e + 1, (0, x)}, and so on.)

(4) If there is a stage w > ¢ such that C permits x then we return to step 2
(whether or not step 3 occurs). There can only be x such injuries so that
for some i < x we get a disagreement on {e + 1, {i, x}). Furthermore, only
x members of F, can be used.

The point of the kicking procedure in the construction of A is that, if there
is a coding of some A;; which ruins the disagreement we have constructed
above, then we move all markers 4;; j > i to positions which can never
later injure the disagreements, Furthermore, the enumeration of i into C does
not interfere with the disagreement D, N Fy, # C, N Fy, for m < k such that
I € Fyy. This means that we cannot “use up” all of a set F, as there cannot be
more than |F,| injuries. [J

There are a number of interesting splitting theorems for anr sets. For example
we have the following.

Theorem 9.6 (Downey, Jockusch and Stob [28]). For every array nonrecursive
set A there is a splitting Ay, A> of A such that each of A, and A, is anr.

Proof. Suppose that 4 is {F,}.cp-nonrecursive. For each e € @ and i € {1,2}
we have the requirement

Rei: (3n)[WeNFy = 40 Fy).

To meet R.; we will enumerate a certain set ¥,; and use the fact that

(3 m)VeinFy = ANF,]. (9.5)

During the course of the construction, we will reserve certain # for R, ;. Each
n may be reserved for at most one requirement R ; at any one stage, but the
reservation may be cancelled at a later stage for the purpose of reserving # for
a requirement of higher priority. (The intention of these reservations is that
there will be some n which is reserved for R, ; and for which W,NF, = ANF,.)
The priority order of the requirements R, ; is in order of increasing (e, i).

Construction

Stage s + 1

Step 1. For each x € 4;,; — 4, let n be the integer such that x € F,. If n is
reserved for the requirement R, ;, then enumerate x in 4;. If # is not reserved
for any requirement, enumerate x in A4;.
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Step 2. For each x and e, if x € W, ;1 — W.;, x € F,, and n is reserved for
a requirement R, ;, then enumerate x in 7, ;.
Step 3. R, ; reguires attention at stage s + 1 if

(Vn)[n is reserved for R, ; = W s NF, # A;sNF,], and (9.6)

(3In)[A4As N F, = ® and » is not reserved
for any Ry ; such that (f,j) < (e, i}]. (9.7)

If such a pair e, i exists, choose the pair such that {e, i) is least and let #n be the
least integer satisfying (9.7) for e,i. Perform the following actions for these
fixed e, i, n. Reserve n for R, ;. Cancel any other reservation of n. Enumerate
all of W, ;.1 N F, into ¥,;. This ends the construction.

Lemma 9.7. If n is reserved for R ;, and that reservation is never cancelled, then
WénFn = Vé’;nFn andAinFn = AnFn.

Proof. The first clause of the conclusion is by steps (2) and (3) of the
construction. To see that 4; N F, = AN F,, notice that at the stage that » is
first reserved for R, ;, 4;sNF, = A;NF, (= @) by (9.7). Step (1) guarantees
that this equality is maintained for all later stages. [

Lemma 9.8. If V, ;N F, # O, then n is reserved for R, ; or some requirement of
higher priority at cofinitely many stages.

Lemma 9.9. Each reguirement R, ; receives attention only finitely often and is
satisfied. s

Proof. Given e, 1, let 55 be such that if (f,j) < (e,i), Ry,; does not receive
attention after so. By (9.5), there are infinitely many » such that ¥;; N F, =
AnNFy. Let n be any such » which is not reserved for Ry ; for any (f, j) < (e, ).
There are two cases.

Case (i): n is reserved for R,; at some stage of the construction. Then by
Lemma 9.7, WeNF, = V,;NF, = ANF, = 4;NF,. Thus R, is satisfied. Let
1 be a stage such that W, NF, = W, NF, and 4;;NF, = A;n F,. Then by
9.6, R, ; never receives attention after stage s;.

Case (ii): n is never reserved for R ;. Then by Lemma 9.8, ¥, ;NF, = @. Thus
ANF, = 0. Thus (9.7) applies to # at cofinitely many stages of the construction. -
Since n is never reserved for R, ;, it must be that R, ; receives attention only
finitely often and that at cofinitely many stages of the construction 9.6 fails.
This implies the existence of m such that W, N F,, = A; N Fy, and hence that
the requirement is satisfied. [
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It is clear that the construction above can be combined with requirements

to make 4, and A4, low. Thus we have the following corollary which was first
proved (directly) by Cameron Smith.

Corollary 9.10. For every array nonrecursive degree a there is an array nonre-
cursive degree b < a such that b is low.

It is not true that if A is a.n.r. and A4 is the disjoint union of sets 4, and
Az, then at least one of 4; or A4, is anr. However this result is true up to
degree. In fact we have the stronger result of the next theorem. We first need
a definition.

Definition 9.11. If {E,}.c. is a strong array and 4 an r.e. set with a given
enumeration, then A4 E-permits n at stage s + 1 if _

(3z € y)(3x € max(E;))[x e Agpq — As].

Theorem 9.12. Suppose that A <y A, ® A, and that A is array nonrecursive.
Then there are r.e. sets By and B, such that B; < A; and one of By or By is
array nonrecursive.

Proof. Let {F,}cc, and {E,}.c,, be very strong arrays such that |En| > 2|F
for every i and »n > i. We first show that we may assume that 4 is E-
nonrecursive and 4 = A, U A;. To see this we first notice that since A is
array nonrecursive, the wtt-degree of 4 contains an array nonrecursive set A.
This follows from Corollary 2.9 of [28]. We next rely on Lachlan’s lemma,
Lemma 5.15. Applying the lemma with B = 4 gives sets 4, and 4, such that
A = AjU A4, and 4; <y A4;. The sets B; which result from the proof of the
theorem satisfy B; <wyu 4; and thus B; <uy A;. We shall also assume that A,
A,, and A; are enumerated so that '

A; = Al’s UAQ)S. (9.8)
We will meet the following requirements for every e, j € w:

(These requirements suffice to make one of B, or B, F-nonrecursive since if
e is such that there is no n with W, N F, = B, N F, then the satisfaction of
R, ; for all j € w implies that B; is F-nonrecursive.) We will reserve the sets
Fi0) Fi41y5 - - - for requirement R, ; where i = (e, J3. We will use the fact that
4 1s a.n.r. by enumerating r.e. sets ¥; and assuming that

(3n)[ViNE, = AN E,].
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S1 SZ
a; . W or W; changes

Wes N Fymy = Brs N Fiim
or VisNEn# A; N Ey
Wes N Fiipy = Bas N Fipny ay : A changes on E,

Fig. 5. State diagram of the construction.

To insure that B; <w A; we will use permitting as follows, We allow y € Fiiny
to enter By (B,) at stage s + 1 only 4, (4,) E-permits » at stage 5 + 1.

Fix e and j and let i = {e, j}. Requirement R, ; is split into the following
subrequirements for all n > {e, j).

Rejn: ViNE,=ANE,= [PVQIAIF(,",,) =BlﬂF(i,n) or
WiNFin = BaN Fymy .

We describe the construction for R, ;. as a two-state automaton. We say
that Re ;» is in state S; at stage s if the condition for state S; in Figure 5
holds. Otherwise R, ;, is in state S, at stage s and the construction guarantees
that if this happens, the condition in the diagram for state S, holds. In order
to accomplish this, the action corresponding to arrow a; is the following, If
R, ;n 1s in state S| at stage s but not at stage s + I, we enumerate an element
of E, into V; if necessary to cause the condition of state S, to hold. Since
this happens only if an element of Fiiny is enumerated in W, or W; at stage
§ + 1, this action need only be performed at most 2|F; »y| many times. Since
[En| > 2|F(; | if n > i, we will be able to perform this action. Similarly, if s
is such that the condition of state .S; holds at s but fails at s 4 I, we must be
able to ensure that the condition of state S| holds at stage s + 1. For such an s,
it must be the case that an element of E, is enumerated into A at stage s + 1,
and hence by (9.8), that element is enumerated in either 4y or 4, at stage
s + 1. By our condition on permitting, this allows us to enumerate elements
of F; » into either By or B, at stage s + 1, thereby guaranteeing that Rejn is
in state S| at stage s + 1.

Construction
Stage s + 1
Step 1. (Arrow a;) For every triple e, j,n such that (e,j) < n, if W, n
Fepmy # Brs N Fe jyny and A; E-permits n at stage s + 1, enumerate all of
Wes+1 N Fye jymy into By and similarly for W}, 4, and B, in place of W,, 4,
and B,. ' :
Step 2. (Arrow a,) For each triple e, j, n, if
(1) Wesi1 N Fiepmy # Bise1 N Fiie,jynys and
(2) Wiss10 Fejyn # Base1 N Fige,),m, but
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(3) Wes N Fie,yny = Brs N Fie,ym oF Wis N Fie pymy = Bas N Fie )y

then enumerate one element of E, — V. ), if necessary, into V. so that
Vievs+1 N Ep # Agp1 N E,. (Such an element will exist by the construction.)
This ends the construction.

It is not difficult to prove the following lemmas.
Lemma 9,13, Bl it Al;Bz Swit Az.
Lemma 9.14. For every e, j, R, ; is satisfied. O

The following corollary follows directly from the Theorem and Corollary 2.8
of [28].

Corollary 9.15. Suppose that A <wyu A; & Ay and that A is array nonrecur-
sive. Then the weak-truth-table degree of either A, or Ay contains an array
nonrecursive set.

An immediate consequence of the preceding corollary is the following.

Corollary 9.16. The array recursive wit-degrees form an ideal in the uppersemi-
lattice of r.e. wit-degrees.

Proof. By the corollary, the array recursive wtt-degrees are closed under join. By
Corollary 2.8 of [28], the array recursive wtt-degrees are closed downward. [

The analogue of Corollary 9.15 and hence of Corollary 9.16 is not available
for the Turing degrees as we now show in Theorem 9.17.

Theorem 9.17. There are r.e. degrees a, and a, such that a; Ua, = 0’ and a,
and a, are array recursive.

Proof. Fix a v.s.a. {F.}een such that |Fy| > 27" for all n € w. We construct
sets 4, and A4, of array recursive degree by showing that every set recursive in
either is not F-a.n.r. To do this we will enumerate sets ¥, and U, so that for
every e and n > e the following requirements are satisfied.

Re,n: @e(Aj)=Be=>I/énFn;éBenFn,

Qe,n: @e(A2)=Be$UenFn#BenFn.
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51 Ay

a; @e(Al) = Be on Fn
D5 (A1,5, %) # Be,s for some "
X E Fn

Ves NFy # Bes N Fy
ds : Be changes on Fj

Fig. 6. State diagram of the construction,

Here (@, B, ).c enumerates all pairs (@, B) of reductions @ and r.e.sets B.
To guarantee that K <t A;® 4>, we will define a recursive function 7 : w? —» @
such that

lismy(x,s) exists, (9.9)

p(x,8 4+ 1) # y(x,s5) only if

(Fy < p(x,s)) [y € Aigr1—Ars o1 Y € Aoyt — A2l (9.10)
if x € K;,.1 — K, then

(Fy < 7(x,8)) [V € Ay541 — A1 OT ¥ € Aogyy — Aag). (9.11)

The existence of such a function y implies that K <y 4 & A,; the fact that
y depends on s makes this a Turing reduction rather than a weak-truth-table
reduction which is prohibited by Theorem 9.12. We define y(x,0) = x for all
X Ew.

The two-state automaton corresponding to requirement R, is in Fig. 6.

Arrow gq; is traversed at any stage s + ! such that @, (41541, %x) =
B, .1(x) for all x € F,. At this stage, we enumerate as usual into ¥, to
cause Vosii N Fy # Besy1 NF,. We also take further action to attempt to
preserve all the computations @1 (415.1,x) for x € Fy,. Suppose that it is
possible to preserve these computations forever and suppose there is a stage
t+1>s5+ 1 at which the condition of state S, fails. This implies that an
integer x € F, is enumerated in B, at stage { + 1. But then we have that
Do ri1(A1pe1) = Pesi1(Aise1) = Bogr1 # Beyyn and this disagreement is
preserved forever. Thus requirement R, , remains in state S; forever and is
satisfied. The bound on |F,| above reflects the fact that in taking action a; we
will not always be able to preserve all computations because of the requirements
for coding K. We will ensure that the action a, is injured fewer that 27" times
and thus that arrow a; requires traversal at most 27" times.

Construction

Stage s + 1
_ Step 1. Let n be the least element of K;;| — K;. Enumerate y(n,s) into 4.
Define y(y,5 4+ 1) = y(y 4+ s,5) forally > n.
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Step 2. (Arrow a;) Requirement R, (Qe,n) requires attention at stage s + 1
if

ds.f:',s+1(Al,s«i-l;x) = Be,s+1(x)
(Pesi1(Azs11:%) = Bosyi(x)) forallxe F,, and (9.12)
V;,snFn =Be,s+lnFn (Ue,sﬂFn =Be,s+lnFn)- (9-13)

Let n be least and e least for # such that either R, or Q. requires attention.
If Re,» requires attention do the following. Let u# be the maximum element of
A, used in the computations mentioned in (9.12). If ¥(#n,s) < u, enumerate
y(n,s) into A; and define y(y,s + 1) = y(¥ + s,s5) for all y = n. (By the
usual conventions on the use function of a computation, y(y,s + 1) > u for
all y = n. Thus this step has the effect of clearing the computations of (9.12)
of lower priority markers.) Also, choose z € F, — ¥, (such will exist) and
enumerate z € V;. If instead Q. , requires attention but R, , does not, attend to
Qe¢,n just as R, , but with U, 4, and A4, in place of V,, 4,, and 4, respectwely
This ends the construction.

Lemma 9.18. For every e,n € w such that n > e, requirements R, , and Qe
receive attention at most 2" times and are satisfied.

Proof. We assume the lemma is true for all pairs €’,n’ such that »’ < n or
n' = n,e’ < e and give the proof for R.,. The proof for Q,, is identical.
Suppose that R, , receives attention at stage s + 1 and there is z € F,, — V.
Then Ve 41 N Fy # B, 541 N Fy. Furthermore, by (9.12) @511 (A15+1,%) =
B s1+1(x) for all x € F, so that if these computations are never injured, either
VeNF, # BN F, or @,(4,) # B, and R,, never requires attention after
stage s + 1. Now by the definition of y(y,s + 1) for y > n, the computation
in (9.12) can be injured at a later stage ¢ + [ only if y(y,2 + 1) = y(,s)
enters Ag for some y < n. This happens only if such a number y enters X
at stage ¢ + 1 or because a requirement Re, or Qe for some e’ such that
e’ <y < n receives attention at stage ¢ + 1. Therefore there can be at most
n+ Y ocp<n 2¥* many stages s + 1 at which R, receives attention and is later

injured. Thus R, , receives attention at most 1 + n + Zo<y<,, 2 < 27 times.

Since |Fy| > 2”2, F,—V, # 0. Thus, if ®,(A4;) = B,, R, will receive attention
enough times to enumerate ¥, to make V. NF, # B.nF,. O

Lemma 9.19. K <1 4, © 4,.
Proof. The definition of y satisfies (9.11) by step (1) of the comstruction.

(9.10}) is satisfied since y(y,s) # p(¥,s + 1) only if some y(n,s) forn < y
is enumerated in either 4, or A, at stage s -+ 1, and y is increasing in its first
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argument. To see that (9.9) is satisfied, note that y(y,s + 1) # y(»,s) only if
some n < y enters K at stage § + 1 or some requirement R, , or Q. receives
attention for some # < y. Because of Lemma 9.18, there are only finitely many
such stages and thus (9.9) is satisfied. [J

Another variation on the concept of mitoticity is atomicity, defined but not
explored in Downey and Welch [41].

Definition 9.20 ([41]). A set A is atomic if for every splitting A4,, 4, of A,
Ay €1 A3 implies that 4, =7 0.

Several of the results of Section 7 stated for strongly atomic sets hold as
well for atomic sets. For example, all high atomic sets have the antisplitting
property (same proof as Theorem 7.5).

Downey and Welch hoped that atomic sets might be useful in studying
noncappable degrees in the same way that strongly atomic sets are for studying
cappable degrees. The first indication that this program might fail was the
following result of Ingrassia.

Theorem 9.21 (Ingrassia [52]). There is no complete atomic set.

Ingrassia suggested that Theorem 9.21 might be extended to all noncappable
(promptly simple} degrees. This is the case as we shall now prove.

Theorem 9.22. If a is promptly simple then a contains no atomic set.

Proof. Let 4 be a set of promptly simple dégree. We must construct a splitting
Ay, A, such that @ <1 4; <t 4;. The requirements to make A, nonrecursive
are the usual ones:

Rei :4_1 :,é m.

For the sake of R, we will enumerate auxiliary sets U, and Ve. We will assume
that the indices of U, and V,, f(e) and g(e) satisfy Wy (o), N Upars = @ and
Weters N Vears = @. (This is the Slowdown Lemma of Soare, [97, p. 284]).
Since A4 is of promptly simple degree, we may also assume ([97, p. 284]) that
we are given an enumeration of 4 and a recursive function p which satisfies

W, infinite = (3 x)(35) [x € Wous A 4s [x] # Apes) [x1].

We describe only the basic module for one requirement R,; the argument is
finite injury. Unless otherwise directed, numbers entering A are enumerated
into A,. Let qp; < a; < --- enumerate A;, We wait for a stage s such that for
some unrestrained i, we have that 4; ;[a;5] = W, [a:s]. We then enumerate
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a;is into U, and wait to see if 4 promptly permits a;,. (That is a;5 € Ay
where ¢ is such that a;; € Wy} If not, we abandon a;; and move on to
@;41,- If 50, then there is a least j < i such that a;s € 4,(,. At stage p(¢) we
enumerate d;_yp() = @j-1,s into ¥, and similarly see if 4 promptly permits
@p). If not, we then enumerate a;; into A4;,(;). Otherwise we enumerate
ajs into A p(. Obviously A) <r A4; by simple permitting. The construction
succeeds since the promptness condition guarantees that we get infinitely many
V., permissions. []

Ingrassia has also claimed the following theorem for which we supply our
own proof.

Theorem 9.23 (Ingrassia). There is a nonzero r.e. degree a such that if b < a,
then b contains no atomic set.

Proof. This can be proved by modifying the Lachlan nonbounding construction
[63]. We will follow the approach of Soare [97] and we assume the reader is
familiar with it. We only describe the basic module. We construct 4 to meet
the following requirements.

R;: A# W,

Q.: (D.(A) = W, AW, £ ) = (there is a splitting U,, V, of 4
with U, <1 Ve A (Vi)Qei),

Q. -[—]e # We.

We will have a length of agreement function /(e, s} associated with @, (A4} =
W.. As in Soare, we shall have a pair of restraint functions, r; (¢,s) and r; (e, 5).
~The basic module has the following steps.
Step 1. For the sake of Q. ; choose a candidate xp and wait for a stage such
that /(e,50) > xp and @, [xo] = Wi [Xo0].
Step 2. At s, we open a l-gap by setting r|(e,s9) = 0. We wait for a stage
81 > 8o such that /{e,s,) > xp.
Step 3. At 5; we have either
Successful closure: W, ; [xo] # Wey, [x0]. In this case we open a 2-gap by
setting ry(e,s5;) = 0 as well. In this case we wait for a stage s, such that
l(e,s:) > 5.
Unsuccessful closure: Otherwise we reset ri(e,s;) = 1 and choose a new
candidate x; > 5.
Step 4. At the closing of the 2-gap, we again have either
Successful closure: W, {xo] # Wey, [x0]. In this case two or more numbers
entered A4 since step 1 and we can enumerate the minimum of these in ¥, and
the rest in U, meeting Q,,; forever.
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Unsuccessful closure: Otherwise we reset the restraint functions r; (e, s;) =
r2(e,52) = 53 and choose a new candidate x;.

The above construction works for exactly the same reasons as does the
Lachlan nonbounding construction as described by Soare. [

We close this section by showing that not all atomic sets are strongly atomic.
Theorem 9.24. There is an atomic set A which is not strongly atomic.

Proof. We construct a nonrecursive set A4, a splitting 4;, 4, of 4, and a
nonrecursive set D <t A, A;. This ensures that 4 is not strongly atomic. To
guarantee that 4 is atomic, we let (U,, V,, ®,) enumerate triples consisting
of a pair of disjoint r.e. sets and a functional and we meet the following
requirements.

N,: Ue, Ve is a splitting of 4 A @ (U,) = ¥, = V. is recursive,
Re: D£ W,.

We will let /(e,s) be a length of agreement function for N, defined as
follows.

l(e,s) = max{x | (Vy <x)[@e,s(Ue,s;.V) = Ves(y)
AVz < u((be,s(Ue,s;y)) [Ue,s UFes(z) = 4;(2)1].

Using (e, s), we define e-expansionary stages as usual. The construction is on
a tree. We describe the strategy for meeting one requirement R, at a node 1
in the presence of one requirement N; at node ¢ of higher priority. The steps
are as follows.

Step 1. Choose a fresh follower x targeted for 4, and D with x + 1 targeted
for Az.

Step 2. At a t-stage ¢ such that x € W,,, enumerate x into 4,. Choose a
fresh number y > x as the new A;-trace for x.

Step 3. At the next g-stage u > ¢, enumerate x + | in 4, and choose a new
number z > u as the new A,-trace for x,

Step 4. At the next o-stage, enumerate y into 4;, z into 4, and x into D. -

Why does this work? It of course meets the requirement R, and guarantees
that D <t A1, 4;. It meets N; as follows. To compute V,[n] recursively,
we find the least g-stage s such that /(e,s) > n and such that we are not
at step 3 or 4 above for any 7. (We arrange that this happens infinitely
ofien by cancellation at each stage that 7 receives attention.) We claim that
Vesin]l = Ve[n].

To see this, the only way that ¥, [r] could change after stage s is that some
number w < #n enters 4 after stage s. By assumption on s, such numbers must
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be of form x or x + 1 for follower x of some 7 D ¢. Now we only put one such
number into A4 between og-stages until both numbers we put into 4 exceed s
and so exceed n. Thus if w < n enters A after s, then w enters U, and not
Ve. Therefore ¥, does not change after all.

It remains to be seen that the strategies for several requirements N ; cohere.
Suppose that N; and N; are such that i < j, g; is devoted to N;, o; is devoted
to Nj, and o; C ¢;. The problem is this. To keep ¢; happy, ¢ j requires us in
steps 3 and 4 to wait until o;-stages to enumerate into 4. Every o ;-stage is of
course a ¢; stage but not conversely. Now to meet ¢;, we must have infinitely
many stages where we allow its length of agreement to increase. ¢; cannot
delay forever. What we do is this. Suppose that we have x following R, at 7,
such that t D ¢; D ;. At step 3 for ¢;, we cannot really enumerate x + 1
into A; until the next oj-stage. Perhaps there are infinitely many o; stages
and we eventually allow /(j,r) > y. Now at the next ¢;-stage, we cannot now
safely enumerate both z and y into 4 since perhaps z < De (5,5 (Cetan) 3 V).
Our solution is this. The basic module gives us a way of enumerating two
numbers into 4 in the presence of one N, without any injury. What we do is
build inductive strategies based on the basic module to solve the problem at
the “next level”. In this case we would modify steps 3 and 4 as follows (for
TD0;D0;).

Step 3. At the next g;-stage # > ¢, enumerate x 4+ 1 in 4, and choose a new
number z > u as the new A,-trace for x.

Step 4. At the next ¢j-stage, enumerate y into 4, z into 4, and x into D.

Now note that after step 3 we have finished the effect of ¢; in the sense that
y and z can be safely added without injury to ;. Our only problem is with
g; alone now. Thus we have reduce the problem to put two numbers z and y
into 4 in the presence of one N;. However we know how to do this; we use
the basic module, 3

It is not difficult to modify the above construction to prove the following.

Theorem 9.25. There is an atomic r.e. set A such that for all B =4y A, B is not
strongly atomic.

The remaining open question is however

Open Question 9.26. Is there an atomic set A such that for all B =1 4, B is
not strongly atomic?
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10. d.r.e. degrees

One natural place to look for splitting theorems analogous to those for the
r.e. degrees is in the d.r.e. degrees.

Definition 10.1. A set D is called d.r.e. if there are r.e. sets U and V such that
D=U-V. -
More generally, a set X is n-r.e. if there is a recursive approximation {X;}seq
to X such that for every x, |{s | X;(x) # X;41(x)} < n. Of course, r.e. is the
same as l-r.e., and d.r.e. is the same as 2-t.e.
A degree d is properly n-r.e. if d contains an #n-r.e. set but no (n — 1)-r.e. set.

In this section we briefly describe the status of splitting theorems for d.r.e.
degrees without giving many details. Early results suggested that d.r.e. sets
enjoy many of the same properties that r.e. sets have. For example, there
are no minimal d.r.e. degrees. In addition, the following result was noted by
Lachlan, Cooper and others.

Theorem 10.2. If D is d.r.e. and nonrecursive, then there is a nonrecursive r.e.
set A <1 D.

Proof. Let U and V be r.e. sets with D = U—V d.re. If U — V is r.e. then D
is r.e. and hence 4 = D suffices. Suppose then that U — V is not r.e. Let f be
a 1-1 recursive enumeration of U, Define 4 = {s | f'(s) € V'}. We have that
A <t D. Furthermore, A is not recursive since 4 recursive implies U — V is

re. [J

Note that Theorem 10.2 immediately reveals some complexity in the d.r.e.
degrees since, for example, a construction of a minimal pair of d.r.e. degrees
immediately yields a minimal pair of r.e. degrees. The proof of Theorem 10.2
is not uniform. That is, it does not determine the index for A uniformly in
indices for U and V. This nonuniformity is necessary as can be seen from the
following theorem.

Theorem 10.3. There is no recursive function g and functional ® such that if
We — W; is nonrecursive then We iy is nonrecursive and ®%e=%i = W, .

Proof. Given ¥ r.e.and functional @, we construct a d.r.e. set D such that the
following requirements are satisfied.

R: ©@(D)# V or V is recursive,
P, D#£ W,.
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These requirements (together with the recurston theorem) are easily seen to
be enough to show that the desired uniformity does not exist.

Let /(s) be the length of agreement function for @ (D) = V and u(s) be
the use (of Dy) is establishing this agreement. The strategy for R is that of
preserving this length of agreement. The strategy for a requirement P; (in the
presence of a higher priority R,) is as follows. We choose a witness for P; and
wait until x € Wj,. In this case we wish to place x in D and so win P; forever.
This conflicts with the strategy of preserving the length of agreement for R..
Nevertheless, we place x in D anyway. Now either the length of agreement is
never restored (in which case we win R outright) or at some stage £ > 5 we
have that /(t) > I(s). At stage ¢ either V;[/(s)] = V;[I(s)] or not. If so, there
was no harm in placing x in D; V was “preserved” anyway. On the other hand,
if V;[1(s)] # V;[/(s)], we remove x from D at stage ¢ and thereby restore the
left-hand-side of the computation that existed at stage s. Namely, we have that
for all &,[D,][I(s)] = Ds[Ds1[I(s)] = Vs[i(s)] # Vi[l(s}]. We can now
preserve this disagreement forever and so win R. Of course we have now lost
our success on witness x for P;, but we need only choose a new witness for P;
and that witness can ignore R. O

Ishmuchametov has extended Theorem 10.2 to show that for every n-re.
degree a, there are degrees 0 < a; < a; € -+ € a,_; < a such that a; is
properly i-r.e. for every i.

Splittings of d.r.e. sets do not have the same nice degree theoretic properties
as do splittings of r.e. sets. In particular, if Dy, D, is a d.r.e. splitting of the
d.r.e. set D, it is not necessarily the case that D =1 D, & D,. (Of course we still
have that D <t D; @ D,. For example suppose that B, A are r.e. sets, B C 4.
Then B and A4 — B is a splitting of the (d)r.e. set A but it is not necessarily the
case that 4 — B <t A. Thus most theorems about splittings in the d.r.e.degrees
are degree theoretical rather than set theoretical results.

The analogue of Sacks Splitting Theorem was proved by Cooper.

Theorem 10.4 (Cooper [18]). Suppose that d > 0 is n-r.e. Then there are n-r.e.
degrees a | b such that aUub = d.

Proof (sketch). We describe briefly the case » = 2. We need to construct
d.r.e. sets D; and D, so that D =t D; ® D; and such that the following Sacks
requirements are satisfied.

R @(D;) # Dy_;.

The idea as in the r.e. case is to pursue the Sacks strategy of preserving
lengths of agreement. Suppose that D is d.r.e. and, without loss of generality,
not of r.e. degree. Injury will occur as in the usual construction and also owing
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to the fact that D is d.r.e. rather than r.e. Matters are arranged so that the
injuries are essentially co-r.e. The idea is then that if a requirement is not
met, then D is of the same degree as the injury set, a co-r.e. set and this is
the desired contradiction. The possibility of co-r.e. injury sets yields a new
outcome, that of unbounded use, so the construction becomes a Hz argument
as opposed to a finite injury argument. [J

Note that there is a nonuniformity in the proof of Theorem 10.4 and we do
not know if it can be removed. Cooper has shown that, in fact, all low; d.r.e.
degrees split over all lesser ones. This suggests the following question.

Open Question 10.5. Are the low; d.r.e. degrees elementarily equivalent (as an
upper semilattice) to the low; degrees?

There are differences between the structure of R and that of D, the upper-
semilattice of d.r.e. degrees. A notable one is the following degree-theoretic
splitting theorem of Downey.

Theorem 10.6 (Downey [22]). There are incomparable d.r.e. degrees ¢ and d
such that cUd = 0 and cnd = 0.

Proof (sketch). The basic idea is the following. We code X into both d.r.e. sets
C and D rather than just one as one might expect. This of course interferes
with the minimal pair strategy. To meet the minimal pair requirements, we
note that if we destroy both sides of an agreement in an infimum requirement,
we can force a disagreement by extracting numbers from the d.r.e. set on just
one side of the computation thereby returning to the original value. [J

Downey and Haught have used the ideas of the proof of Theorem 10.6 to
show that all finite lattices can be embedded into the wtt-degrees below 0.

Another difference between R and D not related to splittings is the following
result.

Theorem 10.7 (Cooper, Harrington, Lachlan, Lempp, and Soare [15]). ¢/ isa
minimal cover in the d.r.e. degrees.

We close this section by mentioning Cooper’s solution to an old question
of Rogers — that of the definability of the jump. This result relies on a
nonsplitting theorem for the degrees.

Definition 10.8 (Cooper [17]). A degree d is unsplittable over a avoiding b if
b£aa<d b<dandifd; and d; are two degrees such that a < d,,d, and
d;Ud; =d,then b < d, orb < d,.
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Using a 0" argument, Cooper proved the following.

Theorem 10.9 (Cooper [17]). There is a d.r.e. degree d and degrees a and b,
such that d is unsplittable over a avoiding b.

Using this result and some work of Jockusch and Shore [57]. Cooper proves

Theorem 10.10 (Cooper [17]). O is definable in the r.e. degrees as the greatest
degree satisfying the formula —(3a,b) [x Ua is unsplittable over b].

Corollary 10.11. The jump operator is definable in the Turing degrees.

Corollary 10.12. The r.e. degrees are definable in the Turing degrees.
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