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§1 INTRODUCTION

The use of trees control strategies in priority arguments has become ubiquitous in modem
recursion theory. One of the crucial reasons for this seems to be that the use of trees gives us
the ability to lay out the outcomes of each atomic strategy and reduces our verification to a
'coherence lemma'. That is, our strategies are so devised that Harrington's 'golden rule' is
satisfied: each requirement has a version that can live with any particular sequence of outcomes
of the other relevant requirements. '

The power of this technique is that it often reveals the 'real reasons' that earlier resulis
employing technical devices, such as the 'hat trick’ of Soare/Lachlan (cf [16)) or Sacks density
theorem (cf (2.3) of the present paper) work. In many ways the early infinite injury arguments
were being described originally in a finite injury (linear) way, where in reality as 0" arguments
they would be best understood via a nonlinear tree of strategies. We remark that
combinatorially, such a tree argument may be more difficult then other models(witness the use
of pinball arguments for embedding nondistributive lattices into R ) but the intuition seems
more readily apparent. '

As yet, we do not feel the situation for 0" and 0"' arguments has been similarly
clarified. In many ways we feel that current 0" arguments are really being written in a 0"
framework, and hence we decided to investigate the power of a general 0"' framework. That
is trees specifically designed for 0"' arguments. In particular, our ideas were inspired by
Shore's 0" argument [15] which uses an @ + 1 branching tree where the true path of the
construction requires a 0"' oracle. It seemed to us that this idea ought to be general enough to
encompass all 0"' arguments and furthermore gives the potential for 0 ™ argumentsina -
similar framework.
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The idea is that if we have @ + 1 branches representing the outcomes of a single 7,
requirement (not spread out on the tree), then the @ outcomes {i:ie ®} will be m, outcomes
collectively giving the X, outcome and the "1" will be the 7t; outcome. Now, although one can,
be left of the 1, outcome infinitely ofien, the 73 outcome might be the on left most path visited
infinitely often. In Shore's argument, this caused no problems but for general 0"' arguments
it becomes necessary to develop some machinery to allow the construction to live with this
feature. Primarily one develops a '"Jocal priority ordering’ that is different from the normal
priority ordering and we can allow injury from left to right and right to left.

This idea could then allow extensions to a 0 ¥ argument. For example, we could then
use linking on the 0"' tree, or we could use a non-uniform 0" argument (e.g Downey -
Slaman [6]) or we could change the order type of the outcomes to be a 1 + w*sequence of @ +
1 outcomes. In the last option the true path would be 09. >

In §2 we develop the machinery in the guise of a detailed sketch of new proof of
Slaman's density theorem : [14] that if e < f then there exista | b withe <a,b< f and with
a N b existing. It is fair to say that this is a difficult 0"' argument and hence provides a good
testing ground for the technique. Much of the discussion to (2.15) is devoted to this specific
result. We remark that much of the delicacy and length of this discussion stems from the
problem of keeping the construction <;F.  One of the reasons we choose Slaman's density
theorem rather than an easier 0"' argument is the fact that we feel our technique will be very
good for other density questions (see §3).

We develop some general machinery in (2.15) and (2.16), and in (2.17) discuss how one
could use the framework for other theorems. In particular in (2.18) we look at the Lachlan
nonbounding theorem under this framework.

Finally in §3 we examine some extensions of our results. First we show that the
superbranching degrees (of [4]) are dense (by observing that the strategies are compatible with
§2). The other result is to use the machinery to solve a question of J.B. Remmel : We show
that there exists an r.e degree a # 0, 0" such that if B isr.e and deg (B) 2 a then there exists
anr.e splitting B,B, = B with deg (B;) = a.

Notation is standard and follows Soare [16]. All uses are monotone in stage and
argument where defined, and bounded by s at stage s. We do assume the reader already
familiar with tree arguments at least on the 0" level and hope that he or she will be familiar with
Soare [15, 16].
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§2 A _NEW PROQF OF SILAMAN'S DENSITY THEOREM

2.1 The Components

The goal of this section is to (eventually) give a new proof of Slaman's result that
if e < f then there exista, b witha <b,a <f,an b existing anda | b. In view of the fact
that we shall later extend the ideas of this construction to a general approach to 0"' arguments,
we shall proceed very slowly breaking the argument into small components : streaming (and the
infimum requirements below a degree), the density requirements, the coding and coherence.

Let E and F be given r.e sets with E < F. We build re sets A, B and Q to meet
the requirements A, B, Q < F with Q <; A, B and ¥
P, : O, (ADE)#B
Py, : @ (BOE)#Aand
R,:P(A®E) =D, (BOE)=frotal = f< QDE
where A=A®Q,B=B®Qand {®, : e € ) is an enumeration of all procedures.

22 Streaming and Fejer's Result

The first component of our construction technique that we examine is the one we
call streaming and should be thought of as the R requirements first duty : to process numbers
into a will behaved stream. This is the way we meet the P, for E = @, that is, prove the result
from Fejer's thesis [7] that each nonzero r.¢ degree bounds a diamond lattice (c.f. also Lachlan
[11] and Downey[3]).

Thus let E = @ and suppose then we wish to meet the requirements above. In
this case it would suffice to meet A, B, Q <;F and
Py, : @, (A)=B,
Py, @, (B)#Aand
R0, (A)=0, (B) =frotal = £<. Q.

By Lachlan’s nonbounding theorem [10] know that Q = @ is not always possible
for all given F. Technically this means, roughly speaking, that the idea of "preserving one side
of the computation between expansionary stages" fails when combined with permitting, The
idea then is to meet the f{e by enumeration into Q whenever " both sides" of a computation fail
between expansionary stages.
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Define 1 (e, 5) = max {x : (Vy <x) [, A, =0, , B, ;)]
(similarly 1 (e, s) max {x : (Vy <x) @, JA, EBES,y) (IJES(B ®E; D)
m (e, s) = max {0, T (e, 1) : t<s} (sumlarlyml(e s)), m u(e, s) = max {u (@, (?\s;x)),
u(®,  (B;;0)}.

The basic idea to meet the R, is to allow the R, to create a well behaved stream of
numbers as follows. R, will be given a set (¢ for the basic module, the numbers processed by
higher priority R (in the o - module) that it will process as follows. Initially it is given
Xy (say 0). At the first stage s, where I(e, $p) > Xg R, will process x, and pick a new number X,
with x; >m u (e, Xg» Sp) (€g X, = 5), and from the point of view of cooperation with other
Tequirements, cancel (or restrain) all numbers z with Xg < Z <X, and so stop them from
entering A.

Remark Variations are possible here. For example, we can use a "dump”
construction and ask that these numbers enter A iff X enters A at the same stage.

In general we continue this process, and, assuming nothing has yet been
enumerated, we will have at any stage a stream of numbers Xy <X) <X, <__<x_ such that
each x; >m u (e, X » 8) for all j < i (recall we assume uses monotone where defined).

What is the point of this procedure? The first thing to notice is that X118
"good" for X; for j <iin the sense that if x, ;41 enters A, Bor both, it will not affect the
computanons for x, for J £1. The idea then is for those versions of P (guessing that R 5
effect is infinitary) of lower priority than R will use only numbers frorn the R - stream for
followers, and themselves will also process this stream in essentially the same way.

Thus to meet P (for example) j > ¢, P2J will take x5 =x (2j, 0, s) andin a
similar way, wait till L(ZJ, s) > x(2j, 0, s) where

L) =max { x: ¥y<x (@, (A,;y) =B, ()} -
L@j+1,5= max{x Vy<x(<D (BS,Y)—AS(Y))}~

At this stage (when we see L. (2], 5) > x (2j,0,s)) P ; will request the next
member of R s streamn and cancel/restrain all current members of R s stream > X, At the stage
that we see a new member of R § stream appear, say x_, we will assign x(2j, 1, s) = X, etc.
Thus the first action of P2 is to refine R § stream to look like
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X(24, 0, 8) =X, K, Xy _, X, =X (2, 1, 8) %, ; __ X =%(2j,2,8), _
I I I |
don't really exist .~ nor do these.

Now f’zj‘s final act is to wait till we see F permit i at some stage s where x(j, 1 +
1, s) is defined.” When this occurs, we wish to enumerate x(2j, i, s) into B; s0 winning 1'521-‘ (a
Friedberg - Muchnik procedure).

The problems stem from the fact that other 131( with k > e also must select their
x(k, n, t) from R 's sream. Arguing by priorities, at any stage the R, - stream will have
been refined to look like

x(2e,0,8), _, x(2e, 0y, 8), x(2e + 1,0,8), _, xQRe+ 1,0, ,,8), . __,

x(m, 0, 8), _ _, x(m,n_,s)__ z
where the x (k, d, §) are devoted to R, awaiting F to permit d. The bad scenario is that at some
stages for some k we see F permit k and so we might enumerate (say) x(2r + 1, k, s) into Al
towin R, . ; for somer>j. Since we did not win (e.g.) RQJ- it must have been that x(2j, k, s)
was not defined. But now, at some later stage we see F permit i and we wish to enumerate
x(2j, i, t) =(2j, 1, ) into B, , , to win R2j. The problem is that our enumeration of
x(2r + 1, k, s) into the A-side earlier might have destroyed some A-computation and if we now
enumerate x(2j, i, t) we might also destroy the B-side of the same computation.

The solution is to also enumerate x{(2r + 1, k, s) into B,,;and Q, ; at the same
stage as we enumerated x(2j, 1, ) =x(2j, i, 5) into the A-side. In this way Q can comprehend
the fact that both sides may have changed. Notice that at least one side remains valid for
Xy < x(2r + 1, k, s). For our purposes, it is wortllwhile to think of this as follows. If the
R, - stream looks like x(e, 0, s), x(e, 1,s), _ _ _ at any stage, then we regard x(e,n + 1, ) as
the Q-use for x(e, n, 5). Hence if x(e, n + 1, s) is enumerated into Q (for example,

x(e, n+ 1, 5) =x(2r + 1, k, s} as above) then at the next e-expansionary stage t we could
redefine x(e,n + 1, t).

It is not hard to see that - in this construction - we can ensure that if I(e, §) = oo
then lim, x(e, n, s) = x(e, n) exists. Then suppose (I)e(f&) = ¢>e(]§) =fwith ftotal. Letzbe
given. Note that x(e, z, s) > x for all z, s. Now find the least e-expansionary stage where
x(e, z+ 1, s) is defined and x(e, z + 1, 8) ¢ Q. Then CDB, s (?\s ;2) =D, (?X; Z).

The remaining details are to implement the above for all f{e and 1'5e via a tree of
strategies. Note that all of the actions are compatible as each f{e amdAPe essentially wishes to do
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the same thing : refine a set of numbers they are given into a well behaved stream. The only
conflict ocurs due to the fact that we wish to make sure that (Vi)(lim x(e, i, s) exists), but in the
present argument this causes no problems since such injury is only caused by us via the finitary
requirements f’i. Similar arguments that involve processing numbers can be combined with the
strategy above. For example, it is not difficult to extend the ideas above  to embed the
countable atomless boolean algebra below any nonzero r.e degree ([3]), or to construct a
superbranching degree (ie.a#=0'suchthat Vbhb>a3 c,d(a<c, d<b&ecnd= a)).
Downey - Mourad [4]) or finally to construct a contiguous nonbranching degree (Downey [2}).
(This last paper and [5] were the places where the terminology and ideas were developed).

We remark that the above streaming is a little too simple minded for Slaman’s
density theorem due to the interaction of E-coding and Pj action as we shall see, but the ideas
really underpin the construction. b

23 The Density Requirements

We return to the Sacks requirements
P, :®(ADE)=B,P,

e+l

. ®, (B ®E)#A.

When Sacks density theorem was first proved, it was apparently accomplished
by a series of clever tricks one of which is the famous Sacks coding strategy. Today, using tree
of strategies-it is possible to expose the underlying intuition behind this strategy, and to see that
it is really no more than the original Friedberg - Muchnik method and the delayed permitting
method.

In this section we let Q = @ so that A = Aand B=B.

Suppose that also E = @ and so we needed to only build A, B < F so that
@, (A)#B (and @, (B) # A). In this case we' would the a familiar process of the last section
: define a stream of followers x(2e, i + 1, s) for i < n = n(s) so that x(2e, i + 1, s) exceeded
the use of x(2e, 1, 5), we would wait tilli e F,, . If this occurs, we'd enumerate x(2e, i, s) into
B winning R,...

If E % @ the problem is that E can later code numbers below the use of
x(2e, i, 5) to upset this win. For a single requirement P, our solution is to define our stream to
essentially obey the following rules (2.4) - (2.6).
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2.4 Cancellation If x = x(2e, i, 5) is currently active (that is, waiting for an
F-permission and x(2e, i + 1, s) is defined) and we see that (I)e. (A, ® E_; x) is E-incorrect
cancel x(2e, j, 5) for j > i. If x(2e, i, s) € B, also cancel x(2e, 1, 5) and declare x(2e, i, 8)
asinactive.

25 Activation (Appointment) If x(2e, i, s) is currently defined but not active
(and hence x(2e, i + 1, s) is not defined) and L(2e, 8) > x(2e,1, 8) set  x(2e,i+ 1,s) >,
1(2e, s + 1) = s and declare x(2e, i, 8) as active.

2.6 Permission 1fx(2e,1, s) is activeandi €, ¢ enumerate x(2e, i, §) into B,
cancel x(2e, j, s) for j > i but regard x(2e, k, s) for k <1 as active.

The reader should note that, because of the last clause of (2.6), P, can still
receive attention (via some x(2e, k, s) for k < i) whilst it appears satisfied, as this attack (via k)
is more likely to succeed. The crucial point is that whilst P, appears temporarily satisfied (via
x(2e, i, 8)) it cannot get any new followers appointed to it.

The rules above suffice for a single P,

2.7 Lemma Suppose (VX)[®, (A®E;x)l]. Then (Qy) [®, (A®E;y)#B
(v) ] and P,_ acts only finitely often.

Proof Suppose not. We show F < E. It suffices to show that
(@ (Vs)(lim x (2e, i, 5) = x(2e, i) exists and ¢ B)
®  (v)3s) (x(2e,1, s) = x(2e, i) and 1Q2e, 5) > x(2e, 1)
and u(®, , (A, ® E, ; x2e, 1)) =u(®, (A B E; x(2¢, 1))
©  (v9)(x@e,i+1,5)>u (D, , (A, ®F, ;x (2e,1,5))).
(d) E canrecognise when (a) and (b) occur.

Once we have (a) - (d) we can E-recursively compute F as follows. Letz e .
E-recursively find a stage s where x(2e, z + 1) is defined. Then x(2e, z) is active and for all
j <z the @, - computation on x(2e, j) are E-correct. By restraints, the computations are final.
Hence z € Fiff ze F_, _since otherwise z's entry into F would cause us to win P,, at or
below x(2e, 2).

To verify (a) - (d), suppose we have already computed x(2e, 0), _ _, x(2e, k)
and a stage s, where Vs 2 s, (x(2e,j) = x(2e, j, 5)) for j < k. By hypothesis (a) - (d) hold for
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j<k:Notex(2e,k) & B, otherwise the @, ., (A, ®E, ; x(2¢, k)) computations are
E-incorrect (so that x(2e, k) not final a contradiction). Now E-recursively find a stage s, where
L(2e, 5;) > x(2¢, k, 8,) via E-correct computation. Thenx (2e,k+ 1,5, +1) = x(2e, k +1). .

Thus the method above solves the problem for a single P, . A problem is caused
by the interaction of (2.5) and (2.6) for the coherence of several Pj. Our concern is as follows.

Suppose that for some least k we have L(2e, 5) > o but @ (A ® E ; x (2¢,k)) T
so that the use — oo. Now the x(2¢, j) for j <k have finite effect, but infinitely often the x(2e,
J» 8) - list is chopped back to x(2e, 0), _, x(2e, k) (a m, - event). Each time this is chopped
back, at the next e-expansionary stage, we reset r2e, t) to u (@e, A®E;x (Zc,k))). We thus
meet P,, by divergence.

Consider some Pj for j > 2e desiring to put some numer into A. Such Pj canonly
put unrestrained numbers into A, and if P,, is met by divergence then potentially its restraint is
infinite. The usual way dilemmas like the above are overcome is to allow the restraint to "drop
back" at E-nondeficiency stages a'la Soare [16]. In our case we need F-permitting too (and this
is the heart of Sacks trick). The bad scenario is as follows. We have some X = x{j, p, 8)
targeted for B. We see F permit X at stage s but at this stage r(2e, s) > x. It may be the case that
at some stage t > s it is found that r(2e, t) is E-incorrect and the restraint drops. But we have no
longer E-permission to allow us to put X in.

The key modification is to replace (2.6) by delayed permission The crucial point
is that E knows if r(2e, s) is E-correct or not (remember r(2e, s) only drops due to E-incorrect
computations (essentially).). Further as E <. F, whatever E knows, F knows too. This when
we see X F-permitted we declare it so. Now, whilst X is still active and F-permitted, should we
discover 1(2e, s) to be E-incorrect and so drop back we then allow X to enter A. The whole point
is that F can still decide the fate of x and so the construction remains < F

The implementation of the above on a tree of strategies is as follows. A node ¢
devoted to P,, has @ + 1 many outcomes labelled from left to right
(0,u),(0,d),(1,u),(1,d), _ __, ® where
(i,u) denotes unbounded use as x(2e, 1)

(i,d) denotes disagreement preserved at x(2e, i)

w denotes wait (i.e L(2e, s)4ee).
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A version of P; guessing (O,u) will be guessing that all the @ (A, @ E ;x(2e, 0))
computatlons are E—mcorrect (whose lim, x(2e, 0, 5) = x(2e, 0) exists). Thus a follower of this
version of P in some sense "doesn't believe” an F-permission until it sees the @, restraint drop
to zero. Note that although F cannot decide which is the correct outcome, for any follower x,
F can decide if the conditions that will allow x to be enumerated will ocur.

For example if a follow x of Pj had guess ¢ = (0,u)*(1,d)A(5,u), then we would
permit x to enter the relevant set provided that we saw G appear correct (again), which would
happen by the next E-nondeficiency stage, if it will happen at all.

The ideas embodied in Sacks delayed permitting are really at the heart of our
actions in the full construction,

=

2.8 Coding and Infimum

In this section we shall see what happens when we combine (2.2),(2.3) and the
coding of E into the infimum. Itis here the argument gets complicated and becomes at 0"' one.
We will essentially meet the Pj as we did in (2.3) but must re-examine the infimum

requirements.
R,: 0, (A®E)=0,BGE)=ftotal = f < QBE.

In (2.2) with E =, @ we showed how to meet Friedberg type requirements in the
presence of such R, whilst keeping the sets < F. The idea was to use @, to process numbers
into a well behaved stream, Xg» X — _ _so thatx; +1,¢> MU (e, x;, 5) when appointed, and
hence x; , | (> one of the uses whilst x; _ 1, s is not enumerated. The P; predicated on infinitary
R, beavior then choose numbers from the R, - stream and this allows us to enumerate x; _  into
both sides should come X for j <1i be enumerated into one side.

In fact it is easy to combine this strategy with the f’j and hence show that for all
e<f there exista, bsuchthata Uelbue,a Nnbexistsand a, b<f All of our problems
stem from E-coding in the infimum requirements.

Note that E-coding in the R, might cause infinitary behavior for two TEas0Ds.
First the use on some side for some y might be unbounded (as with a P) The second reason is
that the use might be bounded for all y but I(e,s) — oo (the Ty TEason).
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Our hope is to develop some reasonably general machinery to deal with such 7
sitnations.

2.9 The Basic (R, -) Module

The main idea is to, along the lines of Shore [15], represent R, by a single
outcome on the tree. Specifically ¢ devoted to R, has © + 2 (primary) outcomes labelled
(0, u),(1,u), __ _, b, w where.

(i,u) denotes unbounded use at x; (on either A - or B- side)

b represents the 7, outcome bounded use for all x; and i(e, §) —> oo

K

w represents the waiting "non-recovery of computation” outcome.

* Note that the collection of &, outcomes (@, u) :i e @} forms the "2; outcome".
The idea is that the leftmost math visited infinitely often will be on the tree path (TP). The
problems will stem from the combinatorics. Itis possible that 6"b C TP and yet in the
construction we are left of ¢*b infinitely often.

For the basic module (for R ) the idea is to play outcome (i, u) wheneversis a
o - stage and one of the computations @, (As @E;;x gor @, (ﬁs DE,; x; ;) prove to be
E-incorrect since the last o-stage. It will be the case that we will have enumerated x; , ; ( into Q
so that Q can comprehend this fact. Note that if has a limit x; then if 6/, u) & TP, it must be
that D(A ©E, x) T.

We must make sure that o/(i, u) produces a stream of good numbers or those
¥ 2 o7(i, u) should ¢”(j, u) be correct. Thus ¢ produces many types of streams. It will be
given a stream (x (67,1, 5) : 8, i€ ®) where 6* *a = ¢ and will refine this stream.

The final o-stream {x(5, 1, s) : i € w} will depend on the outcomes of ©. In
particular, we focus on the ouicomes o”\(i, u) and o*b. To indicate that those are two possible
types of stream produced for these outcomes, we will write them as y(6”a, J, 5) where a = (1, u)
or b. Each outcome (i, u) has associated with it a number p(, s) to testit. The idea is that
y(orb, 0, 5) =x(0, 0, 8) =y(c”(k, u), 0, s) all s and p(0, s)=0but that  y(o”b,1,8) =
x(c, p(i, s), ‘s) for some p(i, s) i (with p(i + 1, s) > p(i, s)). Initially we will define
p(i, 8) =i. When we get to first define y(o*b, 1, s) we will have defined y( /b, 1, 5) =
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x( ¢, p(i, s), s). Suppose this is its [imit value and write x; =y(0”b, i, s). Now at the next
e-expanssionary stage s we will define x, 1,s=Yy(0Mb,i+1,8)= x( o, p(j + 1, s), s) (=s (for
the basic module)) which will equal y( ©, p(, s) + 1, s) if this is the first siage so that

X; 41, s> MU (8, X;, 5). Now this would be a 6"b - stage and playing b we'd be free to
assign these numbers to P, for P; guessing ¢*b C TP.

If, at a later stage t we see that the current @ computations on X; were not both
E-correct (this is slightly modified when we consider the interaction with the various Pj), we
should have enumerated x; _ L= x(o,pk+1,5),5)=x(0,pk+1,t),t) into Q cancelling
any Pj restraint working with x; | 1, At the next e-expansionary stage t;, we would then play a
o7(i, u) stage.

One notable point here is that such x; , , , need to be enumerated as soon as they
appear E-correct. This is because the construction must remain < F and hence we cannot wait

until t;. We must however wait until t, to appoint the next X; as we now see.

+1,t
At this stage we would set aside a collection of numbers

C={x(o,pk) +i, ), ___x(o,pk)+t, t,)} (say) and then assign p(k + 1, t)=

pk)+t+1andx(orb,i+1, t)=x(0,pk) +t+1,¢).

The "back-up" stream is {y( 6”4, u), j, s : j € ®). This would have the
collection C added to it (in order). Such numbers can only become followers of nodes
Y 0”(i, u) and only be assigned during 67(i, u) stages. Since we need the sets must be < F,
it is necessary that they enter during other than /(i u) stages. These elements will have a
finite collection of restraints they must respect. Obviously won't respect any restraint based on
X;. s forj =i+ 1, but as we shall see, they may respect restraints based on Xk s fork <1, These '
restraints nevertheless behave in a friendly fashion (as in (2.3)) and drop down at
E-nondeficiency stages. This allows us to decide if such a follower will enter.

Note that, in the limit, if 6@, u) C TP then all of the o - stream is of the form y
(o™(, v), j, s) and all'the y( 6/b, k, s) die (for k > i).

On the other hand if /b is correct then eventually we will stop building y( 6/,
u), k, s) as the uses of y( 6/b, i) come to a limit.
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2.10  Coherence of One Pj of Lower Priority with an R .

There are two types of 'Pj we must consider : those associated with p > o7(i, u)
and those associated with T> o*b. When to play the p versions is clear enough (at present)
namely when y( 6%b, i + 1, 5) appears incorrect, and such a p will act during such "gaps”. (A
delicate part of the construction is to keep the F-recursive, but this is like the delayed permitting
part of (2.3), as we see later).

Where we do have some real potential coherence problems is with a P, associated
with some T > G*b.

Suppose that such a P, targets an element x(t, n, s) for B and that
X](' 5= Y( GAbs k’ S) = X("C, 1, S). s

Now we wish to implement the strategy of (2.3). Recall this was given in the
tules (2.4) - (2.6) and basically consisted of a follower x being initially inactive, then active and
then eventually perhaps enumerated after an E-correct permission, Note that the activation of x
will probably occur after x, , ; ; has been appointed.

Here we are also committed to something like the processing of (2.2). Thusx(r,
n + 1, s) will be appointed after X , activated, but x(t, n + 1, 5) is probably larger than x K+1,s
and indeed perhaps x, ; (<u (<I>j‘S(As ; X o)) where j = (1),

The reader should note that in the discussion to follow, the difference between on
situation here and (2.2) is that in (2.2) the only change to such a set-up is due to Pj activity, and
in the basic module for R, the only change in x4+ 1, s 18 due 0 E-coding making a @, -
computaﬁén E-incorrect. Here we are concerned with the combination of such events. If
E-coding destroys such an X s = X(T, n, 8) - set up before we add X s to B we have no
problems.

The bad situation is the following (which does not occur in (2.2)). Suppose at
some stage s, weenumerate x,  into le. This will cause the & =e(c) computation

concerning x, _ to be destroyed. Consider the situation at the next e-expansionary G-stage
t,. This is possibly as given in the diagram 1 below.
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At
@
es  rel
I‘ t,
xk,s1=\x\k.t1 xk+1’tl=xk+1'sl
A\ ¢
\€e’ 5 S
~ B
by
Diagram 1

In particular x, A Xt s, <u=u, (Bt 3 X ", )). This causes the
followmg potential problem : Remember the verification of (2 7. This consists of arguing
that should we not win (e.g.) P, then F <;E. We do so by arguing that once we see an
E-correct set up on Xk 5, F cannot permit n lest we win on xk‘sl. Now the reader should

note that in the argument of (2.3) this followed as the only way that Xy, cnteredinto A

or B andso A would be because of some P's activity. Here also E-coding for R, via
G can cause problems via such enumeration.

Certainly in the definition of “E-correct set up for x, ;" we can ask that for all
Xm,s if Xm s <u1 5 ((I), (A, L )} then xp, ; has currently E-correct ®,-computations too.

This is consistent with T > o/b after all.

Nevertheless, in the diagram above, although CDB_SI was E-correct for
Xk.sl = xk'H’ by enumerating R, into B we can cause CIBE,tl to have a2 much bigger use
at t;. Suppose that E now decides to cause a change in B below u, = (but not below
!

mu(e, Xy s, $;)). If we now implement the basic module for R, as stated, we must

enumerate x into Q and so code itinto A causing us to perhaps destroy the

ktl.s,
(AS; k, s) computations But now lemma (2.7) fails. Although A was E-correct
for allpotentlally injurious numbers (and so B was BE-correct on mufe, X X 5 ,s N B

was not E-correct on u, _ allowing F to permit n late.

Ls)

Our solution here is to note that, after all, the common value f ‘can only change if
both sides of the @, - computation change. This, although we should clearly play on
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outcome ©”(k,u) andreset p(k + 1, t ) (to - in particular - exceed u, ) we should not
enumerate X, ) unless both sides change and hence, in particular if (I)e s (AS X s ) is
E-correct. Thus w1th this modified form of the basic module, if @, (A$ X s ) proves
to be E-incorrect then it might cause a couple of numbers to enter (e.g. Xiead, 5, and

p(k+1 !tl)‘ l)

The idea is then that when we verify P, at T we gotoastage s where

s = X(T, 1, 8} is E-correct for both ¢ and j computations and argue as in (2.7) that

‘neFiff ne F, s

2.11  Coherence of R, with Two Pj (of lower priority)

The "ot - module" for R, of (2.10) was okay for one Pj, but the problems become
more subtle for two Pj. Let P, and P, be two such requirements and suppose that P, has guess
Y and P, as before has guess 7, P, targets for A, (P, for B) and that for simplicity o*b <y< 1.

Suppose that e(Y) = m and that we are concerned with a follower of P, of the
form x; ;= x(Y,d, s) and note that (by priorities) r < k.

Now if x_  was active before Xy ¢ Was enumerated, then the priority set up will
ensure that Xp ¢ > x(y, d + 1, s) and so, should we enumerate X, s into A we can enumerate
(safely) all )’(L sforx, .2 x(y,d + 1, s) and so reduce this case to the basic module.

Note that we are really here considering the ¢ - correct version of (2.2) : what .
can we do so that Q can comprehend the fact that two sides have changed? The method of
(2.10) works in (2.2) and works for the case above. i

However a case that is seriously different (due to E-coding) is the following
sequence:

(2.12) X, senumerated at s,
(2.13) X, s is activated at the next Y- stage s,
(2.14) x, ( is enumerated at s, > s,

Now in (2.2) although we know that since (2.13) occurred after (2. 125, it did
OCCUr at a o-expansionary stage.
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Hence, although x, , . might be this below u, = u(tl)m,sz(Bsz;xr.s)) this

doesn't matter since now the B-side will hold the computation (in (2.2) arguing by priorities)
that there are no followers z left alive with x; ( <z <u,).

The situation is given in diagram 2 below.

Diagram 2

Note that it is now possible for both sides of the x, - computation to have
changed. E-coding causes the following problem to the (2.7) argument.

We are forced to enumerate x, , into Q should E permit both sides after s,.
Indeed, note that in the situation above, it is also possible for xk+2,s2 to affect X4 28
perhaps x, ., <@, = “((I);,sa(AsS? L) N Y =u(¢e’53(Bsa; X)) for example E might
permit g, and g, causing usto enumerate L which might be below both u(Pes fAs X)) )
and u(DB'sz(Asz; X, )) so that we are forced to enumerate x, , by a cascade effect

(Diagram 3)
/ /: / f
XNQ \(k\
. ‘ ‘ . s

Diagram 3 : A cascade effect with x, , , causing x_, ;to be enumerated
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Because of the fact that x, 1, s> MU (e, X; 5,) we know that the only way this
situation can occur is for two numbers like x, and x_ to enter B and A, in the sequence described
above.
Again it is possible for x,  ; <u,. We must still be above to rescue (2.7) as with
(2.10). Evidently now we must ask that all computations 'potentially injury' u, must be
E-correct (at activation). This in particular, in the verification, ¥ would demand that if
@e’sz(Bsz; L | then u(tbe,sz(’Bsz; X)) is E-correct and so on up the cascade.
The whole point is that at the time of activitation of x, ; (in (2.13)) ¥ can see all these
computations. The only difficulty then is to convince oneself that for all i, there is a y-state
where all computations potentially injury u,(x(Y, i, s)) are E-correct should 6*b TP and
@m(ﬁ @E)= A. The reason that such a stage must oceur is that as soon as x(Y, i, s) is
activated, it asserts control on all existing x, ; forx, ;> x(Y, 1, s) and stops them being
Jollowers. ’

Thus the only way they will enter Q is if E forces them to enter. Now if
i¢F - F, then x{v, i, s) = x(Y, 1) will not enter A and if @ Beor) = A then the m - use of
x(Yy, 1) is bounded. Computations that are not E-correct cause enumeration and hence as
(I)m, . (st DE; x(V, T only finitely often, such a stage must occur, Thus (2.7) can be
rescued.

Another subtle point is that the construction must be kept < F. The situation

above has the potential to cause mischief since now perhaps large E-changes can cause small
enumeration, i.e. arelatively large change in E can cause a relatively small number like x,

toenter Q (perhaps u, =u(®@, g (BS ,xk)) and u, -—u(<II'e s (’Bs ;X,)) are very big.

For the basic R,-module F had no problems as x, , ~€ Q iffthe x_, ‘
is appointed to trace x, . and either computation is E-incorrect. The way traces will be -

~ appointed will ensure this is <;F.

In our case the procedure is as follows. F knows that any number to enter is
either an active follower or a trace. In the situation above the procedure goes roughly like this.
To decide if x,_, ; ; enters Q first ask if the e-computations of x,_ , ; ; are E-correct. If not then
Xg+1s € Q. If so then note that they only way x, for g <k + 1, s can enter will be because

they are followers.They will be of the form x(p, i, s) for some p > ¢”b. Find the stage s,
where F stopes permitting all such 1. If x, , ¢ Qs then no x(p, 1, s) which was

active before xk .5 WAS appointed can havc cntered (as for such x(p, i, s) we would
enumerate X, ; . as we mentioned before). Thus the only x(p, i, s} to have entered after
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s would be ones which became active af  o"b-stages after s.

Let S5 <s, be the stage where the last such x(p,i,s) entered. By the
argument above (for the o-module) since we won't enumerate any existing Xgs, unless
both sides change (and be E-incorrect) we see that X, , (€ Q iff x, M€ QSﬁ where
8¢ = ps(E[s,] =E,[s5]). In this way, A, B and Q<. F.

2.15  The Priority Ordering and the Problems with @+ 2 Branches :
General Machinery

Tn a normal 0" priority construction ope defines a ﬁrioﬁty ordering % via
Jexicographic ordering on the tree of strategies (eg Soare (15, 16]). Then if o is played during
stage s we would initialise all T to right of 6. The argument is that if ¢ is the leftmost math
visited infinitely often than we are left of © only finitely often . This is no longer true
in our construction. Here we have o+ 2 branches, and, should b be the correct outcome we
might nevertheless actually be left of b infinitely often. Were we to use the standard 0"
intialization strategy (i.e. initialize nodes right of © when we vist T), we would intialise all .
v ¢/b cofinally in the construction.

Thus we will be guided by the principle that we cannot intialise all of ¥ © 6”b
each time we are left of o”b. On the other hand, B > ok, 1) cannot respect all of they 2 o”b
when we play 6*(k, u). There are two reasons for this. First - many such y would be using
Xg ¢ for & > k which would 'appear wrong' when we visit 07(k, u). Second, from more
general grounds, o™k, u) ought to only respect a finite number of nodes extending 6”b, so as
to be above to be met if ok, u) € TP.

Our idea is to define a (local) priority ordering < so that T <" 7y implies y must
respect T's restraints. We delay the exact definition of T until later, but we ask that <"isawell

ordering.

To motivate the following, consider a simple situation where ¢ = A and so we
ask what sort of T > b say ¥ > (k, u) should respect. A natural choice would be that (e.g.)
B D (0, u) should not respect anything, and that p O (1, v) perhaps might only respect b and
perhaps B 2 (2, u) should respect for example b0, u), b0, d) and bA(L, v), br(1, d) and
b w (see diagram 4)



128 Downey (111-140}

(0, u) (0,d) (1,u) (1,9) (w)

Diagram 4

The idea is that Xg, s xl‘s,and X3¢ Can only be assigned to such nodes T <*(2,u)
and hence if (2, n) appears correct as x5 ; appears E-incorrect any restraints associated with it
vanish. When we visit (2, u) we only respect this finite set of restraints generated by Y
extending (0, u), (1, u)or y <"(2,u) and (2, u) < Y. Note that as a node such as b can have
infinitary outcome (e.g. (0, u)) there is a little problem for say B > (2, u). In some sense when
we visit § it may be that 5 must respect b's restraint on say X, ..

If we suppose (2, u) is the correct outcome and xl"s =x(b,0,s)with0 ¢ F, it
may be that the correct b coutcome is (0, u) but when we visit (2, u) b's restraint is up. The
point is this. We are - after all - going to have followers apointed for Y2 (2, u). Such
followers need to know when it is appropriate for them to enter. This is a familiar enough
problem. After all, the potentially bad numbers are only x; ¢ X; ¢ and x, ; and we really only
need to guess the 1, behavior of the nodes to which they are assigned.

We can either do this implicitly via the so called "hattrick™ approach, or we can
be more thematic and expand the tree of outcomes of (2, u). Really we only need to know the
number of such x; have infinite activity associated with them, and therefore to guess the &,
behavior of nodes associated with x, X, X5, (2, w) could have a tree of 8 outcomes in diagram
5 below.
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(0, u)

{1, u) 2 )

Diagram 5

Doing this expansion would allow us to know exactly the behavior of the nodes
associated with Xg, X;, X, if (2, u) & TP, and this would be the thematic way of performing the

construction.

, We shall perform a combinatorially simpler approach rather more along the lines
of a pinball machine - by noticing we can have only one version of (2, u) if we allow injury
from the right. Imagine y is a follower with guess ¥ 2 (2, u) that is F-permitted. We need to
add y when the restraints for T <* ybecome E-incorrect (or at least don't restrain y). The
construction will ensure that if x; _is associated with p and x; _ withn and i < j then p <.
The problem is that F needs to sort out if y will enter.

F essentially goes to a stage where x; , Xy ¢ Xy ¢ cannot later be F-permitted
and asks if the computations corresponding to there X; restraining y are E-correct. If so then y
can't enter. The process it must avoid as if (say) x, ; restrains y then later x,  acts (cancelling-
the restraint associated with x, ) butit turns out that x; ¢ has E-incorrect restraint. We note that
this can only happen if the node associated p with x, | initializes the associated node M with
Xy s+ When this happens we will initialize (2, u) and ensure that, thereafter Xy ¢ Can only be
associated with nodes £ p. This device makes the argument and the priority tree such simpler
cominatorially and can be used purely because of the way we appoint numbers. (In some other

arguments it does not seem to be applicable.) Note that the construction still remains <. F.

From the other point of view, nodes ¥ O (2, u) will set up restraints whilst they

appear satisfied.

Collectively {(i, u) : i € @} might restrain all those p O b from being met.
Again we must allow T <*(2, u) priority over the restraints of such y. This tradeoff ensures that
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(2, u) has finite effect on b if b is correct and vice-versa if (2, u) is correct. Hence Harrington's
- "golden rule” is satisfied (i.e everyone has an environment that coheres with everyone else).

The final problem 3 2 b might have is that it might not get stable followers.
For example, take 11 D b. Now at some b - stage s, we might assign X; stoM. Now x,  may
be incorrect (as x; _ 1, s has E-false computations). At the nextb - staget, X; 1 (#X; ) may be
assigned to some Y of lower priority than 1] (as perhaps tisnotan - stage). Now perhaps Yy
enumerates x; , before we visit 1. Now X; , 18 no longer available for 11 so we choose X ¢
some j > 1. If this process repeats itself infinitely often then after we lose at 11, and we would
say T does not get a stabh_e follower.

To overcome this problem, at each stage s for each node y we have the task of
ensuring that there will be infinitely many numbers set aside for+y should 7y be visited, and this
task is met if Y C TP. The idea is to simply use a quene. We look back on the construction at
the next b - stage t (as above) and see that 1| was the hightest priority node previously visited
with out an inactive follower and see that X; s Was asigned to 1. We then declare X; yasonlyto
be available for 7 (or higher priority nodes) thereafter (this is consistent with our earlier
devices). Note that activiation only occurs if 1 is visited so the only time infinitely many 7 -
numbers are so "directed" to 1} is if some 7 < M has the ©, outcome.

It is clear that the local ordering must be continued throughout the tree and we
will give details in (2.16) below. We remark that before we discuss the full construction we _
will discuss the in (2.18) general machinery of (2.15) in the context of another construction the
Lachlan nonbounding theorem [10] which is the best known and probably the easiest of the
0" arguments. If the reader has not altogether followed the previous discussion he or she
might like to read this section.

2.16  The Priority Tree and Local Ordering

We shall define the tree T in the obvious way we want "levels" where R, occurs
~atlevel 0, Py at level 1, R, atlevel 2 etc.

The easiest thing to do is to assign a rank for Y T and define T inductively.
Thus A hasrank 0. The outcomes of A are {(i, u) : T € ®) and b and w. We call & the rank 0
node (written rk(0) = A).

Now on each of A's outcomes we will place a copy of P, i.e the outcomes
P Py )
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{(, w), (i, d) i e w}and w giving each of the outcomes of A rank 1. Now put a copy of A's .
outcomes on each version of Py's outcomes and these have rank 2 etc. '

Similarly we define the local ordering <" on T inductively in any reasonable
way as we did for A.

This we start A and for each outcome (j, n) define < via.
All (i, u) and b are <* w.

(0,u) (0,0) <*yally € Tandy=(0,u) (&y=A)
(I, u) t<" (1, u) forallte T with t> (0, u)
b<*(1,wand (1, n) <* tall T e T otherwise.
x
(2,u) : t<" (2,u)forallte Twithto (1, u)
1< 2,u)forallte Twitht<" (1, wandt<* 02,u)
<" (2, u)if T = bAO, u), bNO, d), bA(1, u) b, d)
or T=b*w. We have (2, n) <" 1 otherwise.

In general one extends the ordering above in any reasonable fashion. I am using
the idea that (n,. u) should be <* all T <" (n - 1, u) and should respect an increasing finite number
of rank m < n nodes in such a way as the whole tree to the right of b is eventually enumerated.
Also consistency principle is that if ¢ is a node devoted to P, then &% <" oM iff o7 < oMand
so that the <" differs only because of even rank nodes.

One can now extend <" to all of T by an inductive procedure. The only real
consistency proviso is that if ¢ O b and ¢ is devoted to R, then T > o/(i, u) with T2 o”b will
agree with the set of T <* (j, u) with 1> 6”b for some j.

2.17 Remark

The reader should think of <* as the sort of ordering one gets if we were to write
the R, requirements and then constructed the tree with no b - outcome and the (i, u) outcomes
(of A) scattered over the tree. The outcomes (i, u) correspond roughly to a "linking"
procedure and the regioﬁ above (i, u) as a pruned tree constructed via lists as in Slaman/Soare
account [16] of there Lachan Nonbounding theorem. We expand on the signifigance of this
below (in 2.18).



182 Downey — (111~140)
Theorem (Lachlan[10)3a=0V (b,c<a(®ne=0—-(b=0vc=0)

Here one meets the requirements.

tAEW

e

P

e

R, :®, (A)=V, and T, (A)=U, ->(V, recursive v U, recursive or (V1) R, i))
where o
Re, 11 QeEW,.

Here we build Q, <; V,, U, and Aand < ®,, V. T, U, > is an enumeration of

e"eeE®
all 4-tuples consisting of 2 r.e sets and two functionals. The strategies associated with the

above have been discussed in great detail in [10, 15, 16] and we will only give a very brief
account (for the sake of completeness). "

The basic module for R, is to have two restraints 1, (e, s) and r, (e, s) we attempt
to meet R_ by followers. If we fail one of V= @ or U, =; @ will hold.

The basic module consists of the steps below:-

Step [ Pick a follower x = s at stage s and now wait till I{g, t) > x and
x € W, for some t 2 s, where for this section (e, s) = max {x (Vy<x) ((I)e’ SAGY=
Ve’ [ (Y) and l_‘e' [ (As ; Y) = Ue, 5 (Y))} *

Step 2 When t occurs, open a V,, - gap by setting 1, (e, t) = 0,
potentially allowing V, to change.

Step 3 Wait till the least stage t; > t such that 1 (e, t;) > (e, ). Adopt
the first case below to pertain.

Case (Succeésful closure) V,  [Ix]=V, [x]
£ l L]

Action, Goto4, setting (e, ;) =0

Case 3b (Unsuccessful closure) Ve,tl[x] =V, [x]

Action _ Setr (e, t;) = t; choose a new follower x =t, and go to step 1.

Step 4 Wait till t, > t; occurs with Ie, ) > 1(e, t;) adopt the first case to
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pertain

Case4a (Successful closure) Ue,tz[x] #Ue't[x]
Action  Put x into Q,, meeting R, .. Stop.
r 2 r

Case4b (Unsuccessful closure) Ue.tz[X] = Ue't[x].
Action  Set 1, (e, t,)) =T,(e, t,) =1,, pickupanew x and go to step 1.

The outcomes of the module above are, in order of priority f (we reach 4a), g
- (infintely many case 4b), g,(infintely many 3b, but only finitely many 4b) and w (stay waiting).
To use our set up, a node G on the tree devoted to R, would have ® + 2 outcomes labelled

(0: gz), 03 gl)s (13 gz)a (1: gl)) " ._.‘-’—’ f, W,

where (i, g;) denotes the outcome that R, ; has outcome g fis she T, outcome : that
all the R, ; have finite behaviour and w 1s (e, w) 5 oo outcomc

Again we would define a local ordering <" on the tree made up from such
primary outcomes where outcome (i, g;) would be refined by having a finite tree of
suboutcomes corresponding to the &, behaviour of those T <*(, gj) with T D s/ f(this is easier
the most general such theorem as we don't need the whole tree only the number of nodes that
exhibit 1, behaviour).

We play outcome f whenever it looks correct. here that would mean that we
would have a monotone maker m(e, s) and, whenever we see that Re, P Re, m, s) all exhibit
finite behaviour (i.e. either waiting for R, i's current x to enter W, ; or we get the 4a for
R, ;) we play f and set m(e, s + 1) =m(e, s) + 1.

Note that if (i, gj) is the correct primary outcome of R at ¢ then those
Y S, oM, gj) only have finite effect, and there are only finitely many B <* o with B 5 O
These exhibit at worst =, beaviour and this beaviour can be guessed as the correct sub -outcome
pof ork, gj). This means that the restraint rj(c*'\(i, gj)’\ B, s)holdsV, (=1 orU, (j=2)
during the co-gaps and there is no change in the gaps. It follows thatif e.g. j = 1, then V, is

recursive.

We remark that we feel in some sense that this technique is to 0" - arguments is
what the tree method was to 0" - arguments, as in some sense, it is the 'natural' method of
doing such arguments. We shall expand on these comments later in §3.
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2.18  Notes on the Nonbounding Theorem, the General Machinery and
the 0" Method

As we remarked in (2.17) the <" priority ordering can be thought of as the
alternative method for the construction. (We also remark that one can use a more dynamic
notion of local ordering. This device was used by Shore[13] and a forth coming paper of
Downey and Shore (see the note at end of paper).) The module for Slaman's density theorem
is, itself, quite complicated and the fact that the construction remains <; Fquite delicate. To
aide the reader will take time out to discuss the machinery of (2.15) and (2.16) in the context of
a much better know ( and easier construction). Here we recall the nonbounding theorem of
Lachan.

2.19  The Construction and Verification *

The inductive strategies in this result are the sathe as those for the o-module
described earlier. The basic rules are that if y is associated witho e Ttheny <lol. Fy> o
and x; _ is a member of ¢'s stream at s and associated with y then for all stagest2 s, X; 518
associated with only 1 such thatn) <™ y, and if X g is associated with v and some 1 <* 7y asserts
control of x;  at stage s (and declares X; ¢ to no longer follow (e.g. X; s <T (0, s)) then for
all t s, x; , can only be associated with p <* 1. '

If o is associated with R, and we see some X; , e-computation have E-incorrect

use, we enumerate x;  , . as described in the a-module. Namely x enters if nobody

i+1,s
controls x; , , ( or if both sides change, and x; 1, s does not enter if only one side changes but
the other side has higher priority control asserted on it. We will play a 6" (i, u) stage the next
time we visit 6. If r (e, s) is preserving or measuring a computation at p and this is
E-incorrect at s + 1 we cancel the restraint. If x; s =x(Y, ], 8) (1 Yl odd) is active and j occurs in
Fat s, we declare x;  as F-permitted aty. This remains so for all stages t 2 s unless some
higher priority X; ¢ acts, the region over which y assert control is E-incorrect.

The construction then proceeds in the obvious way in substages. Starting at A
we see find the highest priority option amongs o/\(i, u) appears correct, b appears correct,
G"w appears correct, or some 7T requires attention (that is some x(t, j, s) which is F-permitted

is, {now) unrestrained).

One then chooses the relevant option and this gives 6, = X, and ¢; > 6. We
proceed until | o, | = ¢ inductively.
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The verification of the construction is virtually the same as the earlier discussion
and we will this omit it, and let this conclude our notes on Slaman's density theorem.

§3 EXTENSIONS, VARIATIONS AND OTHER RESULTS USING THE
. TECHNIOQUE

The proof of Slaman's density thereom, as well as the general machinery of §2 admits
several further extensions and applications: First, a miner modification to the ijill give an
embedding of the countable atomless boolean algebra into any [e, f] with e < f. This follows
by virtually the same argument (see e.g. [3]).

Actually we feel that by varying especially the Friedberg type requirements P one can
obtain many other density results. One example is the density of the superbranchmg degrees.
Here a degree a # 0' is superbranching (Downey - Mourad [4) if for all b > a there exist ¢, d
such that a<e,d<bandcnd=a.

To see this we need to consider how one might make such an a. We would build A = WA,

C=yC, sandD, =D, ; tomeet

P2<e,i> : (WeSTA)V((I)i (A)#"Ce)

Py o ivs1: WeSpA) v (®;(A) #D,) with C,, D, <, W, ® A, and
N, ;: @, (C) =0, (D) = ttotal = t < Awhere C, = C, ® A and
D, =D, ®A.

Letl(e,1,8) =mx{x: (Vy <x)(@, (C; ;3 ¥) =D, , D; ;;v))} and
ml (e, i, 8) =mx{1(e,i, ) : t<s}.

To meet the P, @i We will define a stream of followers {x (e, 1,],8) :j& w}- we shall
wait until L (e, i, s) > x(e, 1, j, s) where

L(e, i, 5) = max {x (Vy <x) [(Il'1 A =C, (y)]} and then appoint
x(e,i,j+1,8) > u(CD (As ; x(e, 4, J, s))) in the same way as (2.3). Again we shall wait until
we see W, permit some j and then put x(e, i, j, s) into C,.

This wins Py, ;, by a Friedberg argument if we restrain A on (e.g.) x(e,i, j + 1, 5). As
we don't know whether W, <. A, we may get all x(e, 1, j, s) defined for j € w (perhaps
W, =0). Subsequent P, must this take numbers from P,_, ;.. stream but this causes no new
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problems save to ensure that lim, x(e, i, j, s) exists, this being simply done by controlling which
P, have access to which x(e, 1, j, s) (see [ 4] for more details).

The N, , are met in exactly the same way as we did in (2.2). The only problems with
coherence with density are those that have occurred in the last section and virtually the same
reasoning shows that:

3.1 Corollary. The Superbranching Degrees are Dense

It seems to me that the same technique will also show that many other degree
classes are dense. For example the same technique ought to show that the contiguous degrees
are nowhere dense in R, that is, if e < f then there exists a < b with a <a <b < f such that for

-

all ¢ € [a, b], ¢ is not contiguous.

b4 -
As a final example of the use of this technique, we will sketch the proof of the

following result which negatively answers a conjective of Remmel.

32 Theorem There exists an re degree awith 0 <a <0' such thatif B is any
r.e set with deg(B) > a then there exists an r.e splitting BB, =B of B with deg (B)) =a.

Proof LetE#, @& be given. We construct A = ' A, and auxiliary re. set E,, C,

and D, meet

P,iA=W,
N, : @, (A)+#E, and
R.:T(V)=A—->(C,uD, =V, and C =5 A).

Here (I, V) is an enumeration of all pairs consisting of an r.e. set and a
functional. We meet the P, by followers as usual. We shall meet the N, by a Sacks restraint
and shall only have problems with the R,. For the sake of there we shall define reductions
(dropping the "e™) A(C) = A and ¥ (A) =C.

The basic idea for R is to wait till
I(e, s) > x (where 1(e, s) =max {x: (Vy < x)(I:, s(Vc_ o3 ¥) =A,(y)} and define
3(x, ) =Y(x, $) = u(l, ¢ (V, ;3 X)) and y (6(x,8) =<e+1,x,s>.

Were there no N, requirements around, the idea is then quite simple: Whenever
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V. [ 8=V, [8(x, s)] at some least e-expansionary stage t > s enumerate the change into
C,,1-C.and ¥ (8(x, 5)) into A, _ , - A, and then choose a new ¥ (8(x, t + 1)) as, say,

<e + 1, x,t + 12> and again set 8(x, t + 1) =(x, t + 1). Note that if we use y = <0, x, s> to
follow P, then if we ever put such y into A it will cause a change in y(y, s) and hence in 8(x, s).
Note also that if ['(V) = A then lim 8(x, s) = 8(x) and lim_ y(8(x, s)) = y(8(x)) exists, and
further as the use functions are, by convention monotone and &(x) = x, we will have a reduction
¥ (A)=C.

Unfortunately the procedure above makes A = C and complete. However, the
reader should note that R, has already @ + 2 outcomes, that is outcome (i, u) indicating i is least
with I'(V, i) unbounded (fori € ) plus b and w as in §2. Note that outcome (i, u) essentially
codes a recursive set into A provided we ensure that y (8(x)) >y (8(y)) when x >y. This
follows because we get to reset all traces W{(8(x, s)) if 8(x, s) changes. ‘

N, wishes to stop A from changing. It asscrts'conu'ol of w(8(x, s)) (say) when
it sees L(e, ) >y (where LG, ) =mx {x: (vy <) (@, , (A,;y) =E, (y))}) and
Y =y(3(x, 5)) <ufi, y, 8) =u(®; ; (A, ; y)). This control asks us to keep y out of A.

This causes problems. As V is not under our control V[8(x, s)] might change
after N asserts control. If we do not enumerate W our only option is to enumerate the
relevant changes into D (and not C). But note now that x is finished as a possible follower in
the sense that as 8(x, s) is now no longer equal to y(x, s), if x enters A it may not cause a
change in V below 8(x, s). Hence we may not be able to get C to comprehend that such an x

enters.

The machinery of (2.15) and (2.16) handles this situation very nicely. We put’
the R,, P, and N, on a tree in the same way as in §2 defining a local priority ordering <*. Then
if T corresponds to an N, and ¢ to R, with © O o”b then 6”(i, u) respect T's control precisely if
1 <* oA, u). This restraint again has finite lim inf (and so has finiteNlimit on the true path on
the expanded tree for 07(i, u)) and so if I (V,, ;1) T then almost all of the (5 (x, 5)) enter A
(i.e. all those = j sorhe j > i). Those N, guessing 67(i, u} will not believe computations uniil
this recursive set enters. On the other hand, for T o 67b then if some y> ¢*b higher priority
than T 1s devoted to D, it will request an x to follow it. It will wait until it sees a fresh x
provided by o”b. It asserts control of x by asking that y(x) and &(x) move everytime y(x)
changes.

The remaining details fit together in exactly the same way as the other
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argaoments and  this concludes the sketch of the proof of this result.
3.3 Final Notes on the Framework

Finally, we point out a couple of remarks on the framework. We feel that the
beauty of the approach is that for a general 0"' argument are simply writes down a g
requirement and then give a module for the whole requirement exactly as ina 0" argument .
The <" machinery then ought to take care-of the coherence problems (in the same way as the <
tree machinery takes care of 0" arguments).

The disadvantage of our approach is that the combinaterics seem more difficult,
than, for example, the linking of Slaman/Soare (at least for some arguments).

This would give a simultaneous extension o{ Slaman's density theorem and
Lachlan's decomposition theorem. It appears to be quite difficult.

Richard Shore has pointed out that one can also construct the local priority
ordering during the construction. For example, if the @ 7, outcomes are labelled i and the
7; outcome is labelled b then the number of times i is accessed can control the number nodes
02 b that i +1 must fespect. Note that if b is correct then this number will be finite.
Similar comments apply from G to i. Shore used this device in his construction; and it can
make the combinatorics easier. Downey and Shore have employed this technique in a
forthcoming paper entitled "Decomposition and infima in the r.e. degrees”. There Downey and
Shore obtain the following generalization of Slaman's density theorem: V a, b (alb — (3¢)
(auclbucandaue,buc<auband (auwc¢) N (buc)=c)). Finally Lerman has
pointed out that the use of 1, trees also occurs in his paper on degrees that do not bound
minimal degrees.
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