
On Self-Embeddings of

Computable Linear Orderings ?

Rodney G. Downey a, Carl Jockusch b and Joseph S. Miller a

aSchool of Mathematical and Computing Sciences

Victoria University, P.O. Box 600

Wellington, New Zealand

bDepartment of Mathematics

University of Illinois at Urbana-Champaign

1409 W. Green Street

Urbana, Illinois 61801-2975

Abstract

The Dushnik–Miller Theorem states that every infinite countable linear ordering
has a nontrivial self-embedding. We examine computability-theoretical aspects of
this classical theorem.

1 Introduction

The Dushnik–Miller Theorem [5] states that every infinite countable linear
ordering has a nontrivial self-embedding, viz an order-preserving map from the
ordering to itself that is not the identity. It is a well-known piece of folklore that
this result fails to hold effectively in that there is a computable linear ordering
(even of classical type ω) with no nontrivial computable self-embeddings. (See,
for example, Downey [1].) Downey and Lempp [3] constructed an example of a
computable linear ordering L whose classical isomorphism type is ω and such
that any nontrivial self-embedding computes the halting problem. 1 They also

? Research partially supported by the Marsden Fund of New Zealand. These results
were established during Jockusch’s visit to Wellington and Nelson as part of the
NZIMA CoRE program in logic for 2003/4.

Email addresses: Rod.Downey@vuw.ac.nz (Rodney G. Downey),
jockusch@math.uiuc.edu (Carl Jockusch), Joe.Miller@vuw.ac.nz (Joseph S.
Miller).
1 Downey and Lempp [3] also claim in their paper that their construction establishes
that the proof-theoretical strength of the Dushnik–Miller theorem is ACA0 in the
sense of reverse mathematics. (Here we assume that the reader is familiar with these

Preprint submitted to Elsevier Science June 14, 2004 13:59

observed that for any computable infinite linear ordering L, 0′′ has enough
computational power to construct a nontrivial self-embedding of L. Later,
Lempp et. al. [7] examined the question of whether 0′ is actually enough to
construct a nontrivial self-embedding for a computable linear ordering. They
claimed that there is a computable linear ordering with no 0′-computable
nontrivial self-embedding. Unfortunately their proof contained a significant
error, and hence the question remained open.

In this paper we will show in two different ways (using different kinds of or-
derings) that there is a computable linear ordering of ω with no nontrivial
0′-computable self-embedding. We will also show that certain computable lin-
ear orderings have nontrivial self-embeddings of degree strictly less than 0′′.
A linear ordering L is discrete if each element of L except the greatest (if
any) has a successor and each element of L except the least (if any) has a
predecessor. We show first that every computable discrete linear ordering of
ω has a nontrivial self-embedding of degree strictly less than 0′′. In fact we
prove a result with a weaker hypothesis and a stronger conclusion for which
we now define the terminology. If L is a linear ordering, let S(L) denote the
set of elements of L which have a successor. If a and b are Turing degrees, we
say that b is PA relative to a (written b � a) if every a-computable partial
{0, 1}-valued function can be extended to a total b-computable function. We
prove the following result:

Theorem 1 If L is a computable linear ordering, S(L) is 0′-computable and
b � 0′, then L has a b-computable nontrivial self-embedding.

We then show that this result is best possible in a strong sense.

Theorem 2 There is a discrete computable linear ordering L0 such that every
nontrivial self-embedding of L0 has degree PA over 0′ (and so strictly above
0′).

The best possible result we might aim for would be to construct a computable
linear ordering all of whose nontrivial self-embeddings compute 0′′. We do not
know if this is possible. We do know that no discrete linear ordering suffices
for this purpose.

If L is a linear ordering, let A(L) be the adjacency relation for L. Thus,
the elements a, b satisfy the adjacency relation if they are distinct and no
element of L lies strictly between them. The block relation B(L) is the smallest
equivalence relation on L which contains the adjacency relation. Thus the
elements a, b satisfy the block relation if there are only finitely many elements
of L which lie strictly between them. The equivalence classes of B(L) are called

notions.) This claim is correct, but the verification given in their paper is sloppy. We
take the opportunity to include a clarification by Downey and Lempp. It is included
with their permission. We put this clarification as an appendix at the end.

2

blocks. Clearly every block of L is either finite or order-isomorphic to one of
ω, ω∗ or ω∗ + ω.

We might hope that if an ordering had many finite blocks it would be somehow
simpler to deal with. Strangely these are the very orderings for which we seem
to lack techniques. Indeed, even if an ordering has no infinite blocks, so that
its finite condensation is isomorphic to the rationals, it seems that it still can
be very complicated.

Theorem 3 There is a computable linear ordering with no infinite blocks such
that no nontrivial self-embedding is computable from 0′.

The proof of Theorem 3 is the most technical one in this paper and is rather
more unsatisfying than the earlier results. That is because it is a direct priority
argument that fails to give much more insight than the fact that it is true.
Nevertheless, it might admit variations which would enable more coding to
happen.

Remark Dushnik and Miller [5, Theorem 1], actually proved their result in a
stronger form than we have stated. They showed that every infinite countable
linear ordering L has a proper self-embedding f , i.e. a self-embedding f whose
range is not all of L. Clearly every proper self-embedding is nontrivial, but
the converse fails. On the other hand, the two notions are equivalent up to
Turing reducibility; for any nontrivial self-embedding f of a computable linear
ordering L, there is a proper self-embedding g of L such that g ≤T f . To
prove this, fix a ∈ L with f(a) 6= a, and assume without loss of generality
that a <L f(a). Then define g(x) to be f(f(x)) if a ≤L x and f(x) otherwise.
Then g is a self-embedding of L, g ≤T f , and g is proper because f(a) is not
in the range of g. Our results are all stated for nontrivial self-embeddings but
also hold for proper self-embeddings by this remark.

We prove the results on discrete orderings in Section 2, and present a 0′′′

argument for Theorem 3 in Section 3. All linear orderings we consider are
linear orderings of ω.

2 The discrete case

We begin with a straightforward effectivization of the original Dushnik–Miller
Theorem [5, Theorem 1]. Recall that A(L) is the adjacency relation and B(L)
is the block relation for the linear ordering L.

Proposition 4 If L is a computable linear ordering, then L has a nontrivial
self-embedding f which is Turing reducible to A(L) ⊕ B(L).

Proof. The proof is essentially the same as the original proof of Dushnik and
Miller. There are two cases.

Case 1. Suppose that L has an infinite block B. Fix such a block B and fix b ∈
B. Then B must be either closed under successor or closed under predecessor.

3

Without loss of generality, suppose that B is closed under successor. Define
f : ω → ω as follows: f(x) is the L-successor of x if x ∈ B, and otherwise
f(x) = x. Then f is a nontrivial self-embedding of L and f ≤T A(L) ⊕B(L).

Case 2. Suppose that every block of L is finite. Then the finite condensation
of L (i.e. L/B(L)) is dense. (If there were two consecutive distinct blocks, they
would have to be a single block because they are finite.) Now build a nontrivial
self-embedding f of L in stages, adding one new element to the domain of f
at each stage. Maintain the property that if a <L b, then f(a) <L f(b) and
f(a) and f(b) lie in distinct blocks, and neither lies in the least or greatest
block, if any. Also, fix a0 ∈ ω, and begin by defining f(a0) to be different from
a0. All of this can be done since the blocks are dense and there are infinitely
many blocks. Furthermore, one obtains that f ≤T B(L). 2

Note that if L is computable, then the adjacency relation A(L) is Π0
1 and the

block relation B(L) is Σ0
2. It follows that L has a nontrivial self-embedding

f ≤T 0′′, as is known. It also follows that f may be taken to be 0′-computable
if B(L) is 0′-computable.

In this section we will show that every discrete computable linear ordering
has a nontrivial self-embedding of degree strictly less than 0′′ and that there
is a discrete computable linear ordering L such that every nontrivial self-
embedding of L has degree strictly greater than 0′. The following notion, due
to Stephen Simpson [9], will allow us to state these results in a sharp form.

Definition 5 Let a and b be Turing degrees. Then b � a (or b is PA over
a) means that every infinite a-computable tree T ⊆ 2<ω has an infinite b-
computable path.

The following lemma is well-known. If a is a Turing degree, define a function f
to be a-bounded if there is an a-computable function g such that g(n) ≥ f(n)
for every n ∈ ω.

Lemma 6 Let a and b be Turing degrees. Then the following statements are
equivalent:

(1) b � a
(2) Every a-computable tree T ⊆ ω<ω which has an a-bounded path has a

b-computable path.
(3) Every a-computable {0, 1}-valued partial function has a b-computable to-

tal extension.
(4) For any two disjoint a-c.e. sets A, B there is a b-computable set C such

that C separates A and B, i.e. A ⊆ C and B ∩ C = ∅.

Furthermore, if a and b are Turing degrees, then

b ≥ a′ =⇒ b � a =⇒ b > a.

Here is one further well-known lemma about the relation �.

4

Lemma 7 For every degree a there is an infinite a-computable tree T ⊆ 2<ω

such that every infinite path through T has degree � a.

This lemma is easily proved from Lemma 6 using the existence of a universal
a-computable {0, 1}-valued partial function. It follows from this result and the
low basis theorem [6, Theorem 2.1] that for every degree a there is a degree
b � a such that b′ = a′.

We do not know whether for every degree b � 0′ every computable linear
ordering of ω has a b-computable nontrivial self-embedding. However, the next
result shows that such embeddings exist for a fairly wide class of computable
linear orderings.

Theorem 8 Let L be a computable linear ordering of ω and let S(L) be the
set of numbers which have an L-successor. Suppose that S(L) is 0′-computable.
Then for all b � 0′, there exists a b-computable nontrivial self-embedding f
of L.

Proof. The following easy lemma applies to any computable linear ordering
L of ω. It does not use the hypothesis that S(L) is 0′-computable.

Lemma 9 Let L be a computable linear ordering of ω. Then the following are
equivalent:

(1) For every b � 0′ there is a b-computable nontrivial self-embedding of L.
(2) There is a 0′-bounded nontrivial self-embedding of L.

Proof. We show first that (2) implies (1). Let f be a 0′-bounded nontrivial
self-embedding of L, and fix a ∈ ω with f(a) 6= a. Let P be the class of all
self-embeddings g of L with g(a) 6= a. Then P is a Π0

1 class, so there is a
computable tree T ⊆ 2<ω such that P is the set of all paths through T , and
furthermore, by hypothesis, there is a 0′-bounded path through T . Hence by
Lemma 6 for every b � 0′ there is a b-computable path through T , and of
course every path through T is a nontrivial self-embedding of L.

Now assume that (1) holds. By Lemma 7 there is an infinite 0′-computable
tree T ⊆ 2<ω such that every infinite path through T has degree b � 0′. By
the hyperimmune-free basis theorem [6, Theorem 2.4] relativized to 0′, there
is a path B through T such that every B-computable function is 0′-bounded.
By (1), applied to the degree b of B, there is a B-computable nontrivial self-
embedding f of L. Then f is 0′-bounded by choice of B. 2

We return now to the proof of the theorem. We are assuming now that S(L)
is 0′-computable and that b � 0′. We must show that L has a b-computable
nontrivial self-embedding. By the lemma just proved, it suffices to show that
L has a 0′-bounded nontrivial self-embedding. This is done by considering the
following two cases.

5

Case 1. The ordering L has a block B which is closed under successor. Fix
such a block B, and fix b ∈ B. Define f : ω → ω as in the proof of Case 1 of
Proposition 4. Then f is a nontrivial self-embedding of L. Furthermore, f is
0′-bounded since A(L) and S(L) are 0′-computable. (Specifically, let g(n) be
the numerically greater of n and its L-successor if n ∈ S(L), and otherwise let
g(n) = n. Then g is 0′-computable, and g(n) ≥ f(n) (in the standard ordering
of ω) for all n.)

Case 2. Assume now that Case 1 does not hold. Under this assumption, we
prove that there is a 0′-computable nontrivial self-embedding of L. Note first
that the block relation B(L) for L is 0′-computable. To see this, observe that
if a <L b then a and b lie in different blocks if and only if there is a c /∈ S(L)
such that a ≤ c < b. (If such a c exists, then there are infinitely many numbers
between c and b, and hence there are infinitely many between a and b. If a and
b lie in different blocks, then such a c must exist, since otherwise the block of
a would be closed under successor, and Case 1 would apply.) This gives a Π0

2

definition of the block relation, and as mentioned the block relation is Σ0
2 in

every computable linear ordering. It now follows from the remarks after the
proof of Proposition 4 that there is a 0′-computable nontrivial self-embedding
of L. 2

Corollary 10 Suppose that L is a computable discrete linear ordering. Then
L has a nontrivial self-embedding of degree b < 0′′, in fact with b′ ≤ 0′′.

The following is a corollary to the proof of Theorem 8.

Corollary 11 Suppose that L is a computable linear ordering and that 0′′ 6≤T

0′ ⊕ S(L). Then there is a function f such that 0′′ 6≤T f and f is a nontrivial
self-embedding of L.

Proof. Suppose first that L has a block closed under successor, so that Case
1 in the proof of Theorem 8 applies. Let C = 0′ ⊕ S(L). By the discussion
in Case 1, there is a C-bounded nontrivial self-embedding f of L. Fix a ∈ ω
with f(a) 6= a, and let P be the class of order-preserving maps g from L into
L with g(a) 6= a. Then P is a Π0

1 subset of ωω with a C-bounded element,
so it follows from [6, Theorem 2.5] relativized to C, that P has an element f
which does not compute 0′′. If Case 2 in the proof of Theorem 8 applies, then
L has a 0′-computable nontrivial self-embedding, so the desired conclusion is
immediate. 2

We now show that Theorem 8 is optimal in a certain strong sense.

Theorem 12 There is a computable discrete linear ordering L of ω such that
every nontrivial self-embedding of L has degree � 0′. (In particular S(L) is
computable, so by Theorem 8 the degrees b which compute nontrivial self-
embeddings of L are precisely the degrees b � 0′.)

Proof. We first need another standard lemma.

6

Lemma 13 Let a be a Turing degree. Then there are disjoint a-c.e. sets A0,
A1 such that every set which separates A0 and A1 has degree � a.

Proof. Let θ be a universal a-computable partial {0, 1}-valued function, and
let Ai = θ−1(i) for i = 0, 1. Apply Lemma 6. 2

By the previous lemma (with a = 0′) there exist disjoint Σ0
2 sets A0, A1 such

that every set C which separates A0, A1 is of degree � 0′. Since each Ai is Σ0
2

there exist uniformly computable sets Ai,s for i ≤ 1, s ∈ ω such that, for all x
and for i ≤ 1,

x ∈ Ai if and only if (∀∞s)[x ∈ Ai,s].

(Here (∀∞s) means “for all but finitely many s”.) To obtain the computable
approximations Ai,s, let h be a computable function such that for all a ∈ ω
and i ≤ 1,

a ∈ Ai if and only if Wh(a,i) is finite.

Then define
Ai,s = {a : Wh(a,i),s = Wh(a,i),s+1}.

We will define a computable linear ordering L. First we give an intuitive sketch
of the construction. Let f be a nontrivial self-embedding of L, and suppose
that f(a0) 6= a0. We give a strategy (independent of f and a0) for defining
L so as to show that the degree of f is � 0′. Suppose for the moment that
a0 <L f(a0). We will let 0 be the least element for L and 1 be the greatest
element. By replacing a0 by f(a0) if necessary, we may assume that a0 6= 0.
Define

S = {b : b <L a0 or b <L f(b)}.

Note that 0 ∈ S and 1 /∈ S. The following simple lemma is crucial.

Lemma 14 If b ∈ S, b <L c, and the L-interval [b, c] is finite, then c ∈ S.

Proof. It suffices to show that S is closed under successor, so suppose for a
contradiction that b ∈ S, c is the successor of b, and c /∈ S. If b <L f(b), then
c ≤L f(b) <L f(c), so c ∈ S, a contradiction. Since b ∈ S and it is not the case
that b <L f(b), it follows that b <L a0. Hence c ≤L a0, as c is the successor
of b. Since c /∈ S, we have also that c ≥L a0, so c = a0. But a0 ∈ S since
f(a0) > a0, and hence c ∈ S, which is the desired contradiction. 2

Note that S is f -computable, so it suffices to show that there is a set C ≤T S
such that C separates the disjoint Σ0

2 sets A0 and A1 described above. To do
this, we first choose a number w0 6= 0, 1 and decree that 0 <L w0 <L 1. We
use the computable approximations Ai,s to ensure that the interval [0, w0] is
finite if 0 ∈ A0, and the interval [w0, 1] is finite if 0 ∈ A1. Since 0 /∈ A0 ∩ A1,
this is compatible with making the field of <L infinite (in fact all of ω).

Suppose that 0 ∈ A0. Then [0, w0] is finite by construction, and also 0 ∈ S,
as already mentioned. It follows from Lemma 14 that w0 ∈ S. One may show

7

by a parallel argument that if 0 ∈ A1, then w0 /∈ S. Thus, in constructing
an S-computable set C which separates A0 and A1, it is safe to put 0 into C
if and only if w0 ∈ S. We now bisect the interval [0, 1] into the subintervals
[0, w0] and [w0, 1]. One of these subintervals, say [a, b], has the property that
a ∈ S if and only if b /∈ S. Thus, to ensure that C(1) is computable from S,
we can repeat the same process, but starting with [a, b] in place of [0, 1]. That
is, we pick a witness w1 in the interval (a, b) and ensure that [a, w1] is finite
if 1 ∈ A0 and that [w1, b] is finite if 1 ∈ A1. We then put 1 into C if and only
if w1 ∈ S. This bisection process is then iterated in the obvious way to code
a separating set C into S.

One small difficulty with the above argument is that L must be computable
and not merely S-computable. Unfortunately, there is no reason to think that
we can compute effectively which subinterval of a given interval to use. The
solution is simple. We allow the construction to use both subintervals. For
example, there is only one “version” of w0, but there may be two “versions”
of w1, one in the subinterval (0, w0) and the other in the subinterval (w0, 1).
In general, there may be up to 2n “versions” of wn, but S can compute which
is the correct version, w∗

n, and we let C = {n : w∗

n ∈ S}.

Given the above intuitive description, it is straightforward to work out the
details, and the reader may wish to do this as an exercise. However, a con-
struction and verification are included below for completeness.

In the construction, we define a computable partial function θ which associates
with certain intervals [a, b] a c.e. set Wθ(a,b). When we do this, we are requiring
that the interval [a, b] be finite if Wθ(a,b) is finite. Let Rs denote the set of
elements which have been put into the field of L by the end of stage s. θ(a, b)
will be defined if and only if there is a stage s such that a and b are L-
consecutive elements of Rs. We also define a computable function r. When
we set r(x) = n, we are letting x play the role of some version of wn in the
intuitive sketch.

Stage 0. Let R0 = {0, 1} and decree that 0 <L 1. Choose θ(0, 1) so that
Wθ(0,1) = ω. Let r(0) = r(1) = −1.

Stage s + 1. Call an interval [a, b] receptive at stage s + 1 if

(1) a, b ∈ Rs and a <L b
(2) There is no c ∈ Rs such that a <L c <L b
(3) For every interval [a′, b′] with a′, b′ ∈ Rs, a′ ≤L a <L b ≤L b′, θ(a′, b′)

already defined, and 〈a′, b′〉 ≤ 〈a, b〉, it is the case that |Wθ(a′,b′),s| ≥ 〈a, b〉.

(Condition (3) above says roughly that putting a new element in the interval
[a, b] would not be too injurious to commitments made that various intervals
must be finite.) If no interval is receptive at stage s + 1, do nothing, i.e. let
Rs+1 = Rs and leave θ and r unchanged. Otherwise, fix the least 〈a, b〉 such
that the interval [a, b] is receptive. Let c be the least number not in Rs. Put

8

Rs+1 = Rs ∪ {c} and decree that a <L c <L b, thus determining L on Rs+1

via transitivity. Define

r(c) = max{r(a), r(b)} + 1.

where of course the maximum is taken over the standard ordering of ω. Finally,
choose θ(a, c) and θ(c, b) so that

Wθ(a,c) = {s : r(c) /∈ A0,s} and Wθ(c,b) = {s : r(c) /∈ A1,s}.

We say that the interval [a, b] receives attention at stage s+1. This completes
the construction.

Lemma 15
⋃

s Rs = ω.

Proof. First, show by induction on s that there exist a, b ∈ Rs such that
a and b are L-consecutive elements of Rs and for all a′, b′ ∈ Rs such that
a′ ≤L a <L b ≤L b′ with θ(a′, b′) defined, the set Wθ(a′ ,b′) is infinite. This is
obvious for s = 0. Now assume that it is true at s, and fix corresponding
values of a and b. It clearly holds at s + 1 (with the same choice of a and b)
except possibly if a new element c is inserted between a and b at stage s + 1.
The statement then holds at s + 1 via the pair a, c if Wθ(a,c) is infinite, so it
holds if r(c) /∈ A0. Similarly, it holds via the pair c, b if r(c) /∈ A1. Since A0

and A1 are disjoint, the statement holds at s + 1.

Assume now for a contradiction that
⋃

s Rs 6= ω. Since numbers enter
⋃

s Rs in
natural order, it follows that

⋃
s Rs is finite. Fix s so that Rt = Rs for all t ≥ s.

Choose a, b ∈ Rs which satisfy the conditions stated in the previous paragraph.
Then the interval [a, b] is receptive at all sufficiently late stages. Hence there
exists t > s with Rt 6= Rs, which gives us the desired contradiction. 2

It follows from the above lemma and the effectiveness of the construction
that L is a computable linear ordering of ω. The next lemma shows that the
required intervals are finite.

Lemma 16 If θ(a′, b′) ↓ and Wθ(a′,b′) is finite, then the interval [a′, b′] is also
finite.

Proof. Let |Wθ(a′,b′)| = k. If a new element is put into [a′, b′] at stage s+1 and
θ(a′, b′) is defined by stage s + 1, then the numbers a, b chosen at stage s + 1
satisfy either 〈a, b〉 ≤ 〈a′, b′〉 or 〈a, b〉 ≤ k. There are only finitely many such
pairs (a, b), and each receives attention at most once, so the interval [a′, b′] is
finite. 2

We now define an S-computable sequence of intervals [an, bn] by recursion.
The intervals will have the following properties:

(1) an ∈ S and bn /∈ S

9

(2) θ(an, bn) ↓
(3) For all 〈a′, b′〉 with a′ ≤L an <L bn ≤L b′ and θ(a′, b′) ↓ the set Wθ(a′,b′) is

infinite

Let [a0, b0] = [0, 1]. Now suppose that [an, bn] is defined and satisfies the above
conditions. If the interval (an, bn) is empty, then the interval [an, bn] is re-
ceptive at all sufficiently late stages and hence the open interval (an, bn) is
nonempty, a contradiction. (There are only finitely many intervals [a, b] with
〈a, b〉 < 〈an, bn〉, and each receives attention at most once.) Let wn be the
first element placed into the interval [an, bn]. If wn /∈ S, let [an+1, bn+1] =
[an, wn], and otherwise let [an+1, bn+1] = [wn, bn]. Condition (1) clearly holds
for [an+1, bn+1], and (2) holds by construction. To prove (3) for [an+1, bn+1]
it suffices (using that (3) holds of [a, b]) to show that Wθ(an+1 ,bn+1) is infinite.
Suppose first that wn /∈ S. Then an+1 = an ∈ S by inductive hypothesis.
It follows from Lemma 14 that the interval [an+1, bn+1] is infinite. Hence, by
Lemma 16, Wθ(an+1 ,bn+1) is infinite. The case where wn ∈ S is analogous.

Let {[an, bn]}n∈ω be the S-computable sequence of intervals defined above and,
as above, let wn be the first element placed in the open interval (an, bn). Of
course, the sequence {wn}n∈ω is also S-computable. Furthermore, it is easy to
check by induction on n that r(wn) = n for all n ∈ ω. (One should include
in the induction the fact that r(an), r(bn) < n and use the fact that either
an+1 = wn or bn+1 = wn.)

Suppose now that n ∈ A0. Hence Wθ(an ,wn) = {s : n /∈ A0,s} is finite. Hence by
Lemma 16 the interval [an, wn] is finite. As an ∈ S, it follows from Lemma 14
that wn ∈ S. Similarly, if n ∈ A1, it follows that wn /∈ S. Let

C = {n : wn ∈ S}.

It follows from the above remarks that C separates A0 and A1. Since C ≤T

S ≤T f (where f is the given nontrivial self-embedding of L), it now follows
from the choice of A0 and A1 that the degree of f is PA over 0′.

In the above proof it was assumed that a0 <L f(a0). If there is no such a0,
instead choose an element a1 6= 1 with f(a1) <L a1. The verification works in
much the same way, but with L replaced by its dual ordering. For instance, S
would be defined as {b : a1 <L b or f(b) <L b}. Of course, it is important that
the construction remains exactly the same and only the verification changes.
Further checking of this case is left to the reader.

It remains to verify that the ordering L is discrete. Suppose for a contradiction
that d 6= 1 and d has no successor under L. It follows that infinitely often d
plays the role of a in the construction. Fix s0 with d ∈ Rs0

. For s ≥ s0 let
h(s) = r(b), where b is the L-least element of Rs with a <L b. By construction,
we have h(s + 1) ≥ h(s) for all s ≥ s0. Furthermore, h(s + 1) > h(s) if d
plays the role of a at stage s + 1. Since there are infinitely many such s, h

10

is unbounded. Choose s1 ≥ s0 with h(s1) > r(d). Then, for all s ≥ s1, either
h(s + 1) = h(s) or h(s + 1) = h(s) + 1. Since the latter occurs infinitely
often, the range of h is cofinite. Choose s such that h(s + 1) = h(s) + 1 ∈ A0.
At stage s + 1, for some c >L d one sets Wθ(d,c) = {s : r(c) /∈ A0,s}, where
r(c) = h(s+1) ∈ A0. Hence Wθ(d,c) is finite, and thus by Lemma 16, the interval
[d, c] is finite. This contradicts the assumption that d has no successor. The
proof that every number except 0 has a predecessor is analogous. 2

Remark The order type of the ordering L constructed in Theorem 12 is
ω + ζ · η +ω∗, where ζ is the order-type of the integers and η is the order-type
of the rational numbers. Since L is a discrete linear ordering with first and
last elements, to see this it suffices to show that the blocks of L are densely
ordered. Suppose that u <L v and u, v belong to different blocks. Fix s0 so
that u, v ∈ Rs0

. We now define recursively a sequence of intervals [an, bn] with
the following properties:

(1) u ≤L an <L bn ≤L v
(2) [an, bn] is infinite
(3) θ(an, bn) ↓

Choose [a0, b0] so that a0 and b0 are L-consecutive elements of Rs0
with

u ≤L a0 <L b0 ≤L v and [a0, b0] infinite. Such a0, b0 exist because [u, v] is
infinite. Clearly (1)–(3) with n = 0 hold for [a0, b0]. Let [an, bn] satisfying (1)–
(3) be given. Let wn be the first element put into the interval [an, bn] after
θ(an, bn) becomes defined. If the interval [an, wn] is infinite, let [an+1, bn+1] be
this interval, and otherwise let [an+1, bn+1] = [wn, bn]. Let h(n) = r(wn), where
r is defined as in the proof of Theorem 12. Argue as in the final paragraph of
the proof of Theorem 12 that the range of h is cofinite. Since A0 ∪B0 is coin-
finite, there exists n such that h(n) /∈ A0 ∪ B0. Hence Wθ(an ,wn) and Wθ(wn,bn)

are both infinite. From this it can be shown that the intervals [an, wn] and
[wn, bn] are both infinite. (We omit the easy details.) Hence the block of wn

lies strictly between the blocks of u and v, and this completes the proof that
the blocks are densely ordered.

3 The case with no infinite blocks

In this section we will prove Theorem 3. That is, we will construct a com-
putable linear ordering with no infinite blocks and which has no nontrivial
self-embedding computable from 0′. This is a direct priority argument ob-
tained by modifying the incorrect argument of Lempp, McCoy, Morozov, and
Solomon [7]. Let {ϕe(·, ·) : e ∈ ω} denote an enumeration of all primitive re-
cursive functions of two variables. We must build the ordering A = 〈A,≤〉 to
satisfy the requirement

Re : If ∀x lim
s

ϕe(x, s) exists, then lim
s

ϕe(·, s)

is not a nontrivial self-embedding of A.

11

In the construction to follow, we will assume that if we have a α-stage where
ϕe(a, b) has changed its value since the last α-stage then we will regard ϕe(a, b)
to have the new value at present. This convention saves considerably on nota-
tion.

As well as the Re requirements, we must ensure that the ordering we build
has only finite blocks. For each z ∈ A we will keep track of the minimal block
around z which respects the intervals preserved by higher priority worker nodes
(belonging to Re requirements as described below); denote this at stage s of
the construction as Bz[s]. This gives rise to the negative requirement

Nz : lim
s

Bz[s] = Bz exists.

The basic module for the Nz is pretty obvious. At each stage s, we will have
two points, l(z, s) and r(z, s) the left and right points of Bz[s]. Then at the
very least, we will turn these into right and left limit points respectively by
adding a new point immediately to the left of l(z, s) and another immediately
to the right of r(z, s). It is making such a strategy live with the one we use
for the Re-type requirements which creates the difficulty. As we now see, the
Re-type requirements tend to want us to preserve various parts of the ordering
as blocks, directly in conflict with the Nz.

We now turn to the satisfaction of the Re. The Re are quite difficult to handle
as a single entity, and hence we will decompose them into subrequirements of
the form:

Re,x,m,n : If lim
s

ϕe(x, s) = m 6= x ∧ lim
s

ϕe(m, s) = n 6= m,

then lim
s

ϕe(·, s) is not a self-embedding.

Basic Module. The basic module is pretty straightforward. Fix e, x, m, n. We
need worry only if x <A m <A n, or n <A m <A x, since otherwise if the
hypothesis of the requirement is satisfied, then lims ϕe(·, s) cannot be isotone.
Thus, without loss of generality, we suppose that x <A m <A n. The basic
module is to perform the following steps.

(i) Wait for ϕe(x, s) = m, and ϕe(m, s) = n.
(ii) Make a restraint r(e, x, m, n, s) which wants to preserve the interval

[m, n], so that |[m, n][s]| = |[m, n]|. Add |[m, n][s]| many new points be-
tween x and m.

(iii) At stages s′ > s, if you see either ϕe(x, s′) 6= m, or ϕe(m, s′) 6= n, drop
all restraint and go back to (i).

Outcomes. The basic module has the following outcomes in order of priority,
starting with the weakest.

(a) f . We wait for (i) above for almost all stages. This is a finite outcome.

12

(b) d. We implement (ii) at some stage and never initialize this action. This
is a global win for Re and is a finite outcome. This outcome will ensure
that all y ∈ [m, n] will be tied together in the same finite block.

(c) ∞. This outcome has stronger priority than those above, and is the out-
come that we cycle through (i) and (ii) infinitely often. This is the dan-
gerous outcome in that its action will be to put infinitely many points
between x and m. We must be rather careful to make sure that they are
not amalgamated into a single block. Additionally, we must be careful to
make sure that we can preserve other things, as we see below. Note that
the ∞ outcome is a global win for Re.

Coherence. We discuss the coherence of the various requirements. We will
assume that the reader is familiar with the methodology of linking as per the
monograph of Soare [10] in this discussion. The Re will have a single top or
mother node τ and the Re,x,m,n will have one or more versions at nodes σ
along each path in the cone below τ . As usual, if e < f , then since the global
priority of Re is higher than that of Rf the mother node τe for Re will be
above that for Rf , namely τf .

Now we begin by examining the relationship between two σ nodes, say σ1

devoted to satisfying Re,x,m,n and σ2 devoted to Rf,y,p,q, with Re of higher
global priority than Rf . First we suppose that σ1 ⊂ σ2.

The first possibility is that σ1̂f ⊆ σ2. This case is straightforward. σ1̂j for
j 6= f will initialize σ2 each time they are played, but this will happen only
finitely often. After that σ1 has no effect on σ2.

The second possibility is that σ1̂d ⊆ σ2. In this case, d represents a global
win for e, and hence σ2’s mother node τf will be between σ1̂d and σ2. Again
this is all finitary and σ1 has finite effect on τf . That is, τf will know that
σ1 has restrained [m, n] from some point onwards. The effect that this has
on the nodes below τf is that σ2 will not be able to increase |[y, p]| should
[y, p] ⊂ [m, n]. We could use the option of “deleting” all such requirements
(or making them inactive). After all, any nontrivial self embedding must move
infinitely many numbers. But too much deletion would get us into trouble, so
we actually use the “h” outcome which will be described below. This is the
option that the hypothesis is correct; instead of deleting the requirement, this
outcome replaces it with one compatible with the restraints above it. More on
this later.

The final possibility is that σ1̂∞ ⊆ σ2. Again we will ensure that σ2’s mother
node is σ1̂∞ ⊆ τf ⊂ σ2. Now it is certainly true that σ2 will only be accessible
at stages where we have just cycled through (ii) of the basic module, but that
something has changed so that (iii) is invoked.

The problem is the following. Each time we invoke Re,x,m,n at σ1, we will
increase the cardinality of the interval [x, m]. Note that τf and hence σ2 will

13

of course know that |[x, m]| → ∞. In particular, nodes in the cone below
σ1̂∞ will know not to even attempt to preserve an interval [p, q] ⊇ [x, m] nor
[q, p] ⊇ [x, m]. This is because no such preservation could hope to succeed.
Indeed, if the union of the intervals preserved by a finite collection of nodes
were to cover [x, m], then at least one of them would fail to succeed.

However, notice that should there be a nontrivial self-embedding with ϕf(y) =
p and ϕf(p) = q, then ϕf must also move q. This means that, if for instance
[p, q] ⊇ [x, m], then we can still diagonalize against ϕf while avoiding the
interval [x, m].

Additionally, notice that we control where the new points are put into [x, m].
Currently we are treating the action of Re,x,m,n as if it was immaterial where
new points were placed. Our idea will be to place the points as close as possible
to x, namely make the apparent end points of Bx[s] limit points. 2 Thus nodes
of lower global priority, such as σ2 below σ1̂∞ will essentially be free to
restrain their [p, q] should we see ϕf(y) = p unless p ≤ r(x), the right hand end
point of Bx, and q > r(x). Again we note that should ϕf be a self-embedding,
then it would by necessity move, for instance, q in such circumstances.

Again we might choose to delete the offending requirement from the cone
below σ1̂∞, but once again we use the “h” outcome described below. The
problematical requirements which want to preserve something not preservable
will be replaced by “safe” requirements. Note that this is a different use of
the “h” outcome than above, where we used it to replace requirements which
wanted to add points to preserved intervals. Again we defer out description of
this outcome.

This brings us to the case where now σ2 ⊂ σ1.

The first case we consider is where σ2̂∞ ⊆ σ1. Now whilst the local priority
of σ2 is higher than that of σ1, the global priorities are reversed. This situation
will of course entail

τe ⊂ τf ⊂ σ2̂∞ ⊆ σ1.

Although [y, p] looks like it will be infinite, we will still need to consider Re,x,m,n

with, say, By ∩ [m, n] 6= ∅.

We would like to be able to preserve [m, n]. It is here that we note that at any
occasion that we preserve [m, n] we have a potential global win for Re. Whilst
this situation occurs we have the potential to be a new strategy for the sake of
Rf .

Thus our solution will be a typical 0′′′ strategy. At the very stage where σ1

is accessible so that ϕe(x, s) = m and ϕe(m, s) = n, we will link from τe to
σ1. That is, at stages s′ after s, until ϕe(x, s′) 6= m or ϕe(m, s′) 6= n, when

2 The astute reader will note that our action at Re,x,m,n is very much like the action
of Nx.

14

we hit the mother node τe we will travel the link (τe, σ1) skipping over the
intermediate nodes. Notice that when we hit σ1 we will play σ1̂d, until either
ϕe(x, s′) 6= m or ϕe(m, s′) 6= n.

Of course, should we eventually see ϕe(x, s′) 6= m or ϕe(m, s′) 6= n, then we
will travel the link one last time to play σ1̂∞. After that, we will remove
the link. We will then be able to visit σ2 again, if necessary. Notice that σ2

does not care about the linking whilst the link is there, since basically at that
stage σ2’s hypothesis seems wrong, and hence it imposes no constraints on the
construction. If σ2 is actually on the true path, what will happen is that it will
be awoken from its slumber (it sleeps whilst it is being linked over) infinitely
often, and its actions will be met.

The conclusion is that either there is some σ1 in the cone below σ2̂∞ which
is linked to for almost all stages, in which case we have globally won Re with
finite effect (namely preserving [m, n] from some s onwards), or every link
created is later removed. This means that σ2̂∞ will be on the genuine true
path (GTP) which is the leftmost collection of nodes which are actually visited
infinitely often. 3 All that will happen is that there will be many delays in the
action of σ2. This causes no real grief.

The next case we need to consider is where σ2̂d ⊆ σ1. Strangely enough, this
is the most complex situation. This case will be played when we have seen
ϕf(y, s) = p and ϕf(p, s) = q. As usual, we assume that y <A p <A q. We will
have increased the cardinality of [y, p] and want to preserve [p, q]. Assuming
that, without loss of generality, x <A m, the problematical case will clearly
be if [x, m] ⊆ [p, q]. This is because σ1 would desire to increase the cardinality
of [x, m], yet [p, q] wishes to preserve it.

The critical observation is that σ1 will know that the cardinality of [p, q] will be
finite. Thus, letting Bq denote the complete block of [p, q], any self-embedding
that moves x, must move (in the situation above) r(q), the rightmost point of
Bq. (In the situation where m <A x, then we would use l(q).) This is a device
from the flawed proof of Lempp et. al. [7].

The device we use here is to insert a new outcome h (for “hypothesis correct”)
to σ1, between d and f . In the cone below σ1̂h, we will only have Re worker
requirements σ′

1 of the form Re,r(q),m′,n′ (assuming that x <A m) for r(q) <A

m′ <A n′.

The reason we can do this is because we “know” that if ϕe really is a nontrivial
self-embedding it must move r(q). Thus, we should be able to diagonalize using
r(q) as a starting point.

3 This is a notion from Downey and Stob [4], which has found a number of appli-
cations, such as Downey, LaForte and Shore [2].

15

In the actual construction, it seems easiest 4 to do this by introducing new sub-
outcomes of the outcome h. These are of the form 〈h, x, m, k〉, and 〈h, m, x, k〉.
The first says that “hypothesis correct, x <A m and the block that σ1 must
respect has right end point k” (In the notation above, r(q) = k.) The other
one says that m <A x, and the analogous thing about the left end point.
Naturally, we have 〈h, m, x, k〉 left of 〈h, m, x, k′〉 if k > k′.

Now the reader might ask, “why can’t this situation re-occur infinitely often
and hence again we would fail to meet Re?”.

But now our situation is quite different. With priority σ1 we will protect Bq.
Thus r(q) is a left limit point. Hence no requirement Rg,w,k,l can try to preserve
[r(q), v] for any v. For g of arbitrary global priority, the usual argument will
hold. That is, if α is a worker node for Rg, and [k, l] (or [l, k] as the case might
be) intersects Bq, then ϕg, if it is a self-embedding, must also move r(q) (or
l(q)). Thus, again we play the “h” outcome for such requirements in the cone
below σ1̂h and they cause no problems.

Notice to be thematic, we will also be able to use linking here. If we see σ ′

1

extending σ1̂h looking accessible and its hypothesis looking correct, we could
play σ′

1̂d, and perhaps later σ′

1̂∞ linking direct from τe. This is because the
action is now arranged to cause no injury to σ2̂d.

Now this, in turn, creates a couple more problems. Suppose we play some
h-type outcome, say 〈h, x, m, k〉, the next time that we hit the node σ1, we
might well see that the hypothesis is incorrect again, in that ϕe(x) 6= m[s′], or
ϕe(m) 6= n[s′]. At such a stage s′, we would like to play an infinite outcome,
like ∞, of σ1 to draw attention to the fact that we might be able to witness a
global win for Re at σ, were this to re-occur infinitely often. 5 Moreover, the
action at σ1 when we play σ1̂〈h, x, m, k〉 is to enumerate points each side of
some block determined at σ1 by k. This has a similar effect on nodes trying
to preserve some block including k, as the d outcome of σ1. Its effect is like
a Nz node, and needs two parameters, k1 and k2 the left and right sides of
the relevant block. Out solution is to add infinitely many new outcomes of
the form 〈k1, k2,∞〉 between the outcomes of the form 〈h, ·, ·, ·〉 and the d
outcome. Note that nodes extending 〈k1, k2,∞〉 will know that k1 and k2 are
the left and right end points of a block, and hence will know that this will
need to be treated exactly as a Nz block, as described below.

Remark Actually, with a little more complexity, we could also have used the

4 We could also have put a new Nq node immediately below σ1̂h, but then we
would need dynamically to decide which nodes in the cone to inactivate.
5 Strangely enough, this extra outcome can be avoided, but the proof becomes
more complex, since there is no actual outcome witnessing that ϕe is not real. We
have chosen the current method as the verification and construction become more
perspicuous.

16

∞ outcome of σ1 in place of the 〈k1, k2,∞〉 outcomes. We believe the present
method is slightly simpler.

Nz vs Re. Now we turn to the coherence of the requirements Nz and the
diagonalization ones, the Re. We will be representing the action of Nz by a
node ν on the tree. This will have outcomes . . . , 3, 2, 1, of order type ω∗. The
idea is that these outcomes represent the eventual cardinality of the complete
block around z, Bz, in the ordering A.

The basic strategy is above. We will make the end points l(q) and r(q) limit
points as best we can, by adding appropriate new points at each stage. A node
σ1̂d ⊆ ν will be able to preserve some [m, n] and hence could well make Bz(ν)

bigger. However, if σ1̂d is on the true path, its effect will be finite. The same
story holds for σ1̂h ⊆ ν.

The case where things might go awry is where σ1̂∞ ⊂ ν. Here [x, m] is being
made infinite. This might potentially make the size of Bz infinite. If ν is below
σ1̂∞, then at the stage where ν is being accessed, σ1 does not care what
happens. As far as σ1 is concerned, |Bz| can be 1. Thus, if ν was immediately
below σ1̂∞ at the stage it was accessed, we could return |Bz| back to 1. Thus
this outcome has essentially no effect on ν.

A finite number of σ′

i above again will cause no problem since the only really
important cases are the d outcomes and these are finitary.

Finally we consider the case where we have a node ν above a σ1. If ν has
higher global priority than σ1 so that σ1’s mother is between some outcome
of ν and σ1, then ν will have finite effect upon Re in that it might cause some
of the Re,x,m,n requirements to follow an “h” outcome. Again this is because
Bν(z) will force l(z) (resp. r(z)) to have no predecessor (resp. successor). Thus
τe and hence σ1 will treat it exactly like an infinite outcome of some higher
priority σ2̂∞. Note that ν will have only finite global effect.

Hence, the only problematical case will of course be if σ1’s mother node is
above ν. Suppose that τe ⊂ ν̂i ⊆ σ1. Again local/global considerations come
to our rescue. Should σ1 of higher global priority than ν look correct and, say,
m <A l(z) ≤A n, then we will play the outcome σ1̂d, whilst these conditions
remain in force, and as before, create a link (τe, σ1). This link will not matter
to ν should it later be removed since before we pass ν again we would be acting
to make l(z) and r(z) limit points. They do not care about the delay created
by the link. On the other hand, if the link is there for almost all stages, then
again we would have a global win for Re, and with finite effect on ν, which
would eventually be met by the backup strategy guessing σ1̂d. Of course,
σ1̂d has only finite effect on this backup strategy.

We now turn to the formal details.

17

3.1 The priority tree

Our priority tree will have nodes of three types. The first type are mother
nodes τ , which have a single outcome o, and will be assigned to some global
requirement Re, so that we will write e = e(τ). These are nodes of length
≡ 0 (mod 3). The next type are worker nodes σ which are devoted to subre-
quirements of some Re, and hence will be assigned to some e, x, m, n. These
are assigned to nodes of length ≡ 1 (mod 3). We form the tree so that such
σ occur below some τ with e(τ) = e. For the longest such τ with e(τ) = e,
we will write τ(σ) = τ . This indicated that τ is σ’s mother. σ has outcomes
in decreasing order of priority ∞, d and f , so that σ̂∞, σ̂d, σ̂h and σ̂f
are the nodes on the tree directly extending σ. Additionally, we will insert a
2ω∗ sequence of outcomes of the form 〈h, ·, ·, ·〉 with another ω∗ sequence of
outcomes of the form 〈k1, k2,∞〉 left of these, between d and f , in the con-
struction below. The numbers following h will be determined by the priority
assignment. Finally we will have nodes γ on the tree devoted to solving Nz for
some z and we will write z(γ) = z. Nodes γ will have outcomes . . . , 3, 2, 1 in
decreasing order of priority. The nodes γ have length ≡ 2 (mod 3). We assign
some basic priority ordering to the Re, Re,x,m,n, and the Nz. We then build
the tree inductively starting at the node λ which is devoted to R0. This then
defines the priority tree PT .

We begin by assigning nodes to the tree in some fair way but making sure that
σ’s with e(σ) = e only occur below τ nodes with e(τ) = e. The only tricky
part is what we do under outcomes ∞, d and h of a σ-nodes We use the device
of lists of e.g. Soare [10] for this.

We have partial functions e, x, m, n, z from PT to N. We will have three lists
L0, L1 and L2 devoted to mother nodes, worker nodes and Nz-nodes, respec-
tively.

n = 0. We let e(λ) = 0, L0(λ) = L1(λ) = L2(λ) = N. Declare that 0 is active.

For n > 0, let α ∈ PT be of the form β̂a. Adopt the first case below to
pertain.

Case 1. |β| ≡ 0 (mod 3). Let L0(α) = L0(β) − {e(β)}. Let Lj(α) = Lj(β)
for j 6= 0. Let 〈e, x, m, n〉 = µp(p ∈ L1(β) and e is active). Assign Re,x,m,n

to α, with mother τ ⊆ β longest such that e(τ) = e. Between d and f , add
the outcomes 〈h, x, m, k〉, and 〈h, m, x, k〉 as ω∗ sequences, in decreasing order
of k. 6 Additionally, between these outcomes and d, add an ω∗ sequence of

6 Note that in the actual construction we will discover which of x <A m or m <A x

holds. At the stage we discover this, we will, for simplicity, automatically delete the
outcomes whose hypothesis must be wrong. That is if we discover m <A x then
we would automatically delete all the 〈h, x,m, k〉. This could have been avoided
by doing things more dynamically in the construction, but we feel that the chosen
method is the most easily understood.

18

outcomes of the form 〈k1, k2,∞〉.

Case 2. |β| ≡ 1 (mod 3). Let 〈e, x, m, n〉 = 〈e, x, m, n〉(β).

Case 2a. a = f . Define L1(α) = L1(β) − {〈e, x, m, n〉}, and Lj(α) = Lj(β)
otherwise. Let z(α) = µz(z ∈ L2(α)).

Case 2b. a = 〈h, x, m, k〉. Let L1(α) = L1(β) ∩ {Re,k,m′,n′ : m′, n′ ∈ N}. Let
z(α) = µz(z ∈ L2(α)).

Case 2c. a = d, a = ∞ or a = 〈k1, k2,∞〉. If a = ∞ or a = 〈k1, k2,∞〉, let
L1(α) = (L1(β) − {〈e, y, p, q〉 : y, p, q ∈ N})

⋃
{〈e′, y, p, q〉 : e′ > e ∧ e′, y, p, q ∈

N}. When a = d, there is more that must be done to L1(α). (Essentially, we
must add back the worker nodes of higher global priority which will be linked
over.) Let τ ⊂ β be the longest string with e(τ) = e and |τ | ≡ 0 (mod 3).
Let L1(α) = (L1(τ) ∩ {〈e′, y, p, q〉 : e′ < e ∧ e′, y, p, q ∈ N})

⋃
{〈e′, y, p, q〉 : e′ >

e ∧ e′, y, p, q ∈ N}.

Declare e′ ≥ e as inactive. Let L0(α) = L0(β) ∪ {e′ : e′ > e}, and L2(α) =
L2(β) ∪ {z : z ≥ e}. Let z(α) = µz(z ∈ L2(α)).

Case 3. |β| ≡ 2 (mod 3). Then α = β̂k for some k ∈ ω∗. Let L2(α) =
L2(β) − {z(β)}. Now, we will assign e0 = min L0 to α, unless there are still
z < e0 in L2(α) or 〈f, y, p, q〉 < e0 in L1(α). In that case, we will not assign
any Re to α. Hence, when we hit case 1, we will do nothing. (The point of
this process is that we do not want Re appearing on a branch of the tree
before Nz if the global priority of Re is lower than that of Nz, which might
perhaps occur after we have restarted some requirement. Also, we do not want
infinitely many nodes assigned to 〈f, y, p, q〉 to be linked over.) For simplicity,
we will suppose that this clause is not invoked and each node of the priority
tree is actually doing some job. 7 Declare the assigned e0 to be active. Let
L0(α) = L0(β) − {e0}.

This concludes the assignation of priorities and the definition of the priority
tree. Below a mother node τ devoted to solving Re, we can define the τ -region
as the collection of σ such that τ ⊂ β, and τ(σ) = τ. It is easy to see that
if σ is in the τ -region, for some τ with e = e(τ), then there are no nodes ν
with e(ν) ≤ e, and τ ⊆ ν̂a ⊆ σ and a ∈ {d,∞}. The following lemma is
straightforward.

Lemma 17 (Finite injury along any path lemma) For every path h ∈
[PT] and e, z ∈ N,

(i) (∃<∞α ⊂ h)(e(α) = e ∧ h(|α|) ∈ {d,∞, 〈·, ·,∞〉}),
(ii) (∃<∞α ⊂ h)(|α| ≡ 0 (mod 3) ∧ e(α) = e),
(iii) (∃<∞α ⊂ h)(z(α) = z ∧ |α| ≡ 2 (mod 3)).

7 Otherwise, we would need to add some clause to Case 1, saying that if e(β) does
not exist, do nothing.

19

We can then define the final e-mother, and final e-region of a path h on PT ,
as the longest τ ⊂ h with e(τ) = e, etc.

The construction below will proceed in substages. We will append a subscript
t to a parameter G, so that Gt denotes the value of G at substage t of the
construction. As usual all parameters hold their value unless they are initial-
ized. When initialization occurs they become undefined, or are set to zero as
the case may be. We will append a parameter [s], when necessary, to denote
stage s. We may write (s, t) to denote substage t of stage s.

If we visit a node ν at stage (s, t) we will say that (s, t) is a genuine ν-stage. It
might be that we do not visit ν at stage (s, t), rather we visit some ν̂ extending
ν. In this case we say that (s, t) is a ν-stage, and hence a ν-stage may not
be genuine. In fact, should we put in place some permanent link (τ, σ) with
τ ⊂ ν ⊂ σ, then ν might only ever be visited finitely often. However, this is
when σ̂d is the true outcome for some higher priority τ , and we would claim
that a new version of ν would live below outcome d of σ. We will eventually
define the genuine true path of nodes that are on the leftmost and for which
there are infinitely many genuine stages. We will need to prove that each
requirement has a representative on the genuine true path. We return to this
point later.

We will use the following parameters within the construction:

(i) For a worker node σ, F (σ, s) ∈ {∞, d, h, f} is the current state of the
σ-module. This state is initialized to f .

(ii) For a worker node σ, r(σ, s) will denote a (possibly empty) interval in
the ordering which it desires to preserve.

(iii) TP [s + 1] will be the approximation to the true path at stage s + 1.
Naturally TP [s+1]t denotes the approximation to this approximation at
substage t of stage s + 1.

Finally, for any node β and point x, we define the block

Bx(β)[s + 1] =
⋃
{r(σ, s + 1) : x ∈ r(σ, s + 1) ∧ σ̂d ≤L β}.

This is the union of the restraints of all worker nodes which β must respect.

The Construction

Stage s + 1. This will proceed in substages t ≤ s. As usual, we will generate
a set of accessible nodes, TP [s + 1]t, and will automatically initialize nodes α
right of TP [s + 1]t.

Substage 0. Define TP [s + 1]0 = λ, the empty string.

Substage t + 1. We will be given a string β = TP [s + 1]t. Adopt the first case
to pertain below.

20

Case 1. |β| ≡ 0 (mod 3).

Subcase 1a. There is a link (β, σ) for some node σ.

Action: Our action is to set TP [s + 1]t+1 = σ and go to substage t + 2 (unless
of course t = s, in which case go to stage s + 1). We refer to this action as
traveling the link.

Subcase 1b. Otherwise. Set TP [s + 1]t+1 = β̂o.

Case 2. |β| ≡ 1 (mod 3). Let 〈e, x, m, n〉 = 〈e, x, m, n〉(β). See if ϕe(x, s+1) =
m and ϕe(m, s + 1) = n.

Subcase 2a. No.

Subsubcase 2a.1. No and F (β, s + 1)t = ∞ or f〈k1, k2,∞〉 (for some k1, k2).

Action: In this case, simply set TP [s + 1]t+1 = β̂f and go to substage t + 2.
Set F (β, s + 1)t+1 = f

Subsubcase 2a.2. No and F (β, s + 1)t = d (and hence we have just traveled a
link (τ(β), β)).

Action: Remove the link. Set TP [s + 1]t+1 = β̂∞. Set F (β, s + 1)t+1 = ∞.

Subsubcase 2a.3. No and F (β, s + 1)t = 〈h, x, m, k〉 for some k. Let k1 be the
left end point and k2 the right end point of Bk(β)[s + 1]t, the current block
containing k.

Action: Set TP [s + 1]t+1 = β̂〈k1, k2,∞〉. Set F (β, s + 1)t+1 = 〈k1, k2,∞〉.

For the “yes” cases below we assume, without loss of generality, that x <A

m <A n.

Subcase 2b. Yes and x is not the right end point of Bx(β)[s + 1]t (or left, in
the case that n <A m <A x).

Action: Let k be the right end point of Bx(β)[s + 1]t. Set TP [s + 1]t+1 =
β̂〈h, x, m, k〉 and F (β, s + 1)t+1 = 〈h, x, m, k〉. Enumerate a “pseudo-N -
requirement” at α saying that Bx(β)[s + 1]t will be a complete block. Enu-
merate points immediately left and right of k1 and k2, the left and right end
points of Bk(β)[s + 1]t, respectively. Go to substage t + 2. 8

Subcase 2c. Yes and there is a Nz(ν) with ν ⊂ τ(β) (so it has higher global
priority than β) such that Bz(ν)(ν)[s + 1]t ∩ [m, n] 6= ∅, or there is a worker
node σ with higher global priority (i.e. τ(σ) ⊂ τ(β)) which is not being linked
over and such that either

8 This pseudo-requirement will be invoked each time we visit β. From some point
onwards, if β is on the true path, then Bk(β)[s + 1]t comes to a limit, and this will
create a finite block.

21

◦ σ̂∞ ⊂ β and Bx(σ)(σ)[s + 1]t ∩ [m, n] 6= ∅,
◦ σ̂〈h, ·, ·, k〉 ⊂ β and Bk(σ)[s + 1]t ∩ [m, n] 6= ∅, or
◦ σ̂〈k1, k2,∞〉 ⊂ β and [k1, k2] ∩ [m, n] 6= ∅.

Action: Play an “h” outcome as in Subcase 2b, except this time let k be the
right end point of Bn(β)[s + 1]t.

Subcase 2d. Yes, and none of the subcases above pertain (so we can play the
d outcome without conflict).

Action: If there is already a link (τ(β), β) which we have just traveled, simply
assign TP [s + 1]t+1 = β̂d, and go to substage t + 2. If there is no such link,
create a link (τ(β), β). Let r(β, s + 1)t+1 = [m, n]. Enumerate |[m, n]| many
new points immediately left and right of Bx(β)[s+1]t, and a fortiori between
x and m (in fact, x is the right end point of Bx(β)[s + 1]t because we are
not in Subcase 2b). Set TP [s + 1]t+1 = β̂d, and go to substage t + 2. Set
F (β, s + 1)t+1 = d.

Case 3. |β| ≡ 2 (mod 3). Let z = z(β). Let TP [s+1]t+1 = β̂|Bz(β)[s+1]t+1|.
Put points immediately left and right of this block into the ordering. Go to
substage t + 2 unless t = s, in which case go to stage s + 2.

End of Construction

We now verify the construction. One important observation is that once a
link (τ(β), β) has been created, Subcases 2b and 2c cannot be played until
the link is destroyed. This is because the restraints they test cannot change
without the link being reset. Therefore, the only cases that can be invoked
after traveling a link are 2a.2 and 2d.

Note that since links are created from worker nodes to mother nodes, the
following can be established by induction on construction and the formation
of the priority tree.

Lemma 18 For every stage u, if (τ1, σ1) and (τ2, σ2) are links that exist at
stage u, then if τ1 ⊂ τ2 ⊂ σ1, it is the case that τ2 ⊂ σ2 ⊂ σ1. That is, there
are no crossed links.

Proof. Suppose not, so τ1 ⊂ τ2 ⊂ σ1 ⊂ σ2. First assume that (τ1, σ1) was
created at a stage (s, t) before (τ2, σ2). We argue that (τ2, σ2) cannot be created
at any stage s′ ≥ s during which (τ1, σ1) still exists. This is because, if we have
traveled the link (τ1, σ1) or just created this link, we must play the outcome
σ1̂d or σ1̂∞ via one of Subcase 2d or Subsubcase 2a.2.

In the case that we play outcome σ1̂d, nodes below this one either have
mothers above τ1 (if they have higher global priority), or have mothers below
σ1̂d. Thus τ2 could not be in the critical region. In the case that we would
play the outcome ∞, we would remove (τ1, σ1) (and again the nodes below

22

the outcome ∞ either have mothers above τ1 or below σ1̂∞). In either case,
(τ1, σ1) and (τ2, σ2) do not coexists.

If, on the other hand, (τ2, σ2) was created before (τ1, σ1), then each time we
hit τ2, we would travel the link down to σ2 and skip over σ1. Thus this case
can not occur either. 2

The same reasoning also gives the following lemma.

Lemma 19 Suppose that we create a link (τ, σ) at stage s. Then there is a
substage t of stage s such that TP [s]t = τ.

Proof. If a link (τ, σ) is created at (s, t′), then TP [s]t′ = σ. Suppose that
for no t ≤ t′, TP [s]t = τ. Then since σ is accessible at this stage, it follows
that τ has been skipped over at stage s. Therefore there is a link (α, ν) with
α ⊂ τ ⊂ ν ⊂ σ. This contradicts Lemma 18. 2

Define the true path TP via λ ≺ TP and if γ � TP , γ̂a � TP iff there exist
infinitely many stages s where γ̂a ≺ TP [s]t, and there are only finitely many
stages (s, t) where TP [s]t <L γ̂a. We then define the genuine true path GTP
as the collection of σ � TP such that σ = TP [s]t for infinitely many stages
(s, t). These are the nodes that are actually visited infinitely often.

An immediate consequence of Lemma 19 is the following.

Lemma 20 Suppose that σ is a worker node on GTP. Then τ(σ) is on GTP.

It is not altogether obvious that either the TP or GTP exist, and this is the
gist of the following which is proven by simultaneous induction on β.

Lemma 21 (Truth of Outcome Lemma)

(i) If β is on GTP, then there exists a ν extending β on GPT . Hence GTP
exists and is infinite. More precisely:

(ii) Suppose that β is on GTP, and |β| ≡ 0 (mod 3). At any stage (s, t),
there is at most one link with mother node β. Furthermore, either β̂o ∈
GTP, or there exists a σ̂d ∈ GTP with τ(σ) = β, and a stage s such
that, for all s′ > s, there is a link (τ, β).

(iii) Suppose that β ∈ GTP, and |β| ≡ 1 (mod 3). Then for some a, β̂a ∈
GTP. For the following let 〈e, x, m, n〉 = 〈e, x, m, n〉(β).

(iiia) If a = ∞, then ϕe is not a self-embedding, and either lims ϕe(x, s) or
lims ϕe(m, s) does not exist. Moreover, |[x, m]| = ∞. Additionally, Bx =
lim{Bx(β)[s] : s a β-stage } exists, and its end points are limit points.

(iiib) If a = d, then there exists some s, such that for all s′ > s, there is
a link (τ(β), β). This link is never removed. ϕe is not a nontrivial self
embedding. lims(r(β, s)) exists and is finite (that is, is a finite interval).

(iiic) If a = 〈k1, k2,∞〉, then ϕe is not a self-embedding, and either lims ϕe(x, s)
or lims ϕe(m, s) does not exist. lims Bk(β)(β)[s] exists and is finite. k1 is
a left limit point and k2 is a right one.

23

(iiid) If a = 〈h, x, m, k〉 (or the other version), then lims ϕe(x, s) = m and
ϕe(m, s) = n. lims Bk(β)[s] exists and is finite. The left and right ends of
this block are limit points, and hence k is a right limit point.

(iiie) If a = f , then only finitely often will both ϕe(x, s) = m and ϕe(m, s) = n.
(iv) Suppose that β ∈ GTP, and |β| ≡ 2 (mod 3). Then lims Bz(β)(β)[s] exists

and its end points are limit points. Furthermore, β̂| lims Bz(β)(β)[s]| is
on GTP.

Proof. Suppose that β ∈ GTP. Also suppose that we have reached a stage
s0 after which we are never left of β, and furthermore, that for all ρ ≤L β,
restraints and blocks have come to their limits.

(ii) Suppose that |β| ≡ 0 (mod 3). We know that there are infinitely many
genuine β-stages, i.e. stages (s, t) where TP (s)t = β. Now at any such stage
(s, t) if there is no link with mother β, then we will automatically play β̂o as
seen in Subcase 1b of Case 1 of the construction. Consequently, if there exist
infinitely many stages (s, t) where there is no link then β̂o ∈ GTP.

On the other hand, if there are only finitely many stages where there is no link
from β, then each time we hit β we would travel the link (β, ·). Suppose that s1

is the stage after which there is always a link at β. Then suppose the link at s1 is
(β, σ). We claim that this link is immortal. When we travel the link we either
play the outcome σ̂d or σ̂∞ in the construction. (Subsubcases 2a.2 and
Subcase 2d are the only cases where links have been traveled to worker nodes.)
If the hypotheses have changed when we hit σ so that either ϕe(x(σ), s)t+1 6=
m(σ) or ϕe(m(σ), s)t+1 6= n(σ), then we would invoke Subsubcase 2a.2, and
hence play the outcome σ̂∞. When we play that at stage (s, t+1), we would
remove the link. Additionally we would put σ̂∞ = TP [s]t+1. Now below the
outcome ∞ by the construction of the priority tree, we have removed e from
L0(σ̂∞), as well as 〈e, y, p, q〉 for all y, p, q ∈ N from L1(σ̂∞). Hence there
are no worker nodes σ′ with τ(σ′) = β below σ̂∞. It is true that e-worker
nodes can re-occur for some σ′ extending σ̂∞, but this can only happen after
e is replaced on the L0 list for some extension ν of σ̂∞. Should this happen,
before we would have any e-worker nodes, we would need a new e-mother node
β ′ extending β̂∞ and then any link from an e-worker node σ′ would be of
the form (β ′, σ′).

The conclusion is that once the link (β, σ) is erased at stage (s, t) then it
cannot be replaced by another link with mother node β.

A similar argument shows that there can be at most one link with top β at
any stage. If a link is created, and has the form (β, ν), then we will always play
the outcome ν̂d. Below d there are similarly no worker nodes with mother β,
and hence no further links can be formed with mother β.

Therefore, we conclude that at the end of stage s if we play the outcome σ̂∞,
then there will be no links with top β. This is a contradiction. Therefore, we

24

also conclude that if β has length ≡ 0 (mod 3) and β̂o 6∈ GTP, then there is
some permanent link (β, σ) ∈ GTP, and σ̂d ∈ GTP. This proves (ii).

To prove (iii), suppose that |β| ≡ 1 (mod 3), and that β ∈ GTP. The con-
struction ensures that each time we have TP (s)t = β, we will play some
outcome of β. However, since there are infinitely many outcomes, we need to
prove that the lim inf of the outcomes exists.

Clearly, after s0, if, whenever we hit β it is the case that ϕe(x, s) 6= m or
ϕe(m, s) 6= n then we will always play f . (From this (iiie) follows, also.) Hence,
the only time we ever play something other than f is if the hypothesis of β
looks correct. Suppose that β̂f is not in GTP. Then we need some β-stage
s > s0 where ϕe(x, s) = m and ϕe(m, s) = n. Since β is on GTP, it follows by
Lemma 20 that τ(β) ∈ GTP.

Now since β’s hypothesis appears correct, we would invoke one of options
2b-2d. We consider these case by case.

Case 1a. 2b is invoked. Then at stage (s, t), the interval [x, m] is covered by
the union of the restraints r(σ1, s)t for all σ1̂d ≤L β. At stage s, we would
play the outcome β̂〈h, x, m, k〉 where k is determined by ρ ≤L β. Notice that,
by induction and choice of s0, these restraints, and hence k, have come to a
limit. Therefore, each time 2b is invoked we would play the same outcome
β̂〈h, x, m, k〉.

Now suppose that 2b is not invoked cofinitely many times. Then infinitely
often when we hit β it must be the case that ϕe(x, s) 6= m or ϕe(m, s) 6= n.
Then at such a stage we would play 〈k1, k2,∞〉, again for a fixed k1, k2. Thus
in that case σ̂〈k1, k2,∞〉 ∈ GTP. Otherwise for β̂〈h, x, m, k〉 ∈ GTP.

Finally, note the truth of the outcomes in either case. In particular, if 2b is
invoked cofinitely many times, then from some point on whenever we access β
we play β̂〈h, x, m, k〉 which means that the hypothesis is proven correct. That
is, ϕe(x) = m and ϕe(m) = n, and as we have already observed, lims Bk(β)[s]
exists.

If F (β, s) 6= 〈h, x, m, k〉 infinitely often, then we have seen that 〈k1, k2,∞〉 is
played infinitely often.

(It is important to note that after stage s0, once we have invoked 2b, our only
possible options at β stages are to play β̂〈h, x, m, k〉, β̂f or β̂〈k1, k2,∞〉.)

Case 1b. 2b is never invoked, but 2c is invoked. The reasoning is the same as
in Case 1a above.

Because β̂〈h, x, m, k〉 and 〈k1, k2,∞〉 are only played after 2b or 2c is invoked,
we have proved (iiic) and (iiid).

Case 2. 2b and 2c are never invoked. Hence, 2b.4 is invoked. In this case, we
will create a link (τ(β), β), and the outcome will be β̂d.

25

Again either this link exists cofinitely often, or it is removed infinitely often.

In the former case, β̂d ∈ GTP. Furthermore we see that our action at the last
stage we create the link we ensure that |x, m| > |[m, n]|, and by construction
this will be preserved. Thus ϕe cannot be a self-embedding. Hence (iiib) holds.

In the latter case, β̂∞ ∈ GTP, and (iiia) clearly holds, since infinitely often
we will increase the cardinality of [x, m]. Additionally we do so by making the
end points of Bx(β)[s] limit points, Bx(β)[s] coming to a limit by the inductive
hypothesis at β-stages.

Finally, if |β| ≡ 2 (mod 3), then at stage s0, we will have determined Bz(β)(β).
Whenever we visit β we will add points left and right of this block. Therefore
β̂|Bz(β)(β)| ∈ GTP. 2

The final lemma we need is that all requirements are actually met.

Lemma 22 (Golden Path Lemma)

(i) For all e, there is a final e-mother τ ∈ GTP.
(ii) There are at most finitely many e-worker nodes σ in the final e-region

below τ with σ̂〈h, ·, ·, ·〉 ∈ GTP.
(iii) Suppose that there is some worker node σ ∈ GTP with τ(σ) = τ such

that σ̂f is not on GTP. Then ϕe is not a self-embedding.
(iv) If ϕe is a self-embedding, then it must be trivial. Hence Re is met.
(v) For all z, there is a node ν such that |ν| ≡ 2 (mod 3), z = z(ν) and ν ∈

GTP. Hence Nz is met.

Proof. By the Finite injury along any path Lemma, we know that there is
definitely a final e-mother τ ≺ GTP. The question is why should it be on
GTP. But this follows by the same reasoning as Lemma 20.

Now note that if there is a worker node σ extending τ with τ(σ) = τ and
σ̂d, σ̂∞ or σ̂〈h1, h2,∞〉 on GTP, then no further e-worker nodes occur on
TP. Furthermore, by parts (iiib), (iiia) and (iiic) of Lemma 21, Re is satisfied.
So for (ii)–(iv) we can restrict ourselves to the cases where all e-worker nodes
below τ on GTP must have f or 〈h, ·, ·, ·〉 outcomes on GTP.

To prove (ii), we examine the two distinct cases in the construction in which
〈h, ·, ·, ·〉 outcomes are played: Subcases 2b and 2c. Let σ be a worker node
extending τ with τ(σ) = τ , 〈e, x, m, n〉 = 〈e, x, m, n〉(σ) and σ̂〈h, x, m, k〉 ∈
GTP. One reason that we might play σ̂〈h, x, m, k〉 is if x is not the right end
point of Bx(β)[s + 1]t. This is Subcase 2b of the construction.

We want to prove that Subcase 2b can only account for, at most, the first
〈h, ·, ·, ·〉 outcome on GTP of any e-worker extending τ . Assume that there
were another e-worker node σ′ extending τ and σ′̂〈h, x′, m′, k′〉 ∈ GTP. Fur-
thermore, assume that σ′ is the least such predecessor of σ on GTP. There-
fore, x = k′ and no requirement can preserve a block containing x (because all

26

higher priority requirement are done acting). Hence x is the right end point
of Bx(σ)[s + 1]t and Subcase 2b is not invoked.

This leaves Subcase 2c, the only other way that σ̂〈h, x, m, k〉 can be played.
This is invoked if either there is a Nz(ν) with ν ⊂ τ(β) such that

◦ Bz(ν)(ν)[s + 1]t ∩ [m, n] 6= ∅,

or there is a worker node σ′ with τ(σ′) ⊂ τ(σ) which is not being linked over,
such that either

◦ σ′̂∞ ⊂ σ and Bx(σ′)(σ
′)[s + 1]t ∩ [m, n] 6= ∅,

◦ σ′̂〈h, ·, ·, k〉 ⊂ σ and Bk(σ
′)[s + 1]t ∩ [m, n] 6= ∅, or

◦ σ′̂〈k1, k2,∞〉 ⊂ σ and [k1, k2] ∩ [m, n] 6= ∅.

The number of such ν is clearly finite since they must be above τ(σ). In the
second case, note that σ′̂a ∈ GTP, where a ∈ {∞, 〈·, ·,∞〉, 〈h, ·, ·, ·〉}. (This
is because we excluded nodes which are being linked over.) But by part (i)
of the Finite injury along any path Lemma, and by induction on the current
claim in the case that a = 〈h, ·, ·, ·〉, for each e′ < e there are only finitely
many such σ′ with e′ = e(σ′). The blocks being protected by these ν and σ′

nodes stabilize at some finite stage. Let De be the union of these blocks, which
is finite.

Once De has stabilized, each new σ′̂〈h, x′, m′, k′〉 ∈ GTP with τ(σ′) = τ must
move k′ to the right past some offending interval in De. Because this can only
happen finitely often, we have proved (ii).

(iii) As mentioned above, we can restrict ourselves to the cases where the e-
worker nodes on GTP which extend τ have either f or 〈h, ·, ·, ·〉 outcomes on
GTP. By assumption, some non-f outcome must occur. By part (ii), 〈h, ·, ·, ·〉
outcomes occur only finitely often, so there is a last e-worker σ extending τ
such that σ̂〈h, x, m, k〉 ∈ GTP, for some x, m, k ∈ N.

Assume that ϕe is a self-embedding. Then it must move k. This is because,
by Lemma 21, lims ϕe(x, s) = m and lims ϕe(m, s) = n and (without loss of
generality) x <A m <A n, so both x and n are moved to the right. But k is
the right end point of the finite block lims Bk(β)[s] , which by construction,
contains either x or n (depending on whether Subcase 2b or Subcase 2c is
being invoked). Therefore, ϕe moves k. By the construction of the priority
tree, there must be an e-worker node σ′ for Re,k,ϕe(k),ϕe(ϕe(k)) on GTP. But the
hypothesis of σ′ is correct, so σ′̂f is not on GTP, which is a contradiction.

(iv) Assume that ϕe is a self-embedding. For distinct numbers x, m, n ∈ N,
there is a node devoted to Re,k,m,n on TP. Every time such a node is linked over,
a new one gets generated. By the construction of the priority tree this can only
happen finitely often. Hence, there is a node σ devoted to Re,k,m,n on GTP. By
assumption, σ̂f ∈ GTP. Hence, for any distinct numbers x, m, n ∈ N, either
ϕe(x) 6= m or ϕe(m) 6= n. Therefore, ϕe is trivial.

27

(v) This follows by Lemma 21, and the fact that we always have a new version
of Nz below any global win for a τ of higher priority. Only finitely many of
these can ever be linked over. 2

This concludes the proof of the theorem.

4 Appendix: The proof-theoretical strength of the Dushnik–Miller
Theorem

In this section we include a clarification of the proof of Downey and Lempp
[3] which shows that the Dushnik–Miller Theorem is equivalent to ACA0 over
the base theory RCA0. One direction is effectivizing the Dushnik–Miller proof
in ACA0. This is straightforward.

The unclear direction is their proof that “RCA0+Dushnik–Miller” implies
ACA0. We clarify this here.

Fix any A ⊆ N in the given second order model for “RCA0+Dushnik–Miller”.
We must show that A′ exists. Let c(x) = µs ≥ x(A′ � (x+1) = A′

s � (x+1)) be
the associated computation function of A′. Then Downey and Lempp construct
a linear ordering in the model such that

Claim 1. Any nontrivial self-embedding i of L can compute c.

Let M be the universe of the given model and let < denote the usual ordering.
Downey and Lempp define the linear ordering L of order type (M, <) in stages.
They start by letting L0 be the ordering 0 ≤L 2 ≤L 4 ≤L . . . of all even
integers in M . They establish Claim 1 by ensuring the existence of a function
e (given the assumption that a nontrivial self-embedding i exists) satisfying
the following

Claim 2. There is a linear order L (which exists in the model M) for which
there is a function e (not necessarily in the model M yet) such that e is strictly
increasing (which is easily ensured by fiat), e : M → L0 and for all x ∈ M ,

(i) ∀n0, n1 < c(x) (e(x) <L n0 <L n1 → d(e(x), n0) > d(n0, n1)), and
(ii) e(x + 1) = µy ∈ L0(∀n (n < c(x) → n <L y)),

where d(n0, n1) is the (M-finite) distance between n0 and n1 in L.

Sketch of Claim 2. The existence of such an L in M is easy since L is
computable in A and constructed by a finite injury priority argument, using
only Σ0

1-induction, which holds in RCA0.

We have to maintain (i) and (ii) of Claim 2 at any stage s for all x ≤ s (eval-
uating c(x) for these x’s at stage s). Note that the definition of the function e
is fixed by (2) at any stage s (assuming e(0) = 0). The only problem arises if
some number x enters A′ at a stage s > 0, thus making (i) false. In that case,
add all currently unused elements x ≤ s in M − Ls−1 into Ls just to the left

28

of e(x), and add sufficiently many unused elements x > s in M − Ls−1 into
Ls just to the right of e(x) to make (i) true. Note that this action will not
interfere with keeping (i) satisfied for any x′ < x. 2

Sketch of Claim 1. We argue that the existence of i for L in M proves the
existence of e and c in M , which will finish the proof since A′ can be computed
from A and c. The first step is now that i is strictly monotonic, and so by Σ0

1-
induction again, we have that x <L i(x) from some x0 on. By the same induc-
tion, we have that any L-initial segment is M -finite (i.e., is M -bounded). Now
nonuniformly fix x0 such that e(x0) <L ie(x0). Arguing model-theoretically,
one can deduce from (i) of Claim 2 that c(x) ≤ max(ie(x), i2e(x)), so from
e(x) and i we can compute c(x). But then from (ii) of Claim 2, we see that we
can compute e(x + 1) from c(x). The latter two facts are most easily estab-
lished model-theoretically first, and then we argue that the reductions which
compute c(x) from e(x) and i, and e(x+1) from c(x), are actually quite trivial,
so we have e and c in the model M . 2

The reader should note that the Downey–Lempp proof actually ensures that
RCA0 proves that the Dushnik–Miller Theorem for orderings of type ω is
equivalent to ACA0.

References

[1] R. Downey Computability Theory and Linear Orderings, in Handbook of

Recursive Mathematics (ed. Ershov, Goncharov, Nerode and Remmel), Vol 2,
North Holland, (1998), 823–977.

[2] R. Downey, G. LaForte, and R. Shore, Decomposition and infima in the c.e.

degrees, Journal of Symbolic Logic, Vol. 68 (2003), 551–579.

[3] R. Downey and S. Lempp, On the proof theoretical strength of the Dushnik–

Miller theorem for countable linear orderings, in, Recursion Theory and

Complexity (ed. Arslanov and Lempp), de Gruyter, 1999, 55–58.

[4] R. Downey and M. Stob, Minimal pairs in lower cones, Israel Journal of

Mathematics, Vol. 100 (1997), 7–27.

[5] B. Dushnik and E. Miller, Concerning similarity transformations of linearly

ordered sets, Bull. Amer. Math. Soc., Vol. 46 (1940), 322–326.

[6] C. Jockusch and R. Soare, Π0
1 classes and degrees of theories, Trans. Amer.

Math. Soc., Vol. 173 (1972), 33–56.

[7] S. Lempp, A. Morozov, C. McCoy, and R. Solomon, On self-embeddings of

computable linear orderings, in Computability and Models (ed. Cooper and
Goncharov), Kluwer Academic/Plenum Publishers, New York, 2003, 259–265.

[8] J. Rosenstein, Linear Orderings, Academic Press, New York (1982).

[9] S. Simpson, Degrees of Unsolvability: a survey of results, pages 631–652 in
Handbook of Mathematical Logic, ed. by J. Barwise, North Holland, Amsterdam
(1977).

29

[10] R. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, New York
(1987).

30

