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THE DEGREES OF R.E. SETS
WITHOUT THE UNIVERSAL SPLITTING PROPERTY
BY
R. G. DOWNEY!

ABSTRACT. It is shown that every nonzero r.e. degree contains an r.e. set without the
universal splitting property. That is, if 8 is any r.e. nonzero degree, there exist r.e.
sets ¥ <y B <,A with deg(A) = 8 such that if Ay U Ay is an r.e. splitting of 4,
then A, #  B. Some generalizations are discussed.

1. Introduction. A pair of r.e. sets Ay, 4; are said to split an r.e. set A, written
AU A =A,if 40 A4 =4 and 4,0 A, = @ . The types of degrees which may
be realized as (halves of) splittings of r.e. sets have been analysed by many authors.
For example, Sacks’ splitting theorem [Sa] states that any nonrecursive r.e. set can
be split into a pair of r.e. sets of incomparable Turing degree. Various extensions of
this result are due to Owings [Ow], Morley and Soare [MS] and Lachlan [La]. Also,
there are the well-known results of Lachlan and of Ladner [Ldl, Ld2] on nonmitotic
r.e. sets (sets which cannot be split into a pair of r.e. sets of the same Turing degree)
and Ingrassia’s [In] recent result that the degrees containing nonmitotic r.e. sets are
dense.

Let A4 be an r.e. set. Let S(A4) and N(4) be defined by

S(A) = {8]8is an r.e. degree containing an r.¢. set A,
such that there exists an r.e. set 4, with 4y LI 4, = 4},

and
N(A) = {8|8isanr.c. degree and & & S(4)}.

We refer to S(A) as the splitting degrees of A and N(A) as the nonsplitting degrees of
A. In [LR1, LR2}, Lerman and Remmel defined an r.e. set A to have the universal
splitting property (USP), if S(4) = {818 < deg(A)}, that is, if every r.e. degree below
deg(A) is a splitting degree of 4. In [LR1, LR2}], Lerman and Remmel showed that
re. sets may or may not have USP. Many of their results were extended in
Ambos-Spies [AS], Ambos-Spies and Fejer [AF], Downey and Welch [DW] and
Downey, Remmel and Welch [DRW]. For example, in [DW] and independently
[AS], an r.e. set A is constructed such that N(A) is dense in the r.e. degrees (and also
contains nontrivial intervals below deg(4)). We shall say that an r.e. set (or degree)
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338 R. G. DOWNEY

B < A is a nonsplitting witness for A if deg(B) & S(A4). Recently, Remmel and
Shore (personal communication) have shown that if B is any nonzero incomplete r.e.
set, then there is a complete r.e. set 4 such that B is a nonsplitting witness for 4.

In this paper, we address ourselves to a fundamental question concerning non-USP
sets:

Which r.e. degrees contain sets without USP?

Lerman and Remmel [LR1, LR2] have shown that the class of r.e. degrees containing
r.e. sets without USP is a dense subset of the r.e. degrees and includes (. The results
of Ambos-Spies [AS] and Downey and Welch [DW] show that this class also
includes nontrivial initial segments of the r.e. degrees, and the results of Ambos-Spies
show that if a is r.e. and low, then a is non-USP. In this paper we give the complete
answer to this question by showing

THEOREM 2.1. Every nonzero r.e. 'degree contains an r.e. set withour USP,
We also observe several generalizations of this result:

THEOREM 2.6. (i) Let C, D be r.e. nonrecursive sets. Then there exist r.e. nonrecur-
sive sets A =, C and B < ;D such that deg(B) & S(A). ‘
(i) Furthermore, in (i) we may also ensure that A < wCand B <, D.

(Here < j, denotes weak truth table reducibility (cf. [St]).) .

THEOREM 2.7. Let 8 be any nonzero r.e. degree. Then 8 contains an r.e. set A such
that S(A) is not dense in [0, 8).

Moreover, in Theorem 2.8 we show that given any nonrecursive r.e. set D of
degree 8, we can effectively compute r.e. sets C < 7B <7 A with 4 = D and every
degree in [deg(C), deg(B)] a nonsplitting witness for 4. Qur results suggest several
extensions and we analyse some of these. In view of the Remmel-Shore result quoted
earlier, two quite natural extensions would be:

(1.1) Given any pair a < rb of r.e. nonzero degrees, there is an r.e. set B of degree
b such that a is a nonsplitting witness for B. '

(1.2) Given any nonzero r.c. degree a, there is an r.e. set B of degree greater than a
such that a is an anvisplitting witness for B. Namely if By LU B, = Bis an r.c. splitting
of B, then deg(B,) < a implies B, = r @ (cf. [DW]).

Unfortunately, as we shall later prove, both (1.1) and (1.2) fail. We had (in an
earlier draft), proved weaker results by direct constructions, but here we shall
establish these “plus splitting” results by using some results on W-degrees and some
results from [DW]. As a further illustration of the surprising power of these
“transfer” techniques, we shall give some further nonsplitting results, and some
results about embedding nondistributive lattices in initial segments of the r.e.
T-degrees. )

Our notation is more or less standard and may be found in Soare [Sol-So3].
Upper case italic letters stand for r.e. sets, and upper case Greek letters (for example
®, T') for Turing reductions. « use{ - - - }”” will mean the maximum element used in
{+++ ). For a set 4 and z € w, A[z] means {x|x €4 and x < z). Let (, ) bea
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“standard pairing function of w, and «') = {{e, x):x € w}. We identify sets with
their characteristic functions (where necessary). Finally, one convention we shall use
is that at any stage s of the constructions, all computations, use functions, folowers,
etc., will be bounded by s.

The author wishes to express his thanks to Jeff Remmel for many helpful
conversations concerning the subject of this paper. He also wishes to thank the
referee for numerous helpful suggestions concerning the presentation of this material.

2. Results.

THEOREM 2.1. Every nonzero r.e. degree contains an r.e. set without the universal
splitting property.

Proor. We shall build r.e. setsd =), 4, and B = U, B, in stages, so that B is a
nonsplitting witness for 4. Let C be a given r.e. set of nonzero degree, and let
g(w) = Cbe a 1-1 recursive enumeration of C. At each stage s, we let {a,, < a4, <
--- } list, in order, & — 4,. We ensure that A =, C by permitting and coding (on
the a, ). By this we mean we “code” C into 4 by promising to always have
Qgisys € A1 — A, at each stage s; and this will ensure that C < 1 4. Similarly only
allow elements to enter 4,,; — A, when C “permits” them to do so by asking that
ze€ A, — A, onlyif z > g(s), ensuring that 4 <, C. We shall also ensure B < .4
by permitting. For this construction, we will place x into B, ,; — B only if g(s) < x.

We must meet the requirements

R _: one of the following fails to hold
i) w.nv.=g,
) WUV, =4,
(iii) @.(W,)= B,
(iv) T.(B)=W,
where (W, V,, ®,,I,) denotes an enumeration of quadruples of pairs of r.e. sets
(W,, V,) and pairs of reductions (®,, [,).
For the sake of R we shall define a restraint r(e, 5) and the associated R(e, 5s) =

max{r(i, s):i < s}. This will depend upon actions taken to meet R, and the length
of agreement /(e, 5) generated by (i)—(iv) above. Specifically,

I(e, s) = max{z: for all y < z, (a), (b) and (c) below hold}:

() (W, uV. Nyl=Alyl,

(b) @, (W..;»)=5BI»),

(c) T..(B;y)=W..(»).
Our construction is possibly best motivated by analysing why the strategy used by
Lerman and Remmel [LR1] to construct non-USP r.e. sets will not suffice here. In
our terminology this construction consists of the following three steps (for one R,):

Step 1. Pick a number x with a “trace” T(x) with x < T(x), x & B, and

T(x) €& A,. Now declare x as a follower for R,, and refrain from enumerating
numbers € T(x)into 4, U B, at stages ¢ > s until:




340 R G. DOWNEY

Step 2. The follower x becomes 0-realized (terminology from [LR2]). This means
that a stage s; > s occurs with /(e, s;) > T(x). Now we

(1) enumerate T(x) into 4, ,; — 4,

(ii) raise the restraint (e, s, + 1) to s, (in view of our convention, this will exceed
all numbers used in the computations (a)—(c) associated with /(e, s)),

(iii) assign T'(x) = s, + 1 to be a new trace for x.
The key observation is this: Suppose there is a stage ¢ > s, such that

He,t)>r(e,s; +1) =5y,

and suppose further that our restraining was successful. Then if W, U V, is truly a
splitting of 4, T(x) must enter precisely one of W, LI ¥,. Moreover T(x}) is the only
such number < 5, and furthermore we claim T(x) & W, ,. Suppose T(x) € W, ,.
Then by restraints we know from (c) in the definition of /(e, s,) that

T, (B, T(x)) =T, (B; T(x)) = 0+ 1 = W, (T(x)),

€,5)

contrary to the fact that I(e, ) > s, > T(x). Thus 7T(x) must enter ¥,. Thus we
(temporarily) meet the R by:

Step 3. Wait for a stage s, > 5; such that /{e, 5,) > r(e, 5, + 1) > 5;. At this
stage:

(i) enumerate T'(x) into 4, ., — 4

(ii) maintain restraints,

(i) enumerate x into B, ., — B,
The point is that as T(x) did not enter W, and since T'(x) > 5, = r{e, 5), we know
that by (b) (of I(e, s)) '

(I)e,sl(We.sl; x) = (I’e,sz(PVe.sz; JC) = (I)e,sz-l-l(m.sz-i—l; JC) =0+#1= Bs1+1(x)'

57

[

Furthermore, with priority e, restraints will preserve this disagreement forever.
Following [LR2] we call stage s, a 1-realization stage.

By itself, permitting forces us to use many. followers for one R,. For example, it
may be the case that by the stage s, when x is O-realized, its trace T(x) cannot be
put into 4, for ¢ > s, since V¢ > 5, (g(¢) > T(x)), and recall that we promised to
allow z to enter 4,,, — A, only if z > g(r). Furthermore, even if x gets O-realized
and acted on in Step 2, for the same reason it might be that once x gets 1-realized,
Vi > 5, (g(1) > T'(x)). To overcome this we appoint an increasing set of followers
and argue that if none eventually get 1-permitted, then C is recursive, contrary to
hypothesis.

Our problems will stem from the interaction of permitting with the coding.
Because we are coding, we will also promise to add ag,, , t0 4, — 4,. It may be
that for each x which gets 1-realized and permitted, (say at stage ¢), it is also the case
that at an even later stage ¢’ > ¢,

a =Gy < “33{‘1)4».52(”@.52; x)}

Since we have promised to add a to 4,,.; — A4, a might enter W, and perhaps upset
the “®@ (W,; x) = 0 # 1 = B(x)” computation from Step 3 which we were trying to
preserve.
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We remark that these problems can sometimes be overcome if we are permitting
and coding with two sets C; and C, (rather than C), such that the permitting set C,
is of strictly greater Turing degree than C;. Thus in [LR2] matters are arranged so
that eventually some 1-realized follower x gets permitted by C, after C, has stopped
forcing small numbers (like “a” above) into 4. This is arranged by “delayed
permitting”, and is one of the main ideas in the density theorem of [LR2] and similar
density arguments (for example, [In, Fe]).

Our idea, roughly speaking, is to use a construction similar to the above, but to
only perform a step similar to Step 3 at stage s when we can control the numbers
which are not already in A,. This control will be sufficient to ensure that even if a
small number is coded in later, it would not matter because all of the numbers in a
“critical region” are already in A4,.

Specifically, at each stage s we will not add just a,,,, to A, — 4, but
Qg(sys -+ »Agsy+s,s 1N idea then is this. Associated with R, will be increasing set
sequence of “positions” in « — 4. The nth follower x, when appointed, will be
assigned position (e, n). (Here we assume (e, } is monotone.) We shall choose
x & B, as a follower of R, if

() x > wse{L, (B; 2):z2 < e my s}

(ii) I(e, s) > a, 2 xand x > {e, n),

(iii) I(e, 5) > use{®, (W, ; 2):z < x}.

(Figure 1, then, will be the picture with our intended “critical region™.) At such a
stage s, we appoint x as a follower and raise r(e,s + 1) =s + 1. Now we let
(e, x) = a,, » . and refer o (e, x) as the confirmation target of x. We shall do
nothing else to satisfy R, via x unless x gets e-confirmed. This means that at some
stage ¢ > s, g(1) < (e, n). By our convention, this will mean that @,y ,,. .., @y,
all get enumerated into 4,,; — 4,. In particular, this means all numbers in the
critical region get enumerated into Ar+1

cntlcal re g10n

s
P a(e ns . 1 WE,S
i L L
I
i
' 1
I
- } f—5.
Ile, 5) $ '

FiGURE 1

The key point is that after stage ¢, if z & 4, ,, then either z < (e, x) or z > 5. In
particular, if z > s, then z > use{®, (W, ,; z); z < x} for any stage g > s, pro-
vided that we keep maintaining our B-restraints originally imposed at stage 5. Thus
at the least stage ¢’ > ¢ such that I(e, t') > s, we shall know that all of the
computations we had at stage s have been maintained, and furthermore if z is a
number in the critical region, then z € W, . if z € W,. (In fact z € W, ) At this
stage we declare x as e-waiting, and now know that if we ever get permitted to add x




342 R. G. DOWNEY

to B, for some stage g > ¢, then we shall have satisfied R, since only one of the two
possibilities below can occur at every stage 1/ > ¢'.

(1) Nonumber z < use{®, (W, ; z): z < x} enters W, ., and so in particular, if
we add x to B,, then we know ®,(W,; x) =0 # 1 = B(x).

(i) A number y < use{®, (W, ; x): z < x} enters W, .. Then in this case we
know that y < t(e, x). Since x > use{®, (B, ; z): z < m(e, x)} we know that

2,5
T, (B, ;y)=T,(B;y)=0=+1=W/(y).

In either case we have a disagreement. In this way we can satisfy the R, forever (with
priority e).

We shall now give the details of the construction. We say that a requirement R, i3
satisfied at stage s if either W, , NV, .+ @, or one of the following hold for some
y < rie, s)

(a) re.s(Bs; y)*l‘ and Fe.s(Bs; y) #* We,s(y)s and USC{ Pe,s(Bs; y)} < r(e, S)a or

(®) @, (W, y)| and @, (W, ; y) # B,(y) and if u = use{®, ,(W, ; »)}, then
T, (B z) =W, (2)for all z < u and furthermore use{T, ((B,; z)} < r(e, s} for all
z < u

DEFINITION A. A requirement R, requires attention at stage s + 1if e <5, R, is
not satisfied at stage s and e is least such that one of the following hold.

(2.1) There is a follower x of R such that

(a) x is e-confirmed,

(b)x > R(e — 1, 5),

{c) x is e-waiting, and

(d) g(s) < x, or

(2.2) not (2.1) but there is a number x € »‘® such that

(2) {(e, s) > max{a, ., R(e, 5)},

(b) x > {e, h(e, 5)),

(©) I(e, 5) > use{®, (W, ; 2): z < x},

(d) x > use{l, (B 2): 2 < dgepesyyis+i)-

CONSTRUCTION, )

Stage 0. Forally € wset h(y,0)=0.Set Ay =B, = J.Seta,, = eforalle € w.

Stage s + 1.

Step 1. Set A,y = A, U (@550 1040545, > and set ,

P fori < g(s),
“s*t1° \a,,,.1 otherwise.

Step 2. For all e < 5, and any follower x of R, which is not already e-confirmed, if
A5y < 1€, x), then declare x as e-confirmed.

Step 3. For all e < s, and any follower x of R, which is not already e-waiting, if
(1) x is e-confirmed, and (2) /(e, s) > R(e, 5), then declare x as e-waiting.

Step 4 (i) If no R, requires attention for all e, set k(e, s + 1) = h(e, s) and set
R{e,s + 1) = R(e, s)and go to Stage s + 2.

(i) If R, requires attention with e least, there are 2 cases according to Definition
A.
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Case 1. (2.1) holds. Set B,,; = B, U {x}. Cancel all lower priority followers (that
is of requirements R, for j > e), and any followers of R,. Set r(e, s + D=s+1,
hie,s + 1) = h(e, s)

Case 2. (2.2) holds. Appoint x as a follower of R,. Cancel all lower priority
followers. Set #(e, s + 1) = h(e, s) + 1, t(e, x) = Alen(e,syys+1 a0d (e, s + 1) =
s+ 1.

In either case, for all j < e set 7(j, s + 1) = r(j, s) and for f > e set r(f, s + 1)
=5+ 1. For all k # e, set A(k, s + 1) = h(k, s). This is the end of the construc-
tion.

LEMMA 2.2, 4 =,.C, B <7 Candtim, a,, = a, exists for all i.

PRrOOF. (a) Given z € w, the only way z € B, ., — B, for some s is by Step 4, Case
1 of the construction. This means that (2.1) holds, and in particular g(s) < z. Thus
C-recursively find a stage s(z) such that Vi > s(z) [g(¢) > z]. Then z € B iff
z € By,y,,-Hence B <, C.

(b) Now a, ., # a,, only if g(s) <i. As g is 1-1, this means lim,a,  exists.
Moreover, to determine if z € A or not, find a stage f(z) such that Vs> £(z)
(8(s)>z). Then Vj<z (a,=a .1(zy)- Moreover, by construction, j < a;, for all
J,s. Hencez € Aiffz € 4,,,. Hence 4 <+ C.

(c) Finally C < ;4. A-recursively find a stage n(z) such that a, .,y = a,, . Then,
by construction, we know that Vs > n(z) (g(s) > z). (For in Step 1 we enumerate
Ay sintod, ., — A JHencez € Ciffz € C,,,. O

To complete the verification, it remains to show that all the R require attention at
most finitely often, are met and lim R(e, s) = R(e) exists.

Let e be least for which this statement fails to hold. Let ¢, be a stage such that
Vs >ty (R; does not require attention at Stage s} and assume that Vs> ¢,
(R(j, s) = R(j, ty) = R(j)) for all j < e. The proof will follow by the following
sequence of lemmas.

LEMMA 2.3. Suppose that s is a (least) stage with s > 1, such that, for some follower -
x of R, (2.1) holds for x. Then

(i) R, is met at Stage s + 1,

(ii) Vt > 5 + 1 (R, does not require attention at Stage t),

(i) Ve>s+ 1(R(e,s +1)=R(e, 1) =5+ 1).

PrROOF. Let s, x, ¢, be as described above, and let x be the least such follower. As
(2.1) pertains to x we know that x is e-confirmed, x > R(e — 1, 5), x is e-waiting
and g(s) < x. Now at some stage s, < s, x was appointed by (2.2). Let n = h(e, 5,).
Then at Stage s, we know t(e, x) = a (e.ny.s Furthermore, by construction, we also
know

@) (e, s, — 1) > max{a, , x, R(e, 5)},

(ii) x > (e, n),

() /(e, 5, — 1) > use{®, ; (W, _: 2z):z < x}, and

(i) x > use{l, | (B, _;; z): z < t(e, x)}.
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Now, at Stage s,, as Case 2 applies, R(e, 5,) = 5, (sce Figure 1). Let
u= max{use{l"e_s:_l(Bnul; z): z gp}},
where
p= max{use{@e'sl_l(m‘sl_l; z)z < tle, x)}}

Now, as p < I(e,s; — 1), u <s; — 1. Now, at Stage s;, as Case 2 applies, no
number < 5, is enumerated into B, — B, _, and R(e,s; — 1) is reset so that
R(e,s;) =5, >uz>p.

Also, by (iv), if we set

M= max{use{ I, (B;z):z<t(e, x)}}, :
then x > M and R(e,s,) > s, >uzp=x>M. -

Now, as Case 2 applies, we know that if y is a follower of R, and 5 > £ > s, we
have

(2) k& > e and so y > s; by the fact that in Step 4, lower priority followers are
cancelled, or '

(b) k < e and so y was appointed before Stage ¢, and by choice of ¢4, R, cannot
require attention at Stage ¢ and in particular, y € Biff y € B, , or

(¢) k= e and so y & B, — B, by choice of s as the least stage for which (2.1}
holds.

This will mean that as x is e-waiting at Stage s + 1, B, [s,] = 3;1—1[31]- Also, as x
has been e-confirmed by Stage s + 1, for all y if #(e, x) <y < 5, then as x is
e-waiting (and so I(e, s) > 5,) we know y € W, iff y € W, ,. Since the restraints
have ensured that B [u] = B, [u], we know that W, [p]= W, .1p] and for all y
withz(e,x) <y <p,yE W,iffye W, _..

Consider Stage s + 1. As (2.1) holds, R, will require attention via x (x least). We
shall enumerate x into B,,, — B, and set R(e, s + 1) = s + 1, and cancel all other
followers'of R, for k = e. There are now two cases:

Case 1.¥t > 5(W, [p] = W, [ p]. Then in this case there is a disagreement, via

0= (I)e,s(We.s[P]; x) = ‘I)e(PVe; x) #1= Bs+1(x) = B()C) ’

Case 2. 3t > s (W, [p] # W, [p)). Then in this case, there is a disagreement as
follows: Let y < p and suppose y € W, ., — W, for ¢t > s5. Then, by our analysis,
y < t(e, x). Now x > M and, by restraints, B[M] = B, ,[M] = B; [M]. Hence

L, (B, [M]; ») =T, c1(BIM]; y) = T.(B[M]; »)

=T,(B;y)=0#1=W,,.(y) = W(y)

Notice that one of Cases 1 or 2 must apply at Stage s + 1 and at all stages
t > s + 1. This means R, becomes satisfied at Stage s + 1 and remains so for all
stagest > s + 1. Hence Vi > s (R(e,t) = R(e,s + 1) =s + 1)and R ,ismet. O

We also note that if, at any stage s > #,, we have y < r(e, s) with R, satisfied via
y, then Vit > s [(r(e, t) = r(e, s)) and R, is met at stage ¢] will hold. Since we
suppose that R, is not met, or requires attention infinitely often or lim r(e, s) does
not exist, we shall suppose that R, is infinitely active in the sense that at no stage
s > ty does R, become satisfied. This means that for any follower x of R, (2.1) does
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not pertain to x by Lemma 2.3. Now since we suppose that R, fails, I(e, 5) = 00. As
R(e, s) is reset only when (2.1) and (2.2) pertain, it must follow that if R, is
infinitely active, then R, gets infinitely many followers appointed to it. These are
never cancelled if they are appointed after Stage ¢,. We claim

LEMMA 2.4. R, has infinitely many followers which are eventually e-confirmed.

PROOF. Suppose not. We shall show that C is recursive contrary to hypothesis. We
know that infinitely many followers get appointed to R,. At any stage 5 > ¢, if we
appoint a follower x to R, such that t(e, x) = A (euny,s+1> then we reset A(e, s + 1) =
n + 1. This process will continue for each new follower, and hence A(e, 5) = o« (e
fixed). Now none of these followers get cancelled; thus if only finitely many are
e-confirmed, there is a stage s, such that sy > 1, and Vs > s, (if x is a follower
appointed at Stage s, then x is not e-confirmed).

Now this means Vs > s, V¢ > s [(x is appointed at stage s and #(e, x) = Aeeomy,s)
— g(1) > (e, m)]. Given z € w, to compute if z € C, find a stage s > 5, such that a
follower x(z) is appointed at Stage s with #(e, x(z)) = Qe my,s and (e, m) > z.
Then Vi > s(g(t)> (e,m) >z).Henceze Co Ze C. O

Let F= {y|y is a follower of R, appointed at a stage s > ¢, such that y is
eventually e-confirmed}. Now as /(e, s) — co, we know that for each y € F, y
eventually becomes e-waiting. The theorem will be proved once we establish

LEMMA 2.5. Suppose Vy (y € F — (2.1) does not pertain to y). Then C is rec:ursive.

PROOF. Let z € w. Find the least stage s(z) > ¢y and y € F such that:

(i) y is e-confirmed at Stage s(z),

(it) y is e-waiting at Stage s(z),

(i) y > z.

Then as (2.1) does not pertain, Vs > s(z) (g(s) >y > z). Thusz € Ciffz € C 5(2)
and so Cis recursive. O

The theorem now follows because this means (2.1) pertains to some y and hence
by Lemma 2.3 R, will be met, lim, R(e, s) = R(e) exists and R, will stop requiring .
attention. O

REMARK. We also have the following corollary to the above (and some later

results):
Let C be an r.e. nonrecursive set with g{w) = C, a 1-1 recursive enumeration of C.
Define a set 4 = U, 4, in stages and at each stage slet A, = {ay, < a;, < --- } via

As+1?AsU{a

Set 4 = U, 4. Then 4 is non-USP.

We feel that this is an interesting phenomenon and perhaps deserves further
investigation. A related result (perhaps) is the result of Ambos-Spies and Fejer [AF],
that if B is an r.e. set which is a cylinder, then B has the property that if C <, Bis
r.e., then there is an r.e. splitting B = B, Ul B, with B, =, C. (Applying this to a

“contiguous” r.e. T-degree gives an r.e. set B with USP.)

We shall now briefly discuss some generalizations of Theorem 2.1. Our first result

comes from a slight modification of the proof above.

g{s), g2 ag(s)+.5',s} .
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THEOREM 2.6. (i) Let C, D be r.e. nonrecursive sets. Then there exists an r. e. set
A =,C,and an r.e. set B < D such that deg(B) &€ S(4).
(ii) In (i) we may ensyre thatalso A <, Cand B < D.

PROOF. (i) Consider the proof of Theorem 2.1 with g(w) = C. Now, let f be a 1-1
recursive function with f(w) = D. We modify only (2.1) by replacing (d) by

(@) f(s) < x .
The statement of Lemma 2.2 is changed to “4 =, C, B <+ D and lim q, ;= g,
exists for all i”. In part () of the proof of Lemma 2.2, we simply replace all
occurrences of “g” by “f”. Finally, in Lemoma 2.5 we replace C by D and g by f,
and the same proof will work. .

(it) This is because in Lemma 2.2, we prove 4 <, C and B < D by simple
permitting and this will give W-reduction. O

In particular then, if a and b are r.e. degrees with ¢ <, a <, b, there is an r.e.
degree ¢ and an r.e. set B of degree b such that 0 <, ¢ < a, and ¢ is a nonsplitting
witness for B. So that means nonsplitting witnesses are “downward dense”.

A natural question to ask is whether S(A4) is dense in [0, deg(4)] for an r.e. set A?

The referee of [DW] observed the following:

PROPOSITION. Let A be an r.e. non-USP set. Let B be an r.e. set with B < A and B
a nonsplitting witness for A. Then there exists an r.e. set C <, B such that for all r.e.
sets D if C < ;D <1 B, then deg(D) & S(A). )

PRrROOF. Let A and B satisfy the hypotheses of the statement of the theorem. Sacks’ 1
split B as B = B, U B, with B, r.e. and By|B,. Then either C = B, or C = B, will :
satisfy the theorem. For suppose not. Then we may r.e. splitd as4 = Ay U Ey = 4,

U E, with B; < r4; € rB.Now B =;4,U 4, and (4, U 4)) U(E, N E})isanr.e.
splitting of A, contradicting the choice of B. O
Thus we have .

THEOREM 2.7. Let 8 be any nonzero r.e. degree. Then 8 contains an r.e. set A such
that S(A) is not dense in [0, 8]. '

We remark that the “nonsplitting interval” obtained from the proposition cannot .
be effectively found because of the Sacks’ splitting. We can modify our original i
strategy to be able to compute 4, B and C effectively. We sketch a proof of this:

TuEOREM 2.8. Let D be an r.e. nonrecursive set. Then we can effectively find r.e. sets
C,Band A suchthat A=.D, 3 <, C<pB<,Aandforallr.e. sets Eif C <y
E < 4 B, then E is a nonsplitting witness for A.

PrROOF. We modify the proof of Theorem 2.1. Let g(w) = D instead of g(w) = C
this time. The requirements are

R,,:®,(C)# B,and
R,,,;: Itisnot thecase that W, LI ¥V, = A4,
¢ (W,) = CandT(B) = W.,
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whilst ensuring C < B <1 A4. We meet the R,, by a Friedberg-Muchnik procedure
with permitting. Thus we have a follower x “targeted” for B and we wait for a stage
s to occur with @, (C; x)|, and say x is realized, and set r(2e,s)=s. If
D, (C; x) # 0, then R,, is met (since B,(x) = 0). If P, (C; x) =0, we will act
when x gets permitted. We say x gets permitted if g(¢) < x at some stage ¢ > s
When permitted we enumerate x into B, maintain restraints and know that
®, (C; x) =0 # B(x) = 1. We keep appointing new followers until one gets real-
ized and permitted, or one does not get realized (in which case ®,(C) + B). We
argue that if infinitely many get realized but none get permitted, then C is recursive
in the same manner as Lemma 2.4,

For the R, . ; we proceed almost as we did in Theorem 2.1, except that a follower
x is added to both C and B, and we must impose our restraint on both C and B.
Thus, we proceed as in Theorem 2.1 making the appropriate changes (*C” for “B”
in some places, 2e¢ + 1 for ¢ and modifying the definition of l{e,s)tol(2e + 1,5))
and the details follow for the same reasons as they did in the original result. We ask
the reader to supply the remaining details, I

As Jockusch observed, the techniques of Lerman and Remmel [LR1, LR2] extend
to show that the r.e. degrees containing r.e. sets without the universal weak truth table
reduction property (UWP) are dense in the r.e. degrees. We say an r.e. set 4 has UWP
if, for all r.e. B <1 4, there exists an r.e. set C =, B with C < < 4. However, our
techniques do not extend to produce r.e. sets without UWP in each re. degree.
Indeed, Ladner and Sasso [LS] have shown that below any given nonzero r.e.
(Turing) degree, there is an r.e. contiguous degree, that is, one consisting of only one
r.e. W-degree. Obviously, any r.e. set of contiguous degree has UWP. Also, any set
of complete W-degree has UWP. It remains an open question whetheér or not these
are the only types of sets with UWP. It is also unclear whether or not every r.e. USP
set occurs in such degrees. We remark that each of these questions could be
answered negatively ‘by constructing the appropriate set of “incomplete but not
low,” degree, since Cohen (cf. Stob [St}) has shown that contiguous r.e. degrees are
low,. (There are low, but not low, contiguous degrees, cf. [AF].)

We remark that in [DW], Downey and Welch analysed r.e. sets with what is called
the antisplitting property, meaning there is an r.e. set & <y B <, A such that if
Ag U Ay = A andA; < B, then A; =, &. Downey and Welch could produce such
sets in a subset of the cappable degrees (namely the degrees containing (strongly)
atomic r.e. sets). Does every r.e. degree contain an r.e. set with the antisplitting
property? Currently, this question is open (even) for cappable degrees.

Remmel and Shore (personal communication) have shown that if a is an re.
degree if 0 <, a < 0, then there is an r.e. set B of degree 0’ with a & S(B). This
together with Theorem 2.4 suggests the question as to whether Theorem 2.4 can be
combined with the Remmel-Shore result. That is:

(*) Given r.e. degrees 0 <, b < a, does there exist an r.e. set 4 of degree a such
thatb & S(A4)?

We shall now show that (+) has a negative solution, in a rather strong way. We
shall say that a plus splits b if a < b and, given any r.e. set B of degree b, there exists
an r.e. splitting B, LI B, such that deg(B,) = a.
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THEOREM 2.9. Let C be an r.e. set of high degree. There exists an r.e. nonrecursive
set B <, C such that ifa € S(B), then a plus splits deg(B).

PrROOF. Recall from [DW] (or [AS]) an r.e. set B is called strongly atomic (or
antimitotic) if, whenever B = B, LI B, is an r.e. splitting of B, the infinum of degrees
of B, and of B, exists and is 0. In [DW] it is shown that if C is a high r.e. set, then
there is an r.e. set B <, C such that B is strongly atomic, nonrecursive and of
contiguous degree.

Now, let a € S(B) and let D be any r.e. set with D =, B. By contiguity, D =, B.
Now as a € S(B), there exist r.e. sets 4, 4; such that B = 4, LI 4, with deg(4,)=
a. Without loss of generality, we may suppose @ < A4, <r B. Consequently, by
strong atomicity deg(4,), deg(A4,) form a minimal pair of r.e. degrees, with
supremum deg(B). We now shall apply a result of Lachlan, called in [DW] Lachlan’s
lemma: namely, if E, F and G are r.e. sets with E <, F & G, then there exists an
r.e. splitting E = Ey U E, of Ewith E, <, Fand E; <, G.

Now 4, U 4; = B =, D. Hence, by Lachlan’s lemma, D = Dy U D, with Dy <y
Ay and D, <y A;. We claim D, = ,, 4, giving the result (since deg(a,) = a). To see
this, as D, <, 4;, it follows that Dy ® 4; =, B. Now, by contiguity, 4, <y
D, ® A,. Hence A, = Hy U H, with Hy < Dy and H, < 4. Thus, H, <y 43, 4,
But, by strong atomicity, deg(A4,), deg(4,) form a minimal pair and so H, =, &.
Hence 4, = - Hy < 7Dy < 74, giving the desired result. O

We remark that the above proof actually shows that:

(i) For all W-degrees a € S(B) if D =4 B is r.e,, then D = Dy U D, with D, of
W-degree a.

(i) If B is an r.e. contiguous, strongly atomic set, then S(B)= {dld=0Vv d =
deg(B) V de (el d A (e N d=0)A (e ®d=deg(B)))}.

In some sense, the use of contiguous r.e. strongly atomic sets to prove the above
result is somewhat surprising, in view of the very strong nonsplitting properties
possessed by such sets. For example, we quote the following

THEOREM 2.10. Let A be an r.e. nonrecursive contiguous strongly atomic set. Then:

(i) S(A) gives an embedding of the countable atomless boolean algebra into the
contiguous r.e. T- and W-degrees, preserving sups and infs with greatest degree deg(4)
and least 0.

(ii) S(A) is nowhere dense in the r.e. degrees, that is, if ¢ <rd, then there exist ¢, d
with ¢ < ¢’ <pd’ <y dsuch that[c,d} N S(Ad)= @.

(iii) A has the antisplitting property; that is, there exists an r.e. set B with @ <,
B < Asuchthatif A4y A, = Aisanr.e. splitting of A, then Ay <r.B implies Ay = ¢
@ . B is called an antisplitting witness for A.

(iv) In fact, if @ <7 B <y A is an r.e. set, there exisis an r.e. set B’ with @ <,
B’ < ;B such that B’ is an antisplitting witness for A.

(V) Finally, there exists an r.e. set C with C <y A such that if A, L1 A, = A is an
r.e. splitting of A, then C <y Ay implies Ay =7 A.
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PROOF. (i) is [DW, Theorem 35.5], (i) is [DW, Theorem 5.4], (iii) is [DW, Corollary
4.2] and (v) is an unpublished result of Downey, Ingrassia, Stob and Welch, whose
proof will appear elsewhere. We prove (iv).

Let @ <;B <;A.Let B’ be a contiguous r.e. set with @ <, B’ <, B such that
B’ is a W-anticupping witness for B; namely if Q is r.e. and B’ ® Q ,,> B, then
Q w=> B. Such a B’ exists by a result of Ladner and Sasso [LS]. Now suppose
A =AyU A4, is an re. splitting of 4 with @ <, 4, <, B’. By contiguity of B’,
Ay <y B'. It follows that B @ A, =, 4 since 4 is contiguous (and thus B < ,,.4).
Thus B ® 4, ,> B. As B’ is a W-anticupping witness for B, 4, ,> B. Hence
A w> B> B> Ay > &, contradicting the strong atom1c1ty of A: Ay, A, are
supposedly a minimal pair.

The use of W-degrees and r.e. sets with special splitting properties may obtain
several other results. We illustrate with two further examples.

In view of the Remmel-Shore result, another natural conjecture would be that if
@ <ya <70 then a is an antisplitting witness for some r.e. set. We call a degree a
persistent if, for all re. sets B with a <, deg(B), there exists an r.e. splitting
By U B, = B with 0 < deg(B,) <ra.

THEOREM 2.11 (i) There exists an r.e. low persistent degree a.

(ii) Furthermore, we may construct low r.e. degrees a,, a, such that for all r.e. sets

C, if deg(C) & ay and deg(C) & a,, then C = Cy U C, with h Co, C, nonrecurtive and
0 < deg(C,) <y a,. Inparticular, a, is “ persistent ™ for all non-low r.e. sets.

PROOF. Let X be an r.e. set of complete W-degree. Sacks’ split K as K = Ky U K;
with the K Jow. Let a, = deg(K). Let C be any r.e. set with C £ K, fori = 1,2. As
C <K, @ K, by Lachlan’s lemma C = C, U C; with C, <, K. Now suppose, for
example, that Cy =, &. Then C =, C, <, K, a contradiction, giving the result.
|

As our final illustration, we shall give a result concerning initial segments of the
r.e. T-degrees. We say an T.e. degree a # 0 bounds a 1-3-1 lattice if there exist r.e.
degrees ay, a,, 2, <pa, witha,[;a anda; N a;=0fori+janda, <ra; ®a,for’
i #j # k. By a result of Lachlan, as there is an r.e. degree bounding no mlmmal
pairs, there is an r.e. degree bounding no 1-3-1 lattice. However, using strongly
atomic r.e. sets and W-degrees, we get the following somewhat surprising definabil-
ity result.

THEOREM 2, 12 Below any high r.e. degree, there exists an r.e. degree a + 0 such
that

(1) every r.e. degree b with 0 < b < ra is the sup of @ minimal pair, and

(ii) a bounds no 1-3-1 lattice.

PROOF. Let 4 be an r.e. strongly atomic contiguous degree of degree a. It is shown
in [AS] that if b < 7 a, then b is strongly atomic. In fact in [AS] it is proved that:

(*) If C and D are r.e. sets with C <, D, then there exists an r.e. set C' =, C
such that if C* = Cy Ul C,, then there exist r.e. sets Dy, D, with D = Dy L) D; and
G <uD.

I I
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Now suppose Ag, 4, A, are r.e. sets whose degrees form a 1-3-1 lattice below a.
Let E=A,® A4, & 4,. By (+) E=, Fwith Fre. and F strongly atomic (as, by
contiguity, E < ,, A). _

Now as F =, E, by Lachlan’s lemma, F = F U F; Ll F, with F; <, 4;. We claim
F=,A4.Leti=0 NowAd,<, F,®F ®F, and so 4,=H,U H, Ll H, with
H<<yF<4,.In particular forj # 0, H; <y 4;, Ag. As deg(A,), deg(4,), deg(A4,)
form a 1-3-1 lattice for j = 1,2, H; = @. Thus 4, =, Hy <y Fy <y Ags and so
F, =, A, as required. Similarly 4, =, F, for i = 0,1, 2. But this is impossible since
then @ <, Fy <, F,UF, and F=F,LI (F, UF) is an re. spltting of a sup-
posedly strongly atomic r.e. set. O

A surprising number of quite strong definability results for the r.e. T-degrees, and
splitting type results may be found by the use of similar techniques. Namely, we
build r.e. sets with certain degree theoretic splitting properties and then we analyse
structural interactions of the r.e. T- and W-degrees to force some properties to hold
in, say, the r.e. T-degrees. It would seem an interesting project to analyse the extent
to which such “transfer” techniques may be used. We refer the reaer to [DS] for
some results along these lines.

ADDED IN PROOF. We have recently extended Theorem 2.10 to show that if 4 is an
r.e. nonrecursive contiguous strongly atomic set, there exists an r.e. set B with @ <7
B <, A such that if 4511 A4, = A is an r.e. splitting of 4, then B < 4, implies
Ay =54 and Ay <, B implies A, =, @. The proof also uses W-degrees.
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