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1 Introduction

In these notes I will look at some very exciting parts of mathematics related
to order in apparent chaos, and surprising connections with applications in
algorithm design. I assume that the reader has a basic background with the
basic terminology of graph theory and has that elusive quality “mathematical
maturity.”

These notes have quite uneven levels of depth. They were prepared for a
course to talented undergraduates at the Nangyang University of Technology
for May 2006. The idea is that several different courses could be made from
the notes. For example, the flow material could be covered quickly, only
pointing at the main ideas, such as max-flow/min cut and applications, for
really advanced students. Then the idea would be to move on to the WQO
type material and treewidth. On the other hand, with less advanced students
more time could be spent in a thorough treatment on this easier material,
with less time on the more advanced cutting-edge material; but allowing the
less advanced student to have a tour d’horizon.
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2 Network flows

In this section, we develop some basic machinery which allows us to begin
work in topological graph theory, an area where the emphasis is on connectiv-
itity and “shape”. The material is of interest in itself, and might be familiar
with students who have done basic operations research.

2.1 Basic Results

First we give a typical problem. We want to send oil from s to t, via a
sequence of pipes of varying capacity. We wish to maximise this flow.

To model this problem, we associate a directed graph with the pipes.
Let the verticies be s and t together with the places where pipes intersect.
We give weights to the arcs (edges) which are the capacities of the pipes.
Figure 1 gives an example of such a weighted-digraph below.
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Figure 1: A graph of an oil pipe sytem

For the rest of this section, let s be the source and t be the sink. The
graphs should have no loops or multiple edges. The vertex s to vertex t
should be strongly connected. All weights should be positive.

Next we develop some notation. Let N be a network, V (N) be it’s vertex
set and E(N) be the edge set of N . Let x ∈ V (N). The set {v ∈ V (N) :
(x, v) ∈ E(N)}, of verticies after x will be denoted by A(x). The set {u ∈
V (N) : (u, x) ∈ E(N)}, of verticies before x will be denoted by B(x).

In Figure 2, A(x) = {p, b} and B(x) = {b, a}.
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Figure 2: A network

Convention is to use lower case letters for individual verticies, e.g. p,s,t,a,b.
Also, we use upper case letters for sets of verticies, e.g A, B,C.

Now we describe the collection of edges between to sets of verticies. Let
A and B both be subsets of V (N). Then

(A, B) = {(x, y) : x ∈ A and (x, y) ∈ E(N) and y ∈ B}.

An example follows, using the network in Figure 2. Suppose X = {s, a, p}
and Y = {x, b}. Then

(X, Y ) = {(s, b), (a, x)}

and
(Y, X) = {(x, p), (b, p)}.

Suppose that h is any function, from verticies to verticies, e.g flow or
capacity. Then for sets A and B, both subsets of V (N), we define

h(A, B) =
∑

(x,y)∈(A,B)

h(x, y).

So in the example above, letting h(a, x) = 3 and h(s, b) = 7, we find that

h(X, Y ) = h(s, b) + h(a, x) = 10.

Some trivial consequences follow. We abuse notation and write a for {a}
when the context makes clear which choice was intended.
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1. (V (N), a) = (B(a), a).

2. (a, V (N)) = (a, A(a)).

3. h(X, Y ∪ Z) = h(X, Y ) + h(X, Z)− h(X, Y ∩ Z).

Now we come to a key definition. Let N be a network, where every edge
(x, y) has a weight C(x, y), called the capacity of that edge. A flow f in a
network N is a function f : V (N)× V (N)→ R which satisfies the following
three conditions

1. f(x, y) ≥ 0 for all (x, y) ∈ E(N). So all flows are non-negative.

2. f(x, y) ≤ C(x, y), for all (x, y) ∈ E(N). So the flow cannot exceed the
capacity.

3. There is a fixed positive value q such that, for every x ∈ V (N)

f(x, A(x))− f(B(x), x) =






q if x = s

−q if x = t

0 otherwise

So, apart from the source and the sink, the flow into any vertex should
equal the flow out. We call the value in condition (3) the value of the
flow.

We continue to build up notation. For any set of vertices X, we write
X for V (N) − X. If s ∈ X and t ∈ X then we call (X, X) a cut. Next we
extend the idea of edge capacity to the capacity of a cut. This will calculate
how much you can send from one part of a network to rest. Let C(X, X) be
the capacity of the cut (X, X), and we calculate it as follows

C(X, X) =
∑

(x,y)∈(X,X)

C(x, y).

Similarly, for a flow f , we denote the flow of the cut (X, X) by f(X, X) and
calculate it as follows,

f(X, X) =
∑

(x,y)∈(X,X)

f(x, y).
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Theorem 2.1. Suppose f is a flow with value q. Then if (X, X) is any cut,
the following two statements hold

1. q = f(X, X)− f(X, X). So the amount out of X less the amount into
X is the amount leaving the source and entering the sink.

2. f(X, X) ≥ 0 and q ≤ f(X, X).

Proof. First we will show that statement (1) is true. Recall from the defini-
tion of cuts that t /∈ X. Also, if a 6= s and a ∈ X then, as flow in equals flow
out,

f(a, V (N))− f(V (N), a) = 0 (1)

Let X̂ = X − {s}. Combining Equation 1 with the fact that neither s not t
are members of X̂, we see that

f(X̂, V (N))− f(V (N), X̂) = 0.

As (X, X) is a cut, we know that V (N) = X ∪X and X ∩X = ∅.

Now we calculate the difference of f(X, V (N)) and f(V (N), X).

f(X, V (N))− f(V (N), X) = f(X̂ ∪ {s}, V (N))− f(V (N), X̂ ∪ {s})

=
[
f(X̂, V (N)) + f(s, V (N))− f(X̂ ∩ {s}, V )

]

−
[
f(V (N), X̂) + f(V (N), s)− f(V (N), X̂ ∩ {s})

]

=
[
f(X̂, V (N))− f(V (N), X̂)

]
+ [f(s, V (N))− f(V (N), s)]

= 0 + [q − 0]

= q

To complete the proof of statement (1), we use the difference calculated
above.

q = f(X, V (N))− f(V (N), X)

= f(X, X ∪X)− f(X ∪X, X)

= f(X, X) + f(X, X)− f(X, X)− f(X, X)

= f(X, X)− f(X, X)
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We use statement (1) to show that statement (2) is also true. From above,
q = f(X, X)− f(X, X). Rearranging, we see that

f(X, X) = q + f(X, X).

From the definition of flow, f(X, X) ≥ 0. Hence q ≤ f(X, X). Again, from
the definition of flow, f(X, X) ≥ 0.

Corollary 2.2. The maximum value a flow of a network can take, is no
larger than the minimum value the capacity of a cut can take.

Proof. Let (X, X) be a cut. Now we look at some flow f in the graph. From
Theorem 2.1, q = f(X, X)− f(X, X). As f is a flow, f(X, X) ≤ C(X, X).
So

q ≤ C(X, X)− f(X, X).

As f(X, X) ≥ 0, it follows that q ≤ C(X, X).

So the value of any flow in the network is no larger than the capacity of
our cut (X, X). Hence, over all the flows and cuts, the maximum flow is no
larger than the minimum cut.

3 Exercises 1

1 In the below Figure (a) represents a transportation network with source
s and sink t. Figures (b), (c) and (d) represent “flows,” with the flow
on a edge represented by the number on the arc. Determine which are
actually flows, and in the case that they are, determine the value of the
flow.

(a)

s t

3

8 3 4 5

5 7

3 2 2 9

6

a b

c d

e
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(b)

s t

3

7 4 3 0

5 7

3 2 3 8

5

(c)

s t

2

2 0 2 0

3 4

3 0 1 4

3

(d)

s t

3

6 3 3 0

5 7

3 2 2 7

5

2 Find the capacity of each cut in the transportation network (a).

3 Both (X, X) and (Y, Y ) are minimum cuts in a certain transportation
network N . Prove that both (X ∪ Y, X ∪ Y ) and (X ∩ Y, X ∩ Y ) are
minimum cut in N .

4 The Ford Fulkerson Algorithm

The summary of the algorithm below is

“accentuate the positive and eliminate the negative!”

This will be done across a minimum cut.

One of the key idea used for this algorithm help maximize a given flow,
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is how to extend a given flow. Let s = a1 and t = an. A undirected path of
vertices a1a2 . . . an, with no repetitions, from s to t, is called an augmenting
path if

1. One of (ai, ai+1) or (ai+1, ai) is a directed edge in the network.

2. If (ai, ai+1) ∈ E then f(ai, ai+1) < C(ai, ai+1)

3. If (ai+1, ai) ∈ E then f(ai+1, ai) > 0.

Below is an example of an augmenting path in a network flow. Remember
that the first number is the capacity of the edge, and the second number is
the flow through the edge. An augmenting path is s, d, b, a, t. Note that,

c

s t

d

a

10,10

11,1

9,0

20,0

1,1

1,1
10,10

10,10

b

Figure 3: Before the path

even though f(a, b) = C(a, b), in the path the orientation is (b, a), so we
only require that f(a, b) > 0. The table below explains how we can use the
augmenting path to increase the value of the flow.

f(X, Y) C(X, Y) possible
net change

(s, d) 1 11 10
(d, b) 0 9 9
(b, a) -10 0 10
(a, t) 0 20 20
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As the smallest possible net change is 9, that means we can augment the
flow in Figure 3 by 9 units along the augmenting path. The new, augmented
flow, is in Figure 4 Note that we lowered the arc (b, a) by 9, as the path goes

20,9

s t

d

a

10,10

1,1

1,1
10,10

b

c

11,10

9,9

10,1

Figure 4: After the path

the other way.

4.1 Ford-Fulkerson algorithm

First we state the algorithm, later we will prove it’s correctness.

We will label some vertices, with a triple (v, d, a). The first ordinate, v,
is a vertex. The second, d, is a direction (either + or −). The third, a, is
the amount by which we can increase the flow.

Step 1. Label the source s with (s, +,∞). So we’ve come from s, in a positive
direction, with no limit to how much the flow could increase.

Step 2. If the sink has been labeled, go to step 5.

Step 3. Check to see if the flow is maximal already. If we have scanned every
labeled vertex, then the flow is maximal. Stop.

Step 4. We now scan (or process) a vertex. Let x be the last vertex labeled,
but not scanned. Suppose the label of x is (y,±, a). Our next move
depends on whether (y, x) ∈ E or (x, y) ∈ E.

If (y, x) ∈ E , then f(y, x) < C(y, x) and the label is (y, +, a),
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Otherwise , (x, y) ∈ E, then f(x, y) > 0 and the label is (y,−, a).

Now we look for other vertices to label. Vertex w can be seen by x if
w has not been scanned already and either

1. w ∈ A(x) and f(x, w) < C(x, w). So in this case, there is capacity
to extend our augmenting path. Label w by (x, +, b) where

b = min{a, C(x, w)− f(x, w)}

2. w ∈ B(x) and f(w, x) > 0. So there is room to redirect the flow.
Label w by (x,−, b) where

b = min{a, f(w, x)}

Once all vertices seen by x have been labeled, declare that x is scanned
and go to step 2.

Step 5. As we came from step 2, the sink is labeled (y, +, b) for some b. We
can improve the flow by b. Retrace the path, using the labels. For each
edge in the path, lower or raise the flow by b depending on whether the
label is + or −. For example, the edge (y, t) corresponds to the label
(y, +, b), so the flow along (y, t) is increased by b. If a label on the path
is −, then decrease the flow by b.

4.2 Verification of Ford-Fulkerson

Lemma 4.1. If there is an augmenting path

s = x1, x2, . . . , xn = t

then the flow can be increased by the algorithm.

Proof. For each i satisfying 1 ≤ i < n, let

Si =

{
C(xi, xi+1)− f(xi, xi+1) if (xi, xi+1) ∈ E

f(xi+1, xi) if (xi+1, xi) ∈ E
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and b = min{Si}.

We define a new (augmented) flow g as follows.

g(x, y) =






f(x, y) if neither (x, y) nor (y, x) is on the path

f(x, y) + b if (x, y) ∈ E and, for some i, x = xi and y = xi+1

f(x, y)− b if (x, y) ∈ E and, for some i, x = xi+1 and y = xi

First we show that g is, in fact, a flow. To show this, we need to confirm
that for every vertex, apart from the source s and the sink t, the flow in to
this vertex is the same as the flow out. Let x be the vertex of interest. If x
is not on the path, then the flows through x haven’t changed from f . As f
is a flow, the flow in and out of x are unchanged.

Suppose that, for some j, x = xj . So x is on the path. We can ignore
the edges that are not on the path. As we used the path to construct g, only
two edges on the path, using x, have a different flow from f . Let (z1, xj)
and (xj , z2) be the edges on the path that contain x. There are four cases,
depending on which orientation that edges take in the network.

(z1, xj) and (xj, z2) are also the directed edges in the network. Then g(z1, xj) = f(z1, xj)+b,
and the flow in to x is increased by b. Also, g(xj , z2) = f(xj , z2) + b,
and the flow out of x is increased by b. Hence the flow in and flow out
are still equal.

(z1, xj) and (z2, xj) are the directed edges in the network. So the second edge in the path
was against the network direction. Again, g(z1, xj) = f(z1, xj)+ b, and
the flow in to x is increased by b. In this case, g(z2, xj) = f(z2, xj)− b,
so the flow in to x is decreased by b. Overall, the flow in unchanged
and the flow out was not affected. So the flow in and out are the same.

(xj , z1) and (xj, z2) are the directed edges in the network. Similar above.

(xj , z1) and (z2, xj) are the directed edges in the network. See above.

So we have confirmed that g is a flow. Clearly, the value of g is b units
bigger than f ’s value. So g increases the flow.
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Now we have to check what happens when the algorithm stops. We must
confirm that the flow is, indeed, maximal. We remark that if we assume that
all the capacities are integer valued, then since we increase the flow each
time, we must stop. We will tacitly make this assumption, though it can
be eliminated for flows with rational weights (by multiplying to make them
integers) and then for real weights (using rational approximations). These
distract from the main ideas so we don’t discuss further.

Lemma 4.2. Suppose that a transportation network has a flow from s to t
of value q. Then either there is an augmenting path, or there is a cut whose
capacity is q.

Proof. Run the Ford-Fulkerson algorithm. This does a complete search for
an augmenting path.

Suppose that no such path exists. Then the algorithm gets stuck on step
2, before it gets to t. So t is not labeled. But every vertex that is labeled
is also scanned, in the search for an augmenting path. Let X be the set of
vertices scanned.

We claim that (X, X) is a cut of capacity q. Clearly s ∈ X (s is scanned
first) and t ∈ (X) (as t is not labeled, it cannot be scanned). Let x ∈ X and
y ∈ X. There two possibilities, depending on the orientation of the edge. In
each case, recall that the algorithm stopped.

1. Suppose that (x, y) ∈ E. If there is any spare capacity, then x could
see y and we would have scanned y. So there is no spare capacity and
f(x, y) = C(x, y).

2. Suppose that (y, x) ∈ E. If there is any flow along this edge, then x
would see y and we would have scanned y. So there is no flow along
this edge and f(x, y) = 0.

Together, these two cases show us that (X, X) is a cut. Now we calculate

12



the capacity of this cut.

q = the capacity of (X, X) (the value of the flow is the capacity)

= f(X, X)− f(X, X) (from the definitions)

= C(X, X)− 0

= C(X, X)

Corollary 4.3. In a network, the maximum flow value is equal to the mini-
mum cut capacity.

4.3 An example of Ford-Fulkerson

Below we give an example of the Ford-Fulkerson algorithm run on a particular
network. We use a table to conveniently keep track of the labels.

6

s

a b c

d e h

t

6

4 3

2

1 2 2 3 4

2

4 5

Figure 5: Ford-Fulkerson example, with no flow
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vertex vertex label
processed labeled

s [s+, ∞]
s a [s+, 6]

d [s+, 2]
a b [a+, 4]
d e [d+, 2]
e h [e+, 2]
h t [h+, 2]

So there is an augmenting path
(reading backwards)

(s, d, e, h, t).

The new flow is shown in Figure 6.

5,2

s

a b c

d e h

t

6

4 3

2

1 2 2 3 4

6,22,2

4,2

Figure 6: Ford-Fulkerson example,
after 1 iteration

vertex vertex label
processed labeled

s [s+, ∞]
s a [s+, 6]
a b [a+, 4]

d [a+, 1]
b c [b+, 3]

e [b+, 2]
c t [c+, 2]

So the augmenting path from this
iteration is

(s, a, b, c, t).

The new flow is shown in Figure 7.

5,2

s

a b c

d e h

t

6,2

4,2 3.2

2,2

1 2 2 3 4

6,22,2

4,2

Figure 7: Ford-Fulkerson example,
after 2 iterations

vertex vertex label
processed labeled

s [s+, ∞]
s a [s+, 4]
a b [a+, 2]

d [a+, 1]
b c [b+, 1]

e [b+, 2]
c h [c+, 1]
h t [h+, 1]

So the augmenting path is

(s, a, b, c, h, t).

The new flow is shown in Figure 8.
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5,2

s

a b c

d e h

t

6,3

4,3 3,3

2,2

1 2 2 3 4,1

6,32,2

4,2

Figure 8: Ford-Fulkerson example,
after 3 iterations

vertex vertex label
processed labeled

s [s+, ∞]
s a [s+, 3]
a b [a+, 1]

d [a+, 1]
b e [b+, 1]
e h [e+, 1]
h t [h+, 1]

So the augmenting path is

(s, a, b, e, h, t).

The new flow is shown in Figure 9.

5,3

s

a b c

d e h

t

6,4

4,4 3,3

2,2

1 2 3 4,1

6,42,2

4,2

2,1

Figure 9: Ford-Fulkerson example,
after 4 iterations

vertex vertex label
processed labeled

s [s+, ∞]
s a [s+, 2]
a d [a+, 1]
d e [d+, 1]
e b [e-, 1]

h [e+, 1]
b Nothing
h t [h+, 1]

So the augmenting path is

(s, a, d, e, h, t).

The new flow is shown in Figure 10.

4,3

s

a b c

d e h

t

6,5

4,4 3,3

2,2

2 3 4,1

6,52,2

2,1

5,4

1,1

Figure 10: Ford-Fulkerson example,
after 5 iterations

vertex vertex label
processed labeled

s [s+, ∞]
s a [s+, 1]
a Nothing

So there is no augmenting path.
So the maximum flow is the flow in
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Figure 10 and a minimum cut

({s, a}, {b, c, d, e, h, t})

is described in Figure 11.

CUT

s

a b c

d e h

t

6,5

4,4 3,3

2,2

2 3 4,1

6,52,2

2,1

5,4

1,1

4,3

Figure 11: Ford-Fulkerson example,
finished with a min-cut
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5 Exercises 2

1 Use the Ford-Fulkerson Algorithm to maximize the flow of the following
network.

b

4

4

2

2

3

6

3

3

3

3

2

2

2

4

1

2

3

c d

t

a

s

c

a b

s t

(a) (b)

2 Use the Ford-Fulkerson Algorithm to maximize the flow of the following

4

s t

b

c

a

e

d

3

3

3

4

6

6

6

4
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6 Some applications

6.1 Supply and Demand

Suppose we have a collection of factories that supply a collection of retailers.
The basic problem is to determine if all the factories can produce enough to
supply all the retailers, through the distribution chain.

In this problem, we have a set S of sources x1, x2, . . . , xα and a set T of
sinks y1, y2, . . . , yβ. The sets are mutually exclusive, S∩T = ∅. Every source
xi has an associated number s(xi) which is the maximum supply from xi.
Every sink yi has an associated number d(yi) which is the demand at yi. We
say supply meets demand if we can find a flow in the network whose output
is at least equal to the demand.

The flow must meet the following constraints.

1. If x ∈ S then f(x, V )− f(V, x) ≤ s(x)

2. If y ∈ T then f(V, y)− f(y, V ) ≥ d(y)

3. For all other vertices, z /∈ S ∪ T , f(z, V )− f(V, z) = 0

4. 0 ≤ f(a, b) ≤ c(a, b), as per usual.

Let N be a supply-demand network with vertex set V and let X ⊆ V .
We define

s(X) =
∑

x∈S∩X

s(x)

and
d(X) =

∑

y∈T∩X

d(y)

Theorem 6.1. Let N be a supply-demand network with vertex set V and let
X ⊆ V . Supply can meet demand if and only if, for every cut (X, X),

d(X)− s(X) ≤ c(X, X)
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Proof. Suppose that supply meets demand. Let (X, X) be a cut. The total
demand from retailers in X is d(X). The maximum supply from suppliers is
s(X). The rest of the demand must be produced from suppliers in X. Given
any flow f , the net amount that flows from X to X is f(X, X) − f(X, X).
This flow cannot exceed the capacity C(X, X). So the supply still required
must be less than or equal to the capacity available from X. Hence d(X)−
s(X) ≤ C(X, X).

The other direction is omitted.

This theorem tells us how to find out whether supply can meet demand
in supply-demand network. First, set up a network N ′ with one source (a
super source) and one sink (a super sink). In N ′, the super source has edges
to the suppliers and the retailers have edges to the super sink. The capacity
of the new edges are the values of the functions s or d respectively.

If the flow fills all the edges into t, then there is a solution to the supply-
demand problem. If not, the problem is unsolvable. So, in effect, we find
a maximum flow (in N ′) that saturates all new edges from the retailers to
the super sink. The flow that meets the supply-demand problem is just the
saturating maximum flow of N ′ when it’s restricted to the original network.

Below, in Figure 12, is a diagram of how the procedure works.

6.2 Matching theory

Next we look at a problem associated with bi-partite graphs. Recall that a
graph G is bipartite if the vertices of G can be partitioned into two cells X and
Y such that all edges are incident with a vertex from each cell. Equivalently,
a graph is bipartite if all it’s circuits contain an even number of vertices.
Also, a graph is bipartite if it is two colourable.

A typical matching problem is the following. There are 6 people and 6
jobs. Some people can only do some jobs. Each job needs just one person.
Is it possible to match every person with a job.

A matching in a bipartite graph is a collection of edges for which no two
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Figure 12: Supply-demand network

4

BobAly Chris Don Ely Fin

People

Jobs

1 2 3 5 6

Figure 13: People and jobs
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edges are incident to a common vertex. A matching in the example above is

{(Aly, 1), (Bob, 2), (Don, 4), (Fin, 6)}.

A matching is maximal if it cannot be extended. So M is a maximal
matching if there is no larger matching N that contains M as a subset.

A matching is maximum sized if there is no larger matching. So no
matching in the graph has more edges.

A matching is complete if every vertex is incident with an edge in the
matching.

In the example below, we give a matching that is maximal, not maximum
sized and explain why the bipartite graph has no complete matching. The
matching is the edges that are emboldened.

b

1 2 3

a

Figure 14: A bipartite graph

This matching {(3, b)} is maximal as we cannot extend it (all other edges
are incident with either 3 or b.) It’s not a maximum sized matching as there
are larger matchings, such as {(3, a), (1, b)}. The bipartite graph cannot
have a complete matching as there are only 2 vertices {a, b} in one part and
3 vertices {1, 2, 3} in the other.

So the problem is to find a maximum sized (and hopefully complete)
matching in a bipartite graph. To do this, we will use network flows.
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6.3 Using network flows

The method is as follows. Let G be a bipartite graph with parts A and B.
Orient the edges of G, so that all edges go from A to B. Add two vertices, s
and t, to the digraph and add directed edges as in the supply-demand case.
So, for each vertex a in A, there is a directed edge (s, a). Similarly, for each
vertex b in B, there is a directed edge (b, t). Give every edge a weight (or
capacity) of 1. Then the resulting digraph is a network.

Below is an example, of a bipartite graph and it’s associated network.
Remember, each edge in the network (Figure 16) has capacity 1.

d

1 2 3

a b c

4

Figure 15: A matching

Suppose that f is a flow in the network N associated with a bipartite
graph G. Then the collection of edges in N with non-zero flow, when con-
sidered as (undirected) edges in G, is a matching. Conversely, for every
matching in G, there is a flow in N that has non-zero flow precisely on the
(directed) edges that are in the matching.

So a maximal flow in N gives a maximum sized matching in G.

Let (X ∪Y, E) be a bipartite graph with parts X and Y . For each subset
X ′ of vertices of X, let

N(X ′) = {y ∈ Y : (x, y) ∈ E for some x ∈ X ′}.

We call N(X ′) the neighbours of X ′. For example, in Figure 15, N({1, 2}) =
{a, b, c}.
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a b c d

s

t

1 2 3

Figure 16: The network associated with Figure 15
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Theorem 6.2 (Halls Marriage). Let G = (X ∪ Y, E) be a bipartite graph.
Then G has a complete matching if and only if, |X| = |Y | and, for every
X ′ ⊆ X, |N(X ′)| ≥ |X ′|.

One direction is easier than the other. Can you guess which one?

Proof. First the easier direction. Suppose that G has a complete matching.
Then

|X| = |Y | .

Now for the inequality. Let X ′ be a subset of X and let M be the collection
of edges in the complete matching that are incident with a member of X ′.
We’ll use M to count some members of N(X ′). As M is a subcollection of
the matching,

|M | = |X ′| .

Let Y ′ be the collection of vertices, in Y , that are incident with edges of M .
Then, again as M is a subcollection of the matching,

|Y ′| = |M | .

But Y ′ is a subset of N(X ′), so

|Y ′| ≤ |N(X ′)| .

Combining all these together, we see that

|X ′| ≤ |N(X ′)| .

Now for the more difficult part. Suppose that |X| = |Y | and, for every
subset X ′ of X, |N(X ′)| ≥ |X ′|. We will use network flows to show that the
graph has a complete matching. Let N be the network associated with the
bipartite graph.

Recall that, by the max-flow min-cut theorem, the maximum value a
flow can take is equal to the minimum capacity a cut can have. Remember
that a flow of maximum value in the network will result in a maximum-sized
matching in the bipartite graph. So combining these two facts, if we can
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show that any cut in the network has capacity at least |X|, then there will
be a complete matching in the bipartite graph.

Let n = |X|. Let (A, A) be a cut in the network N . Let X ′ = A∩X and
Y ′ = A∩Y . So A = {s}∪X ′ ∪Y ′. Figure 17 below, may help with the next
calculation.

k

Y’X’

X−X’ Y−Y’

s t

A

m

Figure 17: Help for Halls marriage theorem

The capacity of the cut is

C(A, A) = |X −X ′|+ |Y ′|+ C(X ′, Y − Y ′).

Let |X −X ′| = k. So there are k vertices in |X −X ′|. So, by the con-
struction, there are k edges from s to X − X ′ and n − k edges from s to
X ′.

Recall Halls’ condition on X ′, that |N(X ′)| ≥ |X ′|. So there are at least
n− k neighbours of X ′. Hence there must be at least n− k edges from X ′ to
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Y . Suppose that m neighbours are in Y − Y ′, then there must be n− k−m
reminding neighbours in Y ′.

Since there are m neighbours in Y − Y ′ there must be at least m edges
from X ′ to Y − Y ′. Since there are at least n− k −m members of Y ′ there
must be at least n− k −m edges from Y ′ to t. This gives a total of at least
k + m + (n− k −m) = n edges out of the cut.

We also present another algorithm, which is quicker, but does not neces-
sarily find a maximum-sized matching. It will find a maximal matching.

6.4 First-fit back-tracking algorithm

The algorithm runs in |X| steps. At each step k, match xk to some yk not
already matched. If you can find the match, then extend your matching. If
you cannot do match xk to anything new, then rematch.

Figure 18 below might help?

    (4,f), (5,d)

1

2

3

4

5

6

a

b

c

d

e

f

1. (1,a)
2. (1,a), (2,b)
3. (3,a), (2,b), (1,c)
4. (3,a), (2,b), (1,c), (4,d)

    (4,f)
5. (3,a), (2,b), (1,c), (5,d)

6. (3,a), (2,b), (6,c), (1,e)

Figure 18: An example of first-fit back-track
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So the matching found here is

(1, e), (2, b), (3, a), (4, f), (5, d), (6, c).

The algorithm will find a matching or it may collapse. Remember it
doesn’t guarantee a maximum-sized matching, just a maximal matching. By
chance, the example in Figure 18, gives a complete matching.

7 Exercises 3

1

• Goods are manufactured at 4 factories x1, x2, x3 and x4 and are to be
transported to 4 stores y1, y2, y3 and y4, through the transport network
with capacities shown in the figure below.

x1

x2

x3

x4

y1

y2

y3

y4

10

6

6

5

6

1

6

1

6

1

3

4

3

4

3

4

3

5

2

5

2

5

5

2

8

8

6

6

10

6

10

6

6

Factory x1 can make at most 12 units per month.
Factory x2 can make at most 12 units per month.
Factory x3 can make at most 1 unit per month.
Factory x4 can make at most 1 unit per month.
Retailer y1 needs at least 3 units per month.
Retailer y2 needs at least 10 units per month.
Retailer y3 needs at least 3 units per month.
Retailer y4 needs at least 10 units per month.
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Can supply meet demand? If so, how many goods should each factory
produce? If not, find a partition (X, X̄) of the vertices for which d(X̄)−
s(X̄) > c(X, X̄) is false.

• In the network below, x1, x2 and x3 are manufacturers; y1, y2

2 In the network below, x1, x2 and x3 are manufacturers; y1, y2 and y3

prepare the product for sale and then distribute it to the retailers z1, z2

and z3. The capacities of the links are shown.

x1

x2

x3

y1

y2

y3

z1

z2

z3

3

5

2

8

7

8

3

4

3

4

Factories x1, x2 and x3 can produce 8, 4 and 9 units per week respec-
tively. No distribution plant can operate economically if the weekly
input is less than 5 units; y1 and y2 are each capable of processing 7
units per week, while y3 can process 6. Of the retailers, z1 needs 9 units
per week, z2 needs 5 and z3 needs 4. Can supply meet demand while
satisfying the constraints on y1, y2 and y3?

3 Suppose that there are 5 committees. Committee A’s members are
a, c, e; B’s are b, c; C’s are a, b, d; D’s are d, e, f and E’s are e, f . Our
goal is to have each committee send a different representative to a
convention.

(i) Set up a bipartite graph to describe this situation. Use a network
flow algorithm to determine if it is possible to chose such distinct
representatives.

(ii) Use the backtracking algorithm to do the same.

(iii) Make a flow that corresponds to the partial matching A, e; B, b;
C, a; D, f . Apply Ford-Fulkerson to this partial flow.
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8 Menger’s Theorems

8.1 Connectivity

Recall that a graph G is connected iff for all vertices x and y or G, there is
a path joining x to y. Similarly if G is a directed graph then G is connected
if there is a directed edge from x to y in G. We say that G is n-connected if
for all such x and y there are n disjoint paths connecting x to y. We can also
specialize this to two particular vertices v and w of G. Namely v and w are
called n-connected iff there are at least n (edge) disjoint paths connecting v
to w in G.

Suppose that G is a nontrivial graph with an isthmus. Then G can’t
be 2-connected! Menger’s theorems tells us that such separations determine
connectivity.

A set of edges E is called a n-edge separation or n-edge cutset iff the
removal of these n edges disconnects the graph. Similarly for a fixed v and
w we say that E is a n-cutset or n-separation of v and w iff the removal of
these n edges disconnects v and w.

Theorem 8.1 (Menger). If the minimum sized v, w cutset in a directed
(multi-)graph G has size n, then v is n-edge connected to w in G.

Proof. Let G = (V, D) be a directed graph and v, w in G as above, satisfying
the hypotheses of the theorem.

Now regard v as the source and w as the sink, and give each edge capacity
1. Let E be a minimal v, w edge cutset in G. Thus if all but one of the
edges is removed then is a path from v to w and yet if we remove them all
then there is no such path. Suppose that U is the set of all vertices x such
that there is a path from v to x in (V, D − E), and let C be the partition
(U, V − U). Then C is a cut. Moreover the only edges from U to V − U are
in E and hence the capacity of C is |E| = n. Summarizing, if the minimum
v, w cutset has size n then the minimum cut capacity is n. Now by the
Ford-Fulkerson Theorem there is a flow of size n from v to w.
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We need to prove that this means that the flow constitutes n disjoint
paths from v to w. This is an easy induction as we now see. Let S be the set
of all k such that that there are k disjoint paths from v to w in G. Clearly
1 is in S. Assume that m is in S. Then there these m paths constitute a
flow of size m. Remove the edges of these m paths. Call the result Ĝ. Then
there is still a flow of n−m in Ĝ. Hence if m < n, there is a path from v to
w in Ĝ, and this is disjoint from S.

Menger’s Theorem has a more standard vertex separation version. We
say that a set of vertices S is a n-vertex cutset or n separation in G if the
removal of the n vertices (and of course the edges from them) of S disconnects
G.

Theorem 8.2 (Menger). If the minimum sized v, w vertex separation in a
directed graph G has size n, then v is n-(vertex-)connected to w in G.

Proof. Take each vertex x of G and replace it by an edge x1x2 and then for
any edges xy of G replace it by x2y, and any edge px replace it by px1. Thus
we “split” the vertices. This forms G′. A vertex cutset in G is a edge cutset
in G′.

Menger’s Theorem is also true in the undirected case.

Theorem 8.3 (Menger). If the minimum sized v, w cutset in in undirected
graph G has size n, then v is n-edge connected to w in G.

Proof. Take G and for each edge e = xy of G replace it by a pair of directed
edges xy and yx. call the result G′. Notice that then an n-edge cutset in G
will be a v, w-cutset of size 2n in G′. Now, again note that the reasoning of
the first theorem shows that the maximum capacity of a cut in G′ is ≤ 2n
and at least n. Thus by Ford -Fulkerson there is a flow of size n from v to
w in G′, and for each such cut C = (U, G′ − U), this flow has all edges from
U to G′ − U saturated, and all from G′ − U to U zero. Below we will show
that in any such flow we can only use one of xy and yx, and hence the value
of the flow will be n and we can lift the flow back to the undirected case.
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Specifically, for any other edge pq which has been replaced by two pq and
qp, suppose that some path of the flow uses both pq and and other uses qp.
Let these be

v = x0 . . . p(pq)q . . . w, and

v = x0 . . . q(qp)p . . .w.

Then we can replace these paths by two that use neither pq nor qp. Namely,
start at v, travel to p using the first path, and then to w using the second,
and for the other one, travel from v to q using the second, then then from
q to w using the first. Thus we can eliminate all simultaneous occurrences
of both pq and qp, meaning that the paths will correspond to edge disjoint
paths of G.

You should prove for yourself the vertex form of Menger’s Theorem for
undirected graphs.

8.2 Exercises 4

1 Prove the vertex version of Menger’s Theorem for undirected graphs.

2 Use one of the Network Flow Algorithms to find the largest n such that
a is n edge connected to b in the directed graph below.

a

b

3 Find the maximum sized vertex disjoint paths in from a to b in the
figure of Question 2 above.
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9 Preflow-Push algorithms∗

I won’t have time to discuss these efficient algorithms, but will include for
completeness. For more on this I refer the reader to Ahuja-Orlin [1].

9.1 The Goldberg-Tarjan Algorithm

The idea behind this algorithm is aggressive-passive. You push as much
as you can into the network, then trim the excess. So while the algorithm
is running, the flow in and out of vertices may not be equal. We call the
difference at each vertex v the excess at v. Using a relabeling algorithm, we
eventually makes the excess at each vertex 0. As the algorithm will not have
a flow until the very end, we call the temporary amounts in the network a
pre-flow.

First some terminology. Let f be a pre-flow in the network. The excess
at x is denoted e(x) and is computed by

e(x) = f(B(x), x)− f(x, A(x)).

We say x is active if e(x) > 0. The source and sink are never active. The
residual capacity of an edge (x, y) is denoted by r(x, y) and calculated by

r(x, y) = c(x, y)− f(x, y) + f(y, x).

The residual network is the collection of edges whose residual capacity is
non-zero We denote this network by R = {(x, y) : r(x, y) > 0}. A distance
function d is a function from V to R which satisfies two conditions. First,
d(t) = 0. Second, if (i, j) ∈ E and C(i, j) > 0 then d(i) ≤ d(j) + 1. These
two conditions will control the direction of the algorithm and make it try to
push more towards the sink.

9.2 The actual algorithm

Preprocess. Set up the initial conditions. Set d(s) = |V |, d(t) = 0. For every other
vertex x (not the source or sink), set d(x) = 1. For every edge (s, x),
set f(s, x) = C(s, x).
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Process. While there is an active node, do the following. Select an active node
i. We will try to push more pre-flow towards the sink. There are two
situations in which we push.

1. Suppose that (i, j) ∈ E, d(i) = d(j) + 1 and r(i, j) > 0. Then
there is capacity to push more from i to j. We push as much
as the excess at the vertex and the residual capacity of the edge,
will allow. So push min{e(i), r(i, j)} from i to j and change f
accordingly.

2. Suppose that (j, i) ∈ E, d(i) = d(j) + 1 and r(i, j) > 0. Then
there is capacity to push more from i to j. We push as much
as the excess at i and the residual capacity from the edge (i, j),
will allow. So push min{e(i), r(i, j)} from i to j and change f
accordingly.

If we cannot push anything from i, then relabel i as follows. Replace
d(i) with

min{d(j) + 1 : j ∈ A(i) ∪B(i) and r(i, j) > 0}

Finish. Once we have finished, the pre-flow is a maximum flow.

We omit the proof for this algorithm, pointing only at Ahuja-Orlin [1]
where preflow-push algorithms are discussed, and another (the excess scaling
algorithm) is also discussed. What follows is an example of how the algorithm
works in practice.
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Figure 19: The first 6 steps

it z y x p q r sz sy sx zp zq yz yx yq yr xr pq rq pt qt rt ac
1 1 1 1 1 1 1 2 8 4 0 0 0 0 0 0 0 0 0 0 0 0 x,y,z
2 2 1 1 1 1 1 2 8 4 0 0 0 0 0 0 0 0 0 0 0 0 x,y,z
3 2 1 1 1 1 1 2 8 4 2 0 0 0 0 0 0 0 0 0 0 0 x,y,p
4 2 1 1 1 1 1 2 8 4 2 0 0 0 0 0 0 0 0 2 0 0 x,y
5 2 2 1 1 1 1 2 8 4 2 0 0 0 0 0 0 0 0 2 0 0 x,y
6 2 2 1 1 1 1 2 8 4 2 0 0 0 4 4 0 0 0 2 0 0 x,q,r
7 2 2 1 1 1 1 2 8 4 2 0 0 0 4 4 0 0 0 2 4 0 x,r
8 2 2 1 1 1 1 2 8 4 2 0 0 0 4 4 0 0 0 2 4 4 x
9 2 2 2 1 1 1 2 8 4 2 0 0 0 4 4 0 0 0 2 4 4 x
10 2 2 2 1 1 1 2 8 4 2 0 0 0 4 4 4 0 0 2 4 4 r
11 2 2 2 1 1 1 2 8 4 2 0 0 0 4 4 4 0 0 2 4 6 r
12 2 2 2 1 1 2 2 8 4 2 0 0 0 4 4 4 0 0 2 4 6 r
13 2 2 2 1 1 2 2 8 4 2 0 0 0 4 4 4 0 2 2 4 6 q
14 2 2 2 1 1 2 2 8 4 2 0 0 0 4 4 4 0 2 2 4 6

In this case the algorithm managed to push the entire initial amount through
to the sink. Note that steps 2, 5, 9 and 12 were relabel steps. Also note that
we did two pushes in step 6. This example was very simple and required no
trimming as such.

Below is a simpler example that does some trimming.
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Figure 20: The entire algorithm, on a small example.

it a b sa sb ba at bt ac
1 1 1 4 6 0 0 0 a,b
2 1 1 4 6 0 4 5 b
3 1 2 4 6 0 4 5 b
4 1 2 4 6 1 4 5 a
5 3 2 4 6 1 4 5 a
6 3 2 4 6 0 4 5 b
7 3 4 4 6 0 4 5 b
8 3 4 4 6 1 4 5 a
9 5 4 4 6 1 4 5 a
10 5 4 3 6 1 4 5

Notice a few things. At stage 10, the label (5) of vertex a was high enough
to push pre-flow back to s (with label 4). Stages 3 through 10 were pushing
pre-flow back and forth between vertices a and b. We did two pushes at stage
2. We relabeled at stages 3, 5, 7 and 9.

9.3 Projects

(i) What is the current situation regarding the “best” network flow algo-
rithm. is running time all that matters? How do data structures affect
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the running times? All of these algorithms have choices in them as to
where to go next. Does it matter? Does it matter on average?

(ii) What is the situation of min flow. What about negative edge weights?

(iii) What about matching in infinite graphs. Is there such a result as
Menger’s theorem for infinite graphs? (ref Erdös conjecture and the
workk or Aharoni and Diestel) what about Hall’s theorem? (ref König’s
duality theorem)

(iv) How does matching in general graphs work. How it it useful. How
is it used in reduction algorithms such as crown reductions? What
about minimal/maximal matchings in weighted graphs? What about
preferential matching such as stable marriage. How does this relate to
voting schemes and Arrow’s Theorem?

(iv) What about milti-source multi-sink networks. What is the complexity
of k-cut? What about the planar situation?

10 Exercises 5

1 Use the Goldberg-Tarjan Algorithm to maximize the flow of the fol-
lowing (circle changes)
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(a) (b)

2 Use the Goldberg-Tarjan Algorithm to maximize the flow of the fol-
lowing (circle changes)
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11 Treewidth

One of the major outgrowths from the beautiful work of Robertson and
Seymour on “graph minors” and “immersions” was the identification of a
new parameter which measures in a precisely defined sense how “tree-like”
a graph is. The fundamental idea is that we should be able to lift many
results from trees to graphs that are “tree-like.” (Equivalent notions to
tree decomposition have been subsequently, and apparently independently
discovered in other contexts such as the artificial intelligence literature.)

In the present section we will look at a new parameter (treewidth) and
associated parameters such as pathwidth. Then we will look at the uses of
bounded treewidth for algorithm design.

The best known definition of treewidth comes from partial k-trees.

Definition 11.1 (k-tree). (a) The class of k-trees is the smallest class obeying
(i) and (ii) below.
(i) Kk+1, the complete graph on k + 1 vertices, is a k-tree.
(ii) If G is a k-tree and H is a subgraph of G isomorphic to Kk, then the
graph G′ constructed from G by first adding a new vertex v to G and then
adding edges to make H ∪ {v} a copy of Kk+1, is a k-tree.

(b) If G1 is a subgraph of a k-tree, then G1 is called a partial k-tree.

In Figure 21 we give examples of 2- and 3- trees.
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Figure 21: Examples of 2- and 3-trees

Definition 11.2 (Treewidth). We say that a graph G has treewidth k if k is
least such that G is a partial k tree.

For algorithmic purposes, Definition 11.2 is not the most useful. An
equivalent characterization of treewidth is provided by the following.

Definition 11.3 (Tree Decomposition). (a) A tree-decomposition of a graph
G = (V, E) is a tree T together with a collection of subsets Tx (called bags)
of V labeled by the vertices x of T such that ∪x∈T Tx = V and 1. and 2.
below hold:

1. For every edge uv of G there is some x such that {u, v} ⊆ Tx.

2. (Interpolation Property) If y is a vertex on the unique path in T from x
to z then Tx ∩ Tz ⊆ Ty.

(b) The width of a tree decomposition is the maximum value of |Tx|−1 taken
over all the vertices x of the tree T of the decomposition.

If a tree decomposition of a graph G gives a path, then we say that the
tree decomposition is a path decomposition, and use pathwidth in place of
treewidth.
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Figure 22 gives an example of a tree decomposition of width 2.
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Figure 22: Example of Tree Decomposition of Width 2

The axioms above imply certain connectivity conditions on the graphs.

Lemma 11.4. Let {Tx : x ∈ T } be a tree decomposition of G.
(i) Let x ∈ V (G). Then the collection of y ∈ T with x ∈ Ty forms a subtree
of T .
(ii) Suppose that C is a clique of G. Then there is some x ∈ T with C ⊆ Tx.

We leave the proof as an exercise (Exercise 1 below). The following basic
result demonstrates that the two notions of width are identical.

Theorem 11.5 (Arnborg). A graph has treewidth k iff G has a tree decom-
position of width k.

Proof. Let G be a graph with a tree decomposition {Tx : x ∈ T } of width k.
Thus maxx∈T |Tx| = k + 1. We prove that G is a partial k-tree, and in fact
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G is a subgraph of a k-tree K(G) in which every ≤ k element subset of a Tx

is part of a k-clique. We use induction on trees T . Let x be a leaf of T . Let
T ′ be the result of removing x from T , and let G′ be a graph corresponding
to T ′. By hypothesis, G′ is a subgraph of a k-tree K(G′) with the desired
properties. Let y be attached to x in T . Let Tx ∩Ty = T ′

x and Tx−T ′
x = T ′′

x .
If T ′′

x = ∅, then Tx ⊆ Ty and hence G = G′. So suppose that T ′′
x 6= ∅. By

property 2. of Definition 11.3, for all z 6= x, T ′′
x ∩Tz = ∅. It follows that T ′

x is
a proper subset of Tx, and hence as the width is k, T ′

x is a subset of at most
k elements of Ty. By hypothesis, this means that T ′

x is a subset of part of a
k-clique C of K(G′). The idea is now to simply add T ′′

x one node at a time.
We use the following algorithm.

Algorithm 11.6. 1. Initially we let K = K(G′).
While T ′′

x 6= ∅ we repeat the following steps 2-5.

2. Pick a vertex v of T ′′
x .

3. Add v to K and also add all edges between vertices of C and v.
4. Let T ′′

x ← T ′′
x − {v}.

5. If there is any vertex c ∈ C − Tx, let C ← [C − {c}] ∪ {v}.

By induction on the algorithm, one can see that after each iteration, C
is a k-clique of K. Furthermore each step emulates the definition of a k-tree
and hence as K(G′) is a k-tree, so too is Kfin the result of Algorithm 11.6
applied to K(G′). By induction upon the algorithm, we also see that all of
T ′′

x is added together with all possible edges that can exist between vertices
in Tx = T ′

x ∪ T ′′
x . Thus Kfin contains G and has the desired properties.

• Conversely, suppose that G is a partial k-tree. Since it suffices to consider
k-trees, we will in fact suppose that G is a k-tree. We prove by induction
on |V (G)| that G will have a tree decomposition of width k. We use the
stronger hypothesis that if G′ is a k-tree with < |V (G)| vertices, then G′

has a tree decomposition {Tx : x ∈ T } where |Tx| ≤ k + 1 for all x ∈ T ,
and each k-clique of G′ occurs in some Tx. The result is clear if G = Kk+1.
So suppose that G has more than k + 1 nodes and let v be the last node
added in the formation of G. (That is, v is a simplicial node.) Let N(v)
be the neighbours of v in G. Let G′ be the result of the removal of v and
the k edges vu with u ∈ N(v). Then we can apply the induction hypothesis
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to G′ and obtain a tree decomposition {T ′
x : x ∈ T ′} of G′ with the desired

properties. Now N(v) is a k-clique and hence, by hypothesis, there is some
y ∈ T ′ with N(v) ⊆ T ′

y. Create a new tree T from T ′ by attaching a new leaf
ℓ = ℓ(v) at y. Let Tℓ = N(v) ∪ {v}. By hypothesis, T will be the relevant
tree decomposition of G.

Definition 11.7 (Bounded Treewidth). We say that a class C of graphs has
bounded treewidth if there is some k such that for all G ∈ C, G has treewidth
≤ k.

Historically, authors often tried to get around classical intractability by
looking at the problems at hand on special classes of graphs. Authors often
discovered that intractable problems became tractable if the problems were
restricted to say, “outerplanar” graphs. Such restriction is not purely an
academic exercise since, in many practical situations, the graphs that arise
do not in fact demonstrate the full pathology of the class of all graphs.

11.1 Exercises 6

1 Prove Lemma 11.4.

2 (W. Merkle) An ordering I = 〈I1, ..., In〉 of a set of subsets of V is
called an acyclic hypergraph iff for all j ≤ n, there is a q < j such that
Ij∩(∪i<jIi) ⊆ Iq. (This is also called the running intersection property,
and we refer to Lauritzen and Spiegelhalter [31].) Given a finite graph,
we say that an acyclic hypergraph I is an acyclic hypergraph decom-
position of G iff V = V (G) and for each edge e of G there is some i
such the vertices of e are in Ii. Prove that G has a tree decomposition
of width w iff G has an acyclic hypergraph decomposition I such that
for all i ≤ n, |Ii| ≤ w. (Hint: Prove that one can construct the tree

decomposition from I to have the Ii as the actual bags, and conversely.)

3 Apply the algorithm implicit in Theorem 23 to embed the graph de-
scribed by the tree decomposition of Figure 23 into a 3-tree.

4 Prove that if a graph G has a size k vertex cover, then it must also
have treewidth ≤ k. (A Vertex Cover of a graph G is a collection
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a b c d

c b d e f c b d g c b d

h f c b 

Figure 23: Example of Tree Decomposition of Width 3

Q of vertices of G such that if xy is an edge of G then either x is in Q
or y is in Q.)

5 A Halin graph is constructed as follows: take a tree without vertices
of degree 2. Then, embed in in the plane, and add a cycle through its
leaves, in order (i.e., the result remains planar). Prove that a Halin
graph must have treewidth 3.

6 A graph is called outerplanar iff there exists a plane embedding G of
the graph such that G has a cycle C with the property that every edge
of G is either a member of C or a chord of C. Prove that if G is
outerplanar then it has treewidth 2.

12 Algorithms for graphs of bounded treewidth

We sketch how to run algorithms on graphs of bounded treewidth. This can
be viewed as dynamic programming a very important algorithmic technique.
Many classical problems are known to be algorithmically infeasible on general
graphs (in that they take exponential time) but become polynomial time
when restricted to some bounded treewidth class. A good introduction to
this technique is Bodlaender [2], and a good introduction to other algorithmic
aspects of treewidth is Bodlaender [3].

We describe the technique for the Independent Set problem we first
met in the Ramsey Theory’ section. Recall that this asks for a set of vertices
I in G with no edges between them in G. The problem of finding the largest
independent set in a graph G is one of the known “NP -complete” problems
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where basically we don’t know how to better than complete search for general
graphs. Hence the current best running time is more or less the same as
looking at all subsets of V (G) and trying them one by one. This takes
essentially 2|V (G)| many steps more or less.

In the case of graphs of bounded treewidth, we can give a linear time
algorithm. So suppose that we have a tree decomposition of G. Consider the
one below

e

hgi

egh

egdegh

egfce

abc

a b

c
d

f

g

ih

Figure 24: A tree decomposition

Now what we will do is to use tables to grow the independent set up the
tree starting at the leaves of the decomposition. Notice that once a vertex
leaves the bags it will never come back, and hence we don’t really need to
keep track of its effect. Thus we can work with tables corresponding to all
the subsets of the current bag and need only consider independent sets I
relative to the current bag. That is, we would consider all the subsets of the
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bag and see how the size of independent sets relative to in the information
flow across the boundary.

Thus at the leaf corresponding to the triangle abc we could have the
table below. Here, for instance ab denotes the set {a, b}, meaning that the
independent set should contain both a and b, and would have cardinality 2,
and bc corresponds to {b, c} and this entry has a line since {b, c} is not an
independent set.‘

∅ a b c ab ac bc abc
0 1 1 1 2 - - -

The table for the next box would have only 4 columns since there are only
4 subsets of {c, d} and we consider maximal independent sets I containing
the specified subset

∅ c e ce
2 1 3 -

The first entry has value 2 since this means neither of c or d in included
in this I and hence we take the maximal one below, namely 2.

The second entry says that I must contain c, and this corresponds to the
entry from below containing c, which is 1. The third one corresponds to the
independent set containing e and not c, and hence we get 3, by choosing the
largest one with this property from below (namely the entry for ab contains
no c, and this together with e gives 1 + 2 = 3.)

Finally, the last entry is 0 since I would need to contain both c and d
and no independent set has this property.

The rest of the table if filled in similarly. With pointers you can also keep
track of the relevant independent set.

The next table is a join node
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∅ e g h eg eh gh egh
0 1 1 1 2 - - -

This table corresponds to I ∩ {e, g, h} being the specified set. The first
entry corresponds to I having nothing from this set. It has value 3 since we
get that from the 2 on the left and 1 on the right. (We must add here.)

The second entry corresponds to the intersection being {e}, meaning that
it must have e and cannot have h or g. Note e is present in both branches
and hence we get 3. Next is g with e and h not present. There are 2 from
the left (corresponding to the ∅), and g is present on the right so we take its
entry giving 3. the next is h and neither e or g, giving 2 from the left branch,
2 from the right (using f since h is not present) and h itself; giving the total
of 4. etc

The final table looks like:

2   1   3
o   c   e   ce

o   e   g   h   eg  eh  gh  egh

o   a   b   c   ab  bc  ac  abc

o   e   g   h   eg  eh  gh  egh

o   h   g   i   hg  hi  hg  hid

o   e   g   d   eg  ed  gd  egd

o   e   g   f   eg  ef  gf  egf

3   5   3   4  

3   3   3   4

3   3   3   5

0   1   1   1

0   1   1   1             2

0   1   1   1    2

Figure 25: Dynamic programming

We remark that a sly feature we have not mentioned here is that to run
this method, we need a tree decomposition for the graph G. It turns out
that for a fixed t there is a linear time algorithm determining if G has width
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t, and then finds the tree decomposition of G should the graph actually
have one. However, the algorithm has really terrible constants and there
is no actually feasible one for this problem. For more on this we refer the
reader to Bodlaender [2], and his web site. John Fouhy [17] in his MSc
Thesis looked at computational experiments for treewidth heuristics. (See
www.mcs.vuw.ac.nz/∼downey/students.html.) There is a lot of work to be
done here.

Actually, this whole process can be implemented by automata acting on
trees. We refer the reader to Downey and Fellows [13].

Additionally in some circumstances the whole process can be “auto-
mated” using methods from logic. One example of this is Courcelle’s Theorem

Courcelle’s Theorem is a high level machine for establishing that various
graph theoretical properties are finite state for bounded treewidth. Similar
results were obtained independently by Borie, Parker and Tovey [5]. The
high level language is the fragment of the second order theory of graphs
called the Monadic Second Order Theory of Graphs.

The syntax of the second-order monadic logic of graphs includes the log-
ical connectives ∧,∨,¬, variables for vertices, edges, sets of vertices and sets
of edges, the quantifiers ∀, ∃ that can be applied to these variables, and the
five binary relations:
(1) u ∈ U where u is a vertex variable and U is a vertex set variable
(2) d ∈ D where d is an edge variable and D is an edge set variable
(3) inc(d, u) where d is an edge variable, u is a vertex variable, and the in-
terpretation is that the edge d is incident on the vertex u
(4) adj(u, v) where u and v are vertex variables and the interpretation is that
u and v are adjacent vertices
(5) Equality for vertices, edges, sets of vertices and sets of edges. We will
use lower case letters for vertices or edge variables and upper case letters for
variables representing sets of edges or sets of vertices.

One famous hard problem is called Hamiltonicity. Here we ask in a
graph G whether there is a cycle passing through each vertex exactly once.
This problem is expressible in monadic second order logic as follows. A graph
G is Hamiltonian iff the edges of G can be partitioned into two sets red and
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blue such that
(i) each vertex has exactly two incident red edges, and
(ii) the subgraph induced by the red edges spans G. In the example below
we will represent the set of red edges by R and the set of blue edges by B.

Hamiltonian ≡

∃R∃B∀u∀v[part(R, B) ∧ deg(u, R) = 2 ∧ span(u, v, R)], where

span, deg and part are described below.

part(R, B) ≡ ∀e[(e ∈ R ∨ e ∈ B) ∧ ¬(e ∈ R ∧ e ∈ B)].

deg(u, R) = 2 ≡
[∃e1, e2(e1 6= e2 ∧ inc(e1, u) ∧ inc(e2, u) ∧ e1 ∈ R ∧ e2 ∈ R)]∧
¬[∃e1, e2, e3(e1 6= e2 6= e3 ∧ (inc(ei, u) ∧ ei ∈ R for i ∈ {1, 2, 3}))].

span(u, v, R) ≡
∀V, W (part(V, W ) ∧ u ∈ V ∧ v ∈ W ) → (∃e, x, y(inc(e, x) ∧ inc(e, y) ∧ x ∈
V ∧ y ∈W ∧ e ∈ R))].

We state the following powerful result.

Theorem 12.1 (Courcelle’s MS2 Theorem [8], [7]). If F is a family of
graphs described by a sentence in second-order monadic logic, then for a
fixed treewidth t, there is a linear time algorithm which decides if a graph of
treewidth t is in the family F .

For a proof we refer the reader to Downey and Fellows [13], or Flum and
Grohe [18]. For more on “parametric algorithms” we refer to [13], [18] and
Niedermeier [35].

12.1 Projects

(i) How does this relate to automata theory and the theory of formal lan-
guages. What are tree automata? What is the Myhill-Nerode Theorem
and how can it be used to build automata. How can the the action of
these algorithms be related to parsing graphs.
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(ii) There are other well-behaved classes of graphs with parsing languages
to allow for interative algorithmics. Investigate, for instance slim graphs,
graphs of bounded clique-width, d-inductive graphs,

(iii) How are Courcelle’s and other “‘metatheorem’s” used (and proven)?
What about the work by Grohe and his co-authors on local treewidth.
What is the relationship between definability and algorithmic efficiency
(see Immermann’s book).

(iv) What is NP completeness? What are the major coping strategies?
How can parameterization be used to cope. What about randomiza-
tion?

(v) How can the notion of treewidth be used as an analog in other areas?
Investigate the work on matroids of bounded treewidth by Whittle,
Geelen, Hlineny and other, and particularly the MACEK suite of algo-
rithms.

(vi) What are the major algorithms for generating tree decompositions for
graphs of width k. What is the most practical if any? What are the
heuristics which are used, and how should they be tested?

13 Exercises 7

1 Construct a tree decomposition for the graph of treewidth 2 below.
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e
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h
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j
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2 Using dynamic programming on the graph of question 1, compute

(i) A maximum independent set.

(ii) A minimum dominating set. (A dominating set is a set Q or
vertices such that, if x ∈ V (G) then either x ∈ Q or some y ∈ Q,
with xy ∈ E.)

(iii) A minumum vertex cover. (A vertex cover is a collection of vertices
such that if xy is an edge then one of x or y (or both) is in the
vertex cover.)

2 A graph G is called d-inductive iff there is an ordering of the vertices
v1, v2, . . . , vn such that if for all i, vi is connected to at most d vertices
vj for j > i.

(i) Prove that a graph of treewidth k is k + 1-inductive.

(ii) ∗ Prove that a planar graph is 5-inductive. (You are reminded
that every planar graph has a vertex of degree 5.)
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3 Construct a tree decomposition for the graph of treewidth 3 below.

e

d

f

g

h

c

a

i

j

kb

4 As for 2 above.

5 Prove that for any fixed t, “G has a vertex cover of size t” is expressible
in monadic second order arithmetic. (Actually this is first order.) Prove
that ‘G has a minimum vertex cover of size t” is expressible in monadic
second order arithmetic.

14 Ramsey’s Theorem

When you look into the night sky you will see patterns in the stars. In some
sense Ramsey’s Theorem says that this is to be expected and within that
apparent chaos, there must be some order! This theorem has remarkable
consequences in many areas of mathematics such as logic, computer science,
combinatorics, and even in economics. Recall that Kk denotes the complete
graph with k vertices. Recall that an independent set I in a graph G is a set
of vertices of G which are all not connected.

14.1 The basic theorem

Theorem 14.1 (Ramsey’s Theorem -first version). For any integer k, there
is a number m so large that any graph with m or more edges either has an a
copy of Kk, or a copy of Ik, the independent set of k vertices.
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One way to think of this is the “party principle”. To wit, in any party of
at least m people there is either a clique of k people every pair of which are
friends, or there is a set of k people no pair of which are friends. We abstract
this to numbers. We let [n]2 denote the 2-element (unordered) subsets of
{0, . . . , n−1} (and similarly [n]d) so that [4]2 would be {0, 1},{0, 2},{0, 3},{1, 2},
{2, 3}, and {1, 3}. Think of colouring χ the d-sets from [n]d into, say, 2
colours. Then a set of numbers H ⊂ {0, . . . , n} is called homogeneous for
the colouring χ if [H ]d] all have the same colour. (Be careful, what this says
is that the subset of all the d-tuples from [n]d given by H have the same
colour. For example, if n = 6 and d = 3 H = {1, 2, 4, 5}, then to say that
H is homogeneous for some colouring would be to say that all of the 3-sets
from H , namely {1, 2, 4}, {1, 2, 5}, {1, 4, 5}, {2, 4, 5} are monochromatic.

Theorem 14.2 (Ramsey’s Theorem -second version). (i) For all k there
is a m so large such that if n ≥ m, and we colour [n]2 into 2 colours,
red and blue. Then there is a homogeneous set of size k.

(ii) Indeed, for all k, d and p, there is an m = m(k, d, p) so large that if
n ≥ m and I p colour [n]d, then there is a homogeneous set of size k.

We will write n → (ℓ1, . . . , ℓr) if for any r-colouring of [n]2 there is an i
and homogeneous set H with |H| = ℓi and [H ]2 coloured colour i.

For example does 4 → (4, 3)? Well colour [4]2 with {0, 1}, {0, 2}, {0, 3}
red, and the other three 2-sets blue. Then there is no H of size 3 blue, nor
and H of size 4 red.

We prove Theorem 14.2 (i) above.

Proof. We prove that for all ℓ1, ℓ2 there is an n so that n→ (ℓ1, ℓ2. We denote
the least such n as R(ℓ1, ℓ2) the Ramsey number. The proof uses induction
of ℓ1 and ℓ2 Note that R(ℓ1, 2) and R(2, ℓ2) exist for all ℓi

1. Now assume that
R(ℓ1, ℓ2 − 1) and R(ℓ1 − 1, ℓ2) exist. We claim

n = R(ℓ1, ℓ2 − 1) + R(ℓ1 − 1, ℓ2)→ (ℓ1, ℓ2).

1This is because either all the pairs are coloured red, or there is some pair coloured

blue!
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Fix a colouring χ of [n]2. Now take z ∈ {0, . . . , n− 1} and define

Iz = {y ∈ {0, . . . , n− 1} : χ({z, y}) red}.

Define IIz = {y ∈ {0, . . . , n− 1} : χ({z, y}) blue}.

Now we note that Iz = [n]2 − IIz − {z}. Now since |Iz| + |IIz| = n − 1, it
follows by the pigeonhole principle that either

(i) |Iz| ≥ R(ℓ1 − 1, ℓ2) or

(ii) |IIz| ≥ R(ℓ1, ℓ2 − 1).

If |Iz| ≥ R(ℓ1−1, ℓ2), then by definition of R(ℓ1−1, ℓ2), there is homogeneous
set H ⊂ Iz with |H| = ℓ2 and [H ]2 coloured blue, or |H| = ℓ1 − 1 and [H ]2

coloured red. In the former case we are golden. In the latter case, we claim
that H∪{z} is the desired homogeneous set. This follows, since by definition
of Iz, for all y ∈ Iz, {y, z} is red. Clearly IIz is symmetric.

With more effort and using arguments of similar types, Ramsey showed
that for all {ℓ1, . . . , ℓr} and all colouring of the d-sets we have the existence
of an n, with

n→ (ℓ1 . . . , ℓr)
d.

If ℓ1 = ℓ2 = . . . ℓr = ℓ then we write compactly

n→ (ℓ)d
r .

14.2 Exercises 8

1 Let k be given. Show that if n is sufficiently large, then if I have a
sequence of n distinct numbers m1, . . . , mn, then it must have a subse-
quence mi1 , mi2 , . . . , mik of size k which is monotonic, in the sense that
it is decreasing, or increasing.

2∗ (Dilworth’s Theorem) Show that for 1 k2 +1 is big enough. (This does
not use Ramsey’s Theorem.) Prove that this bound is sharp.
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3 (Erdos-Szekeres) A convex polygon is one where no internal angles are
bigger than 180 degrees. First show that for any 5 points on the plane
in general position (meaning that no 3 are collinear, there is a convex
4-gon. Show that, for all k, there is an n so large that if I take n
points in general position in the plane, there is a convex k-gon. (Hint:
think about how to colour i, j, k if i > j < k moving clockwise or
anticlockwise.)

14.3 Induced colouring∗

There is a much slicker proof of Ramsey’s Theorem using the induced colour-
ing method. No doubt I may not have time to run through this but here it is
for completeness. I am using the one from Graham, Rothschold, and Spencer
[22].

Theorem 14.3 (Ramsey’s Theorem). For all ℓ1, . . . , ℓr, k there exists an n0

such thaat for all n ≥ n0,

n→ (ℓ1, . . . , ℓr)
k.

Proof. Use induction on k. If k = 1 then this is just the pigeonhole principle.
We assuem the result holds for k − 1. It will suffice to show the existence
of n with n → (ℓ)k

r , by taking the maximum ℓi for ℓ. Let n be sufficiently
large, and fix an r-colouring χ of [n]k. Let t = Rk−1(ℓ, r) given by induction.
Define

Sk−2 = [n]− {a1, . . . , ak−2}.

Now we choose ai, Si as follows.

(i) Si having been defined, choose ai+1 ∈ Si arbitarily.

(ii) Split Si−{ai+1} into equivalence classes by declaring that x ∼= y iff for
every T ⊂ {a1, . . . , ai+1} with |T | = k − 1,

χ(T ∪ {x}) = χ(T ∪ {y}).
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This equivalence class is determined by
(

i+1
k−1

)
many sets and hence there

are r(
i+1

k−1)) many equivalence classes. Let Si+1 be the largest such class,
so that Si+1 ⊆ Si − {ai+1}. We have

|Si+1| ≥ (|Si| − 1)r
−( i+1

k−1)).

If we choose n large enough then we can continue this process until at

is defined.

Now consider the sequence a1, . . . , at. Suppose that 1 ≤ i1 < i2 · · · <
ik−1 < s ≤ t. Then as ∈ Ss−1 ⊆ Sik−1+1. The the colour χ({a1, . . . , aik−1

, as}
remians the same if x is replaced by any x in Sik−1+1 (by the definition of the
equivalence classes), and in particular any x = ar with k − 1 < r < t. (This
is sometimes called a pre-homogeneous set.) Now we can define a colour χ∗

on the k − 1 subsets of {a1, . . . , at} by

χ∗({a1, . . . , aik−1
) = χ({a1, . . . , aik−1

, as})

for all ik−1 < s ≤ t. By definition of t as the Ramsey number, there is a
subsequence b1, . . . , bℓ of a1, . . . , at monochromatic inder χ∗. Suppose that all
subsets are red. Then for any 1 ≤ j1 < · · · < jk−1 < jk ≤ ℓ,

χ({bj1 , . . . , bjk−1
, bjk
}) = χ∗({bj1 , . . . , bjk−1

}) = red.

Hence {b1, . . . , bℓ} is the desired set.

There is also an infinite form of Ramsey’s Theorem which can be proven
along the lines above.

Theorem 14.4 (Ramsey’s Theorem-infinite form). Suppose that we ℓ colour
the k-subsets of N. There there is an infinite homogeneous set.

Proof. We sketch the proof. We follow Simpson [42]. This is done by induc-
tion on k. For k = 1 this is again the pigeonhole principle. If we ℓ colour the
integers, then there must be infinitely many elements of some colour class.
To prove RT (k) assuming RT (k + 1), let χ[N]k+1 → {0, . . . , ℓ − 1} be the
ℓ-colouring.

Now we define a tree T ⊂ N
<N by putting a string of integers t in T iff

for all n < |t|, t(n) is the least j such that
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(i) t(m) < j for all m < n, and

(ii) χ({t(m1), . . . , t(mk), j}) = χ({t(m1), . . . , t(mk), t(m)} for all m1 <
m2 < · · · < mk < m ≤ n.

(This is a direct analog of the construction in the finite inductive proof.)
Then T is a tree and is finitely branching since, given t of length n, there are
at most ℓnk

distinct j with t̂〈j〉 ∈ T .

(We remark that T is called the Erdös-Rado Tree.)

We claim that for each j there is an s ∈ T such that s(n) = j for some
n < |s|. To see this, fix j and let t be maximal such that t(m) < j for all
m < |t|, and χ({t(m1), . . . , t(mk), j}) = χ({t(m1), . . . , t(mk), t(m)} for all
m1 < m2 < · · · < mk < m ≤ |t|. (There is clearly one such t, namely t the
empty string.) Then clearly t̂〈j〉 ∈ T . This proves the claim.

Therefore T is infinite, and hence by König’s Lemma (Every finitely
branching infinite tree has an infinite path), T has a path g, say. From (i) we
have that m < n implies g(m) < g(n). Now we define χ∗({m1, . . . , mk}) =
χ({g(m1), . . . , g(mk), g(m)}) where m1 < m2 < · · · < mk < m, which is in
the previous proof, by (ii) does not depend on the choice of m. Now us-
ing the induction hypothesis, RT (k), take i ∈ [ℓ] and homogeneous set X ′

monochromatic for χ∗, and this will be homogeneous for χ.

Actually, the infinite form of Ramsey’s Theorem follows from the finite
form plus a “compactness” argument in the same way that the 4 colour
theorem for infinite planar graphs follows from the 4 colour theorem for
finite graphs. The reader can find out about this if they do a basic course in
mathematical logic.

14.4 Other Ramsey-type theorems

There are a lot of wonderful theorems like Ramsey’s Theorem in the litera-
ture. Here are some gems.
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Theorem 14.5 (Van der Waerden’s Theorem [45]). For all r and k, there
is a number n = W (r, k) such that if we r colour the numbers from 1 to n,
then there is a monochromatic arithmetical progression of size k.

Actually, Ramsey’s Theorem and van der Waerden’s Theorem are both
corollaries of another theorem called the Hales-Jewitt Theorem. It would
take us a little afar to go through the details and we refer the reader to
Graham, Rothschild and Spencer [22] for a lot more on this subject. (And
to Downey [12] for more background information.)

A deep generalization of van der Waerden’s Theorem is due to Szemeredi
and basically says that there will be an arithmetical progression in the most
common colour. That is, if we say that red (say) in some colouring of N has
positive upper density if

lim
n→∞

{j : j ≤ n ∧ J red}

n
→ 1.

Theorem 14.6 (Szemeredi [43]). Suppose that N is coloured and red has
positive upper density. Then there are arbitarily long red arithmetical pro-
gressions.

It is worth saying that there may not be infinite red arithmetical progres-
sions, only arbitarily long ones. Szemeredi’s Theorem was originally proven
using a powerful combinatorial lemma called the Regularity Lemma which
has found applications elsewhere. Furstenberg [19] proved Szemeredi’s The-
orem using “analytic” (probabilistic) methods from an area of mathematics
called Ergodic Theory.

van der Waerden’s and Szemeredi’s beautiful theorems on arithmetical
progressions attracted the interest of a number of very fine mathematicians.
One reason for this is that the original proof and Furstenberg’s) involved
amazingly large numbers. The proof of van der waerden gave values for
(even) W (2, k) that were not “elementary” (meaning that they dwarfed any
function build from “reasonable” towers of 2’s, such as 222...

(stacked k high),
and were absolutely astronomical. Saharon Shelah [39] gave elementary (but
large) bounds for van der Waerden’s Theorem. Recent work of Timothy
Gower [20, 21] has analysed the towers of 2 needed for Szemeredi’s Theorem.
Gower won the Field’s Medal (a kind of Nobel prize in math) for this work.
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Recently, Terrence Tao, a young mathematician, and Ben Green [23]
proved a related rather amazing result that there are arbitarily long arith-
metical progressions in the primes.

From the last section, we recall that there is an infinite version of Ram-
sey’s Theorem. (Theorem 14.4)

Theorem 14.7 (Ramsey [37]). Suppose that we k-colour the d-sets from N.
Then there is an infinite homogeneous set.

The infinite form of Ramsey’s Theorem has been a tool for many years
in mathematical logic. It can bes used to prove a finite form which aroused
a lot of interest when it was proven.

We say that a set A of numbers is relatively large if there is some number
n ∈ A such that |A| > n. That is, someone in the set things the set is
large! The following result can be proven using the infinite form of Ramsey’s
Theorem:

Theorem 14.8 (Paris and Harrington [36]). For all k there is an so large
that for any 2-colouring of [n]2 there is a relatively large homogeneous set.

The Paris-Harrington Theorem can be shown in a technical sense to ac-
tually need the use of infinite sets in its proof! Paris and Harrington gave a
proof that there is not proof of this result in the system of finite mathematics
called Peano Arithmetic. This was the first “mathematical incompleteness”
found for PA.

For more on the subject of finite mathematical principles not provable in
“normal” systems of mathematics, we refer the reader to Simpson [41].

There is a lot more to say about this material and we refer the reader
to Graham, Rothschild and Spencer [22], Landman and Robertson [30] and
Nesetril and Rodl [34]. The Landman and Robertson book contains a lot of
research problems.
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14.5 Projects

(i) What are the other Ramsey type theorems? How would you prove
these results using ergodic theory?

(ii) How do you use these results to prove certain combinatorial problems
involving rapidly growing Ramsey functions are not provable in systems
such as Peano Arithmetic. What is the relationship between growth
rate and provability?

(iii) What is the Friedman-Simpson “reverse mathematics” programme?

15 Well quasi-ordering theory

A quasi-ordering on a set S is a reflexive transitive relation on S. We will
usually represent a quasi-ordering as ≤S or simply ≤ when the underlying
set S is clear. Let 〈S,≤〉 be a quasi-ordered set. We will write x < y if x ≤ y
and y 6≤ x, x ≡ y if x ≤ y and y ≤ x and finally x|y if x 6≤ y and y 6≤ x. Note
that if 〈S,≤〉 is a quasi-ordered set then S/ ≡ is partially ordered by the
quasi-order induced by ≤. Recall th at a partial ordering is a quasi-ordering
that is also antisymmetric.

Definition 15.1 (Ideal and Filter). Let 〈S,≤〉 be a quasi-ordered set. Let
S ′ be a subset of S.

(i) We say that S ′ is a filter if it is closed under ≤ upwards. That is, if x ∈ S ′

and y ≥ x then y ∈ S ′. The filter generated by S ′ is the set F (S ′) = {y ∈ S :
∃x ∈ S ′(x ≤ y)}.2

(ii) We say that S ′ is a (lower) ideal if S ′ is ≤ closed downwards. That
is if x ∈ S ′ and y ≤ x then y ∈ S ′. The ideal generated by S ′ is the set
I(S ′) = {y ∈ S : ∃x ∈ S ′(x ≥ y)}.

(iii) Finally, if S ′ is a filter (an ideal) that can be generated by a finite subset
of S ′ then we say that S ′ is finitely generated.

2Sometimes, filters are called upper ideals.
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We will need some distinguished types of sequences of elements.

Definition 15.2. Let 〈S,≤〉 be a quasi-ordered set. Let A = {a0, a1, ...} be
a sequence of elements of S. Then we say the following.

(i) A is good if there is some i < j with ai ≤ aj .

(ii) A is bad if it is not good.

(iii) A is an ascending chain if for all i < j, ai ≤ aj .

(iv) A is an antichain if for all i 6= j ai|aj.

(v) 〈S,≤〉 is Noetherian if S contains no infinite (strictly) descending se-
quences. (i.e. there is no sequence b0 > b1 > b2....)

(vi) 〈S,≤〉 has the finite basis property if for all subsets S ′ ⊆ S, F (S ′) is
finitely generated.

Theorem 15.3 (Folklore, after Higman [24]). Let 〈S,≤〉 be a quasi-ordered
set. The following are equivalent.

(i) 〈S,≤〉 has no bad sequences.

(ii) Every infinite sequence in S contains an infinite chain.

(iii) 〈S,≤〉 is Noetherian and S contains no infinite antichain.

(iv) 〈S,≤〉 has the finite basis property.

Proof. (i) → (ii) and (ii) → (iii) are easy. (See Exercise 16.)

(iii) → (iv). Suppose that 〈S,≤〉 is Noetherian and S contains no infinite
antichain. Let F be a filter of S with no finite basis. We generate a sequence
from F in stages as follows. Let f0 be any element from F . As F is not
finitely generated there is some f1 ∈ F with f1 6∈ F ({f0}). For step i + 1,
having chosen {f0, ..., fi}, we find some fi+1 ∈ F with fi+1 6∈ F ({f0, ...fi}).
Since F is not finitely generated, this process will not terminate. Notice that
for all i < j it cannot be that fi ≤ fj since, in particular, fj 6∈ F ({fi}).
To see that (ii) implies (iii), for i < j, colour the pairs fi, fj red if fi > fj
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and colour the pair blue if fi|fj . (Every pair is coloured either red or blue
by the construction of the sequence.) By Ramsey’s Theorem, there is an
infinite homogeneous set: That is there is a sequence fi0fi1 ... and a colour
χ ∈ {red, blue}, such that for all ik < it, the pair fik , fit is coloured χ. If χ
is red then we have an infinite descending sequence. If χ is blue we have an
infinite antichain. In either case we contradict (iii), and hence we get (iv).

(iv) → (i) Suppose that 〈S,≤〉 has the finite basis property. Let B =
{b0, b1, ...} be a sequence of elements of S. Let B′ ⊆ B be a finite basis
for F (B). Let m = max{i : bi ∈ B′}. Choose bj ∈ B − B′ with j > m.
Then for some bi ∈ B′ we must have bi ≤ bj since bj ∈ F (B′), and i < j by
construction. Hence B is good.

This leads us to...

Definition 15.4 (Well Quasi-Ordering). Let 〈S,≤〉 be a quasi-ordering. If
〈S,≤〉 satisfies any of the characterizations of Theorem 15.3, then we say
that 〈S,≤〉 is a well quasi-ordering (WQO).

The reader might well wonder what any of this abstract pure mathematics
has to do with algorithmic considerations. The key is provided by the finite
basis characterizations of a WQO. Suppose that ≤ is the relevant quasi-
ordering and for a fixed x the question “Qy: Is x ≤ y?” is polynomial time.
Then for a WQO, if F is a filter, then F has a finite basis {b1, ..., bn}. Then to
decide if y ∈ F we need only ask “∃i ≤ n(bi ≤S y)?” That is, membership of
each filter is polynomial time (even though we don’t know the finite basis!).

Often the argument is phrased in terms of obstruction sets. Let 〈S,≤〉 be
a quasi-ordering. Let I be an ideal of 〈S,≤〉. We say that a set O ⊆ S forms
an obstruction set for I if

x ∈ I iff ∀y ∈ O(y 6≤ x).

That is O is an obstruction set for I if I is the complement of F (O). The
WQO principle says all ideals have finite obstruction sets.

So here is our new engine for demonstrating that problems are in P .
Prove that the problem is characterized by a WQO with a finite obstruction
set in a quasi-ordering with Qy in P .
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The best known example of an obstruction set is provided by topological
ordering.

Definition 15.5 (Topological Ordering). A homeomorphic or topological em-
bedding of a graph G1 = (V1, E1) in a graph G2 = (V2, E2) is an injection from
vertices V1 to V2 with the property that the edges E1 are mapped to disjoint
paths of G2. (These disjoint paths in G2 represent possible subdivisions of
the edges of G1.) The set of homeomorphic embeddings between graphs gives
a partial order, called the topological order. We write G1 ≤top G2.

While topological ordering is not a WQO, there are a number of im-
portant finite basis results. The most famous is the following (which was
independently discovered by Pontryagin).

Theorem 15.6 (Kuratowski’s Theorem, Kuratowski [28]). The graphs K3,3

and K5 of Figure 26 form an obstruction set for the ideal of planar graphs
in the topological ordering.

K3,3 K5

Figure 26: Obstructions for planarity

For a proof of Kuratowski’s Theorem we refer the reader to Dirac and
Schuster [11]. We remark that it is an important open question whether
x ≤top y is polynomial time for a fixed x. (In the sense that it is O(|y|c) for
a fixed c. There is a polynomial time algorithm but the running time has
the exponent depending on |x| also.) A generalization of topological ordering
is much more amenable. An equivalent formulation of ≤top is the following.
G ≤top H iff G can be obtained from H by a sequence of the following two
operations.

(i) (deletions) Deleting vertices or edges.
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(ii) (degree 2 contractions) The contraction of an edge xy in a graph W is
obtained by indentifying x with y. A contraction has degree 2 iff one of x or
y has degree 2.

The minor ordering is a generalization of ≤top is obtained by relaxing the
degree 2 requirement in (ii).

Definition 15.7 (Minor Ordering). We say that G is a minor of H if G can
be obtained from H by a sequence of deletions and contractions. We write
G ≤minor H .

An example of the minor ordering is given in Figure 27

A Contraction.

G

H

a

c d

b

f(c)

f(a) f(b)

f(d)

x y

A Topological Embedding.

f(c)

f(a) f(b)

f(d)

Degree 2 Contractions for the Embedding.

Figure 27: A contraction and a Topological Embedding

The proof of Kuratowski’s Theorem also gives the following.

Theorem 15.8 (Kuratowski’s Theorem (II)). K3,3 and K5 are an obstruc-
tion set for the ideal of planar graphs under ≤minor.

The way to think of ≤minor is to think of G ≤minor H as taking |G| many
collections Ci of connected vertices of H , and coalescing each collection Ci to
a single vertex, then H being topologically embeddable into the new coalesced
graph, so that the edges of G become disjoint paths from coalesced vertices.
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G

H

C D

B

A

Figure 28: The folio definition

Sometimes this is called the “folio” definition of the minor ordering. Figure
28 below demonstrates this idea.

Notice that H has no vertices of degree 4 and hence there can be no
tolological embedding of G into H .

Wagner [46] conjectured the following.

Wagner’s Conjecture:Finite graphs are well quasi-ordered by the minor
ordering.

Notice that graphs of genus ≤ g for a fixed g form an ideal in the minor
ordering. Hence a consequence of Wagner’s conjecture is a Kuratowski The-
orem for surfaces. Graphs of genus ≤ g have a finite obstruction set. One of
the triumphs of 20th century mathematics is the following great theorem of
Neil Robertson and Paul Seymour.

Theorem 15.9 (Graph Minor Theorem, Robertson and Seymour). Wag-
ner’s Conjecture holds: Finite graphs are well quasi-ordered by the minor
ordering.
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Remarkably, Robertson and Seymour showed that x ≤minor y is O(|y|3)
for a fixed x. Thus every minor ideal has a cubic time recognition algorithm!.

15.1 Kruskal’s Theorem

A proof of the Graph Minor Theorem is currently beyond the scope of these
notes, but we will sketch the ideas. The material began with a Theorem of
Kruskal.

Theorem 15.10 (Kruskal [29], Kruskal’s Theorem). The class of rooted
finite trees are well quasi-ordered by ≤top and by ≤minor . (The reader should
note that for rooted trees T1, T2, if T1 ≤top T2 via the topological embedding
f and v and w are vertices of branches of T1 meeting at z, then it can only
bethat this happens iff f(v) and f(w) are vertices of branches of T2 meeting
at f(z) in T2.)

Proof. We work with ≤top, since ≤minor is coarser. We can consider trees
as 1-trees. Trees can be parsed by the operators ⊕ and 1, where 1 is the
operator which adds a vertex makes it a boundary vertex and joins an edge
from the old boundary vertex to the new one.

Figure 29 below shows what I mean here.

The following proof is along the lines of the ones first articulated by
Nash-Williams [33]. Suppose that T0, T1, ... is a minimal bad sequence of
trees. That is we suppose that we have chosen T0 the be the smallest tree
(by cardinality) to begin a bad sequence, and from the bad sequences of
trees beginning with T0, we have chosen T1 to be smallest, etc. Let Pi be a
corresponding parse tree for Ti. Either there are infinitely many Pi with root
⊕ or almost all Pi have root 1. Both cases are easy. Suppose that Pi0, Pi1 , ...
all have root ⊕. Now for a parse tree P , let T (P ) denote the tree obtained
from P . Let Qi, Ri denote the parse trees obtained by deleting the roots
from Pi, and consider the collection

C = ∪j(T (Qij ) ∪ T (Rij )).

We claim that 〈C,≤top〉 is a WQO. If this is not the case, then there is a
bad sequence B0, B1, ... from C. For some least k, B0 ∈ {Qk, Rk}. Then
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Figure 29: Parsing a tree
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the sequence T0, T1, ..., Tk−1, B0, B1, ... is bad, contradicting the minimality
of T0, T1, .... Hence 〈C,≤top〉 is a WQO. It is easy to prove that C × C is
well quasi-ordered by the product ordering. (i.e. (W1, V1) ≤top (W2, V2) iff
W1 ≤top W2 ∧ V1 ≤top V2.) But then there are m < n with

T (Qim) ≤top T (Qin) ∧ T (Rim) ≤top T (Rin).

Clearly this implies that Tim ≤top Tin . The 1 case is similar but easier.

Let 〈Q,≤Q〉 be a quasi-ordered set Extend the definition of topological
ordering to labeled topological ordering by saying that a Q-labeled tree T1

topologically embeds into a labeled tree T2 via f by asking that f takes edges
to disjoint paths, and furthermore if v has label q and f(v) has label q′ then
q ≤Q q′. The proof above easily extends to the following.

Corollary 15.11. Kruskal’s Theorem for Labelled Trees, Kruskal
[29] If 〈Q,≤〉 is a WQO then the collection of Q-labeled trees is a WQO
under labeled topological embedding.

The main modification in the proof is that one argues from an infinite
sequence of roots {qi0 , qi1, ...} with the property qi0 ≤Q qi1 ≤Q .... which
are guaranteed to exist by the fact that Q is a WQO. We remark that the
standard proofs of Kruskal’s Theorem don’t use parse trees. Rather, they
use the following lemma which is of importance in its own right. (Also see
Exercise 16.)

Let 〈S,≤〉 be any quasi-ordered set. One can define the induced product
ordering on S, the set of finite sequences of elements of S via 〈s1, ..., sn〉 ≤
〈s′1, ..., s

′
m〉 iff there is a strictly increasing map j : {1, ..., n} → {1, ..., m}

such that for all i ≤ n,
si ≤ s′j(i).

For instance, 〈1, 2, 1, 4〉 ≤ 〈0, 2, 2, 0, 1, 6, 1〉, but 〈1, 2, 1〉 6≤ 〈0, 1, 1, 2, 0, 0〉.

Lemma 15.12 (Higman’s Lemma, Higman [24]). Suppose that 〈S,≤〉 is a
WQO. Then the induced ordering is a well quasi-ordering of S.

We leave the proof of Higman’s Lemma to the exercises. It can be deduced
from the Labelled version of Kruskal’s Theorem.
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15.2 Treewidth again

Knowing that finite trees are WQO by ≤top, the next part of the strategy is
to show that graphs of bounded treewidth are WQO by ≤minor .

In this section we will sketch how to do this. Think about the argument
we used for Kruskal’s Theorem. The main idea is that of a minimal bad
sequence. Here this will be akin to Higman’s lemma on trees.

In place now of paths being glued together to make trees, now we have
k-paths being grued together along boundaries to make k-trees.

The key problem with the argument is that suppose that we have, say
G1 ⊕ G1 two k-trees glued along some boundary of size k + 1, say. and
we know that in some host graph further long the bad sequence we have
P1 embedded as a minor into H1 and similarly for P2 into H2. How do we
contract the embeddings along the H1, H2 boundaries to make G1⊕G2 embed
into H1 ⊕H2?

The folowing diagram illustrates this idea.
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What is needed is a Menger Type Theorem for k-trees. This was provided
by Thomas with the following notion.

Definition 15.13. We say that a tree decomposition T = {Vt : t ∈ T} of a
graph G is a lean decomposition if for all t1, t2 ∈ T , and s ∈ N, either there
is a t ∈ T between t1 and t2 and with |Vt| < s, or G has s disjoint paths
taking members of Vt1 to members of Vt2.

In any tree decomposition we know that a bag is a vertex separation of
the graph. In a lean one the separations are as small as possible. Thus, if, for
example, a branch has bags of high cardinality, then that would correspond
to a highly commented part of the graph. The key to the application of this
notion is the following.

Theorem 15.14 (Thomas [44]). Every graph of treewidth k has a lean de-
composition of treewidth k.

Proof. (sketch) Define the fatness of a tree decomposition to be the n-tuple
(a1, . . . , an) where ai denotes the number of bags with exactly n− i vertices.
Then let T = {vt : t ∈ t} be the decomposition with lexicographically least
fatness. Then T is lean!

The main idea in the proof of this fact (first discovered by Thomas) is to
assume not and then use surgery on the lex-least tree decomposition to make
it less fat (assuming it is not lean). The proof of this result uses a method
of tree decomposition amalgamations. If G is a graph and X ⊆ V (G) a
separating set of vertices, we want to amalgamate the tree decompositions of
H = G[C ∪X] (where C ranges over the components of G−X) into a tree
decomposition of G. Let T = {Vt : t ∈ T} be a tree decomposition of G and
s ∈ T . For each x ∈ X pick a home node tx ∈ T with x ∈ Vtx . Define

Wt = (Vt ∩ V (H)) ∪ {x ∈ X : t between tx and s in T}.

Then this is a new tree decomposition incorporating X.

The proof of Thomas theorem is to suppose that the result fails, and
choose (t1, t2, Z1, Z2) in the decomposition where the leanness axiom fails,
and one for which the distance between t1 and t2 is least in T . Then the
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main idea is to apply the amalgamation property above to rearrange the tree
decomposition into a new one which is less fat. The agrument is not difficult
and can be found in Diestel’s home page. (Bellenbaum and Diestel [4])

The proof of the well quasi-ordering of graphs of bounded treewidth is
then to take a minimal bad sequence of graphs of treewidth t. Consider them
as being presented by lean decompositions. Then within them there is some
least size bag size s that occurs infinitely often. Cracking the decompositions
on that bag, we can apply a Higman lemma-type argument, arguing that
there are only so many ways that this separation can “Menger” to the rest
of the tree decomposition, and some way will occur infinitely often. On this
we can then use the minimal bad sequence argument as we did with the ⊕
case above.

15.3 The Robertson-Seymour Theorem

Now how does the proof of the well-quasi-ordering of finite graphs work?
The argument works as follows. First you prove a general “excluded minor”
theorem. For instance, it can be shown that the collection of graphs GH such
that H 6≤minor G for a fixed grid H will have uniformly bounded treewidth.
Thus if you had a bad sequence of graphs containing a grid, then the bad
sequence would need to be of bounded treewidth, and this is impossible.

In general, Robertson and Seymour define a notion roughly like “sur-
facewidth” and show that if an arbitary graph M is excluded as a minor,
then the class of such graphs excluding M has bounded “surfacewidth” and
is well-quasi-ordered by methods like those used for bounded treewidth. Un-
fortunately, in this more general cases the Menger-like theorems etc and the
notions themselves are much more complicated and at present no simple
proof of this material exists. But the idea is analogous.

15.4 Projects

(i) What other well-quasi ordering results can you find? How have the
methods been applied in the verification of infinite state systems?
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(ii) What is a better-quasi-ordering? How is Laver’s Theorem proven?
What is the new material by Montalbán on signed trees?

(ii) What are the proof-theoretical strength of these WQO results?

(iii) How does the material move from bounded treewidth graphs to more
general graphs.

(iv) How is the methodology applied in the thoery of matroids by Geelen,
Gerards and Whittle and others?

16 Exercises 9

1 Prove that (i) implies (ii) and (ii) implies (iii) in Theorem 15.3.

2 Prove Higman’s Lemma.

3 Suppose that T = {Vt : t ∈ T} is a tree decomposition of a graph G,
and t1t2 is an edge of T . Let T1 and T − 2 denote the components of
T − {t1t2}. Then ∪{t∈T1}Vt and ∪{t∈T2}Vt are separated by Vt1 ∩ Vt2 .

4 Prove Kruskal’s Theorem using Higman’s Lemma. (Higman’s lemma
can be proven without Kruskal’s theorem by a minimal bad sequence
argument. Can you see it?)

17 Online algorithms and pathwidth

Parameterizing problems by looking at problems which are treelike or path-
like is not only useful in general algorithms by using dynamic programming.
As we will soon see, they can be used for problems where dynamic program-
ming is impossible, but the knowledge of the shape of the input is known.
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17.1 Online problems

Suppose that you are packing three cars with boxes. Nobody tells you the
shape of the boxes or the size, and you are given them one by one. You are
not allowed to take a box out once it is in. You are in an online situation.
This is quite different from the offline case where you get to see all the boxes
laid out and then can decide how to pack.

Online problems abound in many diverse areas of computer science. There
are many situations where it is necessary to make decisions without access
to future inputs, or where only partial information about the input data is
available. Examples include robot motion planning, or robot reconfiguration,
in an uncharted environment; visual searching and mapping; resource man-
agement for multi-user, or multi-processor, computing systems; and network
configuration problems. In short, any programmable system that operates in,
or responds to, a dynamic environment can be considered as being “online”.
Due to advances in hardware design, complex online systems are rapidly
becoming feasible.

An online algorithm is basically a response strategy for a sequence of
inputs. Formally, we can think of an online problem as being one where the
input data is supplied as a sequence of small units, one unit at a time. An
online algorithm to solve the problem must respond by producing a sequence
of outputs: after seeing t units of input, it must produce the tth unit of
output.

For our purposes an online graph would be G0 ⊂ G1 ⊂ . . . where I give
you the graph one vertex at a time (and its relationship with all the vertices
seen so far) and you need to decide what to do with it. That is, you bust
build a function f : Gs → Ĝs where Ĝs is some kind of expansion of Gs before
seeing Gs+1. The expansion would be a colouring (of Gs), scheduling, packing
etc. (There are of course other variations, sometimes, as with a scheduler in
a computer vertices come and go as people log off and on etc.)

In early work, probabilistic analysis was used to gauge the difficulty of
online problems and to measure the performance of online algorithms. The
probabilistic approach attempts to analyze the performance of online algo-
rithms on “typical” inputs. It suffers from the criticism that we seldom have
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a probability distribution to model a typical input.

During the last decade or so this approach has been largely superceded
by competitive analysis, introduced by Sleator and Tarjan [40], and also
Manasse, McGeoch, and Sleator [32]. In the competitive model the input
sequence for an online problem is generated by an adversary, and the perfor-
mance of an online algorithm is compared to the performance of an optimal
offline algorithm, that is allowed to know the entire sequence of inputs in

advance. Usually we do this by looking at the ratio Online(G)

Offline(G)
of the best

online performance and the best offline one. Competitive analysis gives us
the ability to make strong theoretical statements about the performance of
online algorithms without making probabilistic assumptions about the input.
Nevertheless, practitioners voice reservations about the model, citing its in-
ability, in some important cases, to discern between online algorithms whose
performances differ markedly in practice.

17.2 Colouring

A nice example is cououring graphs. We all know the famous 4-colour the-
orem that plan graphs can be coloured with 4 colours, and trees can be
coloured with 2. Colouring these objects can be done efficiently in terms of
the number of colours because we can “see” the whole graph.

Now suppose that I am giving you the graph one vertex at a time and
all I tell you is the relationship ot the given vertex with the previously given
ones. I will even tell you it is a tree. can we 2 colour it online.

So suppose that I give you a single vertex v1. You colour it red say. Then
I give you one more. Call this one v2 and I tell you v2v1 is an edge. You
colour it blue. Now I give you a new vertex v3 and I tell you that it is not
connected to v1 or v2. You must colour it red or blue to keep within the 2
colours. If you say red then I add a v4 and connect it to v3 (which is red)
and v1 (which is blue). You then must choose a 3rd colour for v4.

In general, there is a tree with n vertices needing around log2 n many
colours; and trees can be coloured with log n many colours. Graphs of
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treewidth k can be coloured with around k log n many colours and this is
tight (e.g. Downey and McCartin [14]) The performance ratio compares the
offline and the online performances is O(log n).

17.3 Online colouring graphs of bounded pathwidth

We have the following result of Kierstead and Trotter.

Theorem 17.1 (Kierstead and Trotter [25]). There is an online algorithm
that will colour a graph of pathwidth k with 3k − 2 many colours.

To prove this result we will restate an equivalent formulation in the do-
main of partial orderings. A partial ordering (P,≤) is called an interval
ordering if P is isomorphic to (I,≤) where I is a set of intervals of the real
line and x ≤ y iff the right point of x is left of the left point of y.

There is a related notion of interval graph where the vertices are real
intervals and xy is an edge implies that Ix ∩ Iy 6= ∅. The following lemma
relates pathwidth to interval orderings.

Lemma 17.2 (Folklore). A graph G has pathwidth k iff G is a subgraph of
an interval graph G′ of maximal clique size k + 1.

Interval orderings can be characterized by the following theorem.

Theorem 17.3 (Fishburn [16]). (i) Let P be a poset. Then the following
are equivalent.

(a) P is an interval ordering.

(b) P has no subordering isomorphic to 2 + 2 which is the ordering
of four elements with {a, b, c, d} with a < b, c < d and no other
relationships holding.

(ii) (folklore) G is an interval graph iff G G is the incomparibility graph of
some interval order P . That is, we join x to y if x|y in P .

The proofs of the above are not difficult, but we omit for space consider-
ations. Figure 17.3 below is an illustration of (ii).
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3 4

2 5

I1 = [1, 2)I3 = [3, 4)I5 = [2, 5)

We first prove the following.

Theorem 17.4 (Kierstead and Trotter [25]). Suppose that (P,≤) is a online
interval ordering of width k. Then P can be online covered by 3k − 2 many
chains.

We need the following lemma. For a poset P , and subsets S, T , we can
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define S ≤ T iff for each x ∈ S there is some y ∈ T with x ≤ y. (similarly
S|T etc.)

Lemma 17.5. If P is an interval order and S, T ⊂ P are maximal antichains
the either S ≤ t or T ≤ S.

Proof. The argument is interesting and instructive. It uses induction on k.
If k = 1 then P is a chain, and there is nothing to prove. Suppose the result
for k, and consider k = 1. We define B inductively by

B = {p ∈ P : width(BP ∪ {p}) ≤ k}.

Here Bp denotes the amount of B constructed by step p of the online algo-
rithm. Then B is a maximal subordering of P or width k. By the inductive
hypothesis the algorithm will have covered B by 3k−2 chains. Let A = P−B.
Now it will suffice to show that A can be covered by 3 chains.

To see this it is enough to show that every elements of A is incomparible
with at most two other elements of A. Then the relevant algorithm is the
greedy algorithm, which will cover A, as we see elements not in B.

Lemma 17.6. The width of A is at most 2.

Proof. To see this, consider 3 elements q, r, s ∈ A. Then there are antichains
Q, R, S in P of width k with q|Q, r|R and s|S. Applying Lemma 17.5, we
might as well suppose Q ≤ R ≤ S. Suppose that r|q and r|s. Then we prove
that q < s. Since q|r and width(P ) ≤ k + 1, there is some r′ ∈ R with q
and r′ comparible. Since q|Q, r′ 6∈ Q. Since the width of B is ≤ k, there is
some q′ ∈ Q q′ and r′ comparible. Since Q ≤ R, there is some r0 ∈ R with
q′ ≤ r0. Sinc eR is an antichain, q′ ≤ r′. Since q|q′, q ≤ r′. Similarly, there
exists r′′ ∈ R with r′′ ≤ s. Since P does not have any ordering isomorphic
to 2 + 2, we can choose r′ = r′′, and hence q < s.

Now we suppose that r, q, s, t are distinct elements of A with q|{r, s, t}.
Then without loss of generality r < s < t since the width of A is at most
2. Since s ∈ A there is an antichain S ⊂ B of length k with s|S. Since s|q,
and width(P ) ≤ k + 1, q is comparible with some element s′ ∈ S. If s′ < q,
then s′|r and hence the suborder {s′, q, r, s} is isomorphic to 2+2. Similarly,
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q < s′ implies s′|t and then the subordering {q, s′, s, t} is isomorphic to 2+2.
Thus there cannot be 4 elements r, q, s, t of A with q|{r, s, t}. Hence A can
be covered by 3 chains.

Since the algorithm uses only the information about comparibility of var-
ious elements, and not their ordering, we have the following corollary.

Corollary 17.7 (Kierstead and Trotter [25]). Suppose that G is a online
interval graph of width k. Then G can be online coloured by 3k − 2 many
colours.

It has been shown in [25] that the bound above is sharp. The algorithm
resembles the simplest of all online algorithms: first fit. A first fit algorithm
for the problem above would be “colour with the fist available colour.” In
fact for pathwidth 2 or less, the algorithm above is first fit.

Question: Should there be any first fit algorithm for colouring interval
graphs online? The answer is yes.

Theorem 17.8 (Kierstead [26]). First fit online colours interval graphs of
width k with at most 40k colours.

Kierstead and Qin [27] improved the constant to 25.72. It is unknown
what the the correct constant is, but the lower bound is 4.4 as shown by
Chrobak and Slusarek [6] leaving a rather large gap.

17.4 Projects

(i) What about online algorithms for other problems? Bin packing and
scheduling are good candidates here.

(ii) Is the notion of performance ratio the best measure? Why not average
case algorithms?

(iii) What about other online versions of Dilworth’s decomposition theorem.
What’s the best version here?
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(iv) How well do these algorithms perform in practice? Fouhy found that
first fit colours randomly generated bounded pathwidth graphs very
well. What about online performance of chain decompositions. What
parameterizations could be used here?

18 Exercises 10

1 Prove Lemma 17.2.

2 Prove Lemma 17.5.

3 Construct an interval representation of the following graph G of width
4.

4

1

3 5

6

7

11

1098

2

Figure 31: An interval graph

4 Prove Fishburn’s theorem.

19 Selected solutions

19.1 Exercises 1

1 (b) is not a flow as f(A, E) = 4 > C(A, E) = 3, for instance

(b) Flow, value 8.

(d) Flow value 14.
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2 Find the capacity of each cut in the transportation network (a).

There are 32 cuts, with minimum value 14.

For example, if X = {s, a}, and so X = {b, c, d, e, t}, then C(X, X) =
14.

Below is a table of the cuts and their capacities.
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Cut Capacity
{s} 16
{s, a} 14
{s, b} 20
{s, c} 19
{s, d} 25
{s, e} 22
{s, a, b} 15
{s, a, c} 17
{s, a, d} 23
{s, a, e} 17
{s, b, c} 23
{s, b, d} 29
{s, b, e} 22
{s, c, d} 22
{s, c, e} 23
{s, d, e} 29
{s, a, b, c} 18
{s, a, b, d} 24
{s, a, b, e} 14
{s, a, c, d} 20
{s, a, c, e} 18
{s, a, d, e} 29
{s, b, c, d} 26
{s, b, c, e} 23
{s, b, d, e} 29
{s, c, d, e} 24
{s, a, b, c, d} 21
{s, a, b, c, e} 15
{s, a, b, d, e} 21
{s, a, c, d, e} 19
{s, b, c, d, e} 24
{s, a, b, c, d, e} 16

3 Suppose that (X, X) and (Y, Y ) are minimum cuts in a transportation
network N . Suppose that f is a maximum flow. Let (a, b) ∈ (X ∪
Y, X ∪ Y ) = (X ∪ Y, X ∩ Y ) Then (a, b) ∈ (X, X), or (a, b) ∈ (Y, Y ).
(This is beciause a in in either X or Y , and b is in X ∩ Y , and hence
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both X and Y .) In either case f(a, b) = γ(a, b) by max-flow/ min cut.
Hence the cut (X ∪ Y, X ∪ Y ) is a minumum cut since all edges are at
capacity or zero. The case (X ∩ Y, X ∩ Y ) is the same.

19.2 Exercises 2

1 (a)

vertex
processed

vertex
labeled label

s [s+,∞]
a [s+, 4]

s b [s+, 3]
c [s+, 4]

a t [a+, 3]

b t

a

s

c

4, 3 3, 3
2, 0

3, 0 6, 0

2, 0

4, 0 3, 0

vertex
processed

vertex
labeled label

s [s+,∞]
a [s+, 1]

s b [s+, 3]
c [s+, 4]

a —
b t [b+, 3]

b t

a

s

c

4, 3 3, 3
2, 0

3, 3 6, 3

2, 0

4, 0 3, 0
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vertex
processed

vertex
labeled label

s [s+,∞]
s a [s+, 1]

c [s+, 4]
a —
c b [c+, 2]

t [c+, 3]

b t

a

s

c

4, 3 3, 3
2, 0

3, 3 6, 3

2, 0

4, 3 3, 3

vertex
processed

vertex
labeled label

s [s+,∞]
s a [s+, 1]

c [s+, 1]
a —
c b [c+, 1]
b t [b+, 1]

b t

a

s

c

4, 3 3, 3
2, 0

3, 3 6, 4

2, 1

4, 4 3, 3

vertex
processed

vertex
labeled label

s [s+,∞]
s a [s+, 1]
a —

(b)

vertex
processed

vertex
labeled label

s [s+,∞]
s a [s+, 3]

c [s+, 3]
a b [a+, 2]
b d [b+, 1]

t [b+, 2]
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c d

a b

s t

3, 2

2, 2

2, 2

2, 0
2, 0

1, 0

3, 0

4, 0

3, 0

vertex
processed

vertex
labeled label

s [s+,∞]
s a [s+, 1]

c [s+, 3]
a —
c d [c+, 3]
d t [d+, 3]

c d

a b

s t

3, 2

2, 2

2, 2

2, 0
2, 0

1, 0

3, 3

4, 3

3, 3

vertex
processed

vertex
labeled label

s [s+,∞]
s a [s+, 1]
a c [a+, 1]
c d [c+, 1]
d —

83



19.3 Exercises 3

1 To determine if supply can meet demand, we attach extra edges, as
shown below, and then determine if a maximum flow would saturate
the demand edges (which connect to t).

In this case, there is a cut with capacity 24 (also shown in the figure
below) so the total demand of 26 cannot be met. (There is even a cut
with capacity 20.)

t

1

x2

x4

y1

y2

y4

x3 y31

12

12 3

3

10

10

s

x

10

6

6

5

6

1

6

1

6

1

3

4

3

4

3

4

3

5

2

5

2

5

5

2

8

8

6

6

10

6

10

6

6
1

2

• This time we have extra constraints to satisfy. The upper bounds on
the amounts that y1, y2 and y3 can process can be added to the graph
by replacing the distribution plants with edges as shown below.
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9

x1

x2

z1

z2

y3

y1

y2

x3 z3

3

4

7

7

6

8

4

9

4

5

3

5

2

8

7

8

3

4 ts

It is harder to fit the lower bounds into our framework, but as luck
would have it, they are satisfied by any maximum flow of the graph.
Such a flow is shown below. Because the maximum flow saturates
the outgoing edges, supply can meet demand while satisfying the con-
straints.

2

x1

x2

z1

z2

y3

y1

y2

x3 z3

1

4

7

6

5

8 9

4

58

3

5

1

7

2

7

2

4 ts

3 (i) The network is below
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E

A

B

C

a

b

c

d

e

f

t

   Figure 1

S

D

All edges have capacity 1. Possible answer (A,a),(B,b), (C,c),
(D,e), (E,f).

(iii)
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0

A

B

C

a

b

c

d

e

f

t

1

0

1

1

1

1

1

1

1

0

1

0

0

1

0

0

1

D

E

S

     Figure 2

0

11

0

0

0

This does depend on the order. There are several possible aug-
menting paths. For example: (s,E), (E,e), (e,A),(A,c), (c,t).

19.4 Exercises 4

2 2.

19.5 Exercises 5

•

• We run the Goldberg-Tarjan algorithm on the networks shown below.
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b

4

4

2

2

3

6

3

3

3

3

2

2

2

4

1

2

3

c d

t

a

s

c

a b

s t

(a) (b)

1 (a) The maximum flow is 10 and a minimum cut is {s, a}.

d(x) f(x, y)
step a b c (s, a) (s, b) (s, c) (a, t) (b, t) (c, t) (b, a) (c, b) active
1 1 1 1 4 3 4 0 0 0 0 0 a, b, c
2 1 1 1 4 3 4 3 0 0 0 0 a, b, c
3 1 1 1 4 3 4 3 3 0 0 0 a, c
4 1 1 1 4 3 4 3 3 3 0 0 a, c
5 1 1 2 4 3 4 3 3 3 0 0 a, c
6 1 1 2 4 3 4 3 3 3 0 1 a, b
7 1 1 2 4 3 4 3 4 3 0 1 a
8 6 1 2 4 3 4 3 3 3 0 1 a
9 6 1 2 3 3 4 3 3 3 0 1 −

1 (b) The maximum flow is 5 and a minimum cut is {s, a, c, d}.
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d(x) f(x, y)
step a b c d (s, a) (s, c) (a, c) (a, b) (c, d) (b, t) (b, d) (d, a) (d, t) active
1 1 1 1 1 3 3 0 0 0 0 0 0 0 a, c
2 2 1 1 1 3 3 0 0 0 0 0 0 0 a, c
3 2 1 1 1 3 3 0 2 0 0 0 0 0 a, b, c
4 2 1 1 1 3 3 1 2 0 0 0 0 0 b, c
5 2 1 1 1 3 3 1 2 0 2 0 0 0 c
6 2 1 2 1 3 3 1 2 0 2 0 0 0 c
7 2 1 2 1 3 3 1 2 4 2 0 0 0 d
8 2 1 2 1 3 3 1 2 4 2 0 0 3 d
9 2 1 2 3 3 3 1 2 4 2 0 0 3 d
10 2 1 2 3 3 3 1 2 4 2 0 1 3 a
11 3 1 2 3 3 3 1 2 4 2 0 1 3 a
12 3 1 2 3 3 3 2 2 4 2 0 1 3 c
13 3 1 4 3 3 3 2 2 4 2 0 1 3 c
14 3 1 4 3 3 3 1 2 4 2 0 1 3 a
15 4 1 4 3 3 3 1 2 4 2 0 1 3 a
16 4 1 4 3 3 3 1 2 4 2 0 0 3 d
17 4 1 4 5 3 3 1 2 4 2 0 0 3 d
18 4 1 4 5 3 3 1 2 4 2 0 1 3 a
19 5 1 4 5 3 3 1 2 4 2 0 1 3 a
20 5 1 4 5 3 3 2 2 4 2 0 1 3 c
21 5 1 6 5 3 3 2 2 4 2 0 1 3 c
22 5 1 6 5 3 3 1 2 4 2 0 1 3 a
23 6 1 6 5 3 3 1 2 4 2 0 1 3 a
24 6 1 6 5 3 3 1 2 4 2 0 0 3 d
25 6 1 6 7 3 3 1 2 4 2 0 0 3 d
26 6 1 6 7 3 3 1 2 4 2 0 1 3 a
27 7 1 6 7 3 3 1 2 4 2 0 1 3 a
28 7 1 6 7 2 3 1 2 4 2 0 1 3 −

Note that by step 10 (and certainly by step 18) it was clear that we
would end up sending the last unit of flow back to s. It is not really
necessary to run the algorithm to its bitter end.
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19.6 Exercises 6

1 (i) This follows by property 2. of Definition 11.3. To see (ii), for each
pair of vertices x, y in C there is some Tz with x, y ∈ Tz. By (i) the
collection of z with Tz containing x form a subtree Tx of T . Now let
{x1, ..., xn} list C. Each xi thus generates a subtree Ti of T . The
intersection ∩Ti is nonempty by (i) and property 2., and hence there is
some z with C ⊆ Tz.

19.7 Exercises 7

1

efg

gfh

fhk

fhj

hijdef

cd

abc

2 (Modulo mistakes)
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5

hf0

4 4 4 − − −

−

−

3 3 4

gfhghfhgfhfg0

4 5 4 4 − − −

−

− 5

4 3 3 4 4 4 5

e ef eh hf ehf

4

3 3 3 4

5 − 5 6 6 5 6

0 0

0

00 d e f de df def ef

−

4

4

−

 4

4

2 2 2 2 − −

− 2 2 2 3 3

− − 3 3 3 3

f h k fh fk hh fhk

0 1 1 1 − − − −

− 1 1 1 2 2 2 3

− − − − 2 2 2 3

0 c d cd

1 1 2 −

− 1 2 2

− 2 3 3

f h j fh fj hj fhj

1 2 1 1 − − − −

− 2 1 1 2 2 2 3

− 3 2 2 2 3 2 3

h i j hi hj ij hij

0 1 1 1 1 − − −

− 1 1 1 2 2 2 3

− − − − 2 2 2 3

a b c ab ac bc abc

− 1 1 1 − − − −

− 1 1 1 2 2 2 3

−− − − − 2 2 2 3

−

−

5

3

3

3 (i)Consider a tree decomposition {Tx : x ∈ T} for some rooted tree T .

Without loss of generality, we can consider it to be a smooth decom-
position. (That is, as we move from one bag to another, at most one
vertex is deleted; and children of some bag are identical to that bag.)
Now start from the leftmost bag using depth-first ordering. This has
some vertex that is lost as we move to a parent. Make this the first
vertex. It can only be connected to vertices in the very bag it is in.
That’s at most k of them. Remove this bag, and continge this process
inductively.

(ii) Suppose that G is planar. Then, by Euler’s formula, there is some
vertex in G of degree 5. call it the first vertex. Remove it and the edges
connecting it to G. repeat.
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19.8 Exercises 8

1 Colour {mi, mj} red if i < j and mi < mj and blue otherwise. The
take n = R(2, 2).

2 This is trickier. A more general result is that if P = (M,≤) is a partial
ordering with |M | ≥ mn + 1, then P either has a chain of size m or
an antichain of size n. This follows by the pigeonhole principle and
the more general fact that if P is any partial ordering of with largest
antichain of size d (this is called the width), then P can be decomposed
into d disjoint chains M1 ∪ · · · ∪Md. The proof briefly is the following.
Prove this by induction on n = |M |. It is clearly true for n = 1, and
then P is a point. If we assume for n, and take any poset P of size
n + 1. From this remove a maximal chain C, and call the result P̂ .
Now we can apply the induction hypothesis to P̂ . If the width of P̂ is
d−1, then we can decompuse P̂ = M̂1∪ · · ·∪ M̂d−1 and add C to get a
width d decomposition of P . On the other hand, P̂ might have width d.
Then you can decompose P̂ into d chains and have a antichain a1 . . . ad

within it. Now consider the collection P+ = {p ∈ P : ∃i(p ≥ ai)},
and P− = {p ∈ P : ∃i(p ≤ ai)}. We can apply induction to P+ and
decompose P= into d chains, and it is easy to show that each has a ai

at the bottom. Similarly for P−. Then we put these chains together.

3 (Tarsy) Take n with n → (k)3
2. Now colour {i, j, k} if i < j < k red

if i to j to k is clockwise, and blue otherwise. take the homogeneous
set. If all red then all clockwise and otherwie all anticlockwise. Hence
convex.

19.9 Exercises 9

2 We can give an easy proof of this lemma by using the labeled version
of Kruskal’s Theorem. We can consider a sequence 〈a0, a1, ...an〉 as
a tree with root labeled a0, immediate successor a1, .... To a bad S
sequence would correspond a sequence of trees, bad with respect to
labeled topological ordering.
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19.10 Exercises 10

1 (sketch) One direction is to take a path decomposition and map the
parts of the path with bags comntains a vertex to intervals. The other
dierction is similar.

2 Prove Lemma 17.5. We need to prove: If P is an interval order and
S, T ⊂ P are maximal antichains the either S ≤ t or T ≤ S.

Suppose S 6≤ T . then for some s ∈ S, and every t ∈ T , s 6≤ t. But T
is a maximal antichain. Thus there is some t ∈ T comparible with s.
Hence t < s, for this t. Similarly, there is some s′ ∈ S and t′ ∈ T with
s′ < t′ should T 6≤ S. Since S and T are antichains, s 6= s′ and t 6= t′.
Thus s|s′ and t|t′. But then the subordering {s, s′, t, t′} is isomorphic
to 2 + 2. This contradicts the fact that P is an interval order.

6

9

5 8 10

11

7

4

1

2 3

Figure 32: An interval decomposition

3
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